How to not break SIDH 🏸

Chloe Martindale Lorenz Panny

Technische Universiteit Eindhoven

New York, 1 June 2019

What is this all about?

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Problem: It is trivial to find paths (subtract coordinates). What do?

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\, \wp \,$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do math.

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation $E: y^2 = x^3 + ax + b.$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

Math slide #1: Elliptic curves (*nodes*)

An elliptic curve (modulo details) is given by an equation *E*: $v^2 = x^3 + ax + b$.

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- not remember hese formulas! • The sum of (x_1, y_1) and (x_2, y_2) is $(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1)$ where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_2}$ otherwise.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$ is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x - 2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x - 2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves $\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = \varphi \circ \widehat{\varphi} = [\deg \varphi].$

Math slide #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

Math slide #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

Math slide #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

For *E* defined over *k*, let E(k) be the points of *E* defined over *k*.

Math slide #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Math slide #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Math slide #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightarrow need to make sure extensions stay small for desired #*G* \rightarrow this is why we use supersingular curves!

¹(up to isomorphism of E')

Math slide #5: Supersingular isogeny graphs

Let *p* be a prime, *q* a power of *p*, and ℓ a positive integer $\notin p\mathbb{Z}$.

An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!

Math slide #5: Supersingular isogeny graphs

Let *p* be a prime, *q* a power of *p*, and ℓ a positive integer $\notin p\mathbb{Z}$.

An elliptic curve E/\mathbb{F}_q is *supersingular* if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightarrow easy way to control the group structure by choosing p!

Let $S \not\supseteq p$ denote a set of prime numbers.

The supersingular *S*-isogeny graph over \mathbb{F}_q consists of:

 vertices given by isomorphism classes of supersingular elliptic curves,

► edges given by equivalence classes¹ of ℓ -isogenies ($\ell \in S$), both defined over \mathbb{F}_q .

¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

The beauty and the beast

Components of the isogeny graphs look like this:

The beauty and the beast

Components of the isogeny graphs look like this:

The beauty and the beast

Components of the isogeny graphs look like this:

The beauty and the beast

At this time, there are two distinct families of systems:

 $q = p^2$

...we'll be right back after a short commercial break...

...we'll be right back after a short commercial break...

...is an efficient commutative group action on an isogeny graph. ~> essentially post-quantum Diffie–Hellman.

...we'll be right back after a short commercial break...

...is an efficient commutative group action on an isogeny graph. ~> essentially post-quantum Diffie–Hellman.

Now: SIDH

(...whose name doesn't allow for nice pictures of beaches...)

With great commutative group action comes great subexponential attack.

With great commutative group action comes great subexponential attack.

• **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!

With great commutative group action comes great subexponential attack.

- ▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!
- Problem: also no intrinsic sense of direction.
 "It all bloody looks the same!" a famous isogeny cryptographer
 need extra information to let Alice & Bob's walks commute.

► Alice & Bob pick secret subgroups *A* and *B* of *E*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob	
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b ^{\text{random}} \{0$	$.3^{m}-1$
$\boldsymbol{A} := \langle P_A + [\boldsymbol{a}] Q_A \rangle$	$B := \langle P_B +$	$(b]Q_B\rangle$
compute $\varphi_A \colon E \to E/A$	compute φ_B :	$E \rightarrow E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A)$, $\varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [\mathbf{a}]\varphi_B(Q_A) \rangle$ $s := j((E/B)/A')$	$B' := \langle \varphi_{\mathbf{A}}(P_B) + s := j((E/A)) \rangle$	$(b]\varphi_A(Q_B)\rangle$ (A)/B')

All of the following is 'obvious' to the experts.

We often observe smart people rediscovering and wasting time on these ideas. Extra points: Information theory

- ▶ By linearity, the two points $\varphi_A(P_B)$, $\varphi_A(Q_B)$ encode how φ_A acts on the whole 3^m -torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Extra points: Information theory

- By linearity, the two points φ_A(P_B), φ_A(Q_B) encode how φ_A acts on the whole 3^m-torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Lemma. If two *d*-isogenies ϕ , ψ act the same on the *m*-torsion and $m^2 > 4d$, then $\phi = \psi$.

 \implies Except for very imbalanced parameters, the public points uniquely determine the secret isogenies.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.
 - No known algorithms for interpolating and decomposing at the same time.

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

 \implies can't learn anything about 2^n from 3^m using groups alone. (Annoying: This shows up in many disguises.)

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2$$
.

- \implies can't learn anything about 2^{*n*} from 3^{*m*} using groups alone. (Annoying: This shows up in many disguises.)
- "[...] elliptic curves are as close to generic groups as it gets." —me, 2018 (Exception: pairings, but those are also just bilinear maps.)

