

How 2 Sage Dev??

Lorenz Panny

Technische Universität München

Leuven I-sage-ny Days, Leuven, 17 January 2024

Part 4: If it’s broke, fix it!

(Slide from my Isogeny Days 2022 talk.)

1 / 29

Outline

What is SageMath, really?

The type system The three type systems

Getting your hands dirty

It’s working! (That means ε% of the work is done.)

Ready? Go!

2 / 29

The gory internals (1)

▶ Sage rests on Python interfaces to mathematical libraries:
They provide most of the fundamental functionality.

▶ GMP & MPFR: Arbitrary-precision arithmetic.
▶ PARI: Odd finite fields, univariate polynomials, power series,

elliptic curves, quadratic forms, number fields, class groups, ...
▶ NTL: F2n , various algorithms for fast arithmetic, ...
▶ Singular: Multivariate polynomials, Gröbner bases, elimination, ...
▶ fplll: Lattice algorithms.
▶ Linbox, M4RI: Linear algebra.
▶ GAP: Abstract groups.

3 / 29

The gory internals (1)

▶ Sage rests on Python interfaces to mathematical libraries:
They provide most of the fundamental functionality.

▶ GMP & MPFR: Arbitrary-precision arithmetic.
▶ PARI: Odd finite fields, univariate polynomials, power series,

elliptic curves, quadratic forms, number fields, class groups, ...
▶ NTL: F2n , various algorithms for fast arithmetic, ...
▶ Singular: Multivariate polynomials, Gröbner bases, elimination, ...
▶ fplll: Lattice algorithms.
▶ Linbox, M4RI: Linear algebra.
▶ GAP: Abstract groups.

3 / 29

The gory internals (1): Example

sage: from sage.libs.pari import pari # imported by default
sage: pari.polmodular(2)
x^3 + (-y^2 + 1488*y - 162000)*x^2

+ (1488*y^2 + 40773375*y + 8748000000)*x
+ (y^3 - 162000*y^2 + 8748000000*y - 157464000000000)

sage: type(pari.polmodular(2))
<class 'cypari2.gen.Gen'>

4 / 29

The gory internals (1): Example

sage: from sage.libs.pari import pari # imported by default
sage: pari.polmodular(2)
x^3 + (-y^2 + 1488*y - 162000)*x^2

+ (1488*y^2 + 40773375*y + 8748000000)*x
+ (y^3 - 162000*y^2 + 8748000000*y - 157464000000000)

sage: type(pari.polmodular(2))
<class 'cypari2.gen.Gen'>

4 / 29

The gory internals (1): Example

sage: from sage.libs.pari import pari # imported by default
sage: pari.polmodular(2)
x^3 + (-y^2 + 1488*y - 162000)*x^2

+ (1488*y^2 + 40773375*y + 8748000000)*x
+ (y^3 - 162000*y^2 + 8748000000*y - 157464000000000)

sage: type(pari.polmodular(2))
<class 'cypari2.gen.Gen'>

4 / 29

The gory internals (2)

▶ On top of that: sagelib, all the “native” Sage (Python) code.
▶ src/sage/rings/finite_rings/...
▶ src/sage/rings/polynomials/...
▶ src/sage/algebras/quatalg/...
▶ src/sage/schemes/elliptic_curves/...
▶ src/sage/rings/number_field/...
▶ src/sage/quadratic_forms/...

▶ Generally higher-level functionality (but plenty of exceptions).
▶ Sometimes uses Cython for performance (.pyx files).

This is an extremely hacky Python dialect that is compiled for speed.
(I don’t love it.)

5 / 29

The gory internals (2)

▶ On top of that: sagelib, all the “native” Sage (Python) code.
▶ src/sage/rings/finite_rings/...
▶ src/sage/rings/polynomials/...
▶ src/sage/algebras/quatalg/...
▶ src/sage/schemes/elliptic_curves/...
▶ src/sage/rings/number_field/...
▶ src/sage/quadratic_forms/...

▶ Generally higher-level functionality (but plenty of exceptions).

▶ Sometimes uses Cython for performance (.pyx files).
This is an extremely hacky Python dialect that is compiled for speed.
(I don’t love it.)

5 / 29

The gory internals (2)

▶ On top of that: sagelib, all the “native” Sage (Python) code.
▶ src/sage/rings/finite_rings/...
▶ src/sage/rings/polynomials/...
▶ src/sage/algebras/quatalg/...
▶ src/sage/schemes/elliptic_curves/...
▶ src/sage/rings/number_field/...
▶ src/sage/quadratic_forms/...

▶ Generally higher-level functionality (but plenty of exceptions).
▶ Sometimes uses Cython for performance (.pyx files).

This is an extremely hacky Python dialect that is compiled for speed.
(I don’t love it.)

