

Lorenz Panny

Technische Universität München

ECC 2024, Taipei, 30 October 2024

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- A new and very hot post-quantum signature scheme.
- In round 2 of the NISTPQC signature on-ramp!

+ It's extremely <u>small</u> compared to the competition.

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but SQIsign is getting better by the \approx week!

(See e.g. Benjamin's talk just afterwards.)

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but SQIsign is getting better by the \approx week!

(See e.g. Benjamin's talk just afterwards.)

Big picture

→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

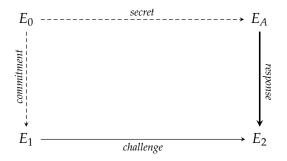
- → <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
 - Identification scheme based on isogenies:

 $E_0 \xrightarrow{secret} E_A$

- → <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
 - Identification scheme based on isogenies:

- → <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
 - Identification scheme based on isogenies:

- → <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
 - Identification scheme based on isogenies:



- → <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
 - Identification scheme based on isogenies:

• Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.

- → <u>Fiat-Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.
- Identification scheme based on isogenies:

- Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- **<u>SQIsign's solution</u>**: Construct new path $E_A \rightarrow E_2$ (using secret).

The Deuring correspondence:

The Deuring correspondence:

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

• Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternion maximal orders in a certain algebra $B_{p,\infty}$.

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternion maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternion maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternion maximal orders in a certain algebra $B_{p,\infty}$. Isogenies become connecting ideals in quaternion land.

isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

 \because The " \Leftarrow " direction is easy, the " \Rightarrow " direction seems hard!

The Deuring correspondence:

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternion maximal orders in a certain algebra $B_{p,\infty}$. Isogenies become connecting ideals in guaternion land.

The correspondence is through the endomorphism ring.

∵ The "⇐" direction is easy, the "⇒" direction seems hard!
~> Cryptography!

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

• \approx All isogeny security reduces to the " \Rightarrow " direction.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► SQIsign builds on the "⇐" direction constructively.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► SQIsign builds on the "⇐" direction constructively.
- Essential tool for both constructions and attacks.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► SQIsign builds on the "⇐" direction constructively.
- Essential tool for both constructions and attacks.

Constructively, *partially* known endomorphism rings are useful. ~ Oriented curves and the isogeny class-group action. (See my autumn-school lecture yesterday.)

The Deuring correspondence

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular,

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota\colon & (x,y)\longmapsto (-x,\sqrt{-1}\cdot y)\,,\\ \pi\colon & (x,y)\longmapsto (x^p,y^p)\,. \end{split}$$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota \colon & (x,y) \longmapsto (-x,\sqrt{-1} \cdot y) \,, \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) \,. \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \qquad \pi \iota = -\iota \pi, \qquad \pi^2 = [-p].$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota \colon & (x,y) \longmapsto (-x,\sqrt{-1} \cdot y) \,, \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) \,. \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \quad \pi \iota = -\iota \pi, \quad \pi^2 = [-p].$

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by {1, ι , $(\iota + \pi)/2$, $(1 + \iota \pi)/2$ }.

Assume $p \equiv 2 \pmod{3}$.

Then $E': y^2 = x^3 + 1$ is supersingular,

Assume $p \equiv 2 \pmod{3}$.

Then $E': y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} &\omega\colon \ (x,y)\,\longmapsto\, (\zeta_3\cdot x,y)\,,\\ &\pi\colon \ (x,y)\,\longmapsto\, (x^p,y^p)\,. \end{split}$$

Assume $p \equiv 2 \pmod{3}$.

Then $E': y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{aligned} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) . \end{aligned}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1], \qquad \omega \pi + \pi \omega = -\pi, \qquad \pi^2 = [-p].$

Deuring correspondence: Example #2

Assume $p \equiv 2 \pmod{3}$.

Then $E': y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{aligned} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) . \end{aligned}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1], \qquad \omega \pi + \pi \omega = -\pi, \qquad \pi^2 = [-p].$

In fact, a \mathbb{Z} -basis of $\operatorname{End}(E')$ is given by

$$\left\{1, \quad \omega, \quad \omega\pi, \quad (1+2\omega)(1+\pi)/3\right\}.$$

Deuring correspondence: Example #3

For the sake of an example, let $p = 7799999 \equiv 11 \pmod{12}$.

