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» A new and very hot post-quantum signature scheme.
» In round 2 of the NISTPQC signature on-ramp! ﬂfﬂg
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~» Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

» Identification scheme based on isogenies:

. L > Ey
!
l
H
S g
=1 =
5! =
3| (S
l
v
E E
1 challenge 2

» Easy response: E4 — Eg — E1 — E;. Obuviously broken.
» SQIsign’s solution: Construct new path Eq — Ej (using secret).
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The Deuring correspondence:

Almost exact equivalence between two very different worlds:
» Supersingular elliptic curves defined over Fp.
» Quaternion maximal orders in a certain algebra By, .

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

< The “«” direction is easy, the “=-" direction seems hard!

~+ Cryptography!
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We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.
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Endomorphisms <— isogenies

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

» ~Allisogeny security reduces to the “=-" direction.
» SQIsign builds on the “<" direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~+ Oriented curves and the isogeny class-group action. I\

L4
(See my autumn-school lecture yesterday.)
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Deuring correspondence: Example #1

Assume p =3 (mod 4).

Then E: y? = x> + x is supersingular,
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Assume p =3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (vy) — (—x,V/—1-y),

[ (x’y) — (xp’yp).

In decreasing order of obviousness, one can show that

2 =1-1], T = —uT, 72 = [-p)].

In fact, the image in B, , of a Z-basis of End(E) is given by
[, 6 G+m2, (+m)/2).
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Deuring correspondence: Example #2

Assume p =2 (mod 3).
Then E’: y* = x° + 1 is supersingular, and it has endomorphisms

w: (x,y) — (G 1Y),
T (xy) — ().

In decreasing order of obviousness, one can show that

w? = [1], W+ Tw = —, 72 = [-p)].

In fact, a Z-basis of End(E’) is given by
{1, w, wr, (1+2w)(1+m)/3}.
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Deuring correspondence: Example #3

For the sake of an example, let p = 7799999 = 11 (mod 12).

Then E: y* = x*> + xand E': y? = x® + 1 are both supersingular
with endomorphism rings as shown before.
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Deuring correspondence: Example #3

For the sake of an example, let p = 7799999 = 11 (mod 12).

Then E: y* = x*> + xand E': y? = x® + 1 are both supersingular
with endomorphism rings as shown before.

Moreover, the lattice

598 +4947, + = 7 4947 4+ 598¢ + v

72,4947 © 7.4947. & 7 > S >

inside End(E) ®z Q corresponds to an isogeny E — E'.
(Ihaven't yet said how.)
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As far as we know, these are hard problems (even quantumly):

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves,
find any isogeny between them.

Core of the connection: The Deuring correspondence!

«: Isogenies “transport” knowledge of endomorphism rings.

=: Finding powersmooth “connecting ideals” is easy (/);
converting them to isogenies is easy.
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1. About 4 math-heavy slides ahead.
It will become less technical afterwards! ==
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“Abstract” quaternions

It is convenient to fix one curve Ey and embed all other End(E)
into End(Eg) ®7 Q.
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“Abstract” quaternions

It is convenient to fix one curve Ey and embed all other End(E)
into End(Ep) ®7 Q. ~» Assume p =3 (mod 4) and let

Bp,oo = End(Eo) X7, Q
where Eg: y*> = x° + x as before.

For clarity, when dealing with “abstract” elements on the
quaternion side, it is customary to write i for ¢ and j for 7.

Indeed, this means
By~ = Q@ Qi@ Qj © Qij

with multiplication defined by i2 = —1, j> = —p, ji = —ij.

(This By, is the “quaternion algebra over Q ramified at p and co”.)
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The main theorem

» Fix a supersingular elliptic curve Eg/F .. Let Op := End(Ej).

Theorem. The (contravariant) functor
E — Hom(E,Ey)
defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left Oy-modules
with nonzero left Op-module homomorphisms.
(up to their respective notions of isomorphism, etc. etc.)

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set of Oy.

! There is no equivalence between elliptic curves/~ and
endomorphism rings/~. (The map {E}/~ — {O}/~ is not injective.)

