Attacks and non-attacks on SIDH

Lorenz Panny

Technische Universiteit Eindhoven

Bochum, 2 December 2019

Largely based on "How to not break SIDH", which is joint work with Chloe Martindale.

David Jao & Luca De Feo

▶ 2011: David Jao & Luca De Feo come up with something

 2011: David Jao & Luca De Feo come up with something now known as "Supersingular-Isogeny Diffie-Hellman".

- 2011: David Jao & Luca De Feo come up with something now known as "Supersingular-Isogeny Diffie-Hellman".
- ▶ 2020 $-\varepsilon$: Semi-surprisingly, this stuff is still not broken.

- 2011: David Jao & Luca De Feo come up with something now known as "Supersingular-Isogeny Diffie-Hellman".
- ► 2020-ε: Semi-surprisingly, this stuff is still not broken. Question for the next few dozens of minutes: Why?

Stand back!

We're going to do math.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map

$$[m]\colon E\to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over \mathbb{F}_{71} . Its kernel is $\{(2,9), (2,-9), \infty\}$.

Isogeny kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Isogeny kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Isogeny kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightsquigarrow need to make sure extensions stay small for desired #G

 \rightsquigarrow this is (one reason) why we use supersingular curves!

¹(up to isomorphism of E')

► In SIDH, #*A* and #*B* are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.

Isogeny graphs

• Graph view: Each ψ_i is a step in the ℓ -isogeny graph.

 $(q = 431^2, \text{ degrees } 2, 3)$

Reminder:

SIDH

for those who missed David Jao's ECC talk 8 years ago 🙂

Ε

• Alice & Bob pick secret subgroups *A* and *B* of *E*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking in the isogeny graph.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking in the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking in the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking in the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob	
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$	
$\boldsymbol{A} := \langle \boldsymbol{P}_A + [\boldsymbol{a}] \boldsymbol{Q}_A \rangle$	$B := \langle P_B + [b] Q_B \rangle$	
compute $\varphi_A \colon E \to E/A$	compute $\varphi_B \colon E \to E/B$	
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$	
$A' := \langle \varphi_B(P_A) + [\mathbf{a}]\varphi_B(Q_A) \rangle$ $s := j((E/B)/A')$	$\langle B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$	>

Disclaimer:

All of the following is "obvious" to experts.

Extra points: Information theory

- ▶ By linearity, the two points $\varphi_A(P_B)$, $\varphi_A(Q_B)$ encode how φ_A acts on the whole 3^m -torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Extra points: Information theory

- ► By linearity, the two points φ_A(P_B), φ_A(Q_B) encode how φ_A acts on the whole 3^m-torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Lemma. If two *d*-isogenies ϕ , ψ act the same on the *m*-torsion and $m^2 > 4d$, then $\phi = \psi$.

 \implies Except for very unbalanced parameters, the public points uniquely determine the secret isogenies.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- \rightsquigarrow Rational-function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- \rightsquigarrow Rational-function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- \rightsquigarrow Rational-function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- can't even write down the result without decomposing into a sequence of smaller-degree maps.
 - No known algorithms for interpolating and decomposing at the same time.
 - ► Also unlikely to exist...
- Can we extrapolate the action of φ_A to some > 3^{*m*}-torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.

- Can we extrapolate the action of φ_A to some > 3^{*m*}-torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

- Can we extrapolate the action of φ_A to some > 3^{*m*}-torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

 \implies can't learn anything about 2^n from 3^m using groups alone. (Annoying: This shows up in many disguises.)

- Can we extrapolate the action of φ_A to some > 3^{*m*}-torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2$$
.

- \implies can't learn anything about 2^{*n*} from 3^{*m*} using groups alone. (Annoying: This shows up in many disguises.)
- "[...] elliptic curves are as close to generic groups as it gets." —me, 2018 (Exception: pairings, but those are "just" bilinear maps.)

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

Read: An isogeny is uniquely defined by how it acts on sufficiently high ℓ^k -torsion.

 \approx Same problem; group-theoretically there are ℓ^4 ways to lift.