Then $E: y^2 = x^3 + x$ and $E': y^2 = x^3 + 1$ are both supersingular with endomorphism rings as shown before.

Deuring correspondence: Example #3

For the sake of an example, let $p = 7799999 \equiv 11 \pmod{12}$.

Then $E: y^2 = x^3 + x$ and $E': y^2 = x^3 + 1$ are both supersingular with endomorphism rings as shown before.

Moreover, the lattice

$$\mathbb{Z} \, 4947 \oplus \mathbb{Z} \, 4947 \iota \oplus \mathbb{Z} \, \frac{598 + 4947 \iota + \pi}{2} \oplus \mathbb{Z} \, \frac{4947 + 598 \iota + \iota \pi}{2}$$

inside $\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ corresponds to an isogeny $E \to E'$. (I haven't yet said *how*.)

As far as we know, these are *hard* problems (even quantumly):

As far as we know, these are *hard* problems (even quantumly):

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve, find its endomorphism ring.

As far as we know, these are hard problems (even quantumly):

The supersingular endomorphism-ring problem. Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves, find any isogeny between them.

As far as we know, these are *hard* problems (even quantumly):

The supersingular endomorphism-ring problem. Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem. Given two supersingular elliptic curves, find any isogeny between them.

Core of the connection: The Deuring correspondence!

As far as we know, these are hard problems (even quantumly):

The supersingular endomorphism-ring problem. Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem. Given two supersingular elliptic curves, find any isogeny between them.

Core of the connection: The Deuring correspondence!

⇐: Isogenies "transport" knowledge of endomorphism rings.

As far as we know, these are hard problems (even quantumly):

The supersingular endomorphism-ring problem. Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem. Given two supersingular elliptic curves, find any isogeny between them.

Core of the connection: The Deuring correspondence!

- \Leftarrow : Isogenies "transport" knowledge of endomorphism rings.
- ⇒: Finding powersmooth "connecting ideals" is easy (); converting them to isogenies is easy.

▲ About 4 math-heavy slides ahead. It will become less technical afterwards! ∵

It is convenient to fix one curve E_0 and embed all other End(E) into $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$.

It is convenient to fix one curve E_0 and embed all other End(E) into $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$. \rightsquigarrow Assume $p \equiv 3 \pmod{4}$ and let

 $B_{p,\infty} := \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$

where $E_0: y^2 = x^3 + x$ as before.

It is convenient to fix one curve E_0 and embed all other End(E) into $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$. \rightsquigarrow Assume $p \equiv 3 \pmod{4}$ and let

 $B_{p,\infty} := \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$

where $E_0: y^2 = x^3 + x$ as before.

For clarity, when dealing with "abstract" elements on the quaternion side, it is customary to write **i** for ι and **j** for π .

It is convenient to fix one curve E_0 and embed all other End(E) into $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$. \rightsquigarrow Assume $p \equiv 3 \pmod{4}$ and let

 $B_{p,\infty} := \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q}$

where $E_0: y^2 = x^3 + x$ as before.

For clarity, when dealing with "abstract" elements on the quaternion side, it is customary to write **i** for ι and **j** for π .

Indeed, this means

$$B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$$

with multiplication defined by $\mathbf{i}^2 = -1$, $\mathbf{j}^2 = -p$, $\mathbf{j}\mathbf{i} = -\mathbf{i}\mathbf{j}$. (This $B_{p,\infty}$ is the "quaternion algebra over \mathbb{Q} ramified at p and ∞ ".)

► Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} . Let $\mathcal{O}_0 := \text{End}(E_0)$.

► Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} . Let $\mathcal{O}_0 := \text{End}(E_0)$.

Theorem. The (contravariant) functor

 $E \mapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_0 -modules

with nonzero left \mathcal{O}_0 -module homomorphisms.

(up to their respective notions of isomorphism, etc. etc.)

► Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} . Let $\mathcal{O}_0 := \text{End}(E_0)$.

