
Cryptography on Isogeny Graphs

Lorenz Panny

Copyright © Lorenz Panny
Email: lorenz@yx7.cc
Website: https://yx7.cc

First edition January 2021

This research was supported by the Commission of the European Communities through the
Horizon 2020 program under project number 643161 (ECRYPT-NET).

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-5213-9

Printed by Gildeprint B.V., Enschede, Netherlands.

The cover shows the famous 19th-century woodblock print “The Great Wave off Kanagawa”
(神奈川沖浪裏) by Japanese artist Hokusai (葛飾北斎, c. 1760–1849). It symbolizes man-
kind’s everlasting struggle against the forces of nature, which bears similarity to the way the
laws of mathematics and physics govern cryptography: They mercilessly determine the things
we can or cannot do, and no matter how hard we try, there is no overcoming the rule of nature.

mailto:lorenz@yx7.cc
https://yx7.cc

Cryptography on Isogeny Graphs

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie

aangewezen door het College voor Promoties, in het openbaar te verdedigen
op donderdag 18 februari 2021 om 16:00 uur

door

Lorenz Stefan Panny

geboren te Eggenfelden, Duitsland

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
1e promotor: prof.dr. T. Lange
2e promotor: prof.dr. D.J. Bernstein
leden: prof. D. Boneh, PhD (Stanford University)

prof.dr. D.R. Kohel (Université d’Aix-Marseille)
prof.dr. K.G. Paterson (ETH Zürich)
dr. F. Vercauteren (KU Leuven)
dr. B.M.M. de Weger

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in over-
eenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Thanks

I am beyond grateful to my supervisors Tanja and Dan, who are not only excellent scientists,
but (little did I know) also incredibly supportive and caring people. Thank you for all the advice
and encouragement during these past years.

Thanks to all of my colleagues and friends at TU/e, senior and junior alike, for the lovely
working environment and the terrific leisure activities. It’s been an absolute pleasure.

Thanks to my coauthors, without whom much of this research would presumably not exist.
I’m feeling honored that I got the chance to work together with all of you.

Thanks to Fré and Wouter for inviting me to Leuven, where besides working with them on
exciting research problems, I was also warmly welcomed by the other COSIC folks.

Thanks to the members of my doctoral committee, who were free to decline my request, but
instead fearlessly took on the daunting task of reading this entire thesis.

Thanks to my fellow ECRYPT-NET fellows for swiftly adopting me in their midst despite my
late arrival, and for the fond memories I have of our gatherings all around the world.

Thanks to all the friends I made at various events and conferences, for shallow and profound
discussions about anything ranging from isogenies to life in general, and for the fun and games.

Thanks to my CTF team hxp for still going strong after many years, for being co-responsible
that I ended up studying cryptography, and for all the awesome hacks.

Thanks to my friends and family everywhere for their continuing affection and support in
defiance of geographic distance, and for the good times whenever we do manage to meet up.

Finally, thanks to my parents for life, and everything.

Lorenz Panny
Eindhoven, January 2021

Contents

1 Introduction 1
1.1 Outline of the thesis . 3

2 Mathematical preliminaries 5
2.1 Cryptographic constructions . 5
2.2 Elliptic curves . 10
2.3 Isogenies of elliptic curves . 14
2.4 Endomorphisms, quadratic fields, and quaternion algebras 19
2.5 Isogeny graphs . 27
2.6 Quantum algorithms . 32

3 CSIDH: An efficient post-quantum group action 41
3.1 Introduction . 41
3.2 Isogeny graphs . 45
3.3 The class-group action . 47
3.4 Construction and design choices . 50
3.5 Representing and validating Fp-isomorphism classes 51
3.6 Non-interactive key exchange . 53
3.7 Security . 54
3.8 Implementation . 60

4 Faster SeaSign signatures through improved rejection sampling 65
4.1 Introduction . 65
4.2 Preliminaries . 66
4.3 The improved signature scheme . 68
4.4 Analysis and results . 71

5 Rational isogenies from irrational endomorphisms 77
5.1 Introduction . 77
5.2 Preliminaries . 79
5.3 Twisting endomorphisms . 83
5.4 Isogenies from known endomorphisms . 84
5.5 Vectorizing CM curves . 92

6 Quantum equivalence of DLP and CDH for group actions 99
6.1 Introduction . 99
6.2 The reduction . 100
6.3 Implications for CSIDH . 101

7 Weak instances of SIDH variants from improved torsion-point attacks 103
7.1 Introduction . 103
7.2 Preliminaries . 105
7.3 Improved torsion-point attacks . 107
7.4 Trapdoor instances . 116
7.5 Implementation . 122
7.6 Additional examples of trapdoored primes . 123

8 How to not break SIDH 125
8.1 Introduction . 125
8.2 Preliminaries . 126
8.3 Failed attempts to attack the pure isogeny problem 129
8.4 Failed attack attempts that use the auxiliary points 135

9 Quantum circuits for CSIDH 139
9.1 Introduction . 139
9.2 Overview of the computation . 142
9.3 Scalar multiplication on an elliptic curve . 144
9.4 Generating points on an elliptic curve . 146
9.5 Computing an `-isogenous curve . 148
9.6 Computing the action: basic algorithms . 151
9.7 Reducing the top nonzero exponent . 155
9.8 Pushing points through isogenies . 159
9.9 Computing `-isogenies using division polynomials 163
9.10 Computing `-isogenies using modular polynomials 166
9.11 Cost metrics for quantum computation . 169
9.12 Basic integer arithmetic . 174
9.13 Modular arithmetic . 178

10 CCA security of lattice-based encryption with error correction 183
10.1 Introduction . 183
10.2 Data flow in the attack . 184
10.3 Preliminaries . 186
10.4 Chosen-ciphertext attack on HILA5 . 188
10.5 HILA5 security claims . 192

11 Recent developments 195
11.1 CSIDH is not an ideal group action . 195
11.2 CSI-FiSh: Canonical exponent vectors . 195
11.3 Slow isogenies may be a good thing . 196
11.4 Quantum attacks on CSIDH . 197
11.5 The DDH problem for CM actions . 198
11.6 Faster isogeny evaluation:

√
élu . 199

11.7 Hardened CSIDH implementations . 199
11.8 Repeated isogenies from radicals . 200

Summary 201

Curriculum Vitae 203

Bibliography 205

Chapter 1

Introduction

“We stand today on the brink of a revolution in cryptography.” [DH76]
These are the words Diffie and Hellman chose in 1976 to introduce public-key cryptography to

the world, correctly presaging the unrivaled impact this invention would have on the landscape
of information security throughout the following decades. Indeed, many of the technological
convenience features current generations take for granted, such as secure online payments and
private messaging applications, rely dramatically on tools provided by public-key cryptography.
To illustrate why, let us look at the two archetypical examples. The first is public-key encryption:
a method of encryption in which anyone may encrypt data for a specific party, but only that
intended recipient is capable of deciphering the resulting encrypted text.1 The second is a digital
signature: a tool to certify data in such a way that anyone knowing the signer’s identity can
verify that the signed message originated at the correct party and has not been tampered with in
transit.2 Evidently, both of these features are indispensable to securing information transmitted
over an untrusted network such as the internet: We do not want anyone to spy on us, and we do
not want others to put words in our mouths.

Today, we may be facing a revolution of similar scale.
This time, however, the catalyst is a threat rather than an advance. Public-key cryptography

must inherently rely on computationally hard problems to give any security guarantees.3 The
most important hard problems have received significant attention from cryptanalysts, and an
overnight breakthrough in attacking systems like, for instance, the Diffie–Hellman scheme seems
quite unlikely. Instead, one of the biggest dangers comes from an unexpected angle: For the
longest time, computer science has been focusing mainly on deterministic machines manipulat-
ing strings of zeroes and ones, which we will call conventional computers,4 all the while assuming
that this paradigm captures the intuitive notion of “general computation”, i.e., all kinds of data
processing permitted by the laws of physics, at least up to insignificant differences in efficiency.

“This may not be true when quantum mechanics is taken into consideration.” [Sho97a]
Indeed, there are reasons to believe (albeit no proof) that quantum computers — machines

implementing an alternate model of computation that exploits hidden physical properties of

1Intuitively, this may be understood as a technological version of the legal principle “secrecy of correspondence”.
2Somewhat amusingly, “analog” signatures — writing one’s name on paper — provide neither of these guarantees.
3Attackers with unlimited resources can, for example, simply try random signatures until the verification algorithm

(which they have available) accepts one. More generally, the mathematical relationship between private and public data
suffices (information-theoretically) to deduce enough information about the former from the latter to break the scheme.
For a concrete example, see [Pan20].

4Note that conventional computers do encompass modern microprocessors such as those used in laptops, phones,
and high-end supercomputers. As is customary in the field, we use the term “classical computers” interchangeably,
although it may be deemed a bit unfortunate due to its obsolescent vibe.

2 INTRODUCTION

quantum systems — drastically outperform classical computers at certain computational tasks.
Due to simplicity and efficiency considerations, it so happened that essentially all public-key
cryptosystems widely deployed today are based on problems for which this seems to make a
huge difference: They are vulnerable to (variants of) a quantum algorithm discovered in 1994 by
Shor [Sho94], which (among other things) breaks the Diffie–Hellman scheme and its descend-
ants very quickly. The only remaining hurdle is the extremely challenging engineering task of
building a sufficiently large and reliable quantum computing machine. However, contrary to a
relatively widespread misconception in the interested-but-not-expert public, there is hope for
cryptography even assuming the presence of large quantum computers.

“There is no justification for the leap [...] to ‘quantum computers destroy cryptography’.” [Ber09b]
Even though the systems most commonly used nowadays are endangered by the advent of

quantum computing, jumping to the conclusion that cryptography in general is doomed would
be a fatal mistake:5 In fact, there are countless constructions known where the availability of a
quantum computer does not appear to benefit attackers significantly, or at all. Naturally, these
post-quantum cryptosystems are based on different, sometimes less versatile hardness assump-
tions, which often makes the resulting constructions slower, bigger, or harder to use in real sys-
tems. This is why determining the best quantum-resistant computational problems to found
cryptography on is an important research question, and this thesis contributes to that end by
analyzing isogeny-based cryptography, a particular class of candidate post-quantum algorithms.

“A mathematical problem, which is hypothetically strong against a quantum computer, [...] con-
sists in searching for an isogeny [...] between elliptic curves over a finite field.” [RS06]

In 2006, Stolbunov and his supervisor Rostovtsev were the first to notice that a potentially
quantum-resistant key-exchange system could be built from a certain group action on sets of
elliptic curves. The action itself is defined in terms of isogenies, essentially just a natural notion
of morphism between elliptic curves: algebraic maps which are also group homomorphisms.
(It was subsequently revealed by Couveignes that he had had a very similar idea in 1997, but his
preprint [Cou06] did not appear online until after Rostovtsev–Stolbunov’s. Apparently, Cou-
veignes had not thought of the post-quantum properties of his construction, which explains in
part why it sunk into oblivion: the scheme simply offered no conceivable benefits at the time.)
Even though the best known attack against the Couveignes–Rostovtsev–Stolbunov (CRS) scheme
was exponential-time back then, the construction was rather inefficient and seemed unlikely to
be very useful. Some four years later, the situation got worse.

In 2010, the CRS scheme suffered a potentially devastating blow: Childs, Jao, and Soukharev
discovered that the kind of isogeny-finding problem underlying the CRS scheme can be solved
with a subexponential-time quantum algorithm invented as early as 2003 by Kuperberg [Kup05].
The attack is based on the same commutative group action that makes the scheme work in the
first place, which suggests that the problem is not fixable, and perhaps that “isogeny-based
cryptosystems may be uncompetitive [...]” [CJS14]. Luckily, though, this is not the end of the
history of isogeny-based post-quantum cryptography.

Having observed that the commutative structure used in CRS introduces weakness against
quantum computers, Jao and De Feo set out to build an isogeny-based cryptosystem that does
not feature the commutative aspects, and the perfect fit were supersingular elliptic curves. On

5Trusting insecure mechanisms is obviously problematic, but falsely distrusting secure mechanisms can be just as
harmful: It means that the perceived best solution for a particular problem may in fact be much worse than an unfairly
dismissed approach, leading to an inferior (or even catastrophic) outcome overall.

1.1. OUTLINE OF THE THESIS 3

the flip side, the absence of the commutative structure makes it harder to even obtain a work-
ing cryptosystem, which Jao and De Feo solved with a clever trick that involves sending certain
auxiliary information to allow Alice and Bob to complete a key exchange. This scheme became
known as Supersingular-Isogeny Diffie–Hellman, or SIDH for short.

Despite its name, SIDH actually lacks some features that classical DH offers, the biggest issue
being public-key validation: By sending maliciously crafted key-exchange messages, SIDH users
can be tricked into revealing information about their secrets, and it is not known how to dis-
tinguish manipulated messages from valid messages without breaking the scheme at the same
time. This issue can be bypassed in many scenarios, but it greatly reduces the flexibility, and
hence usefulness, of the scheme. Thus, commutative group actions like CRS (which has public-
key validation) still seemed useful in principle, if only they could be faster.

To this end, De Feo, Kieffer, and Smith [DKS18] took on the quest of accelerating the CRS
scheme starting in 2017. Although they went to great lengths, it seems that finding parameters
which allow running the most efficient algorithms is simply too hard — hence the performance
numbers achieved in their project ended up being rather disappointing. Yet, the ideas developed
in their work turned out extremely useful!6 In fact, in addition to De Feo–Kieffer–Smith’s res-
ults, it took only one more idea to make things fall into place very nicely: the observation that
supersingular elliptic curves defined over a prime field have all the right properties for the ground-
work laid by [DKS18] to work optimally. The resulting cryptosystem is called /"si:­saId/, spelled
CSIDH, which expands to Commutative Supersingular-Isogeny Diffie–Hellman.

Nowadays, SIDH and CSIDH are considered the two main paradigms underlying isogeny-
based cryptography, and constructions tend to fall cleanly into either one of the two groups.
This thesis discusses constructive and destructive7 aspects of both families.

1.1 — Outline of the thesis

Chapter 1 is what you are reading right now. It introduces the big picture and guides you, the
reader, through the remainder of the thesis.

Chapter 2 surveys some of the mathematical background knowledge underlying the technical
contributions given in the following chapters. It covers elliptic curves, isogeny graphs and en-
domorphism rings of elliptic curves, as well as a brief introduction to quantum algorithms.

Chapter 3 introduces CSIDH, a cryptographic commutative group action which is relatively effi-
cient and appears to offer decent post-quantum security. The construction is based on complex-
multiplication theory for supersingular elliptic curves defined over a prime field.

Chapter 4 gives an improved version of a CSIDH-based signature scheme called SeaSign, a com-
bination of a low-soundness identification scheme and the Fiat–Shamir transform with aborts.
The key idea is to allow the prover to reject a few identification queries.

Chapter 5 investigatesFp-endomorphism rings of supersingular elliptic curves defined overFp,
in particular establishing an explicit connection between properties of the endomorphism ring
and the location of a curve in the graph. One key implication is that the open problem of hashing
into the supersingular isogeny graph cannot be solved with reduction of CM curves.

6This is a perfect example why publishing “negative” results is important.
7Fundamentally, this common dichotomy is a misnomer, at least in many cases: As a rule of thumb, one cannot

build secure systems without understanding how insecure ones are broken; therefore, cryptographic work tends to be
inherently constructive, and “destructive” work is simply enhancing our understanding of how (in)secure systems are.

4 INTRODUCTION

Chapter 6 proves a quantum polynomial-time reduction from the problem of inverting a one-
way group action to the problem of breaking a Diffie–Hellman-style key exchange that uses said
group action, similar to famous classical equivalence results for the Diffie–Hellman problem.

