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Shor’s algorithm ’94

Shor’s algorithm quantumly breaks Diffie-Hellman
in any group in polynomial time.

But mathematicians fancy elliptic curves... What do?
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Graph walking Diffie-Hellman?

Imagine...
I We have a finite graph and some starting node
I There is a set of ‘directions’ for navigating the graph
I Alice and Bob do Diffie-Hellman using secret paths

It should be hard to recover the path given the end points.
=⇒ The graph must be ‘random’ and exponentially large.

How to make sure Alice and Bob arrive at the same end point?
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Graph walking?

Stand back!

We’re going to do math.
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Elliptic curves

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or∞.
Isomorphism classes are identified by their j-invariant.

E is an abelian group: we can ‘add’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y).
I The sum of (x1, y1) and (x2, y2) is(

λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1
)

where λ =
y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.
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Isogenies

An isogeny of elliptic curves is a non-constant map E→ E′

I given by rational functions
I that is a group homomorphism

The degree of a separable1 isogeny is the size of its kernel.

1Over Fq, this means it does not factor through Frobenius (x, y) 7→ (xq, yq).
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Isogenies

An isogeny of elliptic curves is a non-constant map E→ E′

I given by rational functions
I that is a group homomorphism

The degree of a separable1 isogeny is the size of its kernel.

Example: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

1Over Fq, this means it does not factor through Frobenius (x, y) 7→ (xq, yq).
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Isogeny graphs

Fix a prime power q and an integer ` ≥ 2.

The `-isogeny graph over Fq consists of the following data:
I Nodes: isomorphism classes of elliptic curves /Fq.
I Edges: equivalence classes1 of degree-` isogenies.

The `-isogeny graph is an undirected multigraph
except for edges touching the j-invariants 0 or 1728.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.
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2-isogeny graph over F972

3136× 1176× 290× 82×

10× 9× 3×

2× 2× 2×
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3-isogeny graph over F972

2352× 2081× 191× 75×

11× 10× 10× 5×

3× 3× 2× 2×

2× 2× 2×
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Supersingular elliptic curves

An elliptic curve E/F̄p is supersingular if E[p] = {∞}.

If p ≥ 5, then E/Fp is supersingular iff #E(Fp) = p + 1.

Every supersingular elliptic curve is defined over Fp2 .
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Supersingular isogeny graphs

The supersingular elliptic curves form a component of the
`-isogeny graph over Fp2 , the supersingular `-isogeny graph.

There are bp/12c+ ε supersingular elliptic curves over F̄p.

I y2 = x3 + 1 is supersingular iff p ≡ −1 (mod 3).
I y2 = x3 + x is supersingular iff p ≡ −1 (mod 4).

The supersingular `-isogeny graph is (almost) Ramanujan.
(Almost) all nodes have out-degree `+ 1.
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Supersingular isogeny graphs

p = 277, ` = 2
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Supersingular isogeny graphs

p = 541, ` = 2
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Supersingular isogeny graphs

p = 1033, ` = 2
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Supersingular isogeny graphs

p = 2053, ` = 2
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Supersingular isogeny graphs

p = 4129, ` = 2
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Supersingular isogeny graphs

p = 277, ` = 31
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Algorithms?

State of this talk:
I Exponentially large ‘random’ graph. X

I How to compute on this graph?
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G.

1(up to isomorphism of E′)
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Vélu’s formulas ’71

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P)+
∑
Q∈G
Q 6=∞

(
x(P+Q)−x(Q)

)
, y(P)+

∑
Q∈G
Q 6=∞

(
y(P+Q)−y(Q)

))

defines an isogeny of elliptic curves whose kernel is G.

For small G, this leads to efficient formulas for
I computing the defining equation of E/G
I evaluating the isogeny E→ E/G at a point
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Representing isogeny paths

I Storing each curve and kernel on the way is expensive.

E E1 . . . En−1 E/G
ψ1 ψ2 ψn−1 ψn

(It would also make the DH system we’re building impossible...)

I Use the kernel of the composition!

E E1 . . . En−1 E/G
ψ1

ϕG

ψ2 ψn−1 ψn

I Evaluate ϕG via a chain of small-degree isogenies:
If G ∼= Z/`n, set kerψi := [`n−i](ψi−1 ◦ · · · ◦ ψ1)(G).
(This is usually not the optimal strategy.)
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Commutativity?

State of this talk:
I Exponentially large ‘random’ graph. X

I Efficient formulas to traverse it. X

I How to make Alice and Bob’s walks commute?
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Commutativity?

We want:

EA

E0 E

EB

ψBϕA

ϕB ψA

If only Bob could help Alice by ‘shifting’ her kerϕA to EB...
but Alice must keep ϕA secret...

:(

Solution: Bob ‘shifts’ a public group that contains kerϕA.

I Fix some public generator points P,Q ∈ E0[degϕA].
I Alice computes ϕA : E0 → EA with kernel 〈P + [a]Q〉.
I Bob uses ϕB to ‘shift’ P,Q to EB and gives them to Alice.
I Alice computes ψA with kernel 〈ϕB(P) + [a]ϕB(Q)〉.
I By magic math, Bob will arrive at an isomorphic E.
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The SIDH protocol (De Feo–Jao–Plût 2011)

Public parameters:
I a large prime p = 2nA3nB − 1 and a supersingular E0/Fp.
I bases (PA,QA) and (PB,QB) of E0[2nA ] and E0[3nB ].

Alice public Bob

a random←−−− {0...2nA−1} b random←−−− {0...3nB−1}

GA := 〈PA + [2a]QA〉
compute ϕA : E0 → E0/GA

GB := 〈PB + [3b]QB〉
compute ϕB : E0 → E0/GB

ϕA(PB), ϕA(QB) ϕB(PA), ϕB(QA)

recover EB = E0/GB

HA := 〈ϕB(PA) + [2a]ϕB(QA)〉
s := j(EB/HA)

recover EA = E0/GA

HB := 〈ϕA(PB) + [3b]ϕA(QB)〉
s := j(EA/HB)
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Optimizations

I Projective representation of curve coefficients.1

I Distortion map on E0 speeds up public key generation.1

I Use of Montgomery model and x-only arithmetic.1

I Compression reduces public key size to 7
2 log2 p bits.2

Current performance records:2

Public keys Cycles Wall-clock time
uncompressed 564 bytes 192 · 106 ≈ 50 ms
compressed 330 bytes 469 · 106 ≈ 150 ms

(Parameters aimed at 192 bits of classical and 128 bits of quantum security.)

1Costello–Longa–Naehrig 2016, https://ia.cr/2016/413
2Costello–Jao–Longa–Naehrig–Renes–Urbanik 2016, https://ia.cr/2016/963
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Security

The security of SIDH depends on the hardness of..:
I Computing an isogeny between two given curves.1

I ...when the images of some points are known.2

I Computing the endomorphism ring of a given curve.3

Best known attacks: O(p1/4) classically and O(p1/6) quantumly.

Caution! If Bob reuses his key pair, Alice can recover his
private key in O(log p) queries.1

1Galbraith–Petit–Shani–Ti 2016, https://ia.cr/2016/859
2Petit 2017, https://ia.cr/2017/571
3Kohel–Lauter–Petit–Tignol 2014, https://arxiv.org/abs/1406.0981
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Open problems

I How can we cheaply reuse key pairs?
I Will this ever be really fast?

I Is this scheme actually secure?
Are there weak parameters, side channels, fault attacks, ..?
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Thank you!
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