Theorem. The (contravariant) functor

 $E \mapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_0 -modules

with nonzero left \mathcal{O}_0 -module homomorphisms.

(up to their respective notions of isomorphism, etc. etc.)

Corollary (Deuring). Isomorphism classes of supersingular elliptic curves are in bijection with the (left) class set of O_0 .

► Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} . Let $\mathcal{O}_0 := \text{End}(E_0)$.

Theorem. The (contravariant) functor

 $E \mapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_0 -modules

with nonzero left \mathcal{O}_0 -module homomorphisms.

(up to their respective notions of isomorphism, etc. etc.)

Corollary (Deuring). Isomorphism classes of supersingular elliptic curves are in bijection with the (left) class set of O_0 .

There is no equivalence between elliptic curves/ \sim and endomorphism rings/ \sim . (The map $\{E\}/\sim \rightarrow \{O\}/\sim$ is not injective.)

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 ,

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 ,

and

isogeny *codomains* from E_0 correspond to left ideal *classes* of \mathcal{O}_0 .

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 ,

and

isogeny *codomains* from E_0 correspond to left ideal *classes* of \mathcal{O}_0 .

• Given $\psi : E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 ,

and

isogeny *codomains* from E_0 correspond to left ideal *classes* of \mathcal{O}_0 .

• Given $\psi : E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

<u>Important consequence</u>: The isogeny $\varphi_I \colon E_0 \to E$ defined by a left \mathcal{O}_0 -ideal *I* has kernel $\bigcap_{\alpha \in I} \ker \alpha \leq E_0$.

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 ,

and

isogeny *codomains* from E_0 correspond to left ideal *classes* of \mathcal{O}_0 .

• Given $\psi : E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

<u>Important consequence</u>: The isogeny $\varphi_I \colon E_0 \to E$ defined by a left \mathcal{O}_0 -ideal *I* has kernel $\bigcap_{\alpha \in I} \ker \alpha \leq E_0$.

 \rightsquigarrow Explicit **ideal-to-isogeny** conversion, provided all the points of norm(*I*)-torsion are accessible (defined over small field extensions):

1. Write $I = \mathcal{O}_0 N + \mathcal{O}_0 \alpha$ where $N = \operatorname{norm}(I) \in \mathbb{Z}$ and $\alpha \in \mathcal{O}_0$.

2. Compute the isogeny with kernel $E[I] = \ker(\alpha|_{E_0[N]})$.

From any isogeny $\varphi \colon E_0 \to E$, we obtain (abstractly) an embedding of the endomorphism ring

$$\operatorname{End}(E) \, \hookrightarrow \, B_{p,\infty} = \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \,,$$
$$\alpha \, \longmapsto \, \widehat{\varphi} \alpha \varphi / \operatorname{deg}(\varphi) \,.$$

From any isogeny $\varphi \colon E_0 \to E$, we obtain (abstractly) an embedding of the endomorphism ring

$$\operatorname{End}(E) \, \longleftrightarrow \, B_{p,\infty} = \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \,,$$
$$\alpha \, \longmapsto \, \widehat{\varphi} \alpha \varphi / \operatorname{deg}(\varphi) \,.$$

"Transporting" endomorphism knowledge:

Knowing $\operatorname{End}(E_0)$ and an isogeny $\varphi \colon E_0 \to E$ reveals $\operatorname{End}(E)$.

From any isogeny $\varphi \colon E_0 \to E$, we obtain (abstractly) an embedding of the endomorphism ring

$$\operatorname{End}(E) \, \longleftrightarrow \, B_{p,\infty} = \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \,,$$
$$\alpha \, \longmapsto \, \widehat{\varphi} \alpha \varphi / \operatorname{deg}(\varphi) \,.$$

"Transporting" endomorphism knowledge:

Knowing $\operatorname{End}(E_0)$ and an isogeny $\varphi \colon E_0 \to E$ reveals $\operatorname{End}(E)$.

Concretely: Under the embedding above, we have $\operatorname{End}(E) = \mathcal{O}_R(I_{\varphi}) = \{ \alpha \in B_{p,\infty} : I_{\varphi} \alpha \subseteq I_{\varphi} \},\$

where

 $I_{\varphi} := \operatorname{Hom}(E, E_0)\varphi$

is the ideal of $\operatorname{End}(E_0)$ associated to φ .