Chapter 7 pushes the boundaries of torsion-point attacks, a flavour of isogeny cryptanalysis
specific to schemes which reveal restrictions of isogenies to subgroups. Besides improving the
method, it shows how to find intentionally weak parameters that may be usable as backdoors.

Chapter 8 gives a survey of some potential, seemingly promising attack avenues that aspiring
SIDH cryptanalysts might stumble upon, and explains why these ideas appear to not yield the
desired result, i.e., better attacks.

Chapter 9 constructs an efficient quantum circuit to evaluate the CSIDH group action in super-
position. The main application is as a subroutine in a subexponential quantum attack, whose
overall cost depends rather strongly on the cost of this step.

Chapter 10 demonstrates a reaction attack against HILA5, a lattice-based KEM submitted to
NIST’s post-quantum standardization project. The construction had failed to protect against
chosen-ciphertext attacks, making it vulnerable to an adaption of Fluhrer’s attack.

Chapter 11 surveys some of the insights discovered since the papers that form the basis of this
thesis were first published. The remarkably short timeframe of these developments underlines
how active and exciting isogeny-based cryptography is as an area of research.

Chapter 2

Mathematical preliminaries

This chapter surveys the most important background underlying the remainder of the thesis.
As is common in mathematics, there are several equivalent definitions (or viewpoints) for

most of the objects discussed in this chapter. Whenever in doubt, we chose the most concrete
and tangible perspective on the matter — thus sometimes sacrificing generality, abstraction, or
mathematical beauty in exchange for minimizing the required prior knowledge and hopefully
“making things less weird for everyone” [Smi20].

Also note that the reader should not assume that topics are presented in the order they are
usually proved in; we have taken the liberty to reorder some results to ease exposition.

2.1 — Cryptographic constructions

As motivation for the mathematics to come, let us first introduce some cryptographic back-
ground based on number theory. The goal of all schemes discussed in this section is key exchange,
that is, to establish a shared secret over an insecure communication channel between two parties Alice
and Bob. “Insecure” means that all communication between Alice and Bob may be intercepted
and (depending on the model) even modified in transit by a malicious party Eve, whose main
goal is to extract or influence (some or all properties of) the shared secret.

After the key exchange has been performed, Alice and Bob can use the established common
secret as a key to encrypt messages using secret-key encryption, which assumes that a secret key
has been shared between the communicating parties ahead of time. On the other hand, public-
key encryption is asymmetric in that a party can single-handedly generate a pair of mathemat-
ically related private and public keys, and anyone learning the public key through some means
may send encrypted messages to the recipient.

Assuming the availability of secure secret-key encryption, secure key exchange implies se-
cure public-key encryption: the forward direction uses a technique known as hybrid encryption,
which consists in establishing a shared secret to be used as a symmetric encryption key; see for
instance [CS03].

2.1.1 – Diffie–Hellman. One of the most fundamental tools in public-key cryptography is
the Diffie–Hellman key agreement scheme already mentioned in the introduction (Chapter 1).
Originally described in 1976 as a concrete instantiation [DH76] on multiplicative groups of prime
finite fields, it has since been adapted to other finite abelian groups, and more recently to group
actions. The group-based version works as follows:1

1One can impose many different requirements upon the groupG; the given variant is one of the most restrictive,
streamlined choices.

6 MATHEMATICAL PRELIMINARIES

Definition 2.1. A group-based Diffie–Hellman scheme consists of a generator g of a finite cyclic
groupG of known order q, such that computing multiplications inG is efficient2 and elements ofG have
efficient unique encodings as bit strings.

With these data, the Diffie–Hellman key agreement works as follows:
Key generation. Alice picks an integer a ∈ {0, ..., q−1} at random; this is her private key. Her public
key isA := ga ∈ G. Bob proceeds analogously to generate his key pair (b,B) ∈ {0, ..., q−1} ×G.
Key agreement. Alice takes Bob’s public keyB and her private key a and computes S = Ba. Similarly,
Bob computes S = Ab. Hence, S = gab is shared among Alice and Bob.

Note that efficient multiplication implies efficient exponentiation using square-and-multiply:
The main idea is to recursively replace gn by the equal expression (g2)bn/2c · gn mod 2, which
reduces the problem to one or two multiplications plus an exponentiation with an integer that
is one bit shorter. Therefore, the total cost is Θ(logn) multiplications inG.

This establishes that the scheme can be run in polynomial time, but thus far we have not
made any assumptions about the nature of the group G for the Diffie–Hellman key agreement
scheme to be secure; this will be discussed in the following section.

2.1.2 – Hard problems for DH. The strongest conceivable attack against Diffie–Hellman
would fully recover the shared secret gab after observing the public data (ga, gb):

Definition 2.2. The computational Diffie–Hellman problem (CDH) in a cyclic groupG = 〈g〉 is to
compute the map

dhg : G3 → G, (g, ga, gb) 7→ gab .

The CDH assumption is: Given uniformly random inputs in {g} × G2, no efficient algorithm can
solve CDH, i.e., compute dhg , with more than negligible probability.3

On the other hand, one can ask much less from an attacker, such as to learn just a particular
function (e.g. one bit of an encoding) of the shared secret gab. The assumption that this is hard
for all “reasonable” properties can be overapproximated by the assumption that no attacker can
even tell whether a given element is likely to be gab or not:

Definition 2.3 (DDH). The decisional Diffie–Hellman problem in a cyclic group G = 〈g〉 is to
determine whether a given triplet t ∈ G3 is of the form (ga, gb, gab).

The DDH assumption is: On input triplets sampled uniformly from (with probability 1/2 each)
either the graph of dhg or the entire setG3, no efficient algorithm can solve DDH with probability non-
negligibly greater than 1/2.

The hardness of the decisional Diffie–Hellman problem is an extremely useful assumption for
cryptographic applications,4 but the details would lead us too far astray during this overview.

The obvious way for an attacker Eve to solve CDH (or DDH, for that matter) is to try to recover
Alice’s or Bob’s private key from the public keys, which allows Eve to recompute the same shared
secret:

2Typically, “efficient” means polynomial in log q, but there may be cases where higher complexities make sense.
3We deliberately refrain from instantiating the words “efficient” and “negligible” with concrete semantics in this

section, since depending on context they may range from asymptotic statements, where one must consider families of
groupsG, to explicit bounds on the number of arithmetic operations and success probabilities for a fixed groupG.

4“The Decision Diffie–Hellman assumption (DDH) is a gold mine.” [Bon98]

2.1. CRYPTOGRAPHIC CONSTRUCTIONS 7

Definition 2.4 (DLP). The discrete-logarithm problem in a cyclic group G = 〈g〉 of order q is to
compute the inverse

logg : G→ {0, ..., q−1}

of the exponentiation map
expg : {0, ..., q−1} → G, x 7→ gx .

The best possible classical attacks on DLP in the generic-group model, i.e., using only the inter-
face provided by an abstract group without getting access to the implementation of the group
as bit strings and algorithms, are known to take time Θ(

√
q) when q is prime [Sho97b]. This

complexity is achieved by meet-in-the-middle techniques, better known as baby-step giant-step
algorithm in this context following [Sha71]: On input h∈G, setm = d√qe; build a table of all gj
for j ∈ {0, ...,m−1}; look up each g−mi ·h for i ∈ {0, ...,m−1}; when a match is found, the
value mi+ j solves the DLP. For composite q, one can do better: The Pohlig–Hellman algorithm
projects the DLP to successive prime-order subgroups and lifts the individual solutions back
toZ/q using the Chinese remainder theorem and Hensel lifting for prime powers, which implies
that the complexity is (up to factors polynomial in log q) dominated by the largest prime factor
of q.5 Of course, sometimes all of these problems are easier than in the generic-group model; for
example, letG be the encoding6 of Z/q as {0, ..., q−1}.

We stress that it is not generally known whether solving DLP is the best way to break CDH:
There could be shortcuts to compute (ga, gb) 7→ gab that do not first recover a or b. For group-
based Diffie–Hellman, a line of work started by den Boer in 1988 for finite fields and generalized
by Maurer in 1994 yields equivalence results for DLP and CDH under assumptions that certain
“nice” algebraic groups exist; such groups have since been explicitly constructed for many Diffie–
Hellman parameters used in practice, thus the resulting bound on the hardness gap between
DLP and CDH for these groups mostly depends on the success probability of an assumed CDH
solver. This thesis contains a result on the analogous question for group actions; see Chapter 6.

2.1.3 – Group-action Diffie–Hellman. As explained in Chapter 1, the biggest problem with
DLP is that it can be solved efficiently using Shor’s algorithm (see Section 2.6.2) once a suffi-
ciently large quantum computer is available. This has prompted the search for a replacement
structure that shares enough of the traits of group exponentiation to be cryptographically use-
ful, while at the same time lacking the aspects that introduce weakness against quantum al-
gorithms. As we will see in Section 2.6.2, a core part of Shor’s algorithm to break DLP is the
algebraic composition operation (gx, gy) 7→ gx+y on public keys, simply given by group mul-
tiplication. However, it seems that using a structure which still admits an exponentiation-like
function while not having an efficient, algebraically meaningful composition law on public keys
might improve the quantum security:

Definition 2.5. A group-action Diffie–Hellman scheme consists of a finite abelian group G acting
on a finite setX ,7 together with a fixed element x0 ∈X and an efficient sampling algorithm S returning

5In contrast, the complexity of the best generic DDH solver is dominated by the smallest prime factor p of q: Project
the given DDH triplet to the small subgroup and check there using a generic DDH algorithm. False positives are possible,
but the probability of mislabeling a random tuple as a DH tuple is only 1/p.

6As all cyclic groups of order q are isomorphic to Z/q, the difficulty of these problems must really lie in the specific
choice of representation for abstract (isomorphism classes of) groups as bit strings and multiplication algorithms.

7A group action of G on X is a map ∗ : G × X → X such that 1∗x = x and (g · h)∗x = g∗(h∗x) for all
g, h ∈ G and x ∈ X . (Modulo syntax, this can equivalently be viewed as a group homomorphismG→ Sym(X).)

8 MATHEMATICAL PRELIMINARIES

elements of G.8 We require that computing the action ∗ : G × X → X is efficient for the elements
returned by S , and that elements ofX have efficient unique encodings as bit strings.

With these data, the group-action Diffie–Hellman key agreement works as follows:
Key generation. Alice picks a group element a ← S(); this is her private key. Her public key is the
element xA := a ∗ x0 ∈ X . Bob proceeds analogously to generate his key pair (b, xB) ∈ G×X .
Key agreement. Alice takes Bob’s public key xB and her private key a and computes xS = a ∗ xB .
Similarly, Bob computes S = b ∗ xA. Hence, S = ab ∗ x0 is shared among Alice and Bob.

The straightforward group-action generalizations of the discrete-logarithm and computa-
tional Diffie–Hellman problems (Definitions 2.4 and 2.2) are known as vectorizaton and parallel-
ization problems, the terminology being inspired by visualizing a group action as the special case
of a vector space acting on an affine space. See also Chapter 6, and [Smi18] for a much more in-
depth discussion of the similarities and differences between groups and group actions in (pre-
and post-quantum) cryptography.

Note that group-based Diffie–Hellman is very close to being a special case of Definition 2.5:
Letting X be the Diffie–Hellman group and x0 its chosen generator, the multiplicative group
G = (Z/q)× acts on X by exponentiation; i.e., given (e, x) ∈ G × X , pick any representative
e∈Z of the residue class e and output xe. Thus, if the private keys are restricted to integers
coprime to q, then Diffie–Hellman is indeed an instance of Definition 2.5. In the common case
that q is prime, this means excluding only 0 as a private key.

However, this instantiation of course does not achieve the goal of improving the quantum
resistance, since the multiplicationX ×X → X still exists and can be used in Shor’s algorithm.
Chapter 3 of this thesis introduces CSIDH, a relatively efficient instance of group-action Diffie–
Hellman that appears to withstand Shor’s algorithm. Instead, the best known quantum attack is
a subexponential-time quantum algorithm for the abelian hidden shift problem (see Section 2.6.3).

2.1.4 – Groups vs. actions. Note that DLP-based systems seem to support different applic-
ations than group-action-based systems: For instance, verification of Schnorr signatures relies on
computing the expression gs ·hm, which does not translate to group actions in any obvious way
since the operation · is lacking. On the other hand, anything relying on DLP is immediately
unsuitable for post-quantum applications due to Shor’s algorithm (Section 2.6.2). Note that it
is the very same operation (gx, gy) 7→ gx+y that makes the signature scheme as well as the
quantum attack work, which suggests that a straightforward adaption of Schnorr signatures
and many other applications to the post-quantum setting may be difficult. Hence, signature
schemes based on group actions are currently much slower than pre-quantum, DLP-based sig-
natures. Chapter 4 contributes to changing this by speeding up the SeaSign signature scheme
based on the CSIDH group action (Chapter 3).

While some features of isogeny-based cryptography remain unattractive compared to other
cryptosystems, most importantly speed, there are applications where isogenies are the best avail-
able option: One such case is non-interactive key exchange, a piece of functionality instantiated
pre-quantumly with Diffie–Hellman, but for which only few post-quantum candidates exist.

2.1.5 – Non-interactive key exchange. The qualifier non-interactive refers to the property
that two parties can each compute their public key entirely on their own, and two public keys

8For the scheme to stand any chance at being secure, the distribution of group elements returned by S must have
sufficient min-entropy, the ideal case being thatS returns uniformly random elements ofG. As this is sometimes tricky
to do in instantiations (see for example Section 3.4), we allow a bit more flexibility in how the sampling is done.

2.1. CRYPTOGRAPHIC CONSTRUCTIONS 9

together determine a unique shared secret that the parties can compute separately, without any
need to exchange additional (often randomized) data in real time:

Definition 2.6. A non-interactive key exchange (NIKE) scheme consists of setsK,X, Y , an efficient
sampling algorithm S returning elements ofK , and efficient (potentially randomized) algorithms

G : K → X and F : K ×X → Y ,

such that for all a, b← S() andA← G(a),B ← G(b), we haveF(a,B) = F(b, A).

For security, we require that recovering the secret a given A and oracle access to F(a,−) is
hard. One particular requirement for a NIKE to be secure is that participants can reuse public
keys many times without changing them; in particular, Alice and Bob must not reveal partial
information about their secrets when processing a key exchange.

The description of Diffie–Hellman schemes above does not consider the possibility that one
of the participants (or an attacker manipulating data on the wire) might deliberately try to trick
the other into revealing information about their long-term private key. In particular, it is silently
assumed that inputs to the group algorithms are in fact encodings of valid group elements; in
actual implementations, one must thus consider what happens when data outside the expected
set is received: Attackers may send malformed inputs to exploit potential faulty behaviour of
algorithms on these bad inputs, and thereby leak information about secrets.

For example, small-subgroup attacks pose a threat to most group-based DH instantiations:
they are based on sending fake public-key elements on which the group algorithms will “work”
even though they lie outside the actual DH group, and interpreting the reaction of the recipient
allows deducing information about their private key modulo the size of that subgroup. Com-
bining this kind of leakage from different subgroups can lead to recovery of the entire secret.
Another example is described in Chapter 10 of this thesis: Lattice-based Diffie–Hellman-like
schemes with noise may be vulnerable to tinkering with certain parts of the noise until the key
exchange fails, and the threshold where this occurs is correlated with the recipient’s private key.

