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▶ A new and very hot post-quantum signature scheme.
▶ In round 2 of the NISTPQC signature on-ramp!
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SQIsign: Why?

+ It’s extremely small compared to the competition.

– It’s relatively slow compared to the competition.
+ ...but SQIsign is getting better by the ≈week!

(See e.g. Benjamin’s talk just afterwards.)
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Big picture
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SQIsign: How?

⇝ Fiat–Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

▶ Identification scheme based on isogenies:

E0 EA
secret

▶ Easy response: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).
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SQIsign: How, really?

The Deuring correspondence:
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SQIsign: How, really?

The Deuring correspondence:

Almost exact equivalence between two very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .

▶ Quaternion maximal orders in a certain algebra Bp,∞.
Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!
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Endomorphisms←→ isogenies

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

(See my autumn-school lecture yesterday.)
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The Deuring
correspondence
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Deuring correspondence: Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular,

and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, π2 = [−p].

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, ι, (ι+ π)/2, (1 + ιπ)/2} .
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Deuring correspondence: Example #2

Assume p ≡ 2 (mod 3).

Then E′: y2 = x3 + 1 is supersingular,

and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, π2 = [−p].

In fact, a Z-basis of End(E′) is given by{
1, ω, ωπ, (1+ 2ω)(1+π)/3

}
.
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Deuring correspondence: Example #3

For the sake of an example, let p = 7799999 ≡ 11 (mod 12).

Then E : y2 = x3 + x and E′ : y2 = x3 + 1 are both supersingular
with endomorphism rings as shown before.

Moreover, the lattice

Z 4947⊕ Z 4947ι⊕ Z
598+ 4947ι+π

2
⊕ Z

4947+ 598ι+ ιπ

2

inside End(E)⊗ZQ corresponds to an isogeny E→ E′.
(I haven’t yet said how.)
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From curves to quaternions

As far as we know, these are hard problems (even quantumly):

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.
Given two supersingular elliptic curves,
find any isogeny between them.

Core of the connection: The Deuring correspondence!
⇐: Isogenies “transport” knowledge of endomorphism rings.
⇒: Finding powersmooth “connecting ideals” is easy ( );

converting them to isogenies is easy.
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About 4 math-heavy slides ahead.
It will become less technical afterwards! :)
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“Abstract” quaternions

It is convenient to fix one curve E0 and embed all other End(E)
into End(E0)⊗ZQ.

⇝ Assume p ≡ 3 (mod 4) and let

Bp,∞ := End(E0)⊗ZQ

where E0 : y2 = x3 + x as before.

For clarity, when dealing with “abstract” elements on the
quaternion side, it is customary to write i for ι and j for π.

Indeed, this means

Bp,∞ = Q⊕Qi⊕Qj⊕Qij

with multiplication defined by i2 = −1, j2 = −p, ji = −ij.
(This Bp,∞ is the “quaternion algebra over Q ramified at p and ∞”.)
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The main theorem

▶ Fix a supersingular elliptic curve E0/Fp2 . Let O0 := End(E0).

Theorem. The (contravariant) functor

E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left O0-modules

with nonzero left O0-module homomorphisms.
(up to their respective notions of isomorphism, etc. etc.)

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set of O0.

There is no equivalence between elliptic curves/∼ and
endomorphism rings/∼. (The map {E}/∼ → {O}/∼ is not injective.)
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Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E0 correspond to left ideals of O0,

and
isogeny codomains from E0 correspond to left ideal classes ofO0.

▶ Given ψ : E0 → E, the associated O0-ideal is Hom(E,E0)ψ.

Important consequence: The isogeny φI : E0 → E
defined by a left O0-ideal I has kernel

⋂
α∈I kerα ≤ E0.

⇝ Explicit ideal-to-isogeny conversion, provided all the points
of norm(I)-torsion are accessible (defined over small field extensions):

1. Write I = O0N +O0α where N =norm(I)∈Z and α ∈ O0.
2. Compute the isogeny with kernel E[I] = ker(α|E0[N]).
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of norm(I)-torsion are accessible (defined over small field extensions):

1. Write I = O0N +O0α where N =norm(I)∈Z and α ∈ O0.
2. Compute the isogeny with kernel E[I] = ker(α|E0[N]).

15 / 33



All the End(E) ↪→ Bp,∞

From any isogeny φ : E0 → E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) ↪−→ Bp,∞ = End(E0)⊗Z Q ,
α 7−→ φ̂αφ/deg(φ) .

“Transporting” endomorphism knowledge:

Knowing End(E0) and an isogeny φ : E0 → E reveals End(E).

Concretely: Under the embedding above, we have

End(E) = OR(Iφ) = {α ∈ Bp,∞ : Iφα ⊆ Iφ} ,

where
Iφ := Hom(E,E0)φ

is the ideal of End(E0) associated to φ.

(⇝ Open problem: Constructing supersingular E with unknown End(E).)
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Endomorphisms as a trapdoor

Recall: In SQIsign, creating a signature means finding an
isogeny EA → E2 where End(E2) is known.

▶ The legitimate signer also knows End(EA).
(They transported this knowledge from E0.)

▶ Supposedly noone else is able to know End(EA).

⇝ Knowledge of End(EA) is a trapdoor for finding EA → E2.
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SQIsign: main algorithms
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SQIsign: How?

