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What is this all about?
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally IF;, today also elliptic curves)
» an element g € G of prime order p
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally IF;, today also elliptic curves)
» an element g € G of prime order p

Alice

Fundamental reason this works: -% and -’ are commutative!
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Graph walking Diffie-Hellman?
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Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

.%

We’re going to do math.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y).

e 0
» The sum of (x1,y1) and (x2,¥2) is e 4)‘;6;),%6
(2785
()\2 — X1 — X7, )\(le —+ X7 — )\2) — y]) sz
Sx%—i—u

where A = 2% if x; £ x; and A =

o otherwise.

2]/1
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Math slide #2: Isogenies (edges)

» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is
Em| = Z/m x Z/m.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
{» =x+ax+b} — {y*=x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

{(P=2>+x} — {=x>-3x+3}
over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by o ¢ = ¢ 0 o = [deg ¢].
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Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.
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Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients of its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Math slide #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Formulas for computing E/G and evaluating ¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.
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Math slide #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Math slide #5: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(Fy)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!
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Math slide #5: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F; is supersingular if p | (9 +1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!

Let S Z p denote a set of prime numbers.
The supersingular S-isogeny graph over [, consists of:

» vertices given by isomorphism classes of supersingular
elliptic curves,

» edges given by equivalence classes® of /-isogenies (£ € S),
both defined over F,.

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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The beauty and the beast

Components of the isogeny graphs look like this:

11/33



The beauty and the beast

Components of the isogeny graphs look like this:

S={3,5,7}, g =419
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The beauty and the beast

Components of the isogeny graphs look like this:
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S=1{3,5,7}, q =419 S ={2,3}, g = 4312

11/33



The beauty and the beast

At this time, there are two distinct families of systems:

==
AL T | A

S

q=vr
CSIDH ['si:said] SIDH
https://csidh.isogeny.org https://sike.org
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...is an efficient commutative group action on an isogeny graph.
~+ essentially post-quantum Diffie-Hellman.




...is an efficient commutative group action on an isogeny graph.
~+ essentially post-quantum Diffie-Hellman.




Now:

SIDH

(...whose name doesn’t allow for nice pictures of beaches...)
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With great commutative group action
comes great subexponential attack.
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With great commutative group action
comes great subexponential attack.

> SIDH uses the full F»-isogeny graph. No group action!

» Problem: also no intrinsic sense of direction.
“It all blOOdy looks the same!” — a famous isogeny cryptographer
~ need extra information to let Alice & Bob’s walks commute.
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SIDH: High-level view

E o » EJA

E/B —— E/{A,B)
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¥B g/
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» Alice & Bob pick secret subgroups A and B of E.
» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the values E/A and E/B.

15/33



SIDH: High-level view

E o E/A
¥B g/
E/B ———— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := p(A). (Similar for Bob.)

v

v

15/33



SIDH: High-level view

E o E/A
¥B g/
E/B ———— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := p(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A" = E[(A,B) = (E/A)/B'.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).

Alice knows only A, Bob knows only ¢p. Hm.
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Solution: ¢p is a group homomorphism!
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

P @5 (P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 3 (P) and ¢5(Q) in his public key.
—> Now Alice can compute A" as (pp(P) + [a]op(Q))!

16 /33



SIDH in one slide

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob
g 2P b &2 0.3 -1}
A= (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢A(Qs) E/B, ¢5(Pa), ¢5(Qa)
. e
A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Ps) + [b]pa(Qs))
s = j((E/B)/A') s = j((E/A)/B)
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All of the following is ‘obvious’ to the experts.

We often observe smart people rediscovering
and wasting time on these ideas.
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Extra points: Information theory

» By linearity, the two points ¢4 (Pg), pa(Qp) encode how ¢4
acts on the whole 3™"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3"™].
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Extra points: Information theory

» By linearity, the two points ¢4 (Pg), pa(Qp) encode how ¢4
acts on the whole 3™"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3"™].

Lemma. If two d-isogenies ¢, act the same on the m-torsion
and m? > 4d, then ¢ = 1.

— Except for very imbalanced parameters, the public points
uniquely determine the secret isogenies.
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

~- Rational function interpolation?
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~ ...the polynomials are of exponential degree ~ ,/p.

~+ can’t even write down the result without decomposing
into a sequence of smaller-degree maps.
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.

~- Rational function interpolation?

...the polynomials are of exponential degree ~ ,/p.

):

§

can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

» No known algorithms for interpolating and decomposing
at the same time.

20/33



Extra points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3"-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.
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Extra points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3"-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.