5 / 29

The gory internals (2)

▶ On top of that: sagelib, all the “native” Sage (Python) code.
▶ src/sage/rings/finite_rings/...
▶ src/sage/rings/polynomials/...
▶ src/sage/algebras/quatalg/...
▶ src/sage/schemes/elliptic_curves/...
▶ src/sage/rings/number_field/...
▶ src/sage/quadratic_forms/...

▶ Generally higher-level functionality (but plenty of exceptions).
▶ Sometimes uses Cython for performance (.pyx files).

This is an extremely hacky Python dialect that is compiled for speed.

(I don’t love it.)

5 / 29

The gory internals (2)

▶ On top of that: sagelib, all the “native” Sage (Python) code.
▶ src/sage/rings/finite_rings/...
▶ src/sage/rings/polynomials/...
▶ src/sage/algebras/quatalg/...
▶ src/sage/schemes/elliptic_curves/...
▶ src/sage/rings/number_field/...
▶ src/sage/quadratic_forms/...

▶ Generally higher-level functionality (but plenty of exceptions).
▶ Sometimes uses Cython for performance (.pyx files).

This is an extremely hacky Python dialect that is compiled for speed.
(I don’t love it.)

5 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny?

Signature:
E.isogeny(

kernel ,
codomain=None ,
degree=None ,
model=None ,
check=True ,
algorithm=None ,

)
Docstring:

Return an elliptic-curve isogeny from this elliptic curve.

...

Init docstring: Initialize self. See help(type(self)) for accurate signature.
File: ~sage/src/sage/schemes/elliptic_curves/ell_field.py
Type: method

6 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny?
Signature:
E.isogeny(

kernel ,
codomain=None ,
degree=None ,
model=None ,
check=True ,
algorithm=None ,

)
Docstring:

Return an elliptic-curve isogeny from this elliptic curve.

...

Init docstring: Initialize self. See help(type(self)) for accurate signature.
File: ~sage/src/sage/schemes/elliptic_curves/ell_field.py
Type: method

6 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny ??

Signature:
E.isogeny(
...
)

...

if algorithm == "velusqrt":
from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
return EllipticCurveHom_velusqrt(self , kernel , codomain=codomain , model=model)

if algorithm == "factored":
from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_composite
return EllipticCurveHom_composite(self , kernel , codomain=codomain , model=model)

try:
return EllipticCurveIsogeny(self , kernel , codomain , degree , model , check=check)

except AttributeError as e:
raise RuntimeError("Unable to construct isogeny: %s" % e)

File: ~sage/src/sage/schemes/elliptic_curves/ell_field.py
Type: method

6 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny ??
Signature:
E.isogeny(
...
)

...

if algorithm == "velusqrt":
from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
return EllipticCurveHom_velusqrt(self , kernel , codomain=codomain , model=model)

if algorithm == "factored":
from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_composite
return EllipticCurveHom_composite(self , kernel , codomain=codomain , model=model)

try:
return EllipticCurveIsogeny(self , kernel , codomain , degree , model , check=check)

except AttributeError as e:
raise RuntimeError("Unable to construct isogeny: %s" % e)

File: ~sage/src/sage/schemes/elliptic_curves/ell_field.py
Type: method

6 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny ???

Cell In[1], line 2
E.isogeny ???

^
SyntaxError: invalid syntax

:)

6 / 29

How to find stuff (1)

sage: E = EllipticCurve(j=42)
sage: E.isogeny ???

Cell In[1], line 2
E.isogeny ???

^
SyntaxError: invalid syntax

:)

6 / 29

How to find stuff (2)

sage: E = EllipticCurve(GF(419^2), [1,0])
sage: pi = E.frobenius_isogeny ()
sage: type(pi)
<class 'sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius '>

sage: import_statements(order_from_multiple)
...
NameError: name 'order_from_multiple ' is not defined
sage: import_statements('order_from_multiple ')
from sage.groups.generic import order_from_multiple

7 / 29

How to find stuff (2)

sage: E = EllipticCurve(GF(419^2), [1,0])
sage: pi = E.frobenius_isogeny ()
sage: type(pi)
<class 'sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius '>

sage: import_statements(order_from_multiple)
...
NameError: name 'order_from_multiple ' is not defined
sage: import_statements('order_from_multiple ')
from sage.groups.generic import order_from_multiple

7 / 29

Common Sage vs. Python pitfalls

Sage Python

(nothing) from sage.somewhere import Something

ˆ **

ˆˆ ˆ

42 Integer(42)

R.<x> = Thing R,x = Thing.objgen()

8 / 29

Outline

What is SageMath, really?

The type system The three type systems

Getting your hands dirty

It’s working! (That means ε% of the work is done.)

Ready? Go!

9 / 29

Type system #1: Python

▶ ...is just Python’s: Every object has a type.
sage: type('Hello , world!')
<class 'str'>

▶ “Ground truth” of what code really gets executed.
You write a + b, it calls type(a).__add__(a,b). (Et cetera.)