If possible, the easiest way to avoid invalid inputs is to simply test each input for the de-
sired properties: For instance, checking that a group element has some prescribed large prime
order can be done using a single group exponentiation and two identity tests. Unfortunately,
testing validity of public keys is not always as easy: Key-exchange schemes with more complex
mathematical structure usually require some relationship between different components of the
public data, and tampering with some parts individually is often impossible to detect without
breaking the scheme in the first place.

On the bright side, the CSIDH scheme (and its predecessors) presented in Chapter 3 fits into
the framework of Definition 2.6 and offers very easy and cheap public-key validation (see Sec-
tion 3.5), which makes it a viable candidate NIKE, and the current best incarnations drastically
outperform what appears to be the only other post-quantum NIKE proposal [AJL17].

Most lattice-based key exchanges, on the other hand, are hardened against active attackers
using the Fujisaki–Okamoto transform (FO), which essentially consists of sending an encryption
of the sender’s own private key as the very first message post-key-exchange. The recipient then
recomputes the sender’s public key according to the alleged private key, and aborts if the result
does not match the key used in the actual key exchange. However, this procedure merely leads to
a key-encapsulation mechanism (KEM), in which one party uses an ephemeral (one-time) key pair,
and hence does not give a NIKE. See Chapter 10 for more details on the FO transform, as well as
a concrete attack on a scheme that lacks it.

10 MATHEMATICAL PRELIMINARIES

2.2 — Elliptic curves

This thesis is about the use of isogenies of elliptic curves in cryptography. As one literally cannot
spell isogenies of elliptic curves without elliptic curves, let us discuss those first.

Standard references for the contents of this section and much more in-depth background are:
Washington’s Elliptic Curves: Number Theory and Cryptography [Was08], a gentle introduction
with focus on algorithms and applications; Silverman’s The Arithmetic of Elliptic Curves [Sil09],
a comprehensive summary from a more mathematical perspective; and Hartshorne’s Algebraic
Geometry [Har77], which starts from scheme theory and treats elliptic curves as a special case.

Definition 2.7. Letk be a field. An elliptic curve overk is a pair (E,O), whereE is a smooth projective
genus-one curve over k andO is a k-rational point onE, the base point.

Throughout this chapter, k refers to a field and E,E′ are elliptic curves over k unless noted
otherwise. The base pointO is usually omitted. We writeE/k for “E is defined over k”.

2.2.1 – Weierstraß curves. In practice, we can immediately replace this general, but rather
abstract definition by concrete equations, giving a more elementary and tangible perspective of
elliptic curves. Note that there are various choices for such equations (often referred to as curve
“models”), each having different computational benefits depending on context. Traditionally,
most of the theory is developed on Weierstraß curves, but note that modern cryptographic ap-
plications typically work with Montgomery or Edwards curves (see Section 2.2.6).

Definition 2.8. A short Weierstraß curve over a field k is a projective curve defined by an equation

Y 2Z = X3 + aXZ2 + bZ3 (∗)

with a, b ∈ k, such that the discriminant ∆ := −16(4a3 + 27b2) is non-zero.9 The unique point
[0 : 1 : 0] withZ = 0 is called the point at infinity and denoted by∞.

For brevity, Weierstraß curves are instead often written as affine curves

y2 = x3 + ax+ b (2.1)

with the implicit understanding that the projective closure (∗) is meant. In particular, the point at infin-
ity∞ is retained as a “point” on the curve even though it does not correspond to a solution of (2.1); see
Definition 2.10 below.

Proposition 2.9. Let char(k) /∈ {2, 3}and let (E,O) be an elliptic curve overk. ThenE is isomorphic
(as an algebraic curve) over k to a short Weierstraß curve defined over k, such that O corresponds to∞
under the isomorphism. In particular, ifE is a short Weierstraß curve, then (E,∞) is an elliptic curve.

Note that short Weierstraß curves do not exist in characteristic 2, and in characteristic 3 they
fail to cover all isomorphism classes of elliptic curves. In arbitrary characteristic, results similar
to Proposition 2.9 hold with slightly more complicated formulas — long Weierstraß equations.
We work mainly in large characteristic and will hence often omit the attribute “short” when
talking about short Weierstraß curves. Inspired by Proposition 2.9, we write∞ for the the base
point on any elliptic curve.

Definition 2.10. The set of points on a short Weierstraß curveE : y2 = x3 +ax+ b is the set of pairs
(x, y) ∈ k × k satisfying the Weierstraß equation, together with a single extra point denoted∞.

For any field extension K/k, we write E(K) for the subset of points on E defined over K , i.e., with
coordinates inK . The point at infinity∞ is defined over k. Referring toE as a set is shorthand forE(k).

9For ∆ = 0, the resulting curve is not smooth.

2.2. ELLIPTIC CURVES 11

2.2.2 – The j-invariant. How many isomorphism classes of elliptic curves are there?

Proposition 2.11. Two elliptic curves are isomorphic over k̄ if and only if they have the same j-invariant,
which for a Weierstraß curveE : y2 = x3 + ax+ b is given by the formula

j(E) = 1728 · 4a3/(4a3 + 27b2) .

Conversely, for any j-invariant in k, we can recover an explicit curve equation over the same field:
For char(k) /∈ {2, 3}, we may use the short Weierstraß equation

E : y2 = x3 − 3j(j − 1728)x− 2j(j − 1728)2 .

We also often need the notion of a function on an (elliptic) curve: These are simply rational
expressions in some coordinates on the curve, modulo the defining equation(s):

Definition 2.12. Let E be an elliptic curve defined over k. The function field of E, denoted k(E), is
the set of rational functionsE → k. In particular, ifE is a Weierstraß curve y2 = x3 + ax+ b, then

k(E) ∼= k(x, y)/(y2 − x3 − ax− b) .

Note that a function onE need not necessarily be defined at all points ofE; in fact, every non-
constant function on a projective curve has at least one pole. Thus, the evaluation of a function
at points of E is sometimes better viewed as a map to P1(k), rather than A1(k) = k. The poles
are mapped to the point “at infinity”, i.e., the unique point in P1(k)\A1(k).

2.2.3 – The group structure. Perhaps the main reason elliptic curves have been studied in
depth for centuries is that they carry a geometric group structure, a fact that makes them stand
out among most other algebraic curves and certainly helps explain why the (a priori) relatively
arbitrary-looking equation (2.1) is interesting.

Proposition 2.13. Let (E,∞) be an elliptic curve. There is a unique abelian group structure on the set
of points ofE such that the neutral element is∞ and the composition law is given by rational maps.10

On a Weierstraß curve, the group operation admits a nice geometric interpretation: The sum
of three points on the curve equals∞ if and only if there exists a straight line intersecting the
curve in these points with the correct multiplicities.11

Definition 2.14. For any `∈Z, let [`] : E→E be the (scalar-)multiplication-by-` homomorphism
on E, defined by adding together ` copies of a point. The kernel of [`] is denoted by E[`] and called the
`-torsion subgroup ofE.

As is customary when finding a group somewhere, we immediately feel a burning desire to
learn about its structure, which in this case is quite easy to describe:

Proposition 2.15. LetE/k be an elliptic curve and ` a non-zero integer. If char(k) = p > 0, factor `
asm · pr withm /∈ pZ; otherwise, letm = `. Then as groups

E[`] ∼= Z/m× Z/` or E[`] ∼= Z/m× Z/m .

In particular, eitherE[p] ∼= Z/p orE[p] ∼= {0}, and if char(k) 6 | ` thenE[`] ∼= Z/`× Z/`.
10Thus,E is an abelian variety of dimension one — another common definition of elliptic curves.
11The point∞ lies on every vertical line. When the points in question are not distinct, the condition on multiplicities

implies that the straight line must be a tangent of the curve.

12 MATHEMATICAL PRELIMINARIES

Therefore, the `-torsion of an elliptic curve is almost always a (2-dimensional) torus overZ/`.
This is not a coincidence: In fact, it is a classical result that elliptic curves defined over C are
analytically isomorphic to complex tori, which is one way to arrive at the above structure result.

The p-torsion has a large impact on further structural properties of an elliptic curve, hence
some terminology is in order:

Definition 2.16. An elliptic curveE/k is called supersingular if p = char(k) > 0 andE[p] ∼= {0};
all other elliptic curves (in particular those in characteristic zero) are called ordinary.12

For computations on elliptic curves, the field of definition of the points we are working with
is crucial, hence let us discuss the sizes of rational subgroups.

2.2.4 – Point counting. The first fundamental result is that an elliptic curve defined overFq
has approximately as many rational points as a one-dimensional set “morally” ought to: about q.
In fact, this estimate is (almost) correct with a square-root error bound:

Hasse’s Theorem 2.17 [Has36]. LetE/Fq be an elliptic curve. Then

#E(Fq) = q + 1− t

with
|t| ≤ 2

√
q .

Determining the exact number of rational points is significantly more difficult, and all naïve
strategies have exponential (in log q) cost. Fortunately, Schoof discovered a clever algorithm
that is much more efficient:

Theorem 2.18 [Sch85]. There is an explicit13 algorithm which, given the coordinates of a (long) Wei-
erstraß curveE over Fq , computes the number of Fq-rational points onE in time polynomial in log q.

Sometimes, it is easier to determine the number of points, such as whenE is defined over a
subfield — it then suffices to compute the number of points over the smallest field of definition:

Proposition 2.19. Let E/Fq be an elliptic curve and #E(Fq) = q + 1 − t. If α, β ∈ C are the two
(not necessarily distinct) complex roots of the polynomialX2 − tX + q ∈ Z[X], then for any n ≥ 1,

#E(Fqn) = qn + 1− (αn + βn) .

Moreover, supersingular curves can only have a few possible group orders, and conversely
supersingularity may be detected by point counting:

Proposition 2.20. Let E/Fq be an elliptic curve, where q = pr . Then E is supersingular if and only
if p divides t = q + 1−#E(Fq). Furthermore, if q = p ≥ 5, this is equivalent to #E(Fp) = p+ 1.

The upshot of Proposition 2.20 is that the group order of supersingular elliptic curves can
easily be controlled by choosing an appropriate base-field prime — one of the main motivations
for their use in isogeny-based cryptography. Another fact with useful implications is that all
supersingular elliptic curves can (up to isomorphism) be defined over a small extension of the
prime field, and moreover we have very explicit and tight bounds on the number of such curves:

12Note the potentially confusing terminology: Supersingular elliptic curves are not singular; rather, the word should
be interpreted to mean “very rare”, referring to the fact that supersingular curves are fairly sparse.

13The (sometimes muddled) distinction between having an algorithm and merely knowing abstractly that it exists is
important even in practice: Ignoring arbitrarily costly precomputation to find the algorithm is formalized in the so-called
non-uniform model of computation, whose relevance to reality (and cryptography in particular) is debatable. See [BL13].

2.2. ELLIPTIC CURVES 13

Proposition 2.21. LetE be a supersingular elliptic curve defined over a field k of characteristic p> 0.
Then j(E) ∈ Fp2 . In particular,E is isomorphic (over k̄) to a curve defined over Fp2 .

In characteristic p, there are exactly bp/12c+ ε supersingular j-invariants, where ε ∈ {0, 1, 2}.

2.2.5 – Elliptic-curve cryptography. With all the tools we have available now, it is trivial
to instantiate the Diffie–Hellman key agreement with an elliptic-curve group: Everyone simply
agrees on an elliptic curve E over a finite field Fq and a point P ∈ E(Fq) of large prime order
and then proceeds exactly as described in Section 2.1.1.14

2.2.6 – Alternate curve models. For computations, the Weierstraß form of elliptic curves
is often not the best choice, as evaluating the addition formulas involves inconvenient case dis-
tinctions (which in turn lead to side-channel risks in cryptographic implementations). The two
most commonly used alternatives are the Montgomery and Edwards forms, which are available
(over the same field) for sizeable subsets of all elliptic curves:

Definition 2.22. A Montgomery curve over a field k of characteristic 6= 2 is a projective curve defined
by the affine equation

By2 = x3 +Ax2 + x

withA,B ∈ k andB(A2− 4) 6= 0. In some cases (such as in Chapter 3), one can always chooseB = 1,
and we then refer toA as the Montgomery coefficient of the curve.

Montgomery curves do not solve the problem of exceptional cases in the addition law known
from Weierstraß curves. However, they do offer extremely clean and efficient formulas for com-
putations on the x-line or Kummer line of a Montgomery curve, which as a variety simply equals
the quotient X = E/{±1}. Note that while we do lose the addition law when quotienting by
[±1], the scalar-multiplication operation which lies at the heart of elliptic-curve Diffie–Hellman
commutes with [±1], hence is well-defined on X . It can be implemented very efficiently using
the ladder step

DBLADD : (P,Q, P −Q) 7→ ([2]P, P +Q)

which is well-defined on the Kummer line X and can be used as a building block inside scalar-
multiplication algorithms such as the Montgomery ladder. See [BL17] or [CS18] for more details
on Montgomery curves.

Definition 2.23. A (twisted) Edwards curve over a field k of characteristic 6= 2 is an affine curve
defined by the equation

ax2 + y2 = 1 + dx2y2

with a, d ∈ k and ad(a− d) 6= 0.

Edwards curves, just like Montgomery curves, offer very efficient arithmetic on the Kummer
line, but in addition they admit complete addition formulas: That is, any two points can be ad-
ded by evaluating the very same rational functions, with no exceptional points and no case dis-
tinction. Hence, they are very useful to build efficient side-channel resistant implementations
of elliptic-curve cryptosystems that require individual point additions, rather than just scalar
multiplications. For more details about Edwards curves, see [BL17] or [BL07].

14Note that elliptic curves are usually written additively, whereas Section 2.1.1 uses multiplicative notation.

14 MATHEMATICAL PRELIMINARIES

2.3 — Isogenies of elliptic curves

Having shown the basics of elliptic curves — an eminent building block in cryptography in its
own right — in the previous section, it is now time to introduce the central object in this thesis:

Definition 2.24. An isogeny between two elliptic curvesE,E′/k is a non-zero rational map

ϕ : E −→ E′

which is also a group homomorphism. An isogeny is defined over k if it can be written using rational
functions in k(E), i.e., as fractions of polynomials with coefficients in k. Two curves E,E′ are called
isogenous whenever there exists an isogenyE → E′.15

Let Homk(E,E′) denote the set of all isogeniesE → E′ defined over k, together with the constant
morphism 0: E → E′, P 7→ ∞. For brevity, write Hom(E,E′) := Homk(E,E′). These sets carry
an abelian group structure given by point-wise addition (ϕ+ ψ)(P) = ϕ(P) + ψ(P).

It is worth mentioning that Definition 2.24 is not what some algebraic geometers prefer, as
it generalizes relatively poorly to abelian varieties of higher dimension. However, it appears that
this definition is the most natural for the purposes of this thesis, as we will be working exclus-
ively with elliptic curves in any case — and the fact that isogenies are group homomorphisms
(often derived as a theorem in other literature) is crucial from an applied perspective.

For concreteness, we specialize the definition to short Weierstraß curves:

Proposition 2.25. Let E,E′ be short Weierstraß curves over k and ϕ : E → E′ an isogeny defined
over k. Then there exist polynomials f, g, h ∈ k[x] such that for all P = (xP , yP) ∈ E,

ϕ(P) =
(f
h2

(xP), yP ·
g

h3
(xP)

)
where defined, and ϕ(P) =∞ if P is a pole of f/h2 or g/h3.

To measure the algebraic (and, as we shall see, computational) complexity of an isogeny, we
introduce its degree: essentially the lowest possible degree of a polynomial expression (as shown
in Proposition 2.25) to write down the isogeny.

