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Largely based on “How to not break SIDH”, which is joint work with Chloe Martindale.
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What's this all about?

» 2011: David Jao & Luca De Feo come up with something
now known as “Supersingular-Isogeny Diffie-Hellman”.

» 2020—¢: Semi-surprisingly, this stuff is still not broken.
Question for the next few dozens of minutes: Why?
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Stand back!

.%

We’re going to do math.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Isogenies

» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Em| = Z/m x Z/m.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)

defines a degree-1 isogeny of the elliptic curves
{y» =x®+ax+b} — {y* =x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Isogenies

» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #3: (x,y) — (x3—4x2+30x—12 B —6x2—14x+35 _y)

(=22 (2P
defines a degree-3 isogeny of the elliptic curves
= +x} — {y*=x°—-3x+3}

over F7. Its kernel is {(2,9), (2, -9), oo}.
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Isogeny kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Isogeny kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is (one reason) why we use supersingular curves!

!(up to isomorphism of E’)
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Smooth isogenies

» In SIDH, #A and #B are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.
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Smooth isogenies

» InSIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = 7./, set ker ¢); := [(¥~](¢)i_1 0 --- 0 91)(G).

U ) P Uy
¥G

5/28



Smooth isogenies

» InSIDH, #A = 2" and #B = 3" are “crypto-sized”.

Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = 7./, set ker ¢); := [(¥~](¢)i_1 0 --- 0 91)(G).

P 1) WP— i
e

~ Complexity: O(k? - /). Exponentially smaller than ¢!
“Optimal strategy” improves this to O(klogk - £).
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Isogeny graphs

» Graph view: Each 1); is a step in the (-isogeny graph.

A [ X
NN WA »
7 . 7 \‘«V\i?} L

(g = 4312, degrees 2, 3)
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Reminder:

SIDH

for those who missed David Jao’s ECC talk 8 years ago

L3y
N
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SIDH: High-level view

E
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» Alice & Bob pick secret subgroups A and B of E.
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E o E/A

E/B

» Alice & Bob pick secret subgroups A and B of E.

» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking in the isogeny graph.)
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SIDH: High-level view

E o E/A

E/B

» Alice & Bob pick secret subgroups A and B of E.
» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking in the isogeny graph.)

» Alice and Bob transmit the values E/A and E/B.

8/28



SIDH: High-level view

E o E/A

E/B

A/

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking in the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v
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SIDH: High-level view

E o E/A
¥B ©p/
E/B ——— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking in the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A' = E/(A,B) 2 (E/A)/B.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).

Alice knows only A, Bob knows only ¢p. Hm.

9/28



SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

9/28



SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

P @5 (P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 3 (P) and ¢5(Q) in his public key.
—> Now Alice can compute A" as (pp(P) + [a]op(Q))!
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SIDH in one slide

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob
g 2P b &2 0.3 -1}
A= (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢A(Qs) E/B, ¢5(Pa), ¢5(Qa)
. e
A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Ps) + [b]pa(Qs))
s = j((E/B)/A') s = j((E/A)/B)
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Disclaimer:

All of the following is “obvious” to experts.
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Extra points: Information theory

» By linearity, the two points ¢4 (Pg), pa(Qp) encode how ¢4
acts on the whole 3™"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3"™].
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Extra points: Information theory

» By linearity, the two points ¢4 (Pg), pa(Qp) encode how ¢4
acts on the whole 3™"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3"™].

Lemma. If two d-isogenies ¢, act the same on the m-torsion
and m? > 4d, then ¢ = 1.

= Except for very unbalanced parameters, the public points
uniquely determine the secret isogenies.
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Extra points: Interpolation?

» Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

~» Rational-function interpolation?
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~+ can’t even write down the result without decomposing
into a sequence of smaller-degree maps.
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Extra points: Interpolation?

» Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

~» Rational-function interpolation?

):

...the polynomials are of exponential degree ~ ,/p.