▶ Creating new types: class keyword.
▶ Inheritance: Copy code and data from an ancestor class.

For example, EllipticCurve_finite_field inherits from EllipticCurve_field.

class EllipticCurve_finite_field(EllipticCurve_field ,
HyperellipticCurve_finite_field):

...

10 / 29

Type system #1: Python

▶ ...is just Python’s: Every object has a type.
sage: type('Hello , world!')
<class 'str'>

▶ “Ground truth” of what code really gets executed.
You write a + b, it calls type(a).__add__(a,b). (Et cetera.)

▶ Creating new types: class keyword.
▶ Inheritance: Copy code and data from an ancestor class.

For example, EllipticCurve_finite_field inherits from EllipticCurve_field.

class EllipticCurve_finite_field(EllipticCurve_field ,
HyperellipticCurve_finite_field):

...

10 / 29

Type system #1: Python

▶ ...is just Python’s: Every object has a type.
sage: type('Hello , world!')
<class 'str'>

▶ “Ground truth” of what code really gets executed.
You write a + b, it calls type(a).__add__(a,b). (Et cetera.)

▶ Creating new types: class keyword.

▶ Inheritance: Copy code and data from an ancestor class.
For example, EllipticCurve_finite_field inherits from EllipticCurve_field.

class EllipticCurve_finite_field(EllipticCurve_field ,
HyperellipticCurve_finite_field):

...

10 / 29

Type system #1: Python

▶ ...is just Python’s: Every object has a type.
sage: type('Hello , world!')
<class 'str'>

▶ “Ground truth” of what code really gets executed.
You write a + b, it calls type(a).__add__(a,b). (Et cetera.)

▶ Creating new types: class keyword.
▶ Inheritance: Copy code and data from an ancestor class.

For example, EllipticCurve_finite_field inherits from EllipticCurve_field.

class EllipticCurve_finite_field(EllipticCurve_field ,
HyperellipticCurve_finite_field):

...

10 / 29

Type system #2: SageObjects and Parents

▶ Every “thing” in Sage is a SageObject (which is a Python type).

▶ “Things” are typically Elements or Morphisms or Parents.
▶ Example: EllipticCurvePoint, EllipticCurveHom, EllipticCurve.

▶ We can get the parent of any object x using... x.parent().
sage: 5.parent ()
Integer Ring

▶ Lots of conventions for how these “things” behave.
▶ Particular SageObjects should not override (say) .__add__().
▶ Instead, “things” first defer to the coercion system for type

checks and conversions, which then calls your (say) ._add_().
from sage.quadratic_forms.bqf_class_group.BQFClassGroup_element
def _add_(self , other):

r""" ... """
F = self._form * other._form
return BQFClassGroup_element(F, parent=self.parent ())

11 / 29

Type system #2: SageObjects and Parents

▶ Every “thing” in Sage is a SageObject (which is a Python type).

▶ “Things” are typically Elements or Morphisms or Parents.
▶ Example: EllipticCurvePoint, EllipticCurveHom, EllipticCurve.

▶ We can get the parent of any object x using... x.parent().
sage: 5.parent ()
Integer Ring

▶ Lots of conventions for how these “things” behave.
▶ Particular SageObjects should not override (say) .__add__().
▶ Instead, “things” first defer to the coercion system for type

checks and conversions, which then calls your (say) ._add_().
from sage.quadratic_forms.bqf_class_group.BQFClassGroup_element
def _add_(self , other):

r""" ... """
F = self._form * other._form
return BQFClassGroup_element(F, parent=self.parent ())

11 / 29

Type system #2: SageObjects and Parents

▶ Every “thing” in Sage is a SageObject (which is a Python type).

▶ “Things” are typically Elements or Morphisms or Parents.
▶ Example: EllipticCurvePoint, EllipticCurveHom, EllipticCurve.

▶ We can get the parent of any object x using... x.parent().
sage: 5.parent ()
Integer Ring

▶ Lots of conventions for how these “things” behave.
▶ Particular SageObjects should not override (say) .__add__().
▶ Instead, “things” first defer to the coercion system for type

checks and conversions, which then calls your (say) ._add_().
from sage.quadratic_forms.bqf_class_group.BQFClassGroup_element
def _add_(self , other):

r""" ... """
F = self._form * other._form
return BQFClassGroup_element(F, parent=self.parent ())

11 / 29

Type system #2: SageObjects and Parents

▶ Every “thing” in Sage is a SageObject (which is a Python type).

▶ “Things” are typically Elements or Morphisms or Parents.
▶ Example: EllipticCurvePoint, EllipticCurveHom, EllipticCurve.