From any isogeny $\varphi \colon E_0 \to E$, we obtain (abstractly) an embedding of the endomorphism ring

$$\operatorname{End}(E) \, \longleftrightarrow \, B_{p,\infty} = \operatorname{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \,,$$
$$\alpha \, \longmapsto \, \widehat{\varphi} \alpha \varphi / \operatorname{deg}(\varphi) \,.$$

"Transporting" endomorphism knowledge:

Knowing $\operatorname{End}(E_0)$ and an isogeny $\varphi \colon E_0 \to E$ reveals $\operatorname{End}(E)$.

Concretely: Under the embedding above, we have $\operatorname{End}(E) = \mathcal{O}_R(I_{\varphi}) = \{ \alpha \in B_{p,\infty} : I_{\varphi} \alpha \subseteq I_{\varphi} \},\$

where

 $I_{\varphi} := \operatorname{Hom}(E, E_0)\varphi$

is the ideal of $\operatorname{End}(E_0)$ associated to φ .

(\rightsquigarrow Open problem: Constructing supersingular *E* with unknown End(*E*).)

<u>Recall</u>: In SQIsign, creating a signature means finding an isogeny $E_A \rightarrow E_2$ where $\text{End}(E_2)$ is known.

<u>Recall</u>: In SQIsign, creating a signature means finding an isogeny $E_A \rightarrow E_2$ where $\text{End}(E_2)$ is known.

• The legitimate signer also knows $End(E_A)$.

(They transported this knowledge from E_0 .)

<u>Recall</u>: In SQIsign, creating a signature means finding an isogeny $E_A \rightarrow E_2$ where End(E_2) is known.

• The legitimate signer also knows $End(E_A)$.

(They transported this knowledge from E_0 .)

• Supposedly noone else is able to know $End(E_A)$.

<u>Recall</u>: In SQIsign, creating a signature means finding an isogeny $E_A \rightarrow E_2$ where End(E_2) is known.

• The legitimate signer also knows $End(E_A)$.

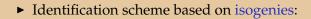
(They transported this knowledge from E_0 .)

• Supposedly noone else is able to know $End(E_A)$.

 \rightsquigarrow Knowledge of $\operatorname{End}(E_A)$ is a *trapdoor* for finding $E_A \rightarrow E_2$.

SQIsign: main algorithms

Recall:



- ► Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- ▶ **<u>SQIsign's solution</u>**: Construct new path $E_A \rightarrow E_2$ (using secret).

Main idea:

• "Lift" the *commitment* and *challenge* to quaternion land.

Main idea:

- "Lift" the *commitment* and *challenge* to quaternion land.
- Construct the *response* in quaternion land using *secret*; project it "down" to the curve world (ideal-to-isogeny).

Main idea:

- "Lift" the *commitment* and *challenge* to quaternion land.
- Construct the *response* in quaternion land using *secret*; project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that it's all correct.

SQIsign: How?

Main idea:

- "Lift" the *commitment* and *challenge* to quaternion land.
- Construct the *response* in quaternion land using *secret*; project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that it's all correct.

Main technical tool: The KLPT algorithm .

► From End(*E*), End(*E'*), can randomize within Hom(*E*, *E'*). ...with very good control over the degree of the resulting isogeny!

SQIsign: How?

Main idea:

- "Lift" the *commitment* and *challenge* to quaternion land.
- Construct the *response* in quaternion land using *secret*; project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that it's all correct.

Main technical tool: The KLPT algorithm /.

- ► From End(*E*), End(*E'*), can randomize within Hom(*E*, *E'*). ...with very good control over the degree of the resulting isogeny!
- → SQIsign takes the "broken" signature $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ and rewrites it into a random isogeny $E_A \rightarrow E_2$.

SQIsign: How?

Main idea:

- "Lift" the *commitment* and *challenge* to quaternion land.
- Construct the *response* in quaternion land using *secret*; project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that it's all correct.

Main technical tool: The KLPT algorithm /.