14 /33



Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from E( correspond to left ideals of O,

15/33



Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from Eg correspond to left ideals of O, ‘

and

’ isogeny codomains from Ey correspond to left ideal classes of Oy. ‘

15/33



Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from Eg correspond to left ideals of O, ‘

and

’ isogeny codomains from Ey correspond to left ideal classes of Oy. ‘

» Given ¢: Ey — E, the associated Op-ideal is Hom(E, E)1).

15/33



Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from Eg correspond to left ideals of O, ‘

and

’ isogeny codomains from Eg correspond to left ideal classes of Oy. ‘

» Given ¢: Ey — E, the associated Op-ideal is Hom(E, E)1).

Important consequence: The isogeny ¢r: Eg — E
defined by a left Op-ideal I has kernel (), ker a < Ej.

15/33



Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from Eg correspond to left ideals of O, ‘

and

’ isogeny codomains from Eg correspond to left ideal classes of Oy. ‘

» Given ¢: Ey — E, the associated Op-ideal is Hom(E, E)1).

Important consequence: The isogeny ¢r: Eg — E
defined by a left Op-ideal I has kernel (), ker a < Ej.

~+ Explicit ideal-to-isogeny conversion, provided all the points
of norm(I)-torsion are accessible (defined over small field extensions):

1. Write I = OgN + Opax where N =norm(l) € Z and a € O,.
2. Compute the isogeny with kernel E[I] = ker(a|gn)-
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All the End(E) < B, ..

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) = Bp o = End(Ep) ®z Q,
a — pap/deg(p).

16 /33



All the End(E) < B, ..

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) < By = End(Ep) ®z Q,
a — pap/deg(p).

“Transporting” endomorphism knowledge:

Knowing End(Ep) and an isogeny ¢: Eg — E reveals End(E). ‘

16 /33



All the End(E) < B, ..

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) < By = End(Ep) ®z Q,
a — pap/deg(p).

“Transporting” endomorphism knowledge:

Knowing End(Ep) and an isogeny ¢: Eg — E reveals End(E). ‘

Concretely: Under the embedding above, we have
End(E) = Or(ly) = {@ € Bp oo : Ipa C 1},

where
I, := Hom(E, Ep)¢

is the ideal of End(Ey) associated to .

16 /33



All the End(E) < B, ..

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) < By = End(Ep) ®z Q,
a — pap/deg(p).

“Transporting” endomorphism knowledge:

Knowing End(Ep) and an isogeny ¢: Eg — E reveals End(E). ‘

Concretely: Under the embedding above, we have
End(E) = Or(ly) = {@ € Bp oo : Ipa C 1},

where
I, := Hom(E, Ep)¢

is the ideal of End(Ey) associated to .

(~ Open problem: Constructing supersingular E with unknown End(E).)
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Endomorphisms as a trapdoor

Recall: In SQIsign, creating a signature means finding an
isogeny E4 — E, where End(E;) is known.

» The legitimate signer also knows End(E4).
(They transported this knowledge from Ey.)

» Supposedly noone else is able to know End(E,).

~» Knowledge of End(E) is a trapdoor for finding E4 — Ej.

17 /33
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Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land using secret;
project it “down” to the curve world (ideal-to-isogeny).

» The verifier can check on curves that it’s all correct.

Main technical tool: The KLPT algorithm /.
» From End(E), End(E’), can randomize within Hom(E, E').

..with very good control over the degree of the resulting isogeny!

~+ SQIsign takes the “broken” signature E4 — Ey — E; — Ep
and rewrites it into a random isogeny E4 — Ey.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — YanBoTi
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SQIsigning

Parameters:

» Large prime p such that p? — 1 has a large smooth part.

(Finding such primes is tricky ~» research on “SQIsign-friendly primes”.)
> “Special” starting curve Eo/F > (usually Ey: y? =2 +x)
with explicitly known endomorphism ring End(Ey).

» Degrees for all (to be) involved isogenies, tons of precomputed constants, etc.
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SQIsigning

Key generation:

» Sample a random secret isogeny ¢: Eg — E, together with
its associated End(Ey)-ideal .

(Constructing ¢ and I, jointly is much faster than picking one and converting.)

» The public key is just the codomain E4.
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SQIsigning

Signing:
» Sample a random commitment isogeny 1 : Eg — E; together
with its associated End(Ey)-ideal I;.

» Hash the tuple (E4, E1, message) to obtain a challenge
isogeny x: E; — Ej.