▶ We can get the parent of any object x using... x.parent().
sage: 5.parent ()
Integer Ring

▶ Lots of conventions for how these “things” behave.
▶ Particular SageObjects should not override (say) .__add__().
▶ Instead, “things” first defer to the coercion system for type

checks and conversions, which then calls your (say) ._add_().
from sage.quadratic_forms.bqf_class_group.BQFClassGroup_element
def _add_(self , other):

r""" ... """
F = self._form * other._form
return BQFClassGroup_element(F, parent=self.parent ())

11 / 29

Type system #3: Categories

Previous slide:
▶ Each kind of “thing” is split into three seemingly

independent types: Elements, Morphisms, Parents.
“that’s how it was done in Sage before 2009, and there are still many traces of this”

— https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

=⇒ “New” type system (∼2009?): Categories.
...unifies inheritance of Elements, Morphisms, Parents into one type.

▶ As far as I can tell, this is still not widely used.
▶ General advice: Mimic existing, similar code.

12 / 29

https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

Type system #3: Categories

Previous slide:
▶ Each kind of “thing” is split into three seemingly

independent types: Elements, Morphisms, Parents.
“that’s how it was done in Sage before 2009, and there are still many traces of this”

— https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

=⇒ “New” type system (∼2009?): Categories.
...unifies inheritance of Elements, Morphisms, Parents into one type.

▶ As far as I can tell, this is still not widely used.
▶ General advice: Mimic existing, similar code.

12 / 29

https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

Type system #3: Categories

Previous slide:
▶ Each kind of “thing” is split into three seemingly

independent types: Elements, Morphisms, Parents.
“that’s how it was done in Sage before 2009, and there are still many traces of this”

— https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

=⇒ “New” type system (∼2009?): Categories.
...unifies inheritance of Elements, Morphisms, Parents into one type.

▶ As far as I can tell, this is still not widely used.

▶ General advice: Mimic existing, similar code.

12 / 29

https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

Type system #3: Categories

Previous slide:
▶ Each kind of “thing” is split into three seemingly

independent types: Elements, Morphisms, Parents.
“that’s how it was done in Sage before 2009, and there are still many traces of this”

— https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

=⇒ “New” type system (∼2009?): Categories.
...unifies inheritance of Elements, Morphisms, Parents into one type.

▶ As far as I can tell, this is still not widely used.
▶ General advice: Mimic existing, similar code.

12 / 29

https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html

Outline

What is SageMath, really?

The type system The three type systems

Getting your hands dirty

It’s working! (That means ε% of the work is done.)

Ready? Go!

13 / 29

How 2 Sage Dev!! (for lazy people)

1. Just write your code in a .sage file as usual.

2. Wait for someone else to put it into Sage.

14 / 29

How 2 Sage Dev!! (for lazy people)

1. Just write your code in a .sage file as usual.

2. Wait for someone else to put it into Sage.

14 / 29

How 2 Sage Dev!! (for the laziest of people)

1. Found a bug? Report it.

2. Something’s missing? Report it.
3. Something’s unreasonably slow? Report it.

15 / 29

How 2 Sage Dev!! (for the laziest of people)

1. Found a bug? Report it.
2. Something’s missing? Report it.

3. Something’s unreasonably slow? Report it.

15 / 29

How 2 Sage Dev!! (for the laziest of people)

1. Found a bug? Report it.
2. Something’s missing? Report it.
3. Something’s unreasonably slow? Report it.

15 / 29

How 2 Sage Dev!!

1. Edit the code in whatever way you think is right.

2. Possibly rebuild Sage: ./sage -b or perhaps make build.
(Nowadays, this should only be necessary after editing a .pyx file — but it can’t hurt.)
Careful: Running make without build can take ≈ infinitely longer.

3. Check the results!
▶ In all cases: Try one or a few basic examples first.
▶ In all cases: Run old (and possibly new) tests. (More later.)

▶ To check performance changes: Use %timeit, %prun.

4. Unless satisfied, go back to Step 1 and iterate.

16 / 29

How 2 Sage Dev!!

1. Edit the code in whatever way you think is right.

2. Possibly rebuild Sage: ./sage -b or perhaps make build.
(Nowadays, this should only be necessary after editing a .pyx file — but it can’t hurt.)
Careful: Running make without build can take ≈ infinitely longer.

3. Check the results!
▶ In all cases: Try one or a few basic examples first.
▶ In all cases: Run old (and possibly new) tests. (More later.)

▶ To check performance changes: Use %timeit, %prun.

4. Unless satisfied, go back to Step 1 and iterate.

16 / 29

How 2 Sage Dev!!

1. Edit the code in whatever way you think is right.

2. Possibly rebuild Sage: ./sage -b or perhaps make build.
(Nowadays, this should only be necessary after editing a .pyx file — but it can’t hurt.)
Careful: Running make without build can take ≈ infinitely longer.

3. Check the results!
▶ In all cases: Try one or a few basic examples first.
▶ In all cases: Run old (and possibly new) tests. (More later.)

▶ To check performance changes: Use %timeit, %prun.