Fact 2.26. Let ϕ : E → E′ be an isogeny of elliptic curves over k. The pullback

ϕ∗: k(E′) ↪→ k(E), f 7→ f ◦ ϕ

embeds the function field k(E′) as a subfield of the function field k(E).16 The degree of the isogeny ϕ is
defined to be the degree [k(E) : k(E′)] of this extension. Note that degrees are multiplicative since degrees
of field extensions are: deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ).

Definition 2.27. An isomorphism of elliptic curves is an isogeny of degree one. An automorphism is
an isomorphism from a curve to itself.

A core fact about isogenies (often used as a defining property) is that their kernels are finite:
only finitely many points are mapped to∞. Isogenies are classified according to the relationship
between the degree and the cardinality of the kernel:

Definition 2.28. An isogeny ϕ is called separable if #ker(ϕ) = deg(ϕ), else it is inseparable.
Moreover, ϕ is purely inseparable if ker(ϕ) is trivial.17

15See Proposition 2.34 as to why being isogenous is an equivalence relation.
16The connection from isogenies to function field extensions goes much further; in fact, the pullback construction is

a functor inducing an contravariant equivalence of categories to its image.
17Fun fact: Isomorphisms — isogenies of degree 1 — are both separable and purely inseparable, but not inseparable.

2.3. ISOGENIES OF ELLIPTIC CURVES 15

Inseparable isogenies are the exception rather than the norm: In a sense, there is really only
one source of inseparability, and “most” isogenies are separable.

Proposition 2.29. In characteristic zero, all isogenies are separable. In positive characteristic p> 0,
every isogeny ϕ admits a unique decomposition

ϕ = ψ ◦ πrp

with ψ separable and πp : (x, y) 7→ (xp, yp) the (p-power) Frobenius isogeny. Thus, powers of πp
are (up to composition with isomorphisms) the only purely inseparable isogenies.

As mentioned above, every isogeny has a finite kernel subgroup. It is therefore a natural
question how much the correspondence works in the other direction: Is every finite subgroup of
an elliptic curve the kernel of a (unique) isogeny?18 Existence will follow from Proposition 2.31,
but inseparable isogenies immediately show that we cannot hope for uniqueness. Fortunately,
this is the only failure, and so we get a one-to-one correspondence between finite subgroups and
separable isogenies (up to isomorphism):

Proposition 2.30. LetE be an elliptic curve over a perfect field k andH ≤ E a finite subgroup defined
overk.19 Then there exists an elliptic curveE′ and a separable isogenyϕH : E → E′, both defined overk,
such that ker(ϕH) = H . The pair (E′, ϕH) is unique up to k-isomorphism ofE′.

By analogy with the homomorphism theorem for groups, the curveE′ is denoted byE/H .

Note thatϕH is often referred to as “the isogeny with kernelH”, since the technically correct
phrasing “a separable isogeny with kernelH , up to post-composition with k-isomorphisms” is
quite a mouthful.

2.3.1 – Computing isogenies. We have seen that abstractly, isogenies are (more or less)
determined by their kernels, but of course this implies nothing about computing an isogeny from
its kernel. This is known, too: By now, there is a variety of algorithms to compute isogenies, each
with its own constraints and applications. All of them are based in one way or another on the
following result from the seventies:

Proposition 2.31 (Vélu’s formulas [Vél71]). LetE : y2 = x3 + ax+ b be a Weierstraß curve over a
field k andH ≤ E a finite subgroup. For any function π ∈ k(E) and point P ∈ E, define

fπ(P) := π(P) +
∑
Q∈H
Q 6=∞

(
π(P +Q)− π(Q)

)
.

Let x, y ∈ k(E) be the Weierstraß coordinate functions onE. Then the map

ϕ : E → E/H, P 7→
(
fx(P), fy(P)

)
,

where poles of fx, fy get mapped to the point at infinity, is a separable isogeny with kernelH . The codo-
main is a Weierstraß curve, whose equation can easily be recovered as well using a few more operations.

Conceptually, these formulas first represent the quotient groupE/H simply as cosetsP+H

with P ∈ E, then exploit the coordinate projections x, y of the domain curve E to construct

18This is an analogue in the isogeny setting of the classical homomorphism theoremG/ker(f)∼= im(f) for groups.
19That is, field automorphisms σ of k which fix k map H to itself. Note that not necessarily H ⊆ E(k); rather,

every σ acts as a permutation onH .

16 MATHEMATICAL PRELIMINARIES

functions ink(E) invariant under translations by the desired kernel subgroupH . In other words,
this yields well-defined functions fx, fy ∈ k(E/H), which are subsequently used as coordinate
functions on the codomainE/H to set up an embedding into the plane.

2.3.2 – Smooth degrees. It is not hard to see from Proposition 2.31 that naïvely evaluating
Vélu’s formulas takes Θ(|H|) operations, i.e., the cost is exponential in log(deg(ϕ)). Can we do
better? In many cases, the answer is yes. Observe that we can immediately reduce the problem
to prime-degree isogenies:

Lemma 2.32. Let H ≤E be a finite subgroup of an elliptic curve E. For any subgroup H ′≤H , the
isogeny ϕ : E→E/H with kernelH can be decomposed as

ϕ : E
ψ′−−−→ E/H ′

ψ−−−→ E/H

where ker(ψ′) = H ′ and ker(ψ) = ψ′(H) ≤ E/H ′.

Corollary 2.33. Let k be a field and suppose that an isogeny of prime degree ` can be computed in T (`)

arithmetic operations in k. Let E/k be an elliptic curve and H ≤ E(k) a finite subgroup, and suppose
the prime factorization |H| =

∏r
i=1 `

ei
i is given. Then the isogeny ϕ : E → E/H can be computed in

O

(r∑
i=1

ei · T (`i)

)
· polylog(|H|)

arithmetic operations in k.

Note that naïvely evaluating Proposition 2.31 shows the upper bound T (`) ∈ O(`). Using
elliptic resultants, the “

√
élu” algorithm [BDLS20] achieves a (very close to) square-root speedup

over this naïve strategy, yielding the best known result T (`) ∈ Õ(
√
`). See also Section 11.6.

2.3.3 – Defined kernels. Since cryptosystems rely on the hardness of finding isogenies, we
have to compute isogenies of extremely large degrees. To do so efficiently, we exploit the shortcut
provided by Corollary 2.33: In practice, all isogenies we compute from their kernel have smooth
degree.20

However, there is another problem: The complexities above are given in terms of operations
in k, but in general, a subgroup of E/k of large size ` is only defined over an extension field of
exponential (in log `) degree over k. Thus, for isogenies of sufficiently large (smooth or not) de-
gree, even writing down the kernel is impossible in practice! Two tricks are employed to avoid this
issue. First, one may use special curves whose group orders over a small enough field are amen-
able to nice, smooth-degree isogenies: In (current) practice, this usually means supersingular
curves defined over (at most) Fp2 with a prime of the form p = s − 1 where s is smooth. The
second technique in principle applies to any base field and curve, but is much less efficient in
practice: Using isogenies of powersmooth degree

∏r
i=1 `

ei
i allows decomposing the kernel H as

an internal direct productH1 × · · · ×Hr ⊆ H , where each |Hi| = `eii is small, hence each sub-
group Hi is defined over only a small extension. Therefore, the isogeny can be computed as a
chain E → E/H1 → (E/H1)/H2 → · · · → E/H , where the kernel of the ith step is computed
by pushingHi through all previous isogeny steps. What this gains is that all computations can
now be performed in fields big enough to contain each pair of subgroupsHi ×Hj ⊆ H , rather
than (previously, without decomposing) the entire groupH at once.

20An integer is B-smooth if it has no prime factor larger than B. Similarly, an integer is B-powersmooth if it is not
divisible by a prime power larger thanB.

2.3. ISOGENIES OF ELLIPTIC CURVES 17

2.3.4 – Isogeny graphs. An extremely useful (and mathematically pleasing) property of
isogenies is that every isogeny comes with a natural complementary isogeny in the opposite
direction, the dual isogeny. The dual behaves somewhat like an inverse, modulo a scalar multi-
plication by the degree:

Proposition 2.34. Every isogeny ϕ has a unique dual isogeny ϕ̂ : E′ → E with the property that
ϕ̂ ◦ ϕ = [deg(ϕ)] : E→E and ϕ ◦ ϕ̂ = [deg(ϕ)] : E′→E′. The dual isogeny abides by the ruleŝ̂ϕ = ϕ ;

ϕ̂+ ψ = ϕ̂+ ψ̂ (for ψ 6= −ϕ);

ϕ̂ ◦ ψ = ψ̂ ◦ ϕ̂ .

The kernel of the dual ϕ̂ equals ϕ(E[deg(ϕ)]) ≤ E′.

Among (many) other things, the existence of the dual isogeny implies that being isogenous
is an equivalence relation. How hard it is to decide whether two curves are isogenous?

Tate’s Isogeny Theorem 2.35 [Tat66]. Two elliptic curves E,E′ defined over a finite field Fq are
isogenous over Fq if and only if #E(Fq) = #E′(Fq).

While Tate’s theorem equips us with a neat, easily checkable criterion to determine whether
two curves are isogenous, it reveals no information at all about the isogeny whose existence is
established. To learn more about the nature of the connecting isogenies between different curves
known to be isogenous, the structure of isogeny graphs is studied:

Definition 2.36. Let k be a field and S a set of positive integers (often a single prime) not divisible
by char(k). Define the S-isogeny graphGk,S over k as follows:

• Nodes: Elliptic curves defined over k, up to k-isomorphism.
• Edges: Isogenies of degree ` ∈ S defined over k, up to post-composition with k-isomorphisms.

When S = {`}, we writeGk,` for the `-isogeny graph.

Note that definitions of isogeny graphs vary wildly between different authors with regard
to the set of curves considered (sometimes only a single connected component) and the class of
isomorphisms under which identifications are made. We prefer the version above as it seems to
be one of the most versatile choices. Typically, we will restrict our attention to subgraphs ofGk,`
comprised of all curves with a given number of k-rational points, since (by Tate’s theorem) such
subgraphs are always disconnected from the rest of the graph anyway.

The existence of the dual isogeny implies that isogeny graphs can be viewed as undirected
graphs almost everywhere: Exceptions can only occur at nodes with j-invariant 1728 or 0, due
to their potential for having extra automorphisms, which may collapse the duals of multiple
outgoing isogenies into just one incoming edge. Note that this affects only the multiplicities of
directed edges, but not the existence of edges between two nodes.

Away from these special nodes, connected components of `-isogeny graphs admit only two
possible shapes: On one hand, very regular structures known as volcanoes, and on the other hand
the much more random-looking Pizer graphs.21 See Figure 2.1 for representative examples. An

21Pizer graphs are frequently referred to as supersingular isogeny graphs — a slight misnomer, as isogeny graphs of su-
persingular curves can be volcanoes (cf. Chapter 3). However, we will occasionally refer to “the” supersingularS-isogeny
graph in characteristic p, which means the unique supersingular component ofGFp,S , though see Proposition 2.74.

18 MATHEMATICAL PRELIMINARIES

Figure 2.1: Typical components of isogeny graphs. Left: volcano graph. Right: Pizer graph. In both cases `= 2.

Figure 2.2: An S-isogeny graph for the set S = {3, 5, 7} in the volcanic case. Here, each `-isogeny volcano (`∈S) has
depth zero (see Definition 2.67).

`-isogeny volcano consists of a single cycle,22 the crater, and each node on the cycle is the root
of a complete tree which is `-ary below the root, occasionally referred to as lava, which however
almost always has depth zero, i.e., is empty — so most volcanoes (in a certain sense) are actually
made up of just a crater. In the volcano setting, the regular structure of a single `-isogeny graph
is highly compatible with other `′-isogeny graphs, and thus a beautiful picture unfolds when
considering theS-isogeny graph for a setS of more than one prime; see Figure 2.2 for an example.
Pizer graphs by contrast have much less easily comprehensible structure and look quite random.

To decide which kind of graph to create, the laws of mathematics simply sneak a peek at the
structure of the endomorphism ring of the curves in question: The isogeny graph is a Pizer graph
if and only if the ring of k-rational endomorphisms is non-commutative. Thus, we shall now
digress to analyze endomorphism rings of elliptic curves. Section 2.5 will continue the discussion
of isogeny graphs including the new tools developed in the following.

22In some cases, the “cycle” is degenerate and consists of just one or two nodes.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 19

2.4 — Endomorphisms, quadratic fields, and quaternion algebras

As hinted in the previous section, the structure of isogeny graphs is intimately connected to the
study of endomorphism rings.

Definition 2.37. LetE/k be an elliptic curve. An endomorphism ofE is an isogeny or the zero map
fromE to itself; in other words, it is an element of

End(E) := Hom(E,E) .

With the point-wise addition inherited from Hom(E,E) and multiplication given by composition of
endomorphisms, this set forms the endomorphism ring ofE.

Similarly, the k-rational endomorphism ring (or k-endomorphism ring for short) of E is the
subring Endk(E) := Homk(E,E). When k = Fq , we sometimes write Endq instead of EndFq .

Due to the existence of scalar-multiplication morphisms, we can clearly always embed Z as
a subring of End(E), and in fact the typical case in characteristic zero is End(E) = Z. This is
far from true over finite fields, where elliptic curves always have non-scalar endomorphisms. To
analyze the endomorphism ring further, it is helpful to adopt a more algebraic stance:

Fact 2.38. Taking the dual isogeny of a non-zero endomorphism and mapping zero to itself defines an
involution on End(E), usually referred to as conjugation and written in this context.23

The existence of the involution ϑ 7→ ϑ is critical in that it determines many other important
properties of the endomorphism ring. Recalling that ϑϑ = deg(ϑ) ∈ Z and using the fact that
deg(ϑ+1)− deg(ϑ)− 1 = ϑ+ϑ is an integer, we can immediately make the crucial observation
that every ϑ ∈ End(E) satisfies a quadratic equation with coefficients in Z:

ϑ2 = (ϑ+ ϑ)ϑ− ϑϑ .

Prompted by this, the usual definitions for algebraic numbers carry over:

Definition 2.39. Let ϑ ∈ End(E). Its norm is N(ϑ) = ϑϑ, and its trace is tr(ϑ) = ϑ+ ϑ.

Notice that the norm is the same as the degree of an endomorphism.

Proposition 2.40. Every endomorphism ϑ ∈ End(E) is an algebraic integer of degree at most two.
In particular, the norm N(ϑ) and trace tr(ϑ) are integers, and ϑ satisfies the characteristic equation

ϑ2 − tr(ϑ) ·ϑ+ N(ϑ) = 0 .

2.4.1 – Frobenius. Probably the most well-known example of Proposition 2.40 comes from
elliptic curves over a finite field Fq : There, one can immediately exhibit an endomorphism that
is typically (but not always) non-scalar, namely the (q-power) Frobenius endomorphism

π : E → E, (x, y) 7→ (xq, yq) .

When #E(Fq) = q+ 1− t, the characteristic equation of π is π2− tπ+ q = 0.24 Suppose π /∈Z.
Thus, the Frobenius orderZ[π] ⊆ Endk(E) is isomorphic to the ringZ[

√
t2 − 4q]. Sometimes, this

is already the whole story and we have Endk(E) = Z[π]. However, the endomorphism ring can

23Some sources use and ̂ interchangeably.
24Hence, the key to point counting lies in computing the trace of Frobenius, which is indeed the core idea underlying

Schoof’s algorithm 2.18.

20 MATHEMATICAL PRELIMINARIES

be bigger in several ways. First, some of the endomorphisms π−a ∈ Z[π] may be divisible by an
integer d,25 which implies Z[π] (Z

[
π−a
d

]
⊆ Endk(E). Second — and much more severely —

the set {1, π}may fail to span the entirety of the endomorphism ring even when denominators
are allowed.