~ There’s an isomorphism of groups

E(F,2) = (Z/2")% x (Z./3™)>.

p

— can’t learn anything about 2" from 3" using groups alone.
(Annoying: This shows up in many disguises.)

“[...] elliptic curves are as close to generic groups as it gets.”
—me, 2018

(Exception: pairings, but those are also just bilinear maps.)
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher /-torsion, say ¢'*1?
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Homg, (E, E') ® Z¢ — Homp, (E[¢>°], E'[£*°]) is bijective.

Read: Anisogeny is uniquely defined by how it acts on
sufficiently high ¢*-torsion.
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher /-torsion, say ¢'*1?

Theorem. For ell. curves E, E'/F,; and a prime ¢ # p, the map
Homg, (E, E') ® Z¢ — Homp, (E[¢>°], E'[£*°]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high ¢*-torsion.

/~ Same problem; group-theoretically there are /* ways to lift.
~ We know more: The degree! (¢ f det; almost no use.)
» This idea works slightly better for endomorphisms

(characteristic polynomial constrains to £? choices).
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Extra points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
1, m of Eg such that End(Eg) = (1, ST, 147).
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Extra points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
¢, of Eg such that End(Ey) = <1 . HEW’ 1+m>_

» Going back and forth to Ej yields endomorphisms of E4:
/\ / PA \
\ /

~+ We can evaluate endomorphisms of E 4 in the subring
R= {SDA odopa ‘ Y€ End(Eo)} on the 3"-torsion.

» Idea: Find 7 € R of degree 3"r; recover 3"-part from

known action; brute-force the remaining part.
—> (details) = Recover ¢4.

23/33



Extra points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+ pa(bL+cm + dum)pga,
where deg: = 1 and deg 7 = degm = p. Hence

deg T = a® + 2%'b* + 2¥'pc* + 2%'pd® .

(Recall p =2"3" —1.)
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Extra points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+ pa(bL+cm + dum)pga,
where deg: = 1 and deg 7 = degm = p. Hence
deg T = a® + 2%'b* + 2¥'pc* + 2%'pd® .

(Recall p =2"3" —1.)

= Unless 3" >> 2", there is no hope to find 7 with 3" | deg
and deg 7/3™ < 2"

24/33



Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

» Petit’s approach cannot be expected to work for ‘real’
(symmetric, two-party) SIDH.

—

» Life sucks.

Y/
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The pure isogeny problem

Fundamental problem: given supersingular E and E'/IF,» that
are ("-isogeneous, compute an isogeny ¢ : E — E'.
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The pure isogeny problem

Example
Choose

E/F431 : y2 =x3 +1 and E//IF431 : yZ =x3 + 291x + 298.
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The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 +1 and E//IF431 : yZ = x3 4+ 291x + 298.

These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

» Solution (a): try all nine possible order 4 kernels and use
Vélu's formulas to find f.

» Solution (b): try all three possible order 2 kernels from
both E and E’ and check when the codomain is the same.

Solution (b) is meet-in-the-middle: complexity O(p'/4).

27/33



Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs?

S={3}, p=431,
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Exploiting subgraphs?

S={3}, p=431, S={3}, p=431,

nodes up to F,-isomorphism nodes up to Fy-isomorphism

Kuperberg’s subexponential quantum algorithm to compute a
hidden shift applies to this! Complexity: L,[1/2]. Finding
nearest node in subgraph costs... O(p'/?). ~

(Delfs-Galbraith, Biasse-Jao-Sankar)
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More graphs defined over I,

SRS L S L e L .

From 1-dimensional E/ sz ,

construct 2-dimensional W(E)/ Iy

“Weil restriction’

This picture is very unlikely to be accurate.
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More graphs defined over F,

» The associated graph of 2-dimensional objects is
(heuristically) O(,/p) cycles of length O(,/p).

(Superspecial principally polarized abelian surfaces if you care)
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More equivalent categories: lifting to C

Elliptic curves E defined over C
with End(E) =R

Here computing isogenies is easy!

|

Non-supersingular elliptic curves defined over F,
with End(E) =R

Here computing isogenies is harder.
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More equivalent categories: lifting to C
A well-chosen subset of

Elliptic curves E defined over C
with ¢ € End(E)

Here computing isogenies is easy!

|

Supersingular elliptic curves defined over F,
with non-scalar ¢ € End(E)

Here computing isogenies is harder.

» Computing the equivalence is slow.
» Finding a non-scalar endomorphism is hard.
» If you can find non-scalar endomorphisms, SIDH is

probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).
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(V)

Thank you!