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- $\stackrel{\sim}{\succ}$ Same problem; group-theoretically there are ℓ^4 ways to lift.
 - !! We know more: The degree!

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- \approx Same problem; group-theoretically there are ℓ^4 ways to lift.
- \approx We know more: The degree! ($\ell \not| \det; \text{ almost no use.}$)

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- \approx Same problem; group-theoretically there are ℓ^4 ways to lift.
- \approx We know more: The degree! ($\ell \not| \det; \text{ almost no use.}$)
 - ► This idea works slightly better for *endo*morphisms (characteristic polynomial constrains to l² choices).

► For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota+\pi}{2}, \frac{1+\iota\pi}{2} \rangle$.

- ► For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

- ► For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota+\pi}{2}, \frac{1+\iota\pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

→ We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.

- ► For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota+\pi}{2}, \frac{1+\iota\pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

- → We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.
 - Idea: Find τ ∈ R of degree 3^mr; recover 3^m-part from known action; brute-force the *r*emaining part.
 ⇒ (details) ⇒ Recover φ_A.

• Petit uses endomorphisms $\tau \in R$ of the form

$$au = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$$
,

where $\deg \iota = 1$ and $\deg \pi = \deg \iota \pi = p$. Hence

$$\deg \tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2.$$

(Recall $p = 2^n 3^m - 1$.)

• Petit uses endomorphisms $\tau \in R$ of the form

$$au = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$$
,

where $\deg \iota = 1$ and $\deg \pi = \deg \iota \pi = p$. Hence

$$\deg \tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2.$$

(Recall
$$p = 2^n 3^m - 1$$
.)

 \implies Unless $3^m \gg 2^n$, there is no hope to find τ with $3^m | \deg \tau$ and $\deg \tau/3^m < 2^n$.

• Petit uses endomorphisms $\tau \in R$ of the form

$$\tau = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A},$$

where deg $\iota = 1$ and deg $\pi = \deg \iota \pi = p$. Hence deg $\tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2$.

(Recall
$$p = 2^n 3^m - 1$$
.)

 $\implies \text{Unless } 3^m \gg 2^n \text{, there is no hope to find } \tau \text{ with } 3^m \mid \deg \tau$ and $\deg \tau/3^m < 2^n$.

 \implies Petit's endomorphisms are not sufficiently petit-degree $\widehat{\ }$.

► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 \implies Bob learns the parity of *a*.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover *a* in O(n) queries.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover *a* in O(n) queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.

 \implies only usable with ephemeral keys or as a KEM "SIKE".

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 \sim

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for "real" (symmetric, two-party) SIDH.

 \sim

 \sim

<u>Observation</u>: SIDH has sometimes been marketed as "post-quantum Diffie–Hellman".

Is this accurate?

<u>Observation</u>: SIDH has sometimes been marketed as "post-quantum Diffie–Hellman".

Is this accurate?

 <u>Not symmetric</u>: Easily fixable, simply run two SIDH instances with opposite roles simultaneously.

<u>Observation</u>: SIDH has sometimes been marketed as "post-quantum Diffie–Hellman".

Is this accurate?

 <u>Not symmetric</u>: Easily fixable, simply run two SIDH instances with opposite roles simultaneously. (This "invention" has been filed for patent in Canada...)

<u>Observation</u>: SIDH has sometimes been marketed as "post-quantum Diffie–Hellman".

Is this accurate?

- <u>Not symmetric</u>: Easily fixable, simply run two SIDH instances with opposite roles simultaneously. (This "invention" has been filed for patent in Canada...)
- Active attack: Not easily fixable; implies a significant lack of DH-ness!

...we'll be right back after a short commercial break...

...we'll be right back after a short commercial break...

…is an efficient commutative group action on an isogeny graph. ~ much closer to post-quantum Diffie-Hellman than SIDH ン.

The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves $E, E'/\mathbb{F}_{p^2}$, compute an isogeny $\varphi \colon E \to E'$.

