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Part 0: The Dream
sage: E0 = EllipticCurve (...)
sage: R = E0.endomorphism_ring ()
sage: IA = R.random_ideal ()
sage: secret_key = IA
sage: EA = IA.isogeny_codomain ()
sage: public_key = EA

sage: psi = E0.isogeny(E0.random_point ())
sage: E1 = psi.codomain ()
sage: commitment = E1

sage: phi = E1.isogeny(E1.random_point ())
sage: challenge = phi

sage: I1 = R.ideal_from_isogeny(psi)
sage: S = EA.endomorphism_ring(IA)
sage: I2 = S.ideal_from_isogeny(phi)
sage: I = I2 * I1 * IA.conjugate ()
sage: J = I.equivalent_smooth_ideal ()
sage: response = J.isogeny ()
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The rude awakening
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Part 1: Past

Part 2: Present

Part 3: Future
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The past

Situation ≈ 2020:
▶ EllipticCurveIsogeny: implementing Vélu and Kohel.

(Space and time requirement both linear the degree.)

▶ WeierstrassIsomorphism: implementing isomorphisms.
(Effectively a tuple (u, r, s, t) with some helper methods.)

However:
▶ Some things exponentially slower than they need to be.
▶ Almost no non-trivial operations on isogenies (◦, +, ...).
▶ No unified interface for isogenies & isomorphisms.
▶ No tools for endomorphisms; they are just self-isogenies.
▶ Fair share of bugs!
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The past: Some things exponentially slower than they need to be.

▶ For E(Fq) = Z/n × Z/m with m | n, find a basis (P,Q).

Old ad-hoc algorithm becomes slow when m is big.
New algorithm is slow only for E(Fq)[ℓ

∞] = Z/ℓr × Z/ℓs with r > s > 0.

▶ Given R ∈ E(Fq), find (a, b) ∈ Z2 with R = [a]P + [b]Q.

def _discrete_log(self ,x):
...
# EVEN DUMBER IMPLEMENTATION!
...
u = [y for y in self.list() if y.element () == x]
if len(u) == 0: raise TypeError("Not in group")
if len(u) > 1: raise NotImplementedError
return u[0].vector ()

Sage ≥ 9.6:

sage: a,b = E.abelian_group ().discrete_log(R)
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The past: Almost no non-trivial operations on isogenies (◦, +, ...).

Composing two EllipticCurveIsogeny objects “works”,
but is not overly useful:

sage: phi = phi2 * phi1
sage: type(phi)
<class 'sage.categories.map.FormalCompositeMap '>
sage: phi.degree ()
AttributeError: ...
sage: phi.rational_maps ()
AttributeError: ...

Addition of isogenies is not implemented at all:

sage: phi + phi
TypeError:

unsupported operand parent(s) for +: ’Set of morphisms ...’
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The past: No unified interface for isogenies & isomorphisms.

Every isomorphism is an isogeny. However:

▶ Composing with isomorphisms rather awkward.

sage: tau = E.automorphisms ()[1]
sage: phi = E.isogeny (...)
sage: psi = phi * tau # nope
TypeError: self (=Isogeny of degree ...) domain

must equal right (=Generic endomorphism of Abelian group
of points on Elliptic Curve defined by ...) codomain

sage: phi.set_pre_isomorphism(tau) # okay; in-place

▶ Almost all of the usual isogeny methods missing:
.degree(), .rational_maps(), .formal(), ...
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The past: No tools for endomorphisms; are just self-isogenies.

▶ EllipticCurve_finite_field has .frobenius(), but it just
returns an element of a quadratic field:

sage: E = EllipticCurve(GF(101), [5,5])
sage: E.frobenius ().parent ()
Order in Number Field in phi

with defining polynomial x^2 + 17*x + 101

Endomorphisms can of course be represented as just another
EllipticCurveIsogeny, but it doesn’t do much work for you:

▶ No useful composition, and no addition at all.
▶ No compact representation; need to hand-craft each time.

(Think things like formal linear combinations of morphisms.)

▶ Inseparable isogenies are actually irrepresentable.
(This includes the Frobenius endomorphism in the supersingular case!)

▶ No algorithm for traces or degrees, or anything else.
Crucial tool for computing the structure of an endomorphism (sub)ring!
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Part 1: Past

Part 2: Present

Part 3: Future
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The present: Unified parent class for isogenies

▶ Sage ≥ 9.5: Common class EllipticCurveHom for
EllipticCurveIsogeny, WeierstrassIsomorphism, and
other (new) types of elliptic-curve morphisms.

▶ Goal: All isogenies should behave the same from an user’s
perspective regardless of internal representation.
“API contract” says these objects support evaluation, composition,
.degree(), .rational_maps(), .kernel_polynomial(), ...

▶ Compose any two isogenies using the * operator.
!! This is currently opt-in for some type combinations. Use
EllipticCurveHom_composite.make_default(). SoonTM default.
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The present: Composing and decomposing isogenies

Computing a smooth isogeny efficiently (Sage ≥ 9.5):

E.isogeny(K, algorithm='factored ')

▶ This takes time and space polylogarithmic in the degree.
▶ Currently uses a naïve quadratic strategy.
▶ Patch for quasilinear strategy is ready, but stuck.
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The present: Scalar and inseparable isogenies

▶ Vélu/
√

élu are fully general, complexity is not great.

▶ Composite smooth-degree isogenies do much better.