2.4.2 – Endomorphism algebras. To separate the issues concerning denominators from
more fundamental questions about the general structure of Endk(E) — such as the rank — it is
convenient to introduce a coarser object:

Definition 2.41. The endomorphism algebra of an elliptic curveE is the Q-algebra

End◦k(E) := Endk(E)⊗Z Q .

In simpler terms, End◦k(E) consists of elements of the form α/d with α ∈ Endk(E) and d ∈ Z\{0}.

An explicit embedding shows that the isomorphism class of the endomorphism algebra is
an isogeny invariant:

Proposition 2.42. Let ϕ : E → E′ be an isogeny defined over k. The map

Endk(E)→ Endk(E′), α 7→ ϕαϕ̂

is a homomorphism of additive groups with image deg(ϕ) ·Endk(E′). Correcting the failure to preserve
the ring structure by dividing out the degree, the map

ιϕ : End◦k(E)→ End◦k(E′), α 7→ ϕαϕ̂/deg(ϕ)

is an isomorphism of Q-algebras. (The image ιϕ(Endk(E)) is generally not contained in Endk(E′).)

Notice that the choice of isogeny ϕ : E → E′ enters the definition of the isomorphism ιϕ
between the endomorphism algebras. Indeed, this choice does not cancel out: In some cases,
the embedding of Endk(E) into an ambient algebra is highly non-unique, in which case it is
common to fix one by choosing a particular curve E0 as a point of reference, fixing isogenies
ϕ : E → E0 from all curves under investigation, and using the corresponding embeddings ιϕ
of Endk(E) into the ambient algebra End◦k(E0). See [Wat69] for details. In practice, the em-
beddings of different endomorphism rings into a common ambient algebra are often omitted,
implicitly assuming compatibility with respect to certain (classes of) isogenies.26 For example,
in Chapter 3, we will assume embeddings into an ambient algebra which all map Frobenius to
the same element.

Another natural way to acquire the fractions 1/deg(ϕ) required to turn the map α 7→ ϕαϕ̂

into a ring homomorphism is localization at the degree:

Proposition 2.43. Letϕ : E → E′ be an isogeny defined over k and write d = deg(ϕ). Then the map

Endk(E)[1/d]→ Endk(E′)[1/d], α 7→ ϕαϕ̂/d

is an isomorphism of Z[1/d]-algebras.

This result has the very useful implication that isogenies can only change the endomorphism ring
locally at the degree, which Section 2.5.1 relies on crucially.

25More formally, this “divisibility” means that π − a kills the d-torsion, hence (using Lemma 2.32) there exists a
(unique) endomorphism τ ∈ Endk(E) such that τ ◦ [d] = π − a. This τ is (deservedly) denoted by π−a

d
.

26This can be very confusing.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 21

2.4.3 – Kernels and ideals. Before we move on to the classification of endomorphism rings,
we introduce an extremely important connection between isogenous curves and ideal classes of
the endomorphism ring. Proofs (also covering the case of abelian varieties of higher dimension)
can be found in [Wat69].

Throughout this section, letE be an elliptic curve defined over k and writeO := Endk(E).

Proposition 2.44. Any non-zero left27 ideal I ⊆ O ofO defines a finite subgroup ofE by

E[I] :=
⋂
α∈I

ker(α) .

Note that iterating over generatorsα of I suffices to compute the subgroupE[I] without enumerating all
(infinitely many) elements of I . (When I = O · ϑ, then simplyE[I] = E[ϑ] := ker(ϑ).)

Factor I asJ ·πr withJ * Oπ and r ≥ 0. Then the cardinality ofE[I] equals the norm ofJ , i.e.,
the greatest common divisor of all norms of elements inJ .

In particular, sinceE[I] is a finite subgroup, I defines an isogeny:

Definition 2.45. For a non-zero left ideal I ⊆ O, let ϕI denote the isogeny with kernel E[I], thus
ϕI = ϕE[I] in our earlier notation. WriteE/I for the codomainE/E[I] of ϕI .

A word of warning: There may exist subgroups which are not of the formE[I] for any I .

From the definition of E[I], it is not very hard to see that multiplying I from the right by
an element γ ∈ O\{0}will not change the codomain (up to k-isomorphism): By construction,
E[Iγ] = γ−1(E[I]) contains ker(γ), hence (using Lemma 2.32) we get a decomposition

E E/γ E E/I

E/Iγ .

γ

ϕIγ

∼=k ϕI

∼=k

Proposition 2.46. Let I be a non-zero left ideal ofO and γ ∈ O\{0}. Then

E/Iγ ∼=k E/I .

In particular, the isogeny codomain defined by a (left) ideal depends only on the class of the ideal.

The significance of this observation can hardly be overstated: It establishes a very strong
relationship between the ideal theory of the endomorphism ring and the structure of the isogeny
graph, a correspondence which equips us with essential tools to analyze the latter.

2.4.4 – Classification of endomorphism algebras. Let us now delve into the properties
of endomorphism rings in various situations. The most important split happens between three
major cases, which we distinguish in terms of the endomorphism algebras:

Proposition 2.47. Let k be a field andE/k an elliptic curve.
• If char(k) = 0, then either Endk(E) = Z or End◦k(E) is an imaginary quadratic field.28

27Since conjugation swaps left and right multiplication, we could just as well speak of right ideals; however, left
ideals appear to be a bit more popular. WhenO is commutative, all sides are of course the same.

28If Endk(E) is larger thanZ, thenE is said to have complex multiplication (or CM for short) over k. When the base
field is unspecified, the term refers to CM over the closure k.

22 MATHEMATICAL PRELIMINARIES

• If k = Fq , then End◦k(E) is either an imaginary quadratic field or a quaternion algebra.

To characterize the possible endomorphism rings inside the endomorphism algebra End◦k(E)

in more detail, we require the following definitions:

Definition 2.48. Let A be a finite-dimensional Q-algebra. A lattice in A is a finitely generated sub-
group that spansA over Q. An order inA is a lattice that is also a subring. The orders inA are partially
ordered by inclusion; a maximal order ofA is one that is not properly contained in any other order inA.

The next two sections elaborate on specifics of the two “interesting” cases of Proposition 2.47:
Quadratic fields and quaternion algebras.

2.4.5 – Quadratic endomorphism rings. For “most” elliptic curves over finite fields, the
situation is comparably simple: Scalar multiplications and the Frobenius endomorphism are
already “the whole story”, at least up to denominators:

Proposition 2.49. LetE/Fq with #E(Fq) = q+ 1− t points, hence the Frobenius endomorphism π

satisfies the equation π2 − tπ + q = 0.
If π /∈ Z, then

End◦k(E) = Q(π) ∼= Q(
√
t2 − 4q) .

In particular, Endk(E) is an order in Q(
√
t2 − 4q) containing Z[π] ∼= Z[

√
t2 − 4q].

The conditionπ /∈ Z is crucial: Ifπ ∈ Z, the endomorphism ring is non-commutative, which
will be discussed in Section 2.4.6. Moreover, note in particular that Proposition 2.49 applies to
all ordinary elliptic curves over a finite field, as well as supersingular elliptic curves defined over
prime fields Fp with p≥ 5, since the condition π /∈ Z is automatically satisfied in these cases.

Recall the following definitions and consequences from algebraic number theory:

Fact 2.50. Consider the imaginary quadratic fieldK = Q(
√
−d) whered> 0 is a square-free29 integer.

The discriminant ∆K ofK is defined to be−d when−d ≡ 1 (mod 4) and−4d otherwise.
There exists a unique maximal orderOK inK consisting of all algebraic integers inK ; it is given by

OK = Z
[∆K +

√
∆K

2

]
.

Every (other) orderO inK is of the form

O = Z + f · OK

where f is called the conductor ofO and equals the index [OK : O]. The discriminant ∆O is f2∆K .
The conjugation automorphism : a+ b

√
−d 7→ a− b

√
−d of K is an automorphism of every

orderO, and it extends to ideals ofO via element-wise application. The product aa is a principal ideal
generated by a non-negative integer N(a) called the norm of a; we have N(a) = gcd {N(α) | α ∈ a}.

A prime number p ∈ Z is inert in O if pO is a prime ideal, split if pO = pp with a prime ideal
p ⊆ O such that p 6= p, and ramified if pO = p2. Only finitely many primes in Z are ramified; the
density of split and inert primes in the set of all primes in Z is 1/2 each.

As seen in Proposition 2.46, multiplying left ideals from the right by base ring elements
leaves the corresponding isogeny codomain unchanged. To symmetrize the treatment of scaling
ideals, it is convenient to allow “ideals with denominators”:

29This is not a restriction: Clearly Q(c2
√
−d) = Q(

√
−d) for all c ∈ Q×.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 23

Definition 2.51. LetA be a Q-algebra andO ⊆ A an order. A fractional left ideal I ofO is a lattice
inA that is closed under left-multiplication byO; similarly on the right. Integral (left or right) ideals are
ideals in the conventional sense, i.e., fractional ideals ofO contained inO.

For a non-zero fractional left ideal I of Endk(E), we abuse notation and still write E/I for
the codomain E/dI , where d is an appropriate scaling factor in Z\{0} such that dI is integral;
this is well-defined by Proposition 2.46.

In quadratic fields in particular, the notion of fractional ideals lends itself to extending the
multiplication of ideals to a group structure:

Fact 2.52. LetO be an imaginary quadratic order. A fractional ideal a ofO is invertible if there exists
another fractional ideal b of O such that ab = O; if an ideal is invertible, the inverse equals a/N(a).
Non-zero ideals of norm coprime to the conductor are always invertible; in particular, this includes all
non-zero ideals of the maximal order. The set of invertible fractional ideals forms a group under ideal
multiplication. The ideal-class group cl(O) of O is the quotient of this group of invertible fractional
ideals modulo the subgroup of principal fractional ideals: two fractional ideals a, b ofO are equivalent
if there exists an element c ∈ K× such that a = b ·c. The cardinality of cl(O) is called the class number
ofO and denoted by h(O).

Writing d = |∆O|, it is known that h(O) ∈ O(
√
d · ln(d)), and moreover that h(O) ∈ Θ(

√
d) on

average. Assuming GRH, a lower bound is given by Ω(
√
d/log log d).

For more background on orders in imaginary quadratic fields, we refer to Cox’ book [Cox13].
We have seen that whenever π /∈ Z, the endomorphism ring of an elliptic curve over Fq is

an order in Q(
√
t2 − 4q) containing π, where t is the trace of the Frobenius endomorphism π.

Conversely, it turns out that most of the quadratic orders that are not “obviously” impossible on
the grounds of lacking a Frobenius element occur as endomorphism rings [Sch87, Theorem 4.3]:

Proposition 2.53. Consider a finite field Fq where q= pr , and an integer t such that t2− 4q < 0.
LetO be an order inK = Q(

√
t2− 4q) containing Z[

√
t2− 4q].

Suppose that p - t, or alternatively that t= 0, r is odd, and p - [OK :O]. Then O occurs as an
endomorphism ring of an elliptic curve over Fq . (Some more special cases were omitted for simplicity.)

We may arrange the elliptic curves in an isogeny class in a layer structure depending solely
on the integer f = [OK :O], which (as we shall see in Section 2.5.1) corresponds to the level
in `-isogeny volcanoes for ` | f . Also note that the previous result includes some instances of
supersingular elliptic curves in particular, which will be used in Chapter 3 in the situation q = p

owing to their beneficial properties from a computational perspective.
As explained in Section 2.4.3, ideals define isogenies, and the codomain only depends on

the class of an ideal. In addition, one can show that the action of invertible ideals does not
change the endomorphism ring, which means we can repeatedly act with more ideals on the
codomain — thus defining an extremely important group action on sets of curves with the same
(quadratic) endomorphism ring:

Definition 2.54. For a field k and an quadratic orderO, we let

È `k(O) = {E/k | Endk(E) ∼= O} /∼=k ,

where each curve in È `k(O) implicitly comes equipped with a fixed isomorphism ιE : Endk(E)
∼−→ O

that respects k-isogenies.

24 MATHEMATICAL PRELIMINARIES

The condition of “respecting k-isogenies” means: For any k-isogeny ϕ : E → E′ between
any two curvesE,E′ in È `k(O), we have

ιE = ιE′ ◦
(
ιϕ|Endk(E)

)
,

with ιϕ being the map from Proposition 2.42.
If k is finite, this simply means that Frobenius is mapped to the same element ofO by all ιE .

Theorem 2.55 (The CM torsor). Let k be a field of characteristic p≥ 0, and letO be an order in an
imaginary quadratic fieldK such that È `k(O) is non-empty. The map

∗ : cl(O)× È `k(O) −→ È `k(O)

([a], E) 7−→ E/a ,

where a ⊆ O is chosen as an integral representative of its class [a], is a well-defined group action.
This group action is free (no two ideal classes act the same on any curve). Whenever p= 0 or p is inert

inO, it is transitive (every pair of curves is connected); otherwise, there are two orbits. In particular, the
cardinality |È `k(O)| equals either h(O) or 2 ·h(O).

Note that the case of two orbits is extremely rare: At the very least, it requires supersingular
elliptic curves defined over k = Fq with p2 | t2 − 4q; see [Sch87, Theorem 4.5].

Since we will make computational use of the group action from Theorem 2.55 in Chapter 3,
let us unfold the definition into something more explicit:

Proposition 2.56. Let E/k and suppose O := Endk(E) equals Z[τ] where τ = (π−m)/f with
integersm, f . Then any ideal a ⊆ O of normN ≥ 0 is either of the form (

√
N) or of the form (N, τ −λ),

where λ ∈ Z/N is an eigenvalue of τ onE[N].
In the latter case, the subgroupE[a] is precisely the eigenspace of τ onE[N] with eigenvalue λ, i.e.,

the subgroup ofN-torsion points on which τ acts as multiplication by λ.

We refer to [DKS18] for more details, and to Chapter 3 for the specialization τ2 = −p.

2.4.6 – Quaternionic endomorphism rings. For supersingular elliptic curves, the picture
is quite a bit more complicated: They have “extra” endomorphisms which do not all commute
with each other:

Example 2.57. Consider the elliptic curveE : y2 = x3 + x over Fp with p ≡ 3 (mod 4). Clearly, we
have the Fp-Frobenius endomorphism π : E → E, (x, y) 7→ (xp, yp). In addition, when viewed as a
curve over Fp2 , the curve admits the automorphism

ι : E → E, (x, y) 7→ (−x,
√
−1 · y)

of order four, which anticommutes with π since
(√
−1
)p

= −
√
−1. Thus, the endomorphism algebra

End◦(E) is generated by ι and π, which are subject to the relations ι2 = −1, π2 = −p, and πι = −ιπ.
Similarly, letting p ≡ 2 (mod 3) and fixing a primitive third root of unity ζ ∈ Fp2 , the curve

E′ : y2 = x3 + 1 defined over Fp acquires the automorphism

ω : E′ → E′, (x, y) 7→ (ζ · x, y)

when the base field is extended to Fp2 . Note that again πω = −ωπ where π is the Fp-Frobenius ofE′.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 25

These examples may seem somewhat pathological since in both cases the “extra” endo-
morphisms are actually automorphisms, but the phenomenon extends to many more curves:
At the very least, Proposition 2.42 shows that every curve isogenous to these curves will exhibit
non-commuting endomorphisms, and with some more work one can show that this happens
for all supersingular elliptic curves.

2.4.7 – Quaternion algebras. Example 2.57 shows special cases of quaternion algebras:

Definition 2.58. Let p be a prime number and let a, b denote positive integers specified below. The
quaternion algebra ramified at p and∞, denoted byBp,∞, is a four-dimensional Q-algebra spanned
by basis elements 1, i, j, ij with multiplication law

i2 = a , j2 = b , and ij = −ji .