The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves $E, E'/\mathbb{F}_{p^2}$, compute an isogeny $\varphi \colon E \to E'$.

Galbraith–Petit–Shani–Ti: Any isogeny works to break SIDH.

The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves $E, E'/\mathbb{F}_{p^2}$, compute an isogeny $\varphi \colon E \to E'$.

Galbraith–Petit–Shani–Ti: Any isogeny works to break SIDH.

Known solutions are generic: Graph walking, claw finding, ... (These are all exponential-time, even quantumly.)

Equation solving?

Modular polynomials parameterize ℓ -isogenous *j*-invariants. We are looking for an ℓ^n -isogeny between j_0 and j_n :

$$\Phi_{\ell}(j_0, X_1) = \Phi_{\ell}(X_1, X_2) = \Phi_{\ell}(X_2, X_3) = \dots$$

$$\dots = \Phi_{\ell}(X_{n-2}, X_{n-1}) = \Phi_{\ell}(X_{n-1}, j_n) = 0.$$

Equation solving?

Modular polynomials parameterize ℓ -isogenous *j*-invariants. We are looking for an ℓ^n -isogeny between j_0 and j_n :

$$\Phi_{\ell}(j_0, X_1) = \Phi_{\ell}(X_1, X_2) = \Phi_{\ell}(X_2, X_3) = \dots$$

$$\dots = \Phi_{\ell}(X_{n-2}, X_{n-1}) = \Phi_{\ell}(X_{n-1}, j_n) = 0.$$

Takahashi–Kudo–Ikematsu–Yasuda–Yokoyama (MathCrypt 2019): Throw this system into a Gröbner basis algorithm and pray.
Equation solving?

Modular polynomials parameterize ℓ -isogenous *j*-invariants. We are looking for an ℓ^n -isogeny between j_0 and j_n :

$$\Phi_{\ell}(j_0, X_1) = \Phi_{\ell}(X_1, X_2) = \Phi_{\ell}(X_2, X_3) = \dots$$

$$\dots = \Phi_{\ell}(X_{n-2}, X_{n-1}) = \Phi_{\ell}(X_{n-1}, j_n) = 0.$$

Takahashi–Kudo–Ikematsu–Yasuda–Yokoyama (MathCrypt 2019): Throw this system into a Gröbner basis algorithm and pray.

Same paper:

Plug start and end *curves* into Vélu's formulas and solve for the kernel point.

Equation solving?

Modular polynomials parameterize ℓ -isogenous *j*-invariants. We are looking for an ℓ^n -isogeny between j_0 and j_n :

$$\Phi_{\ell}(j_0, X_1) = \Phi_{\ell}(X_1, X_2) = \Phi_{\ell}(X_2, X_3) = \dots$$

$$\dots = \Phi_{\ell}(X_{n-2}, X_{n-1}) = \Phi_{\ell}(X_{n-1}, j_n) = 0.$$

Takahashi–Kudo–Ikematsu–Yasuda–Yokoyama (MathCrypt 2019): Throw this system into a Gröbner basis algorithm and pray.

Same paper:

Plug start and end *curves* into Vélu's formulas and solve for the kernel point.

Paper is still not online مرالاله, but it works exceptionally badly.

"The Dream"

1. View $E, E'/\mathbb{F}_{p^2}$ as abelian surfaces A, A' over \mathbb{F}_p .

- 1. View $E, E'/\mathbb{F}_{p^2}$ as abelian surfaces A, A' over \mathbb{F}_p .
- 2. Hope that there is a class-group action of $\mathbb{Q}(\pi)$ on some \mathbb{F}_p -isogeny graph containing A, A' (cf. dimension 1).
 - Chloe Martindale's PhD thesis is about the ordinary case; apparently it *should* generalize.

- 1. View $E, E'/\mathbb{F}_{p^2}$ as abelian surfaces A, A' over \mathbb{F}_p .
- 2. Hope that there is a class-group action of $\mathbb{Q}(\pi)$ on some \mathbb{F}_p -isogeny graph containing A, A' (cf. dimension 1).
 - Chloe Martindale's PhD thesis is about the ordinary case; apparently it *should* generalize.
- 3. Use Kuperberg's subexponential quantum algorithm for the abelian hidden-shift problem to find an isogeny ψ between the surfaces.

