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What’s this all about?

I 2011:

David Jao & Luca De Feo

come up with something
now known as “Supersingular-Isogeny Diffie–Hellman”.

I 2020−ε: Semi-surprisingly, this stuff is still not broken.
Question for the next few dozens of minutes: Why?
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Stand back!

We’re going to do math.
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Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.
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Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.
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Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.
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Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.
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Isogeny kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is (one reason) why we use supersingular curves!

1(up to isomorphism of E′)
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Smooth isogenies

I In SIDH, #A

= 2n

and #B

= 3m

are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).
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Isogeny graphs

I Graph view: Each ψi is a step in the `-isogeny graph.

(q = 4312, degrees 2, 3)
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Reminder:

SIDH
for those who missed David Jao’s ECC talk 8 years ago

:)
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SIDH: High-level view

E

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking in the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!
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SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉
s := j

(
(E/A)/B′

)
10 / 28



Disclaimer:
All of the following is “obvious” to experts.
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Extra points: Information theory

I By linearity, the two points ϕA(PB), ϕA(QB) encode how ϕA
acts on the whole 3m-torsion.

I Note 3m is smooth  can evaluate ϕA on any R ∈ E0[3m].

Lemma. If two d-isogenies φ, ψ act the same on the m-torsion
and m2 > 4d, then φ = ψ.

=⇒ Except for very unbalanced parameters, the public points
uniquely determine the secret isogenies.
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Extra points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

 Rational-function interpolation?

:( ...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.

I Also unlikely to exist...
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Extra points: Group theory?

I Can we extrapolate the action of ϕA to some > 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:( There’s an isomorphism of groups

E(Fp2) ∼= (Z/2n)2 × (Z/3m)2 .

=⇒ can’t learn anything about 2n from 3m using groups alone.
(Annoying: This shows up in many disguises.)

“[...] elliptic curves are as close to generic groups as it gets.”
— me, 2018

(Exception: pairings, but those are “just” bilinear maps.)
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

!! We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).
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Extra points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ϑ

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining part.
=⇒ (details) =⇒ Recover ϕA.
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Extra points: Petit’s endomorphisms (2)

I Petit uses endomorphisms τ ∈ R of the form

τ = a + ϕA(bι+ cπ + dιπ)ϕ̂A ,

where deg ι = 1 and deg π = deg ιπ = p. Hence

deg τ = a2 + 22nb2 + 22npc2 + 22npd2 .

(Recall p = 2n3m − 1.)

=⇒ Unless 3m � 2n, there is no hope to find τ with 3m | deg τ

and deg τ/3m < 2n.

=⇒ Petit’s endomorphisms are not sufficiently petit-degree :) .
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(Recall p = 2n3m − 1.)

=⇒ Unless 3m � 2n, there is no hope to find τ with 3m | deg τ

and deg τ/3m < 2n.

=⇒ Petit’s endomorphisms are not sufficiently petit-degree :) .
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Auxiliary-points active attack [Galbraith–Petit–Shani–Ti]

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.
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Extra points: Summary

I Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3m-torsion except what’s given.

:(

I Petit’s approach cannot be expected to work for “real”
(symmetric, two-party) SIDH.

:(
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Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie–Hellman”.

Is this accurate?

I Not symmetric: Easily fixable, simply run two SIDH
instances with opposite roles simultaneously.
(This “invention” has been filed for patent in Canada...)

I Active attack: Not easily fixable; implies a significant
lack of DH-ness!

20 / 28



Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie–Hellman”.

Is this accurate?

I Not symmetric: Easily fixable, simply run two SIDH
instances with opposite roles simultaneously.

(This “invention” has been filed for patent in Canada...)

I Active attack: Not easily fixable; implies a significant
lack of DH-ness!

20 / 28



Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie–Hellman”.

Is this accurate?

I Not symmetric: Easily fixable, simply run two SIDH
instances with opposite roles simultaneously.
(This “invention” has been filed for patent in Canada...)

I Active attack: Not easily fixable; implies a significant
lack of DH-ness!

20 / 28



Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie–Hellman”.

Is this accurate?

I Not symmetric: Easily fixable, simply run two SIDH
instances with opposite roles simultaneously.
(This “invention” has been filed for patent in Canada...)

I Active attack: Not easily fixable; implies a significant
lack of DH-ness!

20 / 28



...we’ll be right back after a short commercial break...

["si:saId]

...is an efficient commutative group action on an isogeny graph.
 much closer to post-quantum Diffie–Hellman than SIDH

;) .

21 / 28



...we’ll be right back after a short commercial break...

["si:saId]

...is an efficient commutative group action on an isogeny graph.
 much closer to post-quantum Diffie–Hellman than SIDH

;) .

21 / 28



The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves
E,E′/Fp2 , compute an isogeny ϕ : E→ E′.

Galbraith–Petit–Shani–Ti: Any isogeny works to break SIDH.

Known solutions are generic: Graph walking, claw finding, ...
(These are all exponential-time, even quantumly.)
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Equation solving?

Modular polynomials parameterize `-isogenous j-invariants.
We are looking for an `n-isogeny between j0 and jn:

Φ`(j0,X1) = Φ`(X1,X2) = Φ`(X2,X3) = . . .

. . . = Φ`(Xn−2,Xn−1) = Φ`(Xn−1, jn) = 0.

Takahashi–Kudo–Ikematsu–Yasuda–Yokoyama (MathCrypt 2019):

Throw this system into a Gröbner basis algorithm and pray.

Same paper:

Plug start and end curves into Vélu’s formulas and solve for the
kernel point.

Paper is still not online , but it works exceptionally badly.
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Weil restrictions?

“The Dream”

1. View E,E′/Fp2 as abelian surfaces A,A′ over Fp.

2. Hope that there is a class-group action of Q(π) on some
Fp-isogeny graph containing A,A′ (cf. dimension 1).

I Chloe Martindale’s PhD thesis is about the ordinary case;
apparently it should generalize.

3. Use Kuperberg’s subexponential quantum algorithm for
the abelian hidden-shift problem to find an isogeny ψ
between the surfaces.

4. Hope we can solve the original problem better using ψ.
I Can we always “unrestrict” back to Fp2 somehow?
I Endomorphism-ring black magic?
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Weil restrictions?

I Educated guess: If this works, the orbits are of size Õ(
√p),

so there should be ≈ √p orbits.
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√p),

so there should be ≈ √p orbits.

From a supersingular elliptic curve E/Fp2 ,

construct a superspecial abelian surface A/Fp.

(Picture not to scale.)
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Weil restrictions?
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√p),

so there should be ≈ √p orbits.

I Kuperberg can only work if the two abelian surfaces are in
the same orbit... which is exponentially unlikely.

I There are more problems...
I How to compute the group action in dimension 2?
I Can we always lift back isogenies?
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Lifting to C?

“The Dream”

1. Lift E,E′/Fp2 to elliptic curves E , E ′ defined over C.

2. Hope we can compute an isogeny Φ: E → E ′.

3. Reduce Φ back modulo p to get ϕ : E→ E′.
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Lifting to C?

Well, none of this really seems to work:

I For the lifts to have a chance at being isogenous, we need
to lift together with an endomorphism (cf. ordinary canonical lifts).

I Thus, we need to find an endomorphism. If we can do this,
we can already break SIDH without the added
complexity1Pun intended. of lifting.

I Even given an endomorphism, lifting is prohibitively
expensive if its degree is not small.

I Computing an isogeny over C still seems hard...
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Thank you!
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