When p ≡ 3 (mod 4), let (a, b) = (−1,−p). When p ≡ 1 (mod 4), pick a prime q ≡ 3 (mod 4)

that is non-square modulo p and let (a, b) = (−q,−p).30 When p = 2, let (a, b) = (−1,−1). All pairs
(a, b) adhering to these conditions yield isomorphic algebras, andBp,∞ is unique up to isomorphism.

Note that p= 2 yields the quaternions as discovered by Hamilton in 1843, often written H
in his honour, and all otherBp,∞ are in a sense “just” distorted versions ofHwith the axes scaled
by real quadratic integers. (Algebraically speaking, this change is of course quite significant.)

The most comprehensive reference on quaternion algebras is Voight’s book [Voi18]. For now,
recall Definitions 2.48 and 2.51.

2.4.8 – Deuring’s correspondence. As hinted above, (full) endomorphism rings of super-
singular elliptic curves are subrings of a quaternion algebra:

Proposition 2.59. LetE be a supersingular elliptic curve defined over a field k of characteristic p > 0.
Then End◦(E) ∼= Bp,∞, and End(E) is a maximal order inBp,∞.

While supersingular endomorphism rings are quaternionic over the closure, generally not all
endomorphisms are defined over the base field (see Example 2.57). How large a field extension
is needed to acquire all endomorphisms? From Proposition 2.49, we know that π /∈ Z implies
that the k-endomorphism ring is an imaginary quadratic order. The converse is also true:

Proposition 2.60. Let k=Fq be a finite field of characteristic p and E an elliptic curve over k with
Frobenius π. Then Endk(E) is non-commutative, i.e., a maximal order inBp,∞, if and only if π ∈Z.31

In stark contrast to the commutative case, maximal orders in quaternion algebras are far
from unique. Thus, while in the commutative case the endomorphism rings of many curves may
be exactly the same (by Theorem 2.55), one may wonder to what extent a supersingular curve
can be recovered from its endomorphism ring, a question that was answered by Deuring in an
influential 1941 paper [Deu41]:

Theorem 2.61 (The Deuring correspondence). Let p be a prime and σ : α 7→ αp the nontrivial
automorphism of Fp2 . Taking endomorphism rings induces a bijection

{j(E) | E/Fp supersingular} / 〈σ〉 ∼←→ {maximal ordersO ofBp,∞} /∼= .

30The existence of such a q is guaranteed by Dirichlet’s theorem on primes in arithmetic progressions.
31Strangely, even though the propertyπ ∈Z suggests that the curve “should” end up having fewer endomorphisms

than “normal”, the exact opposite is the case: These curves are precisely the odd ones out with more endomorphisms!

26 MATHEMATICAL PRELIMINARIES

In particular, for every maximal orderO ofBp,∞, there exist either one or two isomorphism classes of
supersingular elliptic curves over Fp with endomorphism ring (isomorphic to)O. There is only one such
curveE if and only if j(E) ∈ Fp. Otherwise, the two curves have conjugate j-invariants in Fp2\Fp, so
in particular the two curves are connected by the Frobenius isogeny πp : (x, y) 7→ (xp, yp).

Even more pleasantly, there is an analogue of the free and transitive group action from The-
orem 2.55, except that one-sided ideals do of course not form a group:

Definition 2.62. The right order of a lattice I inBp,∞ is

OR(I) = {α ∈ Bp,∞ | Iα ⊆ I} ;

the left order is defined analogously. In other words, the right (resp. left) order is the largest subring of
Bp,∞ for which I is a right (resp. left) fractional ideal.

Two fractional left ideals I,J of a maximal order O ⊆ Bp,∞ are (left) equivalent if there exists
γ ∈ B×p,∞ such that J = Iγ. As usual, we write [I] for the class of I , i.e., the set of all left fractional
ideals equivalent to I . The left (ideal-)class set ClsL(O) is the set of all non-zero ideal classes [I].32

Proposition 2.63. Let E0 be a supersingular elliptic curve over Fp and writeO0 := End(E0). For
every supersingular elliptic curveE/Fp, there is a unique left ideal class [I] ofO0 such thatE0/I ∼= E.33

The endomorphism ring of the isogeny codomainE0/I is isomorphic to the right order34 of I :

End(E0/I) ∼= OR(I) ⊆ End◦(E0) ∼= Bp,∞ .

(The embedding End(E0/I) ↪→ End◦(E0) is the restriction of the map ιϕ̂I from Proposition 2.42.)

Proposition 2.64. LetE0, E1 be supersingular elliptic curves over Fp and writeOi := End(Ei) for
short. Fix isomorphisms End◦(Ei)

∼−→ Bp,∞ and identifyOi with their images.
Then, the fractionalO0-left andO1-right ideal I := O0 · O1 satisfiesE0/I ∼= E1.

The choice of isomorphisms End(Ei)
∼−→ Bp,∞ in Proposition 2.64 is important: It resolves

the apparent contradiction that I is defined only in terms of endomorphism rings, yet allows to
recover the curve exactly, whereas by Theorem 2.61 there are often two curves with isomorphic
endomorphism rings.

2.4.9 – Representatives of ideal classes. Recall from Section 2.3.1 that we typically need a
separable isogeny to have smooth (or, in general, powersmooth) degree to be able to efficiently
compute it from its kernel. This observation carries over to computing an isogeny from a de-
fining ideal, as this (usually) consists of first recovering generators of the kernel subgroup and
then applying Vélu-style algorithms. Recalling Proposition 2.44, the complexity of these steps is
determined by the prime factorization of the norm of the ideal.

Since the codomain of an isogeny only depends on the ideal class (Proposition 2.46), we may
try to find a more suitable representative of an ideal class when the norm is not smooth enough.
To this end, it is known abstractly that for all primes ` 6= p, every class of non-zero quaternion
left ideals has a representative of `-power norm [Voi18, Main Theorem 28.5.3]:

Proposition 2.65. LetO be a maximal order inBp,∞ and I ⊆ O a non-zero left ideal. For any prime
` 6= p, there exists a left idealJ ∈ [I] whose norm is a power of `.

32Similarly to the quadratic case, defining this for general orders requires an invertibility condition, but we restrict
to maximal orders as the general case will not be needed in the following.

33The choice of I in its class does not matter, though it does generally yield different isogeniesϕI : E0 → E.
34Mnemonic: “When left with an ideal, the right order is the right order.”

2.5. ISOGENY GRAPHS 27

Combining this result with Proposition 2.64 yields the important fact that the supersingular
`-isogeny graph is connected for all primes ` 6= p; see also Section 2.5.3.

It is not known unconditionally how to make Proposition 2.65 effective. However, there is a
clever heuristic algorithm [KLPT14] to solve this problem (and related problems with other kinds
of target norms) in polynomial time for special maximal orders, under the assumption that cer-
tain integers appearing in the algorithm have “random” factorization properties. Concretely,
special orders are those containing Z + Zi + Zj + Zij, where q in Definition 2.58 is as small as
possible.

Theorem 2.66 (The KLPT algorithm). There is a heuristic algorithm which, given as input a basis
of a special maximal order in Bp,∞, a basis of a non-zero left ideal I ⊆ O, and a prime ` 6= p, returns
a basis of an ideal J ∈ [I] such that N(J) = `n for some integer n≥ 0. If the size of the input is
polynomial in log p,35 the runtime is heuristically polynomial in log p.

Under some more heuristic assumptions on sizes of integers, the norm ofJ can be estimated as p7/2.

As the KLPT algorithm is quite technical, we refer to [KLPT14; GPS17; DeF+20] for details and
only give a short overview: Note that if δ ∈ I has norm N(I) ·m, then Iδ/N(I) is an equivalent
ideal of normm. (We refer to this fact as the fact during this paragraph.) KLPT first reduces to the
case of ideals of prime norm: pick random δ ∈ I until N(δ) = N(I) · N with N prime; hence,
by the fact we may assume that I has prime normN . Then I can be written as I = O(N,α) for
some α ∈ O; such an α is again easily found randomly. The next step (which in turn consists
of a few rather technical substeps) is to factor the element α as βγ modulo N , where β ∈ O is
of norm N`b for some b≥ 0 and γ ∈ Zj + Zij. Finally, the core of the algorithm is an effective
version of the strong approximation theorem, which allows lifting the element γ ∈ Zi + Zij to a
pair (λ, γ′) ∈ Z × O such that γ′ ≡ λγ (mod N) and N(γ′) = `c for some c≥ 0. Finally, note
thatO(N, βγ′) = O(N,α) = I , hence βγ′ ∈ I, so we can apply the fact with δ = βγ′ to obtain
an ideal of normN`b`c/N = `b+c equivalent to I as desired.

The steps that compute β and γ′ are largely agnostic to the kind of target norms they are
requested to output; in particular, it is very easy to adapt the algorithm to powersmooth norms.

Notice that the KLPT algorithm can be used to efficiently compute the ring-to-curve direc-
tion of the Deuring correspondence (Theorem 2.61): Given any maximal orderO in Bp,∞, pick
an arbitrary supersingular curve with a known “special” maximal order as endomorphism ring,
and apply KLPT to a connecting ideal (which can be computed as shown in Proposition 2.64) to
obtain a powersmooth representative. Then, simply compute (a prime-power decomposition
of) the subgroup defined by the ideal (see Proposition 2.44), and proceed as explained in Sec-
tion 2.3.3 to obtain the equation of a curve with endomorphism ring O. The other direction of
the Deuring correspondence appears to be much harder: The best known algorithm to compute
endomorphism rings of supersingular elliptic curves essentially consists of searching cycles in
an isogeny graph (cf. Section 2.5.4) until enough endomorphisms to span the entire ring have
been found. See [Koh96, Section 7] and [Eis+20].

2.5 — Isogeny graphs

Armed with the tools from Section 2.4, we can now discuss isogeny graphs in more detail. Recall
the notation from Definition 2.36: Let k be a field,S a set of positive integers, andGk,S the graph

35A priori, it is not obvious that a basis with representation size polynomial in log p exists for every maximal order
in Bp,∞; this follows from a geometry-of-numbers argument [Eis+18, Theorem 2]. Similarly, an ideal whose norm is
polynomial in p can be represented with size polynomial in log p.

28 MATHEMATICAL PRELIMINARIES

consisting of elliptic curves and isogenies of degree in S , all up to k-isomorphism.
We consider three situations: The `-isogeny graphs and S-isogeny graphs in the “volcanic”

case (left side of Figure 2.1 and Figure 2.2), and the `-isogeny graph in the Pizer case (right side
of Figure 2.1).

2.5.1 – Volcanoes. The first case are isogeny volcanoes: The kind of connected components
one gets by restricting one’s attention to a single prime degree in the commutative case. A good
overview of the contents of this section is given in Sutherland’s Isogeny Volcanoes [Sut12b]; see
Kohel’s PhD thesis [Koh96] for a more in-depth discussion.

Throughout this section, let `denote a prime number not equal to the characteristic of k. Let
us first make the informal description of isogeny volcanoes given in Section 2.3 precise:

Definition 2.67. An `-volcano of depth d≥ 0 is an undirected graph V consisting of a single cycleC
(which may be just one node), such that each node ofC is the root of a complete tree of depth d, and such
that every node has degree 0, 1, 2, or `+1.

The subgraph C is called surface or crater. The level of a node v is the distance from the surface.
The floor consists of nodes at level d. Isogenies between curves at the same level are called horizontal,
isogenies from level i to level i+1 are descending, and isogenies from level i to i−1 are ascending.

Components of isogeny graphs of elliptic curves with imaginary quadratic endomorphism
rings (recall from Proposition 2.42 that this property is invariant under k-isogenies) are almost
always volcanoes:

Proposition 2.68. Let k be finite and let V be a connected component of Gk,` containing a curve E
with Endk(E) commutative. Suppose V does not contain a curve with j-invariant 0 or 1728.

Since all curves inV are k-isogenous, their Frobenius ordersZ[π] and endomorphism algebrasK are
the same. Let f denote the conductor of Z[π], i.e., its index in the ring of integersOK . Define d = v`(f),
i.e., the multiplicity of ` in the prime factorization of f .

Then V is an `-volcano of depth d. All curves at level i∈{0, ..., d} have k-rational endomorphism
ringOi := Z + (f/`d−i)OK . If ` splits inO0, then the size of the crater of V equals the order of [l] in
the ideal-class group cl(O0), where l is anO0-ideal of norm `; otherwise, the crater has size 1.

The proof relies on Proposition 2.43 and Theorem 2.55. The two special cases j ∈{0, 1728}
are not much different, but must be excluded for the technical reason that they may have addi-
tional automorphisms which collapse more isogenies into one edge than “usual”. In these cases,
however, the graph is still very volcano-esque, with a crater of size one, and the only failure is
that the crater node has more outgoing than incoming edges; all other structural properties of
the graph remain the same. See Figure 2.3 for examples. As the differences are minor, localized at
no more than two exceptional nodes, and usually do not impact applications, we will generally
largely ignore this issue.

Based on the following theorem of Lenstra, we can moreover see that the structure of the
subgroup of k-rational points is the same for all curves on the same level.

Theorem 2.69 [Len96, Theorem 1]. Consider an elliptic curve E over k = Fq with Frobenius endo-
morphism π and writeO = Endk(E). Let Fqn be a finite extension of k = Fq .

• If π /∈Z, thenE(Fqn) ∼= O/(πn − 1) asO-modules.
• If π ∈Z, then E(Fqn) ∼= Z/(πn − 1) × Z/(πn − 1) as abelian groups. Furthermore, as left
O-modules, we haveE(Fqn)⊕ E(Fqn) ∼= O/(πn − 1).

2.5. ISOGENY GRAPHS 29

y2 = x3+x
`=2

`=3

y2 = x3+1

`=2

`=3

Figure 2.3: Almost-volcanoes with extra automorphisms on the crater: Components of `-isogeny graphs over F1753.
Observe that special behaviour occurs only at the crater, whereas all lower levels look like “normal” volcanoes.

Moreover, when the curves have some k-rational `-power torsion, the distance of a curve
from the floor often expresses itself in the structure of that subgroup [IJ13, § 2.3]:

Proposition 2.70. Let k=Fq andE/k an elliptic curve with Frobenius π /∈Z, so thatO = Endk(E)

is commutative. Let f denote the conductor of Z[π] andm the index of Z[π] inO. Furthermore, let a∈Z
with 2a ≡ tr(π) (mod f). ThenO = Z

[
π−a
m

]
and

E(k) ∼= Z/N × Z/M ,

whereN = gcd(a− 1,m) andNM = #E(k). Moreover,N |M andN | q−1.
In particular, writing ν = v`(N), µ = v`(M), and letting δ = v`(m) be the distance ofE from the

floor, we have δ ≥ ν. Moreover, equality δ = ν holds if ν < µ.

We refer to [IJ13] for more details about the structural relationship between volcanoes and
rational subgroups. Note that there are examples where ` - #E(k) in an `-volcano of depth≥ 1,
hence the rational group structure is strictly weaker information than the conductor of Endk(E).

Algorithms to compute endomorphism rings of ordinary elliptic curves over finite fields rely
on walking in isogeny volcanoes to determine their structure, which (as we have seen) relates
the location of a curve in the volcano to its endomorphism ring. See [Koh96] and [Bis12]; the
latter also makes use of some facts discussed the following section.