Recall:

▶ Identification scheme based on isogenies:

E0 EA

E1 E2

secret
co

m
m

itm
en

t
response

challenge

▶ Easy response: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA→E2 (using secret).
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SQIsign: How?
Main idea:
▶ “Lift” the commitment and challenge to quaternion land.

▶ Construct the response in quaternion land using secret;
project it “down” to the curve world (ideal-to-isogeny).

▶ The verifier can check on curves that it’s all correct.

Main technical tool: The KLPT algorithm .
▶ From End(E),End(E′), can randomize within Hom(E,E′).

...with very good control over the degree of the resulting isogeny!

⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2
and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsigning

Parameters:

▶ Large prime p such that p2 − 1 has a large smooth part.
(Finding such primes is tricky⇝ research on “SQIsign-friendly primes”.)

▶ “Special” starting curve E0/Fp2 (usually E0 : y2 = x3 + x)
with explicitly known endomorphism ring End(E0).

▶ Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.

21 / 33



SQIsigning

Parameters:
▶ Large prime p such that p2 − 1 has a large smooth part.

(Finding such primes is tricky⇝ research on “SQIsign-friendly primes”.)

▶ “Special” starting curve E0/Fp2 (usually E0 : y2 = x3 + x)
with explicitly known endomorphism ring End(E0).

▶ Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.

21 / 33



SQIsigning

Parameters:
▶ Large prime p such that p2 − 1 has a large smooth part.

(Finding such primes is tricky⇝ research on “SQIsign-friendly primes”.)

▶ “Special” starting curve E0/Fp2 (usually E0 : y2 = x3 + x)
with explicitly known endomorphism ring End(E0).

▶ Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.

21 / 33



SQIsigning

Parameters:
▶ Large prime p such that p2 − 1 has a large smooth part.

(Finding such primes is tricky⇝ research on “SQIsign-friendly primes”.)

▶ “Special” starting curve E0/Fp2 (usually E0 : y2 = x3 + x)
with explicitly known endomorphism ring End(E0).

▶ Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.

21 / 33



SQIsigning

Key generation:

▶ Sample a random secret isogeny φ : E0 → EA together with
its associated End(E0)-ideal Iφ.

(Constructing φ and Iφ jointly is much faster than picking one and converting.)

▶ The public key is just the codomain EA.
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SQIsigning

Signing:

▶ Sample a random commitment isogeny ψ : E0 → E1 together
with its associated End(E0)-ideal Iψ.

▶ Hash the tuple (EA,E1,message) to obtain a challenge
isogeny χ : E1 → E2.

▶ Using the (secret) commitment isogeny ψ, convert χ into
an End(E1)-ideal Iχ.

▶ Compute the End(EA)-ideal I′σ := Iφ · Iψ · Iχ which
corresponds to the isogeny χ ◦ ψ ◦ φ̂ : EA→E0→E1→E2.
Convert I′σ into a random equivalent ideal Iσ. (KLPT!)

▶ Compute the isogeny σ : EA → E2 corresponding to Iσ.
▶ Return the signature (E1, σ).
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SQIsigning

Verification:

▶ Given public key EA, signature (E1, σ), and the message.
▶ Hash the tuple (EA,E1,message) to recompute the challenge
χ : E1 → E2. (There are better ways of doing it; this is the simplest.)

▶ Check that σ is indeed an isogeny from EA to E2,
and that χ̂ ◦ σ is cyclic.

In SQIsign, the degrees are chosen so that deg(σ) = 2n.
⇝ very efficient isogeny chains in time O(n log n) using “optimal strategies”.

doublin
g [

2] 2-isogeny
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Security
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Required properties

For SQIsign to be secure, we need two main properties:
▶ Soundness: Ability to sign proves knowledge of a secret.
▶ Zero-knowledge: Signatures do not leak anything secret.
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Soundness

We want extractability: Given two valid signatures for the same
commitment but different challenges, can we compute the secret?

E0 EA

E1 E2

E′
2

secret

co
m

m
itm

en
t response

σ

response
σ ′challenge χ

challenge χ′

:( We cannot directly extract the secret φ : E0 → EA, but we can
extract an endomorphism in End(EA)\Z:

EA
σ′
−→ E′

2
χ̂′
−→ E1

χ−→ E2
σ̂−→ EA .
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One endomorphism to rule them all?

New question: Is computing some nonscalar endomorphism
just as hard as finding φ : E0 → EA?

Answer: Essentially yes!
(See Benjamin’s autumn-school lecture past Monday.)

=⇒ Modulo minor details, soundness of SQIsign is equivalent
to the hardness of the isogeny problem.
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Zero-knowledge

...is, in this variant of SQIsign, basically a heuristic assumption.

Key question:
▶ (How) is the distribution of responses related to the secret?

Standard proof technique: Give a simulator that outputs transcripts (E1, χ, σ)
with the same distribution as the signing algorithm, but without the secret.

:( Here, intimately related to gory internals of KLPT.:( It seems difficult to prove anything about this.

:) Some newer SQIsign variants are much better in this regard!
⇝ See next talk.
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Performance
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SQIsign: Numbers

These are from the round-1 submission to NISTPQC.
They will change very significantly in the coming months.
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SQIsign: Comparison (NIST level 1)

Source: https://pqshield.github.io/nist-sigs-zoo
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SQIsign: Comparison (NIST level 3)

Source: https://pqshield.github.io/nist-sigs-zoo
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SQIsign: Comparison (NIST level 5)

Source: https://pqshield.github.io/nist-sigs-zoo
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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