4. Unless satisfied, go back to Step 1 and iterate.

16 / 29

How 2 Sage Dev!!

1. Edit the code in whatever way you think is right.

2. Possibly rebuild Sage: ./sage -b or perhaps make build.
(Nowadays, this should only be necessary after editing a .pyx file — but it can’t hurt.)
Careful: Running make without build can take ≈ infinitely longer.

3. Check the results!
▶ In all cases: Try one or a few basic examples first.
▶ In all cases: Run old (and possibly new) tests. (More later.)

▶ To check performance changes: Use %timeit, %prun.

4. Unless satisfied, go back to Step 1 and iterate.

16 / 29

Assertions

Recommendation: assert anything that could go wrong.

sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.

* Sad news: Sage currently does not disable assertions even in release builds.
▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.

▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Assertions

Recommendation: assert anything that could go wrong.
sage: B = QuaternionAlgebra(-1, -419)
sage: I = B.maximal_order ().unit_ideal ()
sage: a = I.random_element ()
sage: assert a in I

AssertionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 assert a in I

AssertionError:

▶ Assertions are free*: can be skipped in production code.
* Sad news: Sage currently does not disable assertions even in release builds.

▶ You can skip assertions by setting PYTHONOPTIMIZE=1 in your environment.
▶ Almost all users won’t do this and complain about your slow code.

The next best thingTM:
▶ After debugging, comment out asserts (instead of deleting them).

It aids later debugging sessions, and it helps convey your intentions behind the code.

17 / 29

Outline

What is SageMath, really?

The type system The three type systems

Getting your hands dirty

It’s working! (That means ε% of the work is done.)

Ready? Go!

18 / 29

Coding style

▶ People have strong opinions on how to format code.

▶ Those people have automated check scripts, too.
⇝ Make sure your Sage patch adheres to the rules.

https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

19 / 29

https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

Coding style

▶ People have strong opinions on how to format code.
▶ Those people have automated check scripts, too.

⇝ Make sure your Sage patch adheres to the rules.
https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

19 / 29

https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

Coding style

▶ People have strong opinions on how to format code.
▶ Those people have automated check scripts, too.
⇝ Make sure your Sage patch adheres to the rules.

https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

19 / 29

https://doc.sagemath.org/html/en/developer/coding_basics.html#python-code-style

Docstrings
Example from EllipticCurveHom_velusqrt (part 1/4):
r"""
This class implements separable odd -degree isogenies of elliptic
curves over finite fields using the square -root Vélu algorithm.

The complexity is `\tilde O(\sqrt{\ell})` base -field operations ,
where `\ell` is the degree.

REFERENCES: [BDLS2020]_

INPUT:

- ``E`` -- an elliptic curve over a finite field
- ``P`` -- a point on `E` of odd order `\geq 9`
- ``codomain `` -- codomain elliptic curve (optional)
- ``model `` -- string (optional); input to

:meth:`~sage.schemes.elliptic_curves.ell_field.compute_model `
- ``Q`` -- a point on `E` outside `\langle P\rangle `, or ``None ``

...

20 / 29

Docstrings
Example from EllipticCurveHom_velusqrt (part 2/4):
r"""
...

EXAMPLES ::

sage: from sage.schemes.elliptic_curves.hom_velusqrt import
EllipticCurveHom_velusqrt

sage: F.<t> = GF(10009^3)
sage: E = EllipticCurve(F, [t,t])
sage: K = E(2154*t^2 + 5711*t + 2899 , 7340*t^2 + 4653*t + 6935)
sage: phi = EllipticCurveHom_velusqrt(E, K); phi
Elliptic -curve isogeny (using square -root Vélu) of degree 601:

From: Elliptic Curve defined by y^2 = x^3 + t*x + t
over Finite Field in t of size 10009^3

To: Elliptic Curve defined by y^2 = x^3 + (263*t^2+3173*t+4759)*x
+ (3898*t^2+6111*t+9443) over Finite Field in t of size 10009^3

sage: phi(K)
(0 : 1 : 0)
sage: P = E(2, 3163*t^2 + 7293*t + 5999)
sage: phi(P)
(6085*t^2 + 855*t + 8720 : 8078*t^2 + 9889*t + 6030 : 1)
sage: Q = E(6, 5575*t^2 + 6607*t + 9991)
sage: phi(Q)
(626*t^2 + 9749*t + 1291 : 5931*t^2 + 8549*t + 3111 : 1)
sage: phi(P + Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)
sage: phi(P) + phi(Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)

...

20 / 29

Docstrings
Example from EllipticCurveHom_velusqrt (part 3/4):
r"""
...