2.5.2 – Schreier graphs. Isogeny volcanoes do not look like very promising candidates for
building cryptography: Assuming `-isogenies can be computed efficiently, walking up to the
surface is easy (this is in fact done in Kohel’s algorithm), and walking on a large cycle does not
feature any asymmetry in the complexities of doing the walk vs. recovering a path from start and
end nodes: Both take timeO(#steps).

Thus, we consider graphs arising as the union of various `-isogeny volcanoes on the same
set of (isogenous) curves, such as the small example depicted in Figure 2.2. The intuition is that
combining edges from various isogeny graphs introduces “shortcuts” allowing short walks to
any node, in a sense that will be made precise below.

Definition 2.71. Let ∗ : G × X → X a free action of an abelian group G on a set X , and consider
a subset T ⊆ G\{0} closed under inversion. The Schreier graph of T on X has vertex set X , and two
nodes x, x′ ∈ X are connected by an edge if and only if x′ = g ∗ x for some g ∈ T .

30 MATHEMATICAL PRELIMINARIES

Note that for comparison with traditional group-based Diffie–Hellman, we can reinterpret
the well-known square-and-multiply algorithm (see Section 2.1.1) for fast exponentiation in a
finite cyclic groupG = 〈g〉 as a particular kind of short walk in the Schreier graph ofG acting on
itself via multiplication,36 with the set of generators T = {g±1, g±2, g±4, g±8, ..., g±2blog2|G|c}.

In particular, we can apply the Schreier graph construction to the class-group group action
from Theorem 2.55, which yields graphs such as the small example shown in Figure 2.2. However,
it is a priori not at all clear that combining isogeny cycles yields better connectivity properties:
It might happen that two curves are `′-isogenous if and only if they are `-isogenous, and in this
case we would only change the multiplicity of edges. Fortunately, one can prove (assuming the
generalized Riemann hypothesis) that combining sufficiently many isogeny volcanoes suffices
to guarantee the existence of logarithmically short paths between all nodes, based on the fol-
lowing observation [JMV09, Lemma 2.1]:

Proposition 2.72 (Rapid mixing). Consider a connected d-regular undirected multigraph Γ with n
vertices. LetA denote its adjacency matrix and let λ1 ≥ · · · ≥ λn be the eigenvalues ofA. (There are n
real eigenvalues asA is symmetric.) Define λ := max{|λ2|, ..., |λn|}.

Suppose λ < d, and letK ⊆ Γ be a subset of size k ≥ 1. Then, a random walk in Γ of length at least

logd/λ
2n√
k

ends inK with probability between 1
2k/n and 3

2k/n.

Thus, bounding the eigenvalues of the adjacency matrix of an isogeny graph will allow us to
determine its mixing properties. We say that a graph is an expander if Proposition 2.72 applies
with λ/d ≤ κ for some constant κ< 1. Indeed, we may then conclude that random walks of
logarithmic length mix well, and in particular that any two nodes are connected by a logarith-
mically short path.

As advertised above, the crux is that components with commutative endomorphism rings of
S-isogeny graphs for sufficiently large sets of primesS satisfy the conditions of Proposition 2.72:

Theorem 2.73 [JMV09]. Let q be a prime power andO an imaginary quadratic order such that È `q(O)

is non-empty. Pick a constantB > 2 and define

S =
{
` ∈ Z prime | ` ≤ (log 4q)B

}
.

Then, assuming GRH, the subgraph Γ induced byGFq,S on È `q(O) is an expander as q →∞.

2.5.3 – Pizer graphs. We shall now discuss supersingular isogeny graphs over Fp. Since
there are only p/12 + O(1) supersingular j-invariants over Fp, the examples for very small p
are relatively uneventful and easily analyzed individually, and we will generally assume in this
section that p is a “large” prime (certainly p ≥ 5). First, note that the supersingular component
of the isogeny graph overFp can equivalently be viewed as a supersingular component overFp2 :

Proposition 2.74. Let ϕ : E1 → E2 be an isogeny of supersingular elliptic curves defined over Fp.
Then there exist elliptic curvesE′1, E′2/Fp2 and isomorphisms αi : Ei → E′i such that

ϕ′ := α2 ◦ ϕ ◦ α−1
1

is an Fp2-rational isogenyE′1 → E′2.
36The Schreier graph of a group acting on itself by multiplication is much more well-known as its Cayley graph.

2.5. ISOGENY GRAPHS 31

Hence we may restrict our attention to a supersingular component (say, curves with (p+1)2

points) of isogeny graphs over Fp2 , which is computationally much easier to grasp than Fp.
The name Pizer graphs for supersingular isogeny graphs over Fp stems from the following

theorem, which shows that Pizer graphs have mixing properties as good as it gets: They are
Ramanujan graphs.

Theorem 2.75 [Piz90]. Let p and ` be distinct primes with `< p/4. Then, the supersingular `-isogeny
graph overFp is an expander. In particular, in the notation of Proposition 2.72, we haveλ ≤ 2

√
`, which

is asymptotically optimal.

Is there anything else to say about Pizer graphs? Contrary to the volcanic case, there appears
to be very little regular structure in Pizer graphs besides the natural subgraph of curves defined
overFp. However, there are actually many more “hidden” volcanic subgraphs in any supersingu-
lar `-isogeny graph over Fp: it just seems computationally hard to determine if a given curve lies
on one of them or not. The underlying raison d’être for the hidden volcanoes is a functorial cor-
respondence between pairs (E,α) whereE/Fp andα ∈ End(E), and pairs (E , A) with E/C and
A ∈ End(E), such that reduction modulo a prime ideal of (E , A) yields (E,α). This connection
is given by Deuring’s lifting and reduction theorems (Theorem 5.26 and 5.30).

Computationally, the trouble is that it seems difficult to “see” the structure induced by a
particular quadratic subring of a maximal order in Bp,∞, without first going through the ef-
fort of computing endomorphisms — a problem that appears (and is often assumed) to be hard.
However, Colò and Kohel [CK19] have made constructive use of quadratic subrings embedded
in quaternionic endomorphism rings to construct a key-exchange algorithm named Oriented
Supersingular-Isogeny Diffie–Hellman (OSIDH); see also [Onu20] for a more detailed explanation
of the underlying group action including proofs.

2.5.4 – The isogeny problem. Let us briefly summarize the state of the art of isogeny com-
putation. In cryptographic applications, there are many slightly or substantially different vari-
ations of isogeny-finding problems. Probably the most general variant is what we refer to as the
“pure” isogeny problem:

Definition 2.76. The (pure) isogeny problem is to compute an isogeny between two given elliptic
curves E,E′ known to be isogenous over a field k. (Usually, it is implicitly assumed that the inputs are
given as a list of Weierstraß coefficients, and that the output is to be represented “efficiently”: for instance,
as a polynomially-sized description that can be evaluated at points efficiently.)

Variants of the isogeny problem commonly used in cryptography can be both easier and
harder: For instance, it may be required that the isogeny be defined over a specific field, have
(power)smooth or small degree, induce a prescribed group homomorphism on some subgroup,
or any combination of such constraints. Interestingly, even though prescribed action on a sub-
group is an additional demand, it can actually help an attacker: Knowing the restriction of an
isogeny of known degree to a sufficiently large torsion subgroup opens the door to torsion-point
attacks; see Chapter 7 in this thesis. In contemporary isogeny-based cryptography, it is often the
case that solving the pure isogeny problem suffices to break the scheme, but it is typically not
known whether breaking the cryptosystem always solves the isogeny problem; indeed, known
attacks suggest that this may be false in some cases.

To briefly survey the existing algorithms for the isogeny problem over finite fields, let k=Fq
of characteristic p.

32 MATHEMATICAL PRELIMINARIES

Commutative endomorphism rings. For curves with commutative endomorphism rings, the
best known algorithms are refinements of an algorithm due to Galbraith [Gal99]. In a nutshell,
given two elliptic curvesE1, E2 with the same number of points over a finite field, the algorithm
consists of “walking up” to the crater of every `-volcano, yielding two curves E′1, E′2 with the
maximal order as endomorphism rings, hence by Theorem 2.55 they must must be connected
by a horizontal isogeny.37 Such an isogeny is then found either by generic meet-in-the-middle
(grow trees from both target nodes using random isogenies of varying degrees until they meet),
or quantumly [CJS14] by reducing to a hidden-shift problem as in Example 2.82. The classical al-
gorithm takes exponential time Õ(q1/4), whereas the quantum algorithm is (under GRH) subex-
ponential with complexityLq[1/2,

√
3/2] ⊆ exp((log p)

1
2 +o(1)).

Quaternionic endomorphism rings. In the non-commutative case (i.e., supersingular overFp2),
every `-isogeny graph is connected (Theorem 2.75), so running a generic path-finding algorithm
on just one `-isogeny graph is sufficient and takes time Õ(p1/2) with a simple meet-in-the-
middle approach.38 Delfs and Galbraith [DG16] achieve the same time complexity using signi-
ficantly less memory by splitting the computation into two stages: Approximately a square-root
fraction (see Fact 2.50) of all supersingular elliptic curves are in fact already defined over Fp;
thus, we first search for a path to that (easily recognizable) subgraph and then solve an easier
isogeny problem over Fp using any of the methods for the commutative case. The asymptotic
time complexity is roughly the same as that of the naïve algorithm since the complexity of find-
ing the Fp-subgraph by brute-force random walks remains Õ(p1/2), but Delfs–Galbraith is es-
sentially memoryless and hence much more efficient than naïve meet-in-the-middle on realistic
computer architectures.

Using quantum computers, one can do better: Biasse, Jao, and Sankar [BJS14] noticed that
applying Grover’s algorithm (Section 2.6.4) to the first stage (finding the Fp-subgraph) reduces
the overall complexity of finding an isogeny to Õ(p1/4). Moreover, a quantum claw-finding al-
gorithm due to Tani [Tan07] has been claimed to recover an isogeny of known smooth degree d
usingO(d1/3 · polylog(p)) operations, but Jaques and Schanck [JS19] argue that the complexity
is actuallyO(d2/3 · polylog(p)) when accessing data structures is properly costed.

2.6 — Quantum algorithms

This section gives a brief account of the basics of quantum computing. However, quantum al-
gorithms (and quantum physics even more so) are broad topics and we cannot possibly hope
to contain all of it in this short overview. For deeper insights, we refer to Chuang and Nielsen’s
Quantum Computation and Quantum Information [NC11].

2.6.1 – Computational model. We summarize the mathematical formulation of quantum
computing. Note that there are multiple proposals for physical realizations of this model, each
with different advantages and drawbacks, but the fundamental view of quantum computing
does not change — very much like conventional general-purpose computing architectures differ
in aspects such as instruction sets and efficiency, but not in their fundamental capabilities.

Qubits. The fundamental unit of data in quantum computing is the qubit.39 Mathematically,
it is represented as a two-dimensional complex vector spaceH . Alluding to conventional digital

37Except for the pathological special cases with two orbits, but those can be avoided by twisting the input curves.
38Recall that there are p/12 +O(1) supersingular j-invariants.
39Not to be confused with the cubit, an entirely classical (even ancient) unit of length.

2.6. QUANTUM ALGORITHMS 33

computers, two arbitrary orthogonal vectors are labeled |0〉 and |1〉 and called the computational
basis or standard basis.40 The states of a qubit are unit vectors α|0〉 + β|1〉 ∈ H . When α, β 6= 0,
such a state is referred to as a superposition of |0〉 and |1〉. The complex coefficientsα, β are called
amplitudes of the corresponding basis states |0〉, |1〉.

Note that generally, multiplying a quantum state by a complex constant of norm 1 yields a
physically indistinguishable state: “Global phase does not matter.” Hence, the state space of a
qubit is actually more correctly viewed as a complex projective line CP1. In this spirit, we will
often abuse notation and omit global scaling factors in C when writing down quantum states.

Measurements. Qubits can be measured with respect to arbitrary orthogonal bases: Mathem-
atically, this simply means sampling a basis state at random with the probability of each basis
state given by the square of the norm of its amplitude. Hence, when measuring α|0〉 + β|1〉 in
the computational basis, the outcome is |0〉 with probability |α|2 and |1〉 with probability |β|2.
During the measurement, the state collapses, i.e., the qubit remains in the observed basis state.

Entanglement. The crucial physical property that distinguishes quantum computing from
classical computing is entanglement: Qubits can be combined in such a way that their state spaces
become dependent, which most importantly means that the state of one qubit is influenced by
measuring the other. Mathematically, this is formalized by viewing the joint state of multiple
qubits as a tensor product of the individual state spaces.41 For example, a two-qubit system is
a four-dimensional complex vector space spanned by the elementary tensors |0〉⊗ |0〉, |0〉⊗ |1〉,
|1〉⊗ |0〉, |1〉⊗ |1〉. For ease of notation, we will usually write the state |a〉⊗ |b〉 simply as |ab〉.
A state in a joint state space H1 ⊗ H2 is called entangled if it is not an elementary tensor, i.e.,
cannot be written as ψ1 ⊗ ψ2 with ψi ∈ Hi. An example: In the two-qubit case above, the state
|00〉 + |11〉 is entangled, but the state |00〉 + |01〉 equals |0〉 ⊗

(
|0〉 + |1〉

)
and is therefore not

entangled.42 Separable states are non-entangled states.
Quantum algorithms are commonly formulated using notation like |x〉with x some math-

ematical object (often an integer): This is shorthand for fixing some encoding enc(x) ∈ {0, 1}`

as a bit string and referring to the state |enc(x)〉.

Measuring entangled states. When measurements are applied only to a subset of the qubits in
an entangled state, the joint state collapses into something compatible with the measurement.
For example, measure the first qubit of the state |00〉 + |10〉 + |11〉 in the computational basis:
With probability 1/3, the outcome is |0〉, leaving the system in the state |00〉. Otherwise, the
outcome is |1〉, which leaves the system in the (separable) state |10〉+ |11〉 = |1〉⊗

(
|0〉+ |1〉

)
.

Unitaries. Besides measurements, the only other operations one can apply on a quantum
computer are unitary operators (or unitaries for short): For n-qubit systems, they are described
by complex 2n× 2n matrices U such that UTU = 1. (Equivalently, U is an isometry for ‖ ‖2.)
Applying a unitary to a n-qubit state then simply consists of a matrix-vector multiplication.43

40The integers 0 and 1 in the bra-ket notation | 〉 do not have any inherent meaning; the basis states could just as
well be called v andw or even |pineapple〉 and |pizza〉. However, |0〉 and |1〉 are common because the representation of
data on qubits resembles classical digital encoding.

41When qubit states are formalized as points in CP1 instead, this tensor product is replaced by the Segre embedding
CPn × CPm ↪→ CPnm+n+m.

42These vectors clearly do not have norm 1: Recall that we omit global scaling factors.
43In the projectivized view of ann-qubit state as a point inCP2n−1, we may also quotient unitaries by the subgroup

of scalar matrices; hence unitary operators may be viewed as elements of the projective unitary group PU(2n).

34 MATHEMATICAL PRELIMINARIES

Real quantum computers are expected to implement only a very small subset of all possible
unitaries — these building blocks are called (quantum) gates analogous to classical computing —
and more complex unitaries44 have to be constructed by composing potentially very many of
these gates. All quantum gates are invertible by definition, which turns out to pose a challenge
for algorithms design; see the discussion of “uncomputation” in Section 9.11.3.

Quantum gates. We list some of the most important quantum gates:

• The Hadamard gate H maps |0〉 to |0〉 + |1〉 and |1〉 to |0〉 − |1〉. Applied to an array of n
qubits simultaneously, the operator H⊗n is frequently used as a first step in quantum
algorithms to set up a uniform superposition of all bit strings of length n.