- ► From End(*E*), End(*E'*), can randomize within Hom(*E*, *E'*). ...with very good control over the degree of the resulting isogeny!
- → SQIsign takes the "broken" signature $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ and rewrites it into a random isogeny $E_A \rightarrow E_2$.

"If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign." — Yan Bo Ti

Parameters:

Parameters:

• Large prime p such that $p^2 - 1$ has a large *smooth* part. (Finding such primes is tricky \sim research on "SQIsign-friendly primes".)

Parameters:

- ► Large prime p such that p² 1 has a large smooth part. (Finding such primes is tricky ~>> research on "SQIsign-friendly primes".)
- "Special" starting curve E_0/\mathbb{F}_{p^2} (usually $E_0: y^2 = x^3 + x$) with explicitly known endomorphism ring $\text{End}(E_0)$.

Parameters:

- ► Large prime p such that p² 1 has a large smooth part. (Finding such primes is tricky ~> research on "SQIsign-friendly primes".)
- ► "Special" starting curve E_0/\mathbb{F}_{p^2} (usually $E_0: y^2 = x^3 + x$) with explicitly known endomorphism ring $\text{End}(E_0)$.
- Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.

Key generation:

Key generation:

► Sample a random *secret* isogeny $\varphi \colon E_0 \to E_A$ together with its associated End(E_0)-ideal I_{φ} .

(Constructing φ and I_{φ} *jointly* is much faster than picking one and converting.)

Key generation:

- Sample a random secret isogeny φ: E₀ → E_A together with its associated End(E₀)-ideal I_φ. (Constructing φ and I_φ jointly is much faster than picking one and converting.)
- The public key is just the codomain E_A .

Signing:

Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\operatorname{End}(E_0)$ -ideal I_{ψ} .

<u>Signing:</u>

- Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\text{End}(E_0)$ -ideal I_{ψ} .
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.

- Sample a random *commitment* isogeny ψ: E₀ → E₁ together with its associated End(E₀)-ideal I_ψ.
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.
- ► Using the (secret) commitment isogeny ψ, convert χ into an End(E₁)-ideal I_χ.

- Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\operatorname{End}(E_0)$ -ideal I_{ψ} .
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.
- ► Using the (secret) commitment isogeny ψ, convert χ into an End(E₁)-ideal I_χ.
- Compute the End(*E_A*)-ideal *I'_σ* := *Ī_φ* · *I_ψ* · *I_χ* which corresponds to the isogeny χ ∘ ψ ∘ φ̂: *E_A* → *E*₀ → *E*₁ → *E*₂.

- Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\operatorname{End}(E_0)$ -ideal I_{ψ} .
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.
- ► Using the (secret) commitment isogeny ψ, convert χ into an End(E₁)-ideal I_χ.
- Compute the End(E_A)-ideal $I'_{\sigma} := \overline{I}_{\varphi} \cdot I_{\psi} \cdot I_{\chi}$ which corresponds to the isogeny $\chi \circ \psi \circ \widehat{\varphi} : E_A \to E_0 \to E_1 \to E_2$.
- \checkmark Convert I'_{σ} into a random equivalent ideal I_{σ} . (KLPT!)

- Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\operatorname{End}(E_0)$ -ideal I_{ψ} .
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.
- ► Using the (secret) commitment isogeny ψ, convert χ into an End(E₁)-ideal I_χ.
- Compute the End(E_A)-ideal $I'_{\sigma} := \overline{I}_{\varphi} \cdot I_{\psi} \cdot I_{\chi}$ which corresponds to the isogeny $\chi \circ \psi \circ \widehat{\varphi} : E_A \to E_0 \to E_1 \to E_2$.
- \checkmark Convert *I*[']_σ into a random equivalent ideal *I*_σ. (KLPT!)
 - Compute the isogeny $\sigma: E_A \to E_2$ corresponding to I_{σ} .

