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Shor’s algorithm "94

Shor’s algorithm quantumly breaks Diffie-Hellman
in any group in polynomial time.




Shor’s algorithm "94

Shor’s algorithm quantumly breaks Diffie-Hellman
in any group in polynomial time.

But mathematicians fancy elliptic curves... What do?



Graph walking Diffie-Hellman?

Imagine...
» We have a finite graph and some starting node
» There is a set of “directions’ for navigating the graph
» Alice and Bob do Diffie-Hellman using secret paths
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Graph walking Diffie-Hellman?

Imagine...
» We have a finite graph and some starting node
» There is a set of “directions’ for navigating the graph
» Alice and Bob do Diffie-Hellman using secret paths

It should be hard to recover the path given the end points.

= The graph must be ‘random” and exponentially large.
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Graph walking Diffie-Hellman?

Imagine...
» We have a finite graph and some starting node
» There is a set of “directions’ for navigating the graph
» Alice and Bob do Diffie-Hellman using secret paths

It should be hard to recover the path given the end points.
= The graph must be ‘random” and exponentially large.

How to make sure Alice and Bob arrive at the same end point?



Graph walking?

Stand back!

We're going to do math.



Elliptic curves

An elliptic curve (modulo details) is given by an equation
E: »=x>4ax+b.

A point on E is a solution to this equation or cc.
Isomorphism classes are identified by their j-invariant.
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Elliptic curves

An elliptic curve (modulo details) is given by an equation
E: »=x>4ax+b.

A point on E is a solution to this equation or oco.
Isomorphism classes are identified by their j-invariant.

E is an abelian group: we can ‘add’ points.
» The neutral element is co.
» The inverse of (x,y) is (x, —y).
» The sum of (x1,y1) and (x2,12) is

(M —x1 —x2, AN(2x1 + 22 — M) — 1)

Sx% —+
2y1

_ yz—yl . _ a .
where \ = o if x; #xpand A = otherwise.



Isogenies

An isogeny of elliptic curves is a non-constant map E — E’
» given by rational functions

» that is a group homomorphism

The degree of a separable! isogeny is the size of its kernel.

!Over F,, this means it does not factor through Frobenius (x,y) — (x7, 7).



Isogenies

An isogeny of elliptic curves is a non-constant map E — E’
» given by rational functions

» that is a group homomorphism

The degree of a separable! isogeny is the size of its kernel.

Example: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Em =2 Z/m x Z/m.

!Over F,, this means it does not factor through Frobenius (x,y) — (x7, 7).



Isogenies

An isogeny of elliptic curves is a non-constant map E — E’
» given by rational functions

» that is a group homomorphism

The degree of a separable! isogeny is the size of its kernel.

¥ —4x2430x—12 23 —6x2—14x435
22 (-2 y

defines a degree-3 isogeny of the elliptic curves

Example: (x,y) — (

{y2:x3+x} — {y2:x3—3x+3}

over F7. Its kernel is {(2,9), (2, -9), oo}.

!Over F,, this means it does not factor through Frobenius (x,y) — (x7, 7).



Isogeny graphs

Fix a prime power g and an integer ¢ > 2.

The (-isogeny graph over IF; consists of the following data:
» Nodes: isomorphism classes of elliptic curves /F;.

» Edges: equivalence classes! of degree-£ isogenies.

"Two isogenies ¢: E — E' and ¢: E — E” are identified if ¢ = ¢ o ¢ for
some isomorphism ¢: E' — E”.



Isogeny graphs

Fix a prime power g and an integer ¢ > 2.

The (-isogeny graph over IF; consists of the following data:
» Nodes: isomorphism classes of elliptic curves /F;.
» Edges: equivalence classes! of degree-£ isogenies.

The ¢-isogeny graph is an undirected multigraph
except for edges touching the j-invariants 0 or 1728.

"Two isogenies ¢: E — E' and ¢: E — E” are identified if ¢ = ¢ o ¢ for
some isomorphism ¢: E' — E”.