» Using the (secret) commitment isogeny v, convert x into
an End(E;)-ideal .
» Compute the End(E,)-ideal I, := I, - I, - I, which
corresponds to the isogeny x o ¢ o p: Eq4 — Eg— E; — En.
7/ Convert I, into a random equivalent ideal I,. (KLPT!)
» Compute the isogeny o: E4 — E; corresponding to I,.
» Return the signature (Eq, o).

23/33



SQIsigning

Verification:

24/33



SQIsigning

Verification:

» Given public key E4, signature (Eq, o), and the message.

24/33



SQIsigning

Verification:
» Given public key E4, signature (Eq, o), and the message.

» Hash the tuple (E4, E1, message) to recompute the challenge
X: Eq{ — E5. (There are better ways of doing it; this is the simplest.)

24/33



SQIsigning

Verification:
» Given public key E4, signature (Eq, o), and the message.

» Hash the tuple (E4, E1, message) to recompute the challenge
x: E1 — E5. (There are better ways of doing it; this is the simplest.)

» Check that o is indeed an isogeny from E4 to E,,
and that ) o o is cyclic.

24/33



SQIsigning

Verification:
» Given public key E4, signature (Eq, o), and the message.

» Hash the tuple (E4, E1, message) to recompute the challenge
X: E1 — Ey. (There are better ways of doing it; this is the simplest.)

» Check that o is indeed an isogeny from E4 to E,,
and that ) o o is cyclic.

In SQIsign, the degrees are chosen so that deg(o) = 2".

~» very efficient isogeny chains in time O(n log n) using “optimal strategies”.

N
N
&\r%./ \- e‘{l
bey&,\\/ \X‘Of%?p
N %
2N N
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Security
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Required properties

For SQIsign to be secure, we need two main properties:
» Soundness: Ability to sign proves knowledge of a secret.
» Zero-knowledge: Signatures do not leak anything secret.
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Soundness

We want extractability: Given two valid signatures for the same
commitment but different challenges, can we compute the secret?
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Soundness

We want extractability: Given two valid signatures for the same
commitment but different challenges, can we compute the secret?

o —— seeret _________ > Eg

-l -
ey S G

3 o\
S Q 5

< ©

M challenge x oo

Eq E;

Chﬂ[[\’ /
“rige x/ E;

~ We cannot directly extract the secret ¢: Ey — E 4, but we can
extract an endomorphism in End(E4)\Z:

! -/ ~
Ea T ES 5By S Ey B Ey.
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One endomorphism to rule them all?

New question: Is computing some nonscalar endomorphism
just as hard as finding ¢: Eg — EA?
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One endomorphism to rule them all?

New question: Is computing some nonscalar endomorphism
just as hard as finding ¢: Eg — EA?

Answer: Essentially yes!
(See Benjamin’s autumn-school lecture past Monday:.)

= Modulo minor details, soundness of SQIsign is equivalent
to the hardness of the isogeny problem.
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Zero-knowledge

...1s, in this variant of SQIsign, basically a heuristic assumption.
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Zero-knowledge

...1s, in this variant of SQIsign, basically a heuristic assumption.

Key question:
» (How) is the distribution of responses related to the secret?

Standard proof technique: Give a simulator that outputs transcripts (E1, x, o)
with the same distribution as the signing algorithm, but without the secret.

~ Here, intimately related to gory internals of KLPT.
~ It seems difficult to prove anything about this.

= Some newer SQIsign variants are much better in this regard!

306 08

~~ See next talk.
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SQIsign: Numbers

1. These are from the round-1 submission to NISTPQC.
They will change very significantly in the coming months. 3y
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SQIsign: Numbers

1. These are from the round-1 submission to NISTPQC.

They will change very significantly in the coming months. 4

sizes
parameter set public keys sighatures
NIST-I 64 bytes 177 bytes
NIST-HI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU.
Optimizations are certainly possible and work in progress.

parameter set keygen signing verifying
NIST-1 3728 megacycles 5779 megacycles 108 megacycles
NIST-H 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles
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SQIsign: Comparison (NIST level 1)

- *,
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Source: https://pgshield.github.io/nist-sigs-zoo
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SQIsign: Comparison (NIST level 3)

+ Signature size (bytes)
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SQIsign: Comparison (NIST level 5)

+ Signature size (bytes)
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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