§

can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

» No known algorithms for interpolating and decomposing
at the same time.

» Also unlikely to exist...
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Extra points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3™-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.
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Extra points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3™-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.

~ There’s an isomorphism of groups

E(F,2) = (Z/2")% x (Z./3™)>.

p

— can’t learn anything about 2" from 3" using groups alone.
(Annoying: This shows up in many disguises.)

“[...] elliptic curves are as close to generic groups as it gets.”
—me, 2018

(Exception: pairings, but those are “just” bilinear maps.)
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher /-torsion, say ¢'*1?
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher /-torsion, say ¢'*1?

Theorem. For ell. curves E, E'/F,; and a prime ¢ # p, the map
Homg, (E, E') ® Z¢ — Homp, (E[¢>°], E'[£*°]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high ¢*-torsion.

/~ Same problem; group-theoretically there are /* ways to lift.
~ We know more: The degree! (¢ f det; almost no use.)
» This idea works slightly better for endomorphisms

(characteristic polynomial constrains to £? choices).

15/28



Extra points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
t,m of Eg such that End(Eg) = (1,¢, T, 15T,
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Extra points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms

t,m of Eg such that End(Eg) = (1,¢, T, 15T,

» Going back and forth to Ej yields endomorphisms of E4:

19/\ /QDA\
VEO\ /EA

Pa

~+ We can evaluate endomorphisms of E,4 in the subring
R={paocdopn ‘ ¥ € End(Eo) } on the 3"-torsion.

» Idea: Find 7 € R of degree 3"'r; recover 3"-part from
known action; brute-force the remaining part.
= (details) = Recover 4.
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Extra points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+@a(bL+cm +dur)oa,
where deg: =1 and deg 7 = degvm = p. Hence

deg T = a* 4 2%"b* 4 2%"pc? 4 2%"pd? .

(Recall p= ongim _ ])
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and deg 7/3™ < 2"
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Extra points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+@a(bL+cm +dur)oa,
where deg: =1 and deg 7 = degvm = p. Hence
deg 7 = a® + 2%"b* + 22"pc® + 2%"pd> .

(Recall p= ongim _ ])

= Unless 3" >> 2", there is no hope to find 7 with 3" | deg
and deg 7/3™ < 2"

— Petit’s endomorphisms are not sufficiently petit-degree .

17 /28



Auxiliary-points active attack (Gatbraith-Petit-shani-Ti]

» Recall: Bob sends P’ := ¢ (P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.
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Auxiliary-points active attack (Gatbraith-Petit-shani-Ti]

» Recall: Bob sends P’ := ¢ (P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.

» Bob cheats and sends Q" := Q' + 2"~ 1P’ instead of Q'.
Alice computes A” = (P' + [a]Q").
Ifa=2u :[a]Q" = [a]Q + [u][2"]P’ = [1]Q".
Ifa =2u+1: [a]Q" = [a]Q + [W][2"|P' + 2" '|P' = [))Q" + [2"']P".

—> Bob learns the parity of a.
Similarly, he can completely recover 2 in O(n) queries.

Validating that Bob is honest is ~ as hard as breaking SIDH. ‘

= only usable with ephemeral keys or as a KEM “SIKE”.
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

» Petit’s approach cannot be expected to work for “real”
(symmetric, two-party) SIDH.

—
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Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie-Hellman”.

Is this accurate?
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Interlude: How DH is SIDH?

Observation: SIDH has sometimes been marketed as
“post-quantum Diffie-Hellman”.

Is this accurate?

» Not symmetric: Easily fixable, simply run two SIDH
instances with opposite roles simultaneously.
(This “invention” has been filed for patent in Canada...)

» Active attack: Not easily fixable; implies a significant
lack of DH-ness!

20/28






..is an efficient commutative group action on an isogeny graph.
~+ much closer to post-quantum Diffie-Hellman than SIDH >>.