- 1. View $E, E'/\mathbb{F}_{p^2}$ as abelian surfaces A, A' over \mathbb{F}_p .
- 2. Hope that there is a class-group action of $\mathbb{Q}(\pi)$ on some \mathbb{F}_p -isogeny graph containing A, A' (cf. dimension 1).
 - Chloe Martindale's PhD thesis is about the ordinary case; apparently it *should* generalize.
- 3. Use Kuperberg's subexponential quantum algorithm for the abelian hidden-shift problem to find an isogeny ψ between the surfaces.
- 4. Hope we can solve the original problem better using ψ .
 - Can we always "unrestrict" back to \mathbb{F}_{p^2} somehow?
 - Endomorphism-ring black magic?

• <u>Educated guess</u>: *If* this works, the orbits are of size $\widetilde{O}(\sqrt{p})$, so there should be $\approx \sqrt{p}$ orbits.

• <u>Educated guess</u>: *If* this works, the orbits are of size $O(\sqrt{p})$, so there should be $\approx \sqrt{p}$ orbits.

(Picture not to scale.)

- <u>Educated guess</u>: *If* this works, the orbits are of size $\widetilde{O}(\sqrt{p})$, so there should be $\approx \sqrt{p}$ orbits.
- Kuperberg can only work if the two abelian surfaces are in the same orbit... which is exponentially unlikely.

- <u>Educated guess</u>: *If* this works, the orbits are of size $\widetilde{O}(\sqrt{p})$, so there should be $\approx \sqrt{p}$ orbits.
- Kuperberg can only work if the two abelian surfaces are in the same orbit... which is exponentially unlikely.
- ► There are more problems...
 - How to compute the group action in dimension 2?
 - Can we always lift back isogenies?

"The Dream"

1. Lift $E, E'/\mathbb{F}_{p^2}$ to elliptic curves $\mathcal{E}, \mathcal{E}'$ defined over \mathbb{C} .

- 1. Lift $E, E'/\mathbb{F}_{p^2}$ to elliptic curves $\mathcal{E}, \mathcal{E}'$ defined over \mathbb{C} .
- 2. Hope we can compute an isogeny $\Phi \colon \mathcal{E} \to \mathcal{E}'$.

- 1. Lift $E, E'/\mathbb{F}_{p^2}$ to elliptic curves $\mathcal{E}, \mathcal{E}'$ defined over \mathbb{C} .
- 2. Hope we can compute an isogeny $\Phi \colon \mathcal{E} \to \mathcal{E}'$.
- 3. Reduce Φ back modulo p to get $\varphi \colon E \to E'$.

Well, none of this really seems to work:

 For the lifts to have a chance at being isogenous, we need to lift together with an endomorphism (cf. ordinary canonical lifts).

Well, none of this really seems to work:

- For the lifts to have a chance at being isogenous, we need to lift together with an endomorphism (cf. ordinary canonical lifts).
- Thus, we need to find an endomorphism. If we can do this, we can already break SIDH without the added complexity¹ of lifting.

¹Pun intended.

Well, none of this really seems to work:

- For the lifts to have a chance at being isogenous, we need to lift together with an endomorphism (cf. ordinary canonical lifts).
- Thus, we need to find an endomorphism. If we can do this, we can already break SIDH without the added complexity¹ of lifting.
- Even given an endomorphism, lifting is prohibitively expensive if its degree is not small.

¹Pun intended.

Well, none of this really seems to work:

- For the lifts to have a chance at being isogenous, we need to lift together with an endomorphism (cf. ordinary canonical lifts).
- Thus, we need to find an endomorphism. If we can do this, we can already break SIDH without the added complexity¹ of lifting.
- Even given an endomorphism, lifting is prohibitively expensive if its degree is not small.
- ► Computing an isogeny over ℂ still seems hard...

¹Pun intended.

Thank you!