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What is this all about?
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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today also elliptic curves)

I an element g ∈ G of prime order p

Alice public Bob

a random←−−− {0...p−1} b random←−−− {0...p−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

BROKEN!
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Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

We’re going to do math.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].
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An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}
over F71. Its kernel is {(2, 9), (2,−9),∞}.

An endomorphism of
E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

7 / 33



Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

7 / 33



Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

7 / 33



Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients of its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Math slide #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
9 / 33
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Math slide #5: Supersingular isogeny graphs

Let p be a prime, q a power of p, and ` a positive integer /∈ pZ.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.
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The beauty and the beast

Components of the isogeny graphs look like this:

S = {3, 5, 7}, q = 419 S = {2, 3}, q = 4312

11 / 33



The beauty and the beast

Components of the isogeny graphs look like this:

S = {3, 5, 7}, q = 419

S = {2, 3}, q = 4312

11 / 33



The beauty and the beast

Components of the isogeny graphs look like this:

S = {3, 5, 7}, q = 419 S = {2, 3}, q = 4312

11 / 33



The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

11 / 33
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...we’ll be right back after a short commercial break...

["si:saId]

Life’s good at the CSIDH!
...is an efficient commutative group action on an isogeny graph.
 essentially post-quantum Diffie–Hellman.
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Now:

SIDH
(...whose name doesn’t allow for nice pictures of beaches...)

13 / 33



With great commutative group action
comes great subexponential attack.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.
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SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!
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SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉
s := j

(
(E/A)/B′

)
17 / 33



All of the following is ‘obvious’ to the experts.

We often observe smart people rediscovering
and wasting time on these ideas.
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Extra points: Information theory

I By linearity, the two points ϕA(PB), ϕA(QB) encode how ϕA
acts on the whole 3m-torsion.

I Note 3m is smooth  can evaluate ϕA on any R ∈ E0[3m].

Lemma. If two d-isogenies φ, ψ act the same on the m-torsion
and m2 > 4d, then φ = ψ.

=⇒ Except for very imbalanced parameters, the public points
uniquely determine the secret isogenies.
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Extra points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

 Rational function interpolation?

:( ...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.
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Extra points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:( There’s an isomorphism of groups

E(Fp2) ∼= (Z/2n)2 × (Z/3m)2 .

=⇒ can’t learn anything about 2n from 3m using groups alone.
(Annoying: This shows up in many disguises.)

“[...] elliptic curves are as close to generic groups as it gets.”
— me, 2018

(Exception: pairings, but those are also just bilinear maps.)
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Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

!! We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

!! We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

!! We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

!! We know more: The degree!

(` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

:( We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Effective Tate?

Previous slide: Little hope for coprime extrapolation.
What about higher `-torsion, say `n+1?

Theorem. For ell. curves E,E′/Fq and a prime ` 6= p, the map
HomFq(E,E′)⊗ Z` −→ HomFq(E[`∞],E′[`∞]) is bijective.

Read: An isogeny is uniquely defined by how it acts on
sufficiently high `k-torsion.

:( Same problem; group-theoretically there are `4 ways to lift.

:( We know more: The degree! (` 6 | det; almost no use.)

I This idea works slightly better for endomorphisms
(characteristic polynomial constrains to `2 choices).

22 / 33



Extra points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining part.
=⇒ (details) =⇒ Recover ϕA.
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Extra points: Petit’s endomorphisms (2)

I Petit uses endomorphisms τ ∈ R of the form

τ = a + ϕA(bι+ cπ + dιπ)ϕ̂A ,

where deg ι = 1 and deg π = deg ιπ = p. Hence

deg τ = a2 + 22nb2 + 22npc2 + 22npd2 .

(Recall p = 2n3m − 1.)

=⇒ Unless 3m � 2n, there is no hope to find τ with 3m | deg τ

and deg τ/3m < 2n.
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Extra points: Summary

I Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3m-torsion except what’s given.

:(

I Petit’s approach cannot be expected to work for ‘real’
(symmetric, two-party) SIDH.

:(

I Life sucks.
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The pure isogeny problem

Fundamental problem: given supersingular E and E′/Fp2 that
are `n-isogeneous, compute an isogeny φ : E→ E′.
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The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 + 1 and E′/F431 : y2 = x3 + 291x + 298.

These elliptic curves are 22 = 4-isogenous. Problem: compute
an isogeny f : E→ E′.
The kernel of f : E→ E′ is generated by a point P ∈ E(Fp) of
order 4.

I Solution (a): try all nine possible order 4 kernels and use
Vélu’s formulas to find f .

I Solution (b): try all three possible order 2 kernels from
both E and E′ and check when the codomain is the same.

Solution (b) is meet-in-the-middle: complexity Õ(p1/4).
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Exploiting subgraphs

The SIDH graph has a Fp-subgraph:

S = {2, 3}, q = 4312 S = {2, 3}, p = 431
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Exploiting subgraphs?

S = {3}, p = 431,
nodes up to Fp-isomorphism

S = {3}, p = 431,
nodes up to Fp-isomorphism

Kuperberg’s subexponential quantum algorithm to compute a
hidden shift applies to this! Complexity: Lp[1/2]. Finding
nearest node in subgraph costs... Õ(p1/2).

:(

(Delfs-Galbraith, Biasse-Jao-Sankar)
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More graphs defined over Fp

From 1-dimensional E/Fp2 ,

construct 2-dimensional W(E)/Fp

‘Weil restriction’

This picture is very unlikely to be accurate.
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More graphs defined over Fp

I The associated graph of 2-dimensional objects is
(heuristically) O(

√p) cycles of length O(
√p).

(Superspecial principally polarized abelian surfaces if you care)

I If your two elliptic curves are in the same cycle,
Kuperberg’s algorithm can find the isogeny in
subexponential time.

I Probability of being in the same cycle: O(1/
√p).

:(
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More equivalent categories: lifting to C

A well-chosen subset of

{
Elliptic curves E defined over C

with End(E) = R

}
Here computing isogenies is easy!xy{

Non-supersingular elliptic curves defined over Fq
with End(E) = R

}
Here computing isogenies is harder.

I Computing the equivalence is slow.
I Finding a non-scalar endomorphism is hard.
I If you can find non-scalar endomorphisms, SIDH is

probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).
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Thank you!
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