You could have invented Supersingular Isogeny Diffie-Hellman

Lorenz Panny

Technische Universiteit Eindhoven

Πλατανιάς, Κρήτη, 11 October 2017

Shor's algorithm '94

Shor's algorithm quantumly breaks Diffie-Hellman in any group in polynomial time.

Shor's algorithm '94

Shor's algorithm quantumly breaks Diffie-Hellman in any group in polynomial time.

But mathematicians fancy elliptic curves... What do?

Imagine...

- We have a finite graph and some starting node
- ► There is a set of 'directions' for navigating the graph
- Alice and Bob do Diffie-Hellman using secret paths

Imagine...

- We have a finite graph and some starting node
- ► There is a set of 'directions' for navigating the graph
- Alice and Bob do Diffie-Hellman using secret paths

Imagine...

- We have a finite graph and some starting node
- ► There is a set of 'directions' for navigating the graph
- ► Alice and Bob do Diffie-Hellman using secret paths

It should be hard to recover the path given the end points. \implies The graph must be 'random' and exponentially large.

Imagine...

- We have a finite graph and some starting node
- ► There is a set of 'directions' for navigating the graph
- ► Alice and Bob do Diffie-Hellman using secret paths

It should be hard to recover the path given the end points. \implies The graph must be 'random' and exponentially large.

How to make sure Alice and Bob arrive at the same end point?

Graph walking?

Stand back!

We're going to do math.

Elliptic curves

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution to this equation or ∞ . Isomorphism classes are identified by their *j*-invariant.

Elliptic curves

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution to this equation or ∞ . Isomorphism classes are identified by their *j*-invariant.

E is an abelian group: we can 'add' points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is

$$\left(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1\right)$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

Isogenies

An isogeny of elliptic curves is a non-constant map $E \rightarrow E'$

- given by rational functions
- that is a group homomorphism

The degree of a separable¹ isogeny is the size of its kernel.

¹Over \mathbb{F}_q , this means it does not factor through Frobenius $(x, y) \mapsto (x^q, y^q)$.

Isogenies

An isogeny of elliptic curves is a non-constant map $E \rightarrow E'$

- given by rational functions
- that is a group homomorphism

The degree of a separable¹ isogeny is the size of its kernel.

Example: For each $m \neq 0$, the multiplication-by-*m* map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

¹Over \mathbb{F}_q , this means it does not factor through Frobenius $(x, y) \mapsto (x^q, y^q)$.

Isogenies

An isogeny of elliptic curves is a non-constant map $E \rightarrow E'$

- given by rational functions
- that is a group homomorphism

The degree of a separable¹ isogeny is the size of its kernel.

Example:
$$(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

¹Over \mathbb{F}_q , this means it does not factor through Frobenius $(x, y) \mapsto (x^q, y^q)$.

Isogeny graphs

Fix a prime power *q* and an integer $\ell \ge 2$.

The *l*-isogeny graph over \mathbb{F}_q consists of the following data:

- ► Nodes: isomorphism classes of elliptic curves /𝔽_q.
- Edges: equivalence classes¹ of degree- ℓ isogenies.

¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

Isogeny graphs

Fix a prime power *q* and an integer $\ell \ge 2$.

The *l*-isogeny graph over \mathbb{F}_q consists of the following data:

- ► Nodes: isomorphism classes of elliptic curves /𝔽_q.
- ► Edges: equivalence classes¹ of degree-*ℓ* isogenies.

The ℓ -isogeny graph is an undirected multigraph except for edges touching the *j*-invariants 0 or 1728.

¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

2-isogeny graph over \mathbb{F}_{97^2}

3-isogeny graph over \mathbb{F}_{97^2}

 $2352 \times \cdot 2081 \times \cdot \cdot 191 \times \cdot \cdot 75 \times \cdot \cdot \cdot$

Supersingular elliptic curves

An elliptic curve $E/\overline{\mathbb{F}}_p$ is supersingular if $E[p] = \{\infty\}$.

Supersingular elliptic curves

An elliptic curve $E/\overline{\mathbb{F}}_p$ is supersingular if $E[p] = \{\infty\}$.

If $p \ge 5$, then E/\mathbb{F}_p is supersingular iff $\#E(\mathbb{F}_p) = p + 1$.

Supersingular elliptic curves

An elliptic curve $E/\overline{\mathbb{F}}_p$ is supersingular if $E[p] = \{\infty\}$.

If $p \ge 5$, then E/\mathbb{F}_p is supersingular iff $\#E(\mathbb{F}_p) = p + 1$.

Every supersingular elliptic curve is defined over \mathbb{F}_{p^2} .

The supersingular elliptic curves form a component of the ℓ -isogeny graph over \mathbb{F}_{p^2} , the supersingular ℓ -isogeny graph.