TESTS:

Check on a random example that the isogeny is a well -defined
group homomorphism with the correct kernel ::

sage: from sage.schemes.elliptic_curves.hom_velusqrt import
_random_example_for_testing

sage: E, K = _random_example_for_testing ()
sage: phi = EllipticCurveHom_velusqrt(E, K)
sage: not phi(K)
True
sage: not phi(randrange(2^99) * K)
True
sage: P = E.random_point ()
sage: phi(P) in phi.codomain ()
True
sage: Q = E.random_point ()
sage: phi(Q) in phi.codomain ()
True
sage: phi(P + Q) == phi(P) + phi(Q)
True

...

20 / 29

Docstrings
Example from EllipticCurveHom_velusqrt (part 4/4):
r"""
...

Check that the isogeny preserves the field of definition ::

sage: Sequence(K).universe () == phi.domain ().base_field ()
True
sage: phi.codomain ().base_field () == phi.domain ().base_field ()
True

Check that the isogeny affects the Weil pairing in the correct way::

sage: m = lcm(P.order(), Q.order())
sage: e1 = P.weil_pairing(Q, m)
sage: e2 = phi(P).weil_pairing(phi(Q), m)
sage: e2 == e1^phi.degree ()
True

Check that the isogeny matches (up to isomorphism) the one from
:class:`~sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny `::

sage: psi = EllipticCurveIsogeny(E, K)
sage: check = lambda iso: all(iso(psi(Q)) == phi(Q) for Q in E.gens())
sage: any(map(check , psi.codomain ().isomorphisms(phi.codomain ())))
True

.. SEEALSO ::

:class:`~sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny `
"""

20 / 29

Meaningful documentation

▶ Whenever some object in a docstring is not universally
well-known and uniquely defined, clarify the definition.

20 / 29

Meaningful documentation

▶ Whenever some object in a docstring is not universally
well-known and uniquely defined, clarify the definition.

20 / 29

Meaningful documentation

▶ Whenever some object in a docstring is not universally
well-known and uniquely defined, clarify the definition.

20 / 29

Examples & tests

▶ Examples are for users.
⇝ Easy to read and understand; should demonstrate the core ideas.

▶ Tests are for the machine.
⇝ Should cover as many inputs as possible, in particular edge cases.

▶ Sage can run all examples & tests to verify the output:
$./sage -t src/sage/schemes/elliptic_curves/hom_velusqrt.py
...
Doctesting 1 file.
sage -t --random-seed=331181331784926877031128059220586214893

src/sage/schemes/elliptic_curves/hom_velusqrt.py
[259 tests , 1.37 s]

--
All tests passed!
--
Total time for all tests: 1.4 seconds
cpu time: 1.3 seconds
cumulative wall time: 1.4 seconds

21 / 29

Examples & tests

▶ Examples are for users.
⇝ Easy to read and understand; should demonstrate the core ideas.

▶ Tests are for the machine.
⇝ Should cover as many inputs as possible, in particular edge cases.

▶ Sage can run all examples & tests to verify the output:
$./sage -t src/sage/schemes/elliptic_curves/hom_velusqrt.py
...
Doctesting 1 file.
sage -t --random-seed=331181331784926877031128059220586214893

src/sage/schemes/elliptic_curves/hom_velusqrt.py
[259 tests , 1.37 s]

--
All tests passed!
--
Total time for all tests: 1.4 seconds
cpu time: 1.3 seconds
cumulative wall time: 1.4 seconds

21 / 29

Examples & tests

▶ Examples are for users.
⇝ Easy to read and understand; should demonstrate the core ideas.

▶ Tests are for the machine.
⇝ Should cover as many inputs as possible, in particular edge cases.

▶ Sage can run all examples & tests to verify the output:
$./sage -t src/sage/schemes/elliptic_curves/hom_velusqrt.py
...
Doctesting 1 file.
sage -t --random-seed=331181331784926877031128059220586214893

src/sage/schemes/elliptic_curves/hom_velusqrt.py
[259 tests , 1.37 s]

--
All tests passed!
--
Total time for all tests: 1.4 seconds
cpu time: 1.3 seconds
cumulative wall time: 1.4 seconds

21 / 29

Examples & tests

▶ Examples are for users.
⇝ Easy to read and understand; should demonstrate the core ideas.

▶ Tests are for the machine.
⇝ Should cover as many inputs as possible, in particular edge cases.

▶ Sage can run all examples & tests to verify the output:
$./sage -t src/sage/schemes/elliptic_curves/hom_velusqrt.py
...
Doctesting 1 file.
sage -t --random-seed=331181331784926877031128059220586214893

src/sage/schemes/elliptic_curves/hom_velusqrt.py
[259 tests , 1.37 s]

--
All tests passed!
--
Total time for all tests: 1.4 seconds
cpu time: 1.3 seconds
cumulative wall time: 1.4 seconds

21 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).

Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).

Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!

Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Writing good tests

▶ Things can go wrong in so many different ways.