- Sample a random *commitment* isogeny $\psi : E_0 \to E_1$ together with its associated $\operatorname{End}(E_0)$ -ideal I_{ψ} .
- ► Hash the tuple $(E_A, E_1, message)$ to obtain a *challenge* isogeny $\chi: E_1 \to E_2$.
- ► Using the (secret) commitment isogeny ψ, convert χ into an End(E₁)-ideal I_χ.
- Compute the End(E_A)-ideal $I'_{\sigma} := \overline{I}_{\varphi} \cdot I_{\psi} \cdot I_{\chi}$ which corresponds to the isogeny $\chi \circ \psi \circ \widehat{\varphi} : E_A \to E_0 \to E_1 \to E_2$.
- \checkmark Convert *I*[']_σ into a random equivalent ideal *I*_σ. (KLPT!)
 - Compute the isogeny $\sigma: E_A \to E_2$ corresponding to I_{σ} .
 - Return the signature (E_1, σ) .

Verification:

Verification:

• Given public key E_A , signature (E_1, σ) , and the *message*.

Verification:

- Given public key E_A , signature (E_1, σ) , and the *message*.
- ► Hash the tuple (E_A, E₁, message) to recompute the challenge *χ*: E₁ → E₂. (There are better ways of doing it; this is the simplest.)

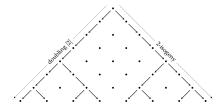
Verification:

- Given public key E_A , signature (E_1, σ) , and the *message*.
- ► Hash the tuple (E_A, E₁, message) to recompute the challenge χ: E₁ → E₂. (There are better ways of doing it; this is the simplest.)
- Check that σ is indeed an isogeny from E_A to E₂, and that \$\hat{\chi} \circ \sigma\$ is cyclic.

Verification:

- Given public key E_A , signature (E_1, σ) , and the *message*.
- ► Hash the tuple (E_A, E₁, message) to recompute the challenge *χ*: E₁ → E₂. (There are better ways of doing it; this is the simplest.)
- Check that σ is indeed an isogeny from E_A to E₂, and that \$\hat{\gamma} \circ σ\$ is cyclic.

In SQIsign, the degrees are chosen so that $deg(\sigma) = 2^n$. \rightarrow very efficient isogeny chains in time $O(n \log n)$ using "optimal strategies".



Security

Required properties

For SQIsign to be secure, we need two main properties:

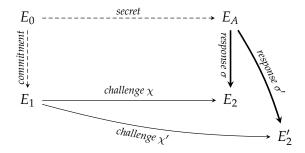
- <u>Soundness</u>: Ability to sign proves knowledge of a secret.
- ► <u>Zero-knowledge</u>: Signatures do not leak anything secret.

Soundness

We want <u>extractability</u>: Given two valid *signatures* for the same *commitment* but different *challenges*, can we compute the *secret*?

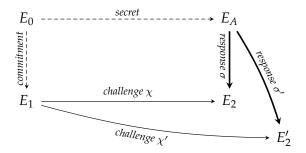
Soundness

We want <u>extractability</u>: Given two valid *signatures* for the same *commitment* but different *challenges*, can we compute the *secret*?



Soundness

We want <u>extractability</u>: Given two valid *signatures* for the same *commitment* but different *challenges*, can we compute the *secret*?



 \succeq We cannot directly extract the secret $\varphi \colon E_0 \to E_A$, but we *can* extract an endomorphism in $\text{End}(E_A) \setminus \mathbb{Z}$:

$$E_A \xrightarrow{\sigma'} E'_2 \xrightarrow{\widehat{\chi}'} E_1 \xrightarrow{\chi} E_2 \xrightarrow{\widehat{\sigma}} E_A.$$

One endomorphism to rule them all?

New <u>question</u>: Is computing *some* nonscalar endomorphism just as hard as finding $\varphi : E_0 \to E_A$?

One endomorphism to rule them all?

New <u>question</u>: Is computing *some* nonscalar endomorphism just as hard as finding $\varphi : E_0 \to E_A$?

Answer: Essentially yes!

(See Benjamin's autumn-school lecture past Monday.)

One endomorphism to rule them all?

New <u>question</u>: Is computing *some* nonscalar endomorphism just as hard as finding $\varphi : E_0 \to E_A$?

<u>Answer:</u> Essentially **yes!**

(See Benjamin's autumn-school lecture past Monday.)

 \implies Modulo minor details, soundness of SQIsign is equivalent to the hardness of the isogeny problem.