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

Read: An isogeny is uniquely defined by how it acts on sufficiently high ℓ^k -torsion.

 \approx Same problem; group-theoretically there are ℓ^4 ways to lift.

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- $\stackrel{\sim}{\succ}$ Same problem; group-theoretically there are ℓ^4 ways to lift.
 - !! We know more: The degree!

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- \approx Same problem; group-theoretically there are ℓ^4 ways to lift.
- \approx We know more: The degree! ($\ell \not| \det; \text{ almost no use.}$)

Previous slide: Little hope for coprime extrapolation. What about higher ℓ -torsion, say ℓ^{n+1} ?

Theorem. For ell. curves $E, E'/\mathbb{F}_q$ and a prime $\ell \neq p$, the map $\operatorname{Hom}_{\mathbb{F}_q}(E, E') \otimes \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{F}_q}(E[\ell^{\infty}], E'[\ell^{\infty}])$ is bijective.

- \approx Same problem; group-theoretically there are ℓ^4 ways to lift.
- \approx We know more: The degree! ($\ell \not| \det; \text{ almost no use.}$)
 - ► This idea works slightly better for *endo*morphisms (characteristic polynomial constrains to l² choices).

Extra points: Petit's endomorphisms (1)

• For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.

Extra points: Petit's endomorphisms (1)

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

Extra points: Petit's endomorphisms (1)

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

→ We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.

Extra points: Petit's endomorphisms (1)

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

- → We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.
- Idea: Find τ ∈ R of degree 3^mr; recover 3^m-part from known action; brute-force the remaining part.
 ⇒ (details) ⇒ Recover φ_A.

Extra points: Petit's endomorphisms (2)

• Petit uses endomorphisms $\tau \in R$ of the form

 $au = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$,

where deg $\iota = 1$ and deg $\pi = \text{deg } \iota \pi = p$. Hence deg $\tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2$.

(Recall $p = 2^n 3^m - 1.$)

Extra points: Petit's endomorphisms (2)

• Petit uses endomorphisms $\tau \in R$ of the form

$$au = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$$
,

where deg $\iota = 1$ and deg $\pi = \deg \iota \pi = p$. Hence deg $\tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2$.

(Recall $p = 2^n 3^m - 1$.)

 \implies Unless $3^m \gg 2^n$, there is no hope to find τ with $3^m | \deg \tau$ and $\deg \tau/3^m < 2^n$.

Extra points: Summary

 \sim

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.

 $\overline{}$

 \sim

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.

► Life sucks.

 $\overset{\cdot\cdot}{\succ}$

「_(`ン)_/「

Fundamental problem: given supersingular *E* and E'/\mathbb{F}_{p^2} that are ℓ^n -isogeneous, compute an isogeny $\phi : E \to E'$.

Example Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

 Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- ▶ Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.
 Solution (b) is meet-in-the-middle: complexity Õ(p^{1/4}).

The SIDH graph has a \mathbb{F}_p -subgraph:

The SIDH graph has a \mathbb{F}_p -subgraph:

The SIDH graph has a \mathbb{F}_p -subgraph:

$$S = \{3\}, p = 431,$$

nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

 $S=\{3\},\ p=431,$ nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

 $S = \{3\}, p = 431,$ nodes up to \mathbb{F}_p -isomorphism

 $S = \{3\}, p = 431,$ nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$.

 $S = \{3\}, p = 431,$ nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

 $S = \{3\}, p = 431,$ nodes up to \mathbb{F}_p -isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs...

 $S = \{3\}, p = 431,$ nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

 $S = \{3\}, p = 431,$ nodes up to \mathbb{F}_{p} -isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

 $S = \{3\}, p = 431,$ nodes up to $\overline{\mathbb{F}_p}$ -isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

This picture is very unlikely to be accurate.

 ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

More equivalent categories: lifting to \mathbb{C}

 $\left\{ \begin{array}{c} \text{Elliptic curves } E \text{ defined over } \mathbb{C} \\ \text{with } \text{End}(E) = R \end{array} \right\}$ Here computing isogenies is easy! Non-supersingular elliptic curves defined over \mathbb{F}_q with $\operatorname{End}(E) = R$ Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C} A well-chosen subset of Elliptic curves *E* defined over \mathbb{C} with $\phi \in \text{End}(E)$ Here computing isogenies is easy! Supersingular elliptic curves defined over \mathbb{F}_q with non-scalar $\phi \in \operatorname{End}(E)$ Here computing isogenies is harder.

• Computing the equivalence is slow.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.

- Finding a non-scalar endomorphism is hard.
- If you can find non-scalar endomorphisms, SIDH is probably already broken by earlier work (Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

-_(`ン)_/־

Thank you!