The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves
E,E'/F,», compute an isogeny ¢: E — E'.
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The pure isogeny problem

Fundamental problem: Given supersingular elliptic curves
E,E'/F,», compute an isogeny ¢: E — E'.

Galbraith-Petit-Shani-Ti: Any isogeny works to break SIDH.

Known solutions are generic: Graph walking, claw finding, ...
(These are all exponential-time, even quantumly.)
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Equation solving?

Modular polynomials parameterize (-isogenous j-invariants.
We are looking for an ¢"-isogeny between jy and j;:

(o, X1) = Pp(X1, Xp) = Dp(X2,X3) = ...
e = (I)Z(Xn—Zyxn—l) = (DE(Xn—lyjn) =0.
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Equation solving?

Modular polynomials parameterize (-isogenous j-invariants.
We are looking for an ¢"-isogeny between jy and j;:
Dy(jo, X1) = o(X1, X2) = P(Xp, X3) = . ..
e = (I)Z(Xn—Zyxn—l) = (PE(Xn—lyjn) =0.

Takahashi-Kudo-Tkematsu—Yasuda—Yokoyama (MathCrypt 2019):
Throw this system into a Grobner basis algorithm and pray.

Same paper:
Plug start and end curves into Vélu’s formulas and solve for the
kernel point.

Paper is still not online v/, but it works exceptionally badly.
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Welil restrictions?

“The Dream”

1.
2.

View E, E'/F,» as abelian surfaces A, A" over [),.

Hope that there is a class-group action of Q(7) on some
IF,-isogeny graph containing A, A’ (cf. dimension 1).
» Chloe Martindale’s PhD thesis is about the ordinary case;
apparently it should generalize.

. Use Kuperberg’s subexponential quantum algorithm for

the abelian hidden-shift problem to find an isogeny 1
between the surfaces.

. Hope we can solve the original problem better using .

» Can we always “unrestrict” back to F,» somehow?
» Endomorphism-ring black magic?
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Welil restrictions?

» Educated guess: If this works, the orbits are of size CN)(\/;?),
so there should be ~  /p orbits.
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Welil restrictions?

» Educated guess: If this works, the orbits are of size 6(\/;5),
so there should be ~  /p orbits.

From a supersingular elliptic curve E /F P2

construct a superspecial abelian surface A / Fp.

C OO OO OO

(Picture not to scale.)
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so there should be ~  /p orbits.

» Kuperberg can only work if the two abelian surfaces are in
the same orbit... which is exponentially unlikely.
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Welil restrictions?

» Educated guess: If this works, the orbits are of size CN)(\/;?),
so there should be ~  /p orbits.

» Kuperberg can only work if the two abelian surfaces are in
the same orbit... which is exponentially unlikely.

» There are more problems...

» How to compute the group action in dimension 2?
» Can we always lift back isogenies?
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Lifting to C?

“The Dream”

1. Lift E, E'/IF,» to elliptic curves &, £’ defined over C.
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Lifting to C?

“The Dream”

1. Lift E, E'/IF,» to elliptic curves &, £’ defined over C.
2. Hope we can compute an isogeny ®: £ — £’

3. Reduce ¢ back modulo p to get p: E — E'.
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Lifting to C?

Well, none of this really seems to work:

» For the lifts to have a chance at being isogenous, we need
to lift together with an endomorphism (cf. ordinary canonical lifts).
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» Thus, we need to find an endomorphism. If we can do this,
we can already break SIDH without the added complexity'
of lifting.

Pun intended.
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Lifting to C?

Well, none of this really seems to work:

» For the lifts to have a chance at being isogenous, we need
to lift together with an endomorphism (cf. ordinary canonical lifts).

» Thus, we need to find an endomorphism. If we can do this,
we can already break SIDH without the added complexity'
of lifting.

» Even given an endomorphism, lifting is prohibitively
expensive if its degree is not small.

» Computing an isogeny over C still seems hard...

Pun intended.
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Thank you!
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