▶ Most important part for Sage: Check the actual math(s).
Example: If some φ should be a group morphism, check φ(a + b) = φ(a) + φ(b).
Example: If something can be computed in two ways, do it both ways and compare!
Example: Add the use case that motivated you to write the code as an example or test!

▶ Amazing tool: Randomized tests.
Sage’s tests are run over and over again by many different people.
Eventually someone will get (un)lucky enough to find rare edge cases.

▶ Code coverage should ideally be 100 %.
(This implies we should also test invalid inputs and error cases.)

22 / 29

Randomized testing will find you funny examples

▶ For
√

élu we need a point outside the kernel.

▶ If the kernel is all of E(Fq): Easy, just extend to Fq2 .
▶ Right?
▶ Debugging random test failures
⇝ There exists exactly one example where E(Fq2) = E(Fq).

▶ The curve y2 = x3 − x + 1 has 7 points over both F3 and F9.

[See https://github.com/sagemath/sage/issues/34467.]

23 / 29

https://github.com/sagemath/sage/issues/34467

Randomized testing will find you funny examples

▶ For
√

élu we need a point outside the kernel.
▶ If the kernel is all of E(Fq): Easy, just extend to Fq2 .

▶ Right?
▶ Debugging random test failures
⇝ There exists exactly one example where E(Fq2) = E(Fq).

▶ The curve y2 = x3 − x + 1 has 7 points over both F3 and F9.

[See https://github.com/sagemath/sage/issues/34467.]

23 / 29

https://github.com/sagemath/sage/issues/34467

Randomized testing will find you funny examples

▶ For
√

élu we need a point outside the kernel.
▶ If the kernel is all of E(Fq): Easy, just extend to Fq2 .
▶ Right?

▶ Debugging random test failures
⇝ There exists exactly one example where E(Fq2) = E(Fq).

▶ The curve y2 = x3 − x + 1 has 7 points over both F3 and F9.

[See https://github.com/sagemath/sage/issues/34467.]

23 / 29

https://github.com/sagemath/sage/issues/34467

Randomized testing will find you funny examples

▶ For
√

élu we need a point outside the kernel.
▶ If the kernel is all of E(Fq): Easy, just extend to Fq2 .
▶ Right?
▶ Debugging random test failures
⇝ There exists exactly one example where E(Fq2) = E(Fq).

▶ The curve y2 = x3 − x + 1 has 7 points over both F3 and F9.

[See https://github.com/sagemath/sage/issues/34467.]

23 / 29

https://github.com/sagemath/sage/issues/34467

Randomized testing will find you funny examples

▶ For
√

élu we need a point outside the kernel.
▶ If the kernel is all of E(Fq): Easy, just extend to Fq2 .
▶ Right?
▶ Debugging random test failures
⇝ There exists exactly one example where E(Fq2) = E(Fq).

▶ The curve y2 = x3 − x + 1 has 7 points over both F3 and F9.

[See https://github.com/sagemath/sage/issues/34467.]

23 / 29

https://github.com/sagemath/sage/issues/34467

Changing existing behaviour: Deprecation warnings

▶ Since Sage is very reliable and stable,
we have to warn users when something is about to change.

sage: E = EllipticCurve(j=42)
sage: E.multiplication_by_m_isogeny(-1)
<ipython-input-3-4fcd9ad225e6>:1: DeprecationWarning:
The .multiplication_by_m_isogeny () method is superseded by .scalar_multiplication ().

See https://github.com/sagemath/sage/issues/32826 for details.
E.multiplication_by_m_isogeny(-Integer(1))

Isogeny of degree 1
from Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field
to Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field

▶ This warning has to remain in place for at least one year
before we are allowed to break old code that used to work.

24 / 29

Changing existing behaviour: Deprecation warnings

▶ Since Sage is aspiring to be very reliable and stable,
we have to warn users when something is about to change.

sage: E = EllipticCurve(j=42)
sage: E.multiplication_by_m_isogeny(-1)
<ipython-input-3-4fcd9ad225e6>:1: DeprecationWarning:
The .multiplication_by_m_isogeny () method is superseded by .scalar_multiplication ().

See https://github.com/sagemath/sage/issues/32826 for details.
E.multiplication_by_m_isogeny(-Integer(1))

Isogeny of degree 1
from Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field
to Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field

▶ This warning has to remain in place for at least one year
before we are allowed to break old code that used to work.

24 / 29

Changing existing behaviour: Deprecation warnings

▶ Since Sage is aspiring to be very reliable and stable,
we have to warn users when something is about to change.

sage: E = EllipticCurve(j=42)
sage: E.multiplication_by_m_isogeny(-1)
<ipython-input-3-4fcd9ad225e6>:1: DeprecationWarning:
The .multiplication_by_m_isogeny () method is superseded by .scalar_multiplication ().

See https://github.com/sagemath/sage/issues/32826 for details.
E.multiplication_by_m_isogeny(-Integer(1))

Isogeny of degree 1
from Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field
to Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field

▶ This warning has to remain in place for at least one year
before we are allowed to break old code that used to work.