...is, in this variant of SQIsign, basically a heuristic assumption.

...is, in this variant of SQIsign, basically a heuristic assumption.

Key <u>question</u>:

• (How) is the distribution of responses related to the secret?

...is, in this variant of SQIsign, basically a heuristic assumption.

Key <u>question</u>:

► (How) is the distribution of responses related to the secret?

Standard proof technique: Give a *simulator* that outputs *transcripts* (E_1 , χ , σ) with the same distribution as the signing algorithm, but without the secret.

...is, in this variant of SQIsign, basically a heuristic assumption.

Key <u>question</u>:

• (How) is the distribution of responses related to the secret?

Standard proof technique: Give a *simulator* that outputs *transcripts* (E_1 , χ , σ) with the same distribution as the signing algorithm, but without the secret.

Here, intimately related to gory internals of KLPT.

...is, in this variant of SQIsign, basically a heuristic assumption.

Key <u>question</u>:

• (How) is the distribution of responses related to the secret?

Standard proof technique: Give a *simulator* that outputs *transcripts* (E_1 , χ , σ) with the same distribution as the signing algorithm, but without the secret.

- Here, intimately related to gory internals of KLPT.
- ➢ It seems difficult to *prove* anything about this.

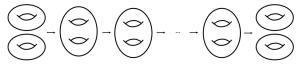
...is, in this variant of SQIsign, basically a heuristic assumption.

Key <u>question</u>:

► (How) is the distribution of responses related to the secret?

Standard proof technique: Give a *simulator* that outputs *transcripts* (E_1 , χ , σ) with the same distribution as the signing algorithm, but without the secret.

- Here, intimately related to gory internals of KLPT.
- : Some newer SQIsign variants are much better in this regard!



Performance

SQIsign: Numbers

1 These are from the round-1 submission to NISTPQC. They will change very significantly in the coming months. **#**

SQIsign: Numbers

1 These are from the round-1 submission to NISTPQC. They will change very significantly in the coming months. **#**

sizes

parameter set	public keys	signatures
NIST-I	64 bytes	177 bytes
NIST-III	96 bytes	263 bytes
NIST-V	128 bytes	335 bytes

SQIsign: Numbers

1 These are from the round-1 submission to NISTPQC. They will change very significantly in the coming months. **#**

sizes

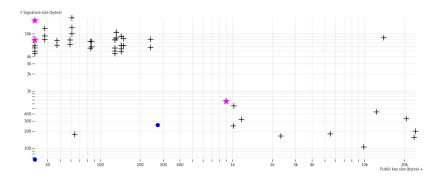
parameter set	public keys	signatures
NIST-I	64 bytes	177 bytes
NIST-III	96 bytes	263 bytes
NIST-V	128 bytes	335 bytes

performance

Cycle counts for a *generic C implementation* running on an Intel *Ice Lake* CPU. Optimizations are certainly possible and work in progress.

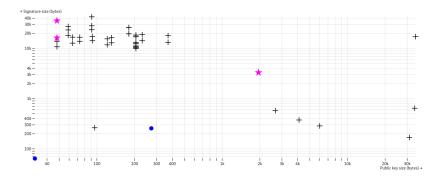
parameter set	keygen	signing	verifying
NIST-I	3728 megacycles	5779 megacycles	108 megacycles
NIST-III	23734 megacycles	43760 megacycles	654 megacycles
NIST-V	91049 megacycles	158544 megacycles	2177 megacycles

SQIsign: Comparison (NIST level 1)



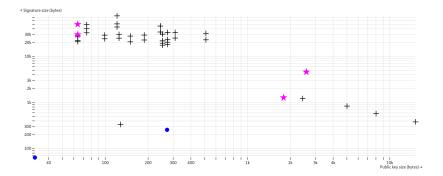
Source: https://pqshield.github.io/nist-sigs-zoo

SQIsign: Comparison (NIST level 3)



Source: https://pqshield.github.io/nist-sigs-zoo

SQIsign: Comparison (NIST level 5)



Source: https://pqshield.github.io/nist-sigs-zoo

Questions?

(Also feel free to email me: lorenz@yx7.cc)