▶ Luckily, there are more examples of compact isogenies
with time and space complexity polynomial in log(deg):

▶ We can represent [m] : E → E simply as a tuple (E,m),
enriched with a type tag and some simple helper methods.
(The “type tag” is implicitly applied by Python when you define a class.)
(Example: The implementation of .degree() is just return m2.)

▶ Similarly, we can represent πr : E → E(pk), (x, y) 7→ (xpk
, ypk

)
simply as (E, k), enriched in the same way.
(Example: The implementation of .degree() is just return pk.)

These things are implemented, but stuck.
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The present: Comparing isogenies efficiently

▶ Comparing isogenies is fundamental to many algorithms.

▶ Now have many ways of representing the same isogeny.
▶ Traditional Sage method: Compare domain, codomain,

and .rational_maps(). Complexity linear in the degree;
kills any speedup from compact or formal representation.

(New??) polynomial-time method:
▶ Two isogenies φ,ψ : E → E′ of equal degree d which agree

on > 4d points must be identical.
▶ Simply evaluate on generators of large enough subgroup.

(May require taking an extension of degree O(log d).)

▶ This is essentially a version of polynomial identity testing,
optimized for maps defining a group homomorphism.
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The present:
√

élu

Sage ≥ 9.7 (released eergisteren!):

sage: l = 10000019
sage: p = 40*l - 1
sage: E = EllipticCurve(GF(p), [1,0])
sage: P = (p+1)//l * E.gens()[0]
sage: E.isogeny(P, algorithm='velusqrt ')
Elliptic-curve isogeny (using

√
élu) of degree 10000019:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 400000759

To: Elliptic Curve defined by
y^2 = x^3 + 88879239*x + 195338414
over Finite Field of size 400000759

sage: %timeit E.isogeny(P, algorithm='velusqrt ')
4.11 s ± 72.9 ms per loop (...)

▶ Vélu’s formulas take about 8 minutes for the same isogeny.
▶ Speedup is even more significant as the degree grows.
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Part 1: Past

Part 2: Present

Part 3: Future
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The future: Sums of isogenies

▶ Vélu/Kohel: Computing a sum of two isogenies is tricky.

▶ Best(?) solution: Store formally; “simplify” when needed.
▶ Computing the degree (and perhaps trace) is a Schoof-type

algorithm; needs only evaluation. Polynomial-time.

Q: What does “simplify” mean? Expand everything? Group
common summands? How to apply the distributive law?
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The future: Endomorphism (sub)rings! (1)

Good support for sums and compositions of isogenies
=⇒ Computing (with) endomorphism rings.

(Example: Embedding some explicitly given endomorphisms into a
quaternion algebra essentially boils down to computing trace pairings
of the form ⟨φ,ψ⟩ = tr(φ ◦ ψ̂).)

For usability/flexibility:

▶ Important to support endomorphism subrings for working
with oriented supersingular curves (in particular: CSIDH),
or when having only a non-full-index subring.

▶ Important to render existing algebraic tools for orders in
{quadratic fields, quaternion algebras} easily applicable
to endomorphism rings.
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The future: Endomorphism (sub)rings! (2)
Suggested construction:
Define a class EllipticCurveEndRing whose data are:

▶ An abstract quadratic or quaternion order O which
embeds into an endomorphism ring End(E).

▶ Actual endomorphisms of E which satisfy the relations
of O when substituted for the generators.

Selling points:
▶ Design is flexible: It wraps arbitrary subrings of End(E).
▶ The defining morphisms can be user-supplied; they might

well be cryptographically-sized secrets.
▶ We can use the full power of Sage’s ideal machinery on

the abstract side, then map “down” to concrete isogenies.
▶ To figure out abstract version of a concrete morphism,

compute trace pairings with the defining morphisms.
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The future: Ideal-to-isogeny and back

With the abstract-and-concrete endomorphism ring structure:

▶ Easy to compute ideal-to-isogeny, subsuming both
Deuring correspondence and CM action in a unified way.

▶ Easy to compute isogeny-to-ideal.
▶ Smoothing ideals easy using KLPT or index calculus.

(Somewhat optimized implementation of Deuring correspondence is
work in progress with the friends of quaternions!)

▶ Quadratic case requires ideals of non-maximal quadratic
orders. Work in progress.
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The future: Computing endomorphisms

Algorithms for endomorphism rings come in two flavours:

▶ Quaternionic case: See Benjamin’s talk yesterday.
Basic algorithm: Brute-force random cycles in some isogeny graph;
compute relations (trace pairings); repeat until full-rank and full-index.
This is exponential-time.

▶ Quadratic case: Isogeny volcano walking.
Beautiful theory; see for instance Sutherland’s “Isogeny Volcanoes”.
This is efficient in many cases! [Preliminary implementation exists.]
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The future

Oh, and also: Genus 2, for reasons. LOL
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Part 1: Past

Part 2: Present

Part 3: Future
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▶ Most of the isogeny code is “just” Python. Despair not.
=⇒ Coding for Sage is vastly the same as coding in Sage.

▶ Some patches stuck for months for lack of reviewers.
▶ Reporting bugs or missing functionality is useful too!

You can help!
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Bonus slide: Life hacks

▶ Turn off provable primality testing:

sage: proof.all(False)

▶ Indicate that you’re fine with non-Conway finite fields:

sage: F = GF(q,'t') # can be much faster than GF(q)
sage: F.<t> = GF(q) # alternative syntax

▶ Make sure to run the most recent version: Lots of speed
improvements for elliptic curves and isogenies.
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