24 / 29

Changing existing behaviour: Deprecation warnings

▶ Since Sage is aspiring to be very reliable and stable,
we have to warn users when something is about to change.

sage: E = EllipticCurve(j=42)
sage: E.multiplication_by_m_isogeny(-1)
<ipython-input-3-4fcd9ad225e6>:1: DeprecationWarning:
The .multiplication_by_m_isogeny () method is superseded by .scalar_multiplication ().

See https://github.com/sagemath/sage/issues/32826 for details.
E.multiplication_by_m_isogeny(-Integer(1))

Isogeny of degree 1
from Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field
to Elliptic Curve defined by y^2 = x^3 + 5901*x + 1105454 over Rational Field

▶ This warning has to remain in place for at least one year
before we are allowed to break old code that used to work.

24 / 29

Outline

What is SageMath, really?

The type system The three type systems

Getting your hands dirty

It’s working! (That means ε% of the work is done.)

Ready? Go!

25 / 29

How 2 Sage Dev!! (continued)

1. Edit the code in whatever way you think is right.
2. Possibly rebuild Sage: make build.
3. Check the results!
4. Unless satisfied, go back to Step 1 and iterate.

5. Commit your changes — ideally in small meaningful units.
(As far as I can tell, the “small meaningful commits” principle seems to be entirely unenforced in Sage.)

6. Re-check everything once more. (People sometimes omit this step...)

7. Push to a branch on your fork and make a pull request.

26 / 29

How 2 Sage Dev!! (continued)

1. Edit the code in whatever way you think is right.
2. Possibly rebuild Sage: make build.
3. Check the results!
4. Unless satisfied, go back to Step 1 and iterate.

5. Commit your changes — ideally in small meaningful units.
(As far as I can tell, the “small meaningful commits” principle seems to be entirely unenforced in Sage.)

6. Re-check everything once more. (People sometimes omit this step...)

7. Push to a branch on your fork and make a pull request.

26 / 29

How 2 Sage Dev!! (continued)

1. Edit the code in whatever way you think is right.
2. Possibly rebuild Sage: make build.
3. Check the results!
4. Unless satisfied, go back to Step 1 and iterate.

5. Commit your changes — ideally in small meaningful units.
(As far as I can tell, the “small meaningful commits” principle seems to be entirely unenforced in Sage.)

6. Re-check everything once more. (People sometimes omit this step...)

7. Push to a branch on your fork and make a pull request.

26 / 29

How 2 Sage Dev!! (continued)

1. Edit the code in whatever way you think is right.
2. Possibly rebuild Sage: make build.
3. Check the results!
4. Unless satisfied, go back to Step 1 and iterate.

5. Commit your changes — ideally in small meaningful units.
(As far as I can tell, the “small meaningful commits” principle seems to be entirely unenforced in Sage.)

6. Re-check everything once more. (People sometimes omit this step...)

7. Push to a branch on your fork and make a pull request.

26 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes.

Possible outcomes:
▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)

▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)

▶ An intense fundamental debate about something goes into its next round
and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

The review pipeline

▶ Leftover habit from earlier times: Labels.
Typically one label each to indicate the component, priority, type, and status.

▶ The infrastructure automatically runs various checks.
Indicated by × or ✓. Note: These checks often fail even when the patch is good...

:(

▶ When the stars are right, a real person will volunteer
to review the proposed changes. Possible outcomes:

▶ “LGTM” (Looks Good To Me)
▶ Modifications are requested (at varying levels of insistence)
▶ An intense fundamental debate about something goes into its next round

and unfortunately it’s happening on your pull request this time — glhf

▶ Finally (a little while after positive review): It gets merged!
Congratulations, you’re now rich and famous.

27 / 29

Two more remarks

▶ GitHub supports multiple names on a commit.
Keyword to search for: Co-authored-by.

▶ Don’t forget to mention your changes in the release tour,
assuming users would benefit from learning about them.

▶ You, too, can be a reviewer!
:)

28 / 29

Two more remarks

▶ GitHub supports multiple names on a commit.
Keyword to search for: Co-authored-by.

▶ Don’t forget to mention your changes in the release tour,
assuming users would benefit from learning about them.

▶ You, too, can be a reviewer!
:)

28 / 29

Two Three more remarks

▶ GitHub supports multiple names on a commit.
Keyword to search for: Co-authored-by.

▶ Don’t forget to mention your changes in the release tour,
assuming users would benefit from learning about them.

▶ You, too, can be a reviewer!
:)

28 / 29

Hype!!!1!11

https://doc.sagemath.org/html/en/developer

29 / 29

https://doc.sagemath.org/html/en/developer

	What is SageMath, really?
	The type system The three type systems
	Getting your hands dirty
	It's working! (That means % of the work is done.)
	Ready? Go!