• The PauliX gate swaps |0〉 and |1〉, so it corresponds to the classical NOT gate.
• The phase-shift gate Rφ leaves |0〉 unchanged and scales |1〉 by eiφ. Notably, applying Rφ

does not immediately influence measurements, but the hidden phase information can
subsequently be processed further to be made useful. In fact, phase estimation is the core
of Shor’s and Kuperberg’s algorithms (Sections 2.6.2 and 2.6.3).

• For any unitaryU operating onnqubits, controlled-U is the unitary on 1 +nqubits leaving
all states |0〉⊗ψ unchanged and mapping |1〉⊗ψ to |1〉⊗Uψ. Thus, it may be interpreted
as applyingU in superposition conditioned on the controlling qubit.

A quantum algorithm consists of applying a sequence of quantum gates to an array of qubits,
possibly intertwined with measurements. (Intermediate measurement outcomes may influence
the choice of gates to apply in the future; see [JS19] for an in-depth discussion of the interplay
between classical control hardware and quantum experiment.)

Quantum algorithms are often expressed and rendered graphically as circuits, but note that
the picture represents a temporal sequence of unitaries applied one after another by control
hardware, rather than a spatial arrangement of physical gates (such as when drawing classical
electronic circuits).

Quantum≥ classical. It is not immediately clear that quantum computers are no less power-
ful than classical computers. The first hurdle is gate completeness: Can we express enough
Boolean operations in terms of unitaries to build arbitrary circuits? It is not hard to see that clas-
sical XOR is simply controlled Pauli X, also known as CNOT, which maps (|a〉, |b〉) 7→ (|a〉, |a⊕ b〉).

Unfortunately, for nonlinear operations such as AND, implementing (|a〉, |b〉) 7→ (|a〉, |a&b〉)
in place is impossible as the pair (a, b) is not uniquely determined by (a, a & b), hence such
a transformation cannot be unitary. Instead, we add an auxiliary ancilla qubit and compute
(|a〉, |b〉, |c〉) 7→ (|a〉, |b〉, |c ⊕ (a & b)〉). This unitary is known as a Toffoli gate and consists of
simply swapping |110〉 and |111〉while leaving all other basis states unchanged. Applying this
operation with c= 0 clearly leaves us with a& b in the third qubit, and since {NOT, XOR, AND} is a
complete set of gates we may conclude that any classical circuit can equivalently be expressed
as a quantum computation in principle.

Note there are quite a few more devils in the details of computational models for quantum
algorithms, as well as various conversions of classical computation to quantum computation.
See Section 9.11 for some extended discussion on this matter.

2.6.2 – Shor’s algorithm. After this short introduction to quantum computing, let us have
a look at a particular — and perhaps the most famous — quantum algorithm: Shor’s algorithm.

44No pun intended.

2.6. QUANTUM ALGORITHMS 35

There are several variants of the algorithm: It was originally [Sho94] described for integer
factorization and discrete logarithms in (Z/n)×, but both of these applications can be recast in
the more general framework of recovering the period lattice of an efficiently computable periodic
function [BL95; Kit96]; see Theorem 2.79 below.

The core technical ingredient in all these results is the quantum Fourier transform (QFT):

Definition 2.77. For a positive integerN , the quantum Fourier transform QFTN takes |a〉 to the state

1√
N

N−1∑
j=0

eaj·2πi/N |j〉 .

It was Shor’s observation that the QFT can be computed efficiently whenN is smooth: Then, one
may mimic classical fast Fourier transform algorithms (e.g. Cooley–Tukey) to quickly compute
the QFT. ForN = 2n the resulting quantum circuit consists ofO(n2) Hadamard and controlled
phase-shift gates. Note that it is not known how to efficiently compute the QFT for arbitraryN ;
however, in applications it is usually sufficient to approximate QFTN by another QFTN ′ for
smooth N ′ ≥ N . Bounds on the error introduced by this substitution can be obtained using
Fourier analysis.

Given that the QFT is a Fourier transform, it should not come as a huge surprise that we can
use it to detect periods in functions:

Example 2.78 [Sho97a]. Let f : Z → S be an efficiently computable function to some set S with an
unknown period λ ∈ Z that is no more, but also not much less, than ` bits long. Then we may recover λ
as follows:

• Letm = 22`. Perform the quantum operations∑
x

|02`〉 H⊗2`

7−→
∑
x

|x〉 f7−→
∑
x

|x〉 |f(x)〉

QFTm7−→
∑
x

∑
y

exy·2πi/m |y〉 |f(x)〉 ,

where all sums range from 0 tom−1 and the QFT is applied to the first register.
• Measure the first register. The probability of getting a particular outcome |Y 〉 is proportional to∣∣∣ ∑

x≡Y
exY ·2πi/m

∣∣∣2
where the sum ranges over all x between 0 and m−1 with x ≡ Y (mod λ). Write each such x
as kxλ+ Y ; substituting this into the expression xY · 2πi/m from above yields

xY · 2πi/m = (kxλY + Y 2) · 2πi/m =: ex .

When Y is a multiple of λ, then ex will be close to an integer multiple of 2πi regardless of x—
hence the amplitudes pile up. If on the other handY is not close to a multiple ofλ, then the valuesex
are well-spread modulo 2πi and significant cancellation occurs in the amplitude of |Y 〉.
Making this argument precise shows that the measurement of |Y 〉 exhibits strong probability peaks
centered at multiples ofλ. Recoveringλ precisely from the observed outcome(s) requires some more
work, but is usually feasible; for example, Shor solves this problem using continued fractions.

Famously, we can combine this technique with the well-known fact that factoring reduces
to order-finding in multiplicative groups modulo integers to obtain:

36 MATHEMATICAL PRELIMINARIES

Shor’s factoring algorithm. Let n be an odd composite positive integer, and suppose we wish
to find a proper divisor d of n. Using Example 2.78, we can easily do so:

• Pick a random a ∈ {1, ..., n−1}. Assume gcd(a, n) = 1; otherwise we are done.
• Define

f : Z→ (Z/n)×, i 7→ ai mod n

and note this function can be evaluated efficiently using square-and-multiply.
• Apply the period-finding routine from Example 2.78 to f and call the output γ.
• With high probability, γ is close to a multiple of the multiplicative order k of amodulo n;

say γ = µk. Since k is likely to be about the size of n, we get γ/m ≈ µk/k2 = µ/k. Thus,
k may be recovered using a continued-fraction expansion, which approximates γ/m as
fractions involving smaller integers.

• If k is even, compute d := gcd(ak/2−1, n) and return d if it is a proper divisor of n. If k is
odd or d ∈ {1, n}, start over.

One can show using some elementary number theory that the probability of success in the last
step is 1− 2−r , where r is the number of distinct prime factors of n.

Developing the ideas from Shor’s factoring algorithm further leads to the following result:

Theorem 2.79 [BL95]. There is a quantum algorithm which, given an efficiently computable function
f : Zr → S that factors through a “hidden” lattice Λ ⊆ Zr as

f : Zr −� Zr/Λ ↪−→ S ,

recovers a basis of Λ in time polynomial in log |det Λ|.

As an immediate application, we can compute discrete logarithms in any group:

Example 2.80. Let G = 〈g〉 be a finite group of order q (with efficiently computable operations) and
suppose given h ∈ G. Let a ∈ {0, ..., q−1} be the (unknown) discrete logarithm of h, hence h = ga.

To recover a, we define the group homomorphism

f : Z2 → G, (x, y) 7→ gxhy .

Clearly, the kernel of f is contained in qZ2, and moreover it contains the vector (a,−1). Thus

ker(f) =
〈
(q, 0), (a,−1)

〉
,

which we may recover using Theorem 2.79. Simple classical post-processing then suffices to find a vector
of the form (τ,−1) in the lattice ker(f), which solves the DLP.

2.6.3 – The hidden-shift problem. Evidently, for a general group action G × X → X ,
we simply cannot define the period map f from Example 2.80 due to the lack of an efficient
meaningful multiplication map X × X → X . This small observation supports the idea that
polynomial-time techniques à la Shor cannot break the vectorization problem for group actions.
Instead, the most straightforward formulation as a problem suitable for quantum algorithms
seems to be the following:

Definition 2.81. Let (G,+) be an abelian group with efficiently computable operations. The (abelian)
hidden-shift problem inG is: Given (efficient descriptions of) two functions f0, f1 : G→ Y such that
there exists σ ∈ G with f1(x) = f0(x+ σ) for all x ∈ G, recover such a hidden shift σ of (f0, f1).

2.6. QUANTUM ALGORITHMS 37

Clearly, not all pairs (f0, f1) determine σ uniquely: For example, if f0 and f1 are constant,
any σ ∈ G is a correct answer to the problem. Similarly, if f0 is a group homomorphism, then σ
is only defined up to the kernel. When f0 is injective, the solution to the hidden-shift problem is
always unique.

As promised, we can express the vectorization problem as an abelian hidden-shift problem:

Example 2.82. Let ∗ : G×X → X be a group action of a finite abelian groupG on a setX .
Suppose given an instance (x0, x1) of the vectorization problem; hence, we wish to compute ana ∈ G

such that x1 = a ∗ x0. This problem can be reduced to an abelian hidden-shift problem by defining

fi : G→ X, g 7→ g ∗ xi .

By construction, f1(g) = f0(g · a), hence the sought-after secret a is a shift of (f0, f1).
Note that in this case, the shift is only defined by the pair (f0, f1) up to the stabilizer subgroupGx0 ;

however, any element of the set a +Gx0 of possible shifts is a valid solution to the vectorization problem
and forms an equivalent (correct) key for the group-action Diffie–Hellman scheme.

Remark 2.83. In a sense, vectorization is really the archetypical example of a hidden-shift problem:
The groupG acts in a natural way on the set of functionsG→ Y by defining

(g ∗ f) : G→ Y, x 7→ f(g + x) .

for g ∈ G and f : G→ Y . Recovering a hidden shift between f0 and f1 simply means finding an element
that vectorizes the pair (f0, f1) with respect to this action.

Kuperberg’s theorem. The best known algorithm to solve the abelian hidden-shift problem is
a subexponential quantum algorithm due to Kuperberg [Kup05; Kup13]:

Theorem 2.84 (Kuperberg’s algorithm). On a quantum computer, the abelian hidden-shift problem
in a group of size n can be solved in time and space 2O(

√
logn).

Simplifications. We content ourselves with a rough overview of the algorithm, as the details
are a bit intricate and there are numerous configurable parameters to optimize the algorithm for
different metrics [BS20; Pei20]. For the sake of simplicity, assume that f0 is injective (this is true
without loss of generality in the group-action application).

First, we restrict our attention to the cyclic group G = Z/n— the general case works very
similarly by decomposingG into an internal direct productC×H withC cyclic, always clearing
the H component in the sieving step below until the C component has been fully determined,
and reducing the problem to a hidden shift in H . (The structure of G, as well as isomorphisms
to quotients of Zr , can be computed in quantum polynomial time using Theorem 2.79.)

Moreover, we can replace the group G = Z/n by Z/2` for a sufficiently large “bit length” `.
(This can be interpreted as representing the groupR/Z, which contains 1

nZ/Z ∼= Z/n, through a
finite binary approximation.) Hence, we apply modulus switching to the hiding functions (f0, f1):

Fi : Z/2` 7→ S, X 7→ fi
(
bn/2` ·Xc

)
.

Note that unless n is itself a power of two, the functions (F0, F1) are not strictly shifts of one
another, but for big ` this is the case almost everywhere: Indeed, defining Σ := d2`/n · σe, we
have 0 ≤ n/2` · Σ− σ < n/2`, hence

F1(X) = f1
(
bn/2` ·Xc

)
= f0

(
bn/2` ·Xc+ σ

)
= f0

(
bn/2` ·X + σc

)

38 MATHEMATICAL PRELIMINARIES

and
F0(X + Σ) = f0

(
bn/2` ·X + n/2` · Σ︸ ︷︷ ︸

<σ+n/2`

c
)

are guaranteed to be equal whenever

bn/2` ·X + n/2`c = bn/2` ·Xc ,

or equivalently
nX mod 2` < 2` − n .

Over all inputsX ∈ {0, ..., 2`−1}, this property is violated exactlyn times, which constitutes an
exponentially small fraction as ` grows. Thus, by picking a sufficiently large `, we can assume
that the input pairs sampled in the algorithm below are indeed shifted by Σ exactly: Counter-
examples are so sparse that they should not ever appear in practice.

The algorithm. Finally, the main steps of Kuperberg’s algorithm [Kup13] for the important
special caseG = Z/n, where n is a power of two, are as follows:

• Perform the following quantum computation “many” times:

– Let I = {0, 1} ×G and set up the superposition∑
(b,x)∈I

|b〉 |x〉 |fi(x)〉 .

Measure and discard the third “output” register, resulting in a state

|0〉 |x〉+ |1〉 |x+σ〉 .

– Apply QFTn to the second register; this results in the state
n−1∑
j=0

(
e2πi/n·xj |0〉+ e2πi/n·(x+σ)j |1〉

)
|j〉 .

Measure the second register; this yields a label k ∈ {0, ..., n−1} and the state

e2πi/n·xk |0〉+ e2πi/n·(x+σ)k |1〉 .

Writing ζ := e2πi/n·σ and ignoring the global phase yields a so-called phase vector

ψk = |0〉+ ζk|1〉 .

Note that k is known to the algorithm, but cannot a priori be influenced.

The result is a “large” set V of phase vectors ψk .
• The second stage of the algorithm consists of sieving the phase vectors in order to obtain

a combination suitable for extracting useful information about σ. The goal is to get our
hands on ψn/2; we will see below how this helps in finding σ.

At any given layer of the sieve, we have a set of labeled phase vectors available, and we
combine them in such a way that new phase vectors emerge with fewer label bits set.

An easy method, as used in Kuperberg’s first algorithm [Kup05], is to take two phase vec-
torsψk andψ`, apply a controlled NOT operation ofψk onψ`, and measure the result. This
leaves the other qubit in the state |0〉+ζ`+k|1〉 if |0〉 is measured and |0〉+ζk−`|1〉 if |1〉 is

2.6. QUANTUM ALGORITHMS 39

measured. Combining ψk and ψ` thus yields either ψk+` or ψk−`, and the measurement
tells us which one it is.

Applying this step to statesψk andψ` whose labels k, `have r trailing bits in common has
a 1/2 probability of yielding a new state with r trailing zero bits. We may thus zero out
the labels in our pool of phase vectors from the bottom by arranging suitable combination
steps between them in a tree structure, until we reach the desired phase vector ψn/2.

A more efficient way of combining phase vectors is collimation, which is the core of Kuper-
berg’s second algorithm [Kup13]: The concept of phase vectors is generalized to more than
just two basis states, and the combination step involves “filtering” a large product state
for phase vectors with fewer label bits set by performing a well-chosen measurement.

• The sieving stage yields the phase vector ψn/2, which equals either |0〉+ |1〉 or |0〉− |1〉
depending on the parity of σ. These two states can be distinguished reliably by a single
measurement, and thus we learn the least significant bit β of the hidden shift σ.

• Finally, to recover the remaining bits, we replace f1 by the function

f ′1 : G→ S, x 7→ f1(x− β) ,

such that the pair (f0, f
′
1) is shifted by σ − β ∈ 2G. Hence, replace the group G by the

subgroup 2G ∼= Z/(n/2) and proceed recursively until all bits of σ have been recovered.

Analyzing the number of bits “cancelled” in each layer of the sieve shows that we should
start off with 2O(

√
logn) states in the first layer and cancelO(

√
logn) bits in each layer to end up

with the complexity claimed in Theorem 2.84 and a good chance of finding ψn/2.
Note that the algorithm evaluates the oracle functions a superpolynomial number of times

in superposition