2-isogeny graph over [y
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3-isogeny graph over Fy
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Supersingular elliptic curves

An elliptic curve E/F, is supersingular if E[p] = {oc}.

10 /22



Supersingular elliptic curves

An elliptic curve E/F, is supersingular if E[p] = {oc}.
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Supersingular elliptic curves

An elliptic curve E/F, is supersingular if E[p] = {oc}.

If p > 5, then E/F, is supersingular iff #E(FF,) = p + 1.

Every supersingular elliptic curve is defined over F .




Supersingular isogeny graphs

The supersingular elliptic curves form a component of the
{-isogeny graph over F ., the supersingular (-isogeny graph.
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Supersingular isogeny graphs
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Supersingular isogeny graphs
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Supersingular isogeny graphs
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The supersingular elliptic curves form a component of the
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There are |p/12] + € supersingular elliptic curves over F,.

» y? = x> + 1is supersingular iff p = —1 (mod 3).

» y? = x> + x is supersingular iff p = —1 (mod 4).




Supersingular isogeny graphs

The supersingular elliptic curves form a component of the

{-isogeny graph over F ., the supersingular (-isogeny graph.

There are |p/12] + € supersingular elliptic curves over F,.

» y? = x> + 1is supersingular iff p = —1 (mod 3).
» y? = x> + x is supersingular iff p = —1 (mod 4).

The supersingular /-isogeny graph is (almost) Ramanujan.
(Almost) all nodes have out-degree / + 1.




Supersingular isogeny graphs
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Algorithms?

State of this talk:
» Exponentially large ‘random’ graph. v

» How to compute on this graph?



Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny g : E — E’ with kernel G.

The curve E' is called E/G.

!(up to isomorphism of E’)



Vélu's formulas 71

Let G be a finite subgroup of an elliptic curve E. Then

( )+ (x(P+Q)- (P)+) " (y(P+Q)-

QeG QG
Qo0 Qo0

defines an isogeny of elliptic curves whose kernel is G.
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Vélu's formulas 71

Let G be a finite subgroup of an elliptic curve E. Then

( )+ (x(P+Q)- (P)+) " (y(P+Q)- )))

QeG QG
Q#oo Q#o0

defines an isogeny of elliptic curves whose kernel is G.

For small G, this leads to efficient formulas for
» computing the defining equation of E/G
» evaluating the isogeny E — E/G at a point
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Representing isogeny paths

» Storing each curve and kernel on the way is expensive.

(253 PYn—1

E 5 E E, 1 —= E/G

(It would also make the DH system we’re building impossible...)
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(It would also make the DH system we’re building impossible...)

» Use the kernel of the composition!

by B E Y EG



Representing isogeny paths

» Storing each curve and kernel on the way is expensive.

(253 PYn—1

E 5 E E, 1 —= E/G

(It would also make the DH system we’re building impossible...)

» Use the kernel of the composition!

by B E Y EG

» Evaluate (g via a chain of small-degree isogenies:
IfG=Z/0", setkerv; := [("")(Yi_q 0 01)(G).
(This is usually not the optimal strategy.)



Commutativity?

State of this talk:
» Exponentially large ‘random’ graph. v/
» Efficient formulas to traverse it. v/

» How to make Alice and Bob’s walks commute?
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Commutativity?

PA EA B
We want: Eo / \ E
o . i

17 /22



Commutativity?

Ea ‘
PA YB
We want: Eg / \ E
m Eg /dm'

If only Bob could help Alice by ‘shifting” her ker ¢4 to Ep...
but Alice must keep 4 secret... =~
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Commutativity!