 $p = 277, \ell = 2$

 $p = 541, \ell = 2$

 $p = 1033, \ell = 2$

 $p = 2053, \ell = 2$

$$p = 4129, \ell = 2$$

The supersingular elliptic curves form a component of the ℓ -isogeny graph over \mathbb{F}_{p^2} , the supersingular ℓ -isogeny graph.

The supersingular elliptic curves form a component of the ℓ -isogeny graph over \mathbb{F}_{p^2} , the supersingular ℓ -isogeny graph.

There are $\lfloor p/12 \rfloor + \varepsilon$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$.

The supersingular elliptic curves form a component of the ℓ -isogeny graph over \mathbb{F}_{p^2} , the supersingular ℓ -isogeny graph.

There are $\lfloor p/12 \rfloor + \varepsilon$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$.

•
$$y^2 = x^3 + 1$$
 is supersingular iff $p \equiv -1 \pmod{3}$.

•
$$y^2 = x^3 + x$$
 is supersingular iff $p \equiv -1 \pmod{4}$.

The supersingular elliptic curves form a component of the ℓ -isogeny graph over \mathbb{F}_{p^2} , the supersingular ℓ -isogeny graph.

There are $\lfloor p/12 \rfloor + \varepsilon$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$.

•
$$y^2 = x^3 + 1$$
 is supersingular iff $p \equiv -1 \pmod{3}$.

•
$$y^2 = x^3 + x$$
 is supersingular iff $p \equiv -1 \pmod{4}$.

The supersingular ℓ -isogeny graph is (almost) Ramanujan. (Almost) all nodes have out-degree $\ell + 1$.

$$p = 277, \ell = 31$$

Algorithms?

State of this talk:

- ► Exponentially large 'random' graph. ✓
- How to compute on this graph?

Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve *E*' is called E/G.

¹(up to isomorphism of E')

Vélu's formulas '71

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{\substack{Q \in G \\ Q \neq \infty}} \left(x(P+Q) - x(Q) \right), \ y(P) + \sum_{\substack{Q \in G \\ Q \neq \infty}} \left(y(P+Q) - y(Q) \right) \right)$$

defines an isogeny of elliptic curves whose kernel is *G*.

Vélu's formulas '71

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{\substack{Q \in G \\ Q \neq \infty}} \left(x(P+Q) - x(Q) \right), \ y(P) + \sum_{\substack{Q \in G \\ Q \neq \infty}} \left(y(P+Q) - y(Q) \right) \right)$$

defines an isogeny of elliptic curves whose kernel is *G*.

For small *G*, this leads to efficient formulas for

- ► computing the defining equation of *E*/*G*
- evaluating the isogeny $E \rightarrow E/G$ at a point

Representing isogeny paths

► Storing each curve and kernel on the way is expensive.

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

(It would also make the DH system we're building impossible ...)

Representing isogeny paths

► Storing each curve and kernel on the way is expensive.

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

(It would also make the DH system we're building impossible ...)

• Use the kernel of the composition!

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

Representing isogeny paths

► Storing each curve and kernel on the way is expensive.

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

(It would also make the DH system we're building impossible ...)

Use the kernel of the composition!

• Evaluate φ_G via a chain of small-degree isogenies: If $G \cong \mathbb{Z}/\ell^n$, set ker $\psi_i := [\ell^{n-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$. (This is usually not the optimal strategy.)

Commutativity?

State of this talk:

- Exponentially large 'random' graph. \checkmark
- Efficient formulas to traverse it. \checkmark
- How to make Alice and Bob's walks commute?

Commutativity?

Commutativity?

If only Bob could help Alice by 'shifting' her ker φ_A to E_B ... but Alice must keep φ_A secret... \succ

Commutativity!

If only Bob could help Alice by 'shifting' her ker φ_A to E_B ... but Alice must keep φ_A secret... \succ

Solution: Bob 'shifts' a public group that contains ker φ_A .

Commutativity!

If only Bob could help Alice by 'shifting' her ker φ_A to E_B ... but Alice must keep φ_A secret... \succ

Solution: Bob 'shifts' a public group that contains ker φ_A .

- Fix some public generator points $P, Q \in E_0[\deg \varphi_A]$.
- Alice computes $\varphi_A : E_0 \to E_A$ with kernel $\langle P + [a]Q \rangle$.
- Bob uses φ_B to 'shift' *P*, *Q* to E_B and gives them to Alice.
- Alice computes ψ_A with kernel $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$.
- ► By magic math, Bob will arrive at an isomorphic *E*.

The SIDH protocol (De Feo–Jao–Plût 2011)

Public parameters:

- a large prime $p = 2^{n_A} 3^{n_B} 1$ and a supersingular E_0/\mathbb{F}_p .
- ► bases (P_A, Q_A) and (P_B, Q_B) of $E_0[2^{n_A}]$ and $E_0[3^{n_B}]$.

The SIDH protocol (De Feo–Jao–Plût 2011)

Public parameters:

- ► a large prime $p = 2^{n_A} 3^{n_B} 1$ and a supersingular E_0/\mathbb{F}_p .
- ► bases (P_A, Q_A) and (P_B, Q_B) of $E_0[2^{n_A}]$ and $E_0[3^{n_B}]$.

<u>Alice</u> p	ublic <u>Bob</u>
$\boldsymbol{a} \xleftarrow{\text{random}} \{02^{n_A-1}\}$	$b \xleftarrow{\text{random}} \{03^{n_B-1}\}$
$G_A := \langle P_A + [2a]Q_A \rangle$ compute $\varphi_A : E_0 \to E_0/G_A$	$G_B := \langle P_B + [3b]Q_B \rangle$ compute $\varphi_B \colon E_0 \to E_0/G_B$
$\varphi_A(P_B), \varphi_A(Q_B)$	$\xrightarrow{\varphi_B(P_A), \varphi_B(Q_A)}$
recover $E_B = E_0/G_B$	recover $E_A = E_0/G_A$
$H_A := \langle \varphi_B(P_A) + [2a]\varphi_B(Q_A) \rangle$	$H_B := \langle \varphi_A(P_B) + [3b] \varphi_A(Q_B) \rangle$
$s := j(E_B/\mathbf{H}_A)$	$s := j(\mathbf{E}_A/H_B)$

Optimizations

- Projective representation of curve coefficients.¹
- ► Distortion map on *E*⁰ speeds up public key generation.¹
- ► Use of Montgomery model and *x*-only arithmetic.¹
- Compression reduces public key size to $\frac{7}{2} \log_2 p$ bits.²

¹Costello–Longa–Naehrig 2016, https://ia.cr/2016/413

²Costello–Jao–Longa–Naehrig–Renes–Urbanik 2016, https://ia.cr/2016/963

Optimizations

- Projective representation of curve coefficients.¹
- ▶ Distortion map on *E*⁰ speeds up public key generation.¹
- ► Use of Montgomery model and *x*-only arithmetic.¹
- Compression reduces public key size to $\frac{7}{2} \log_2 p$ bits.²

Current performance records:²

	Public keys	Cycles	Wall-clock time
uncompressed	564 bytes	$192 \cdot 10^{6}$	$\approx 50\mathrm{ms}$
compressed	330 bytes	$469 \cdot 10^{6}$	$pprox 150\mathrm{ms}$

(Parameters aimed at 192 bits of classical and 128 bits of quantum security.)

¹Costello–Longa–Naehrig 2016, https://ia.cr/2016/413

²Costello–Jao–Longa–Naehrig–Renes–Urbanik 2016, https://ia.cr/2016/963

Security

The security of SIDH depends on the hardness of ..:

- Computing an isogeny between two given curves.¹
- ...when the images of some points are known.²
- Computing the endomorphism ring of a given curve.³

¹Galbraith–Petit–Shani–Ti 2016, https://ia.cr/2016/859

²Petit 2017, https://ia.cr/2017/571

³Kohel–Lauter–Petit–Tignol 2014, https://arxiv.org/abs/1406.0981

Security

The security of SIDH depends on the hardness of ..:

- Computing an isogeny between two given curves.¹
- ...when the images of some points are known.²
- Computing the endomorphism ring of a given curve.³

Best known attacks: $\mathcal{O}(p^{1/4})$ classically and $\mathcal{O}(p^{1/6})$ quantumly.

¹Galbraith–Petit–Shani–Ti 2016, https://ia.cr/2016/859

²Petit 2017, https://ia.cr/2017/571

³Kohel–Lauter–Petit–Tignol 2014, https://arxiv.org/abs/1406.0981

Security

The security of SIDH depends on the hardness of ..:

- Computing an isogeny between two given curves.¹
- ...when the images of some points are known.²
- Computing the endomorphism ring of a given curve.³

Best known attacks: $\mathcal{O}(p^{1/4})$ classically and $\mathcal{O}(p^{1/6})$ quantumly.

Caution! If Bob reuses his key pair, Alice can recover his private key in $O(\log p)$ queries.¹

¹Galbraith–Petit–Shani–Ti 2016, https://ia.cr/2016/859

²Petit 2017, https://ia.cr/2017/571

³Kohel–Lauter–Petit–Tignol 2014, https://arxiv.org/abs/1406.0981

Open problems

- ► How can we *cheaply* reuse key pairs?
- Will this ever be really fast?

Open problems

- ► How can we *cheaply* reuse key pairs?
- Will this ever be really fast?
- Is this scheme actually secure? Are there weak parameters, side channels, fault attacks, ..?

Thank you!