Ea ‘
PA YB
We want: Eg / \ E
m Eg /dm'

If only Bob could help Alice by ‘shifting” her ker ¢4 to Ep...
but Alice must keep 4 secret... =~

Solution: Bob ‘shifts” a public group that contains ker ¢ .
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Commutativity!
Ea |
PA YR
We want: Eo / \ E
o l i

If only Bob could help Alice by ‘shifting” her ker ¢4 to Ep...
but Alice must keep 4 secret... =~

Solution: Bob ‘shifts” a public group that contains ker ¢ .
» Fix some public generator points P, Q € Ep[deg ¢4].

v

Alice computes ¢4 : Eg — E4 with kernel (P + [a]Q).

v

Bob uses ¢p to ‘shift’ P, Q to Ep and gives them to Alice.
Alice computes )4 with kernel (¢g(P) + [a]¢(Q)).
By magie math, Bob will arrive at an isomorphic E.

v

v
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The SIDH protocol (De Feo—-Jao-Plat 2011)

Public parameters:

» alarge prime p = 2"43"# — 1 and a supersingular Eq/IF,.

» bases (P4, Qa) and (Pp, Qp) of Eg[2"4] and E[3"8].



The SIDH protocol (De Feo—-Jao-Plat 2011)

Public parameters:

» alarge prime p = 2"43"# — 1 and a supersingular Eq/IF,.
» bases (P4, Qa) and (Pp, Qp) of Eg[2"4] and E[3"8].

Alice public Bob
g A G i b &2 10,311}

Ga = (Pa + [2a]Qa4) Gp := (Pp + [3b]Qs)
compute p4: Eg = Eo/Ga compute pp: Eg — Eo/Gp
©a(PB), ©a(Qp) vB(Pa), vp(Qa)
—
recover Eg = Ey/Gp recover E4 = Ey/Gy
Hp := (pp(Pa) + [2a]p5(Qa)) Hp := (pa(Pp) + [3b]a(Qp))
s:=j(Eg/Ha) s:=j(Ea/Hg)




Optimizations

» Projective representation of curve coefficients.!

v

Distortion map on Eq speeds up public key generation.!

v

Use of Montgomery model and x-only arithmetic.!
» Compression reduces public key size to 5 log, p bits.2

1C0s’tello—Longa—Naehrig 2016, https://ia.cr/2016/413
2Cos’tell0—]ao—Longa—Naehrig—Renes—Urbanik 2016, https://ia.cr/2016/963
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Optimizations

v

Projective representation of curve coefficients.!

v

Distortion map on Eq speeds up public key generation.!

v

Use of Montgomery model and x-only arithmetic.!
» Compression reduces public key size to 5 log, p bits.2

Current performance records:?

| Public keys | Cycles | Wall-clock time

uncompressed || 564 bytes | 192-10° ~ 50ms
compressed 330 bytes | 469 - 10° ~ 150 ms

(Parameters aimed at 192 bits of classical and 128 bits of quantum security.)

1Cos’tello—Longa—Naehrig 2016, https://ia.cr/2016/413
2Costello—]ao—Longa—Naehrig—Renes—Urbanik 2016, https://ia.cr/2016/963
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Security

The security of SIDH depends on the hardness of..:

» Computing an isogeny between two given curves.!

» ..when the images of some points are known.?

» Computing the endomorphism ring of a given curve.?

1Galbmith—l’etit—Sharli—Ti 2016, https://ia.cr/2016/859
Petit 2017, https://ia.cr/2017/571
3Kohel—Lauter—Petit—Tignol 2014, https://arxiv.org/abs/1406.0981
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Security

The security of SIDH depends on the hardness of..:

» Computing an isogeny between two given curves.!

» ..when the images of some points are known.?

» Computing the endomorphism ring of a given curve.?

Best known attacks: O(p'/#) classically and O(p'/®) quantumly.

Caution! If Bob reuses his key pair, Alice can recover his
private key in O(log p) queries.!

1Galbmith—l’etit—Sharli—Ti 2016, https://ia.cr/2016/859
Petit 2017, https://ia.cr/2017/571
3Kohel—Lauter—Petit—Tignol 2014, https://arxiv.org/abs/1406.0981
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Open problems

» How can we cheaply reuse key pairs?
» Will this ever be really fast?



Open problems

» How can we cheaply reuse key pairs?
» Will this ever be really fast?

» Is this scheme actually secure?
Are there weak parameters, side channels, fault attacks, ..?

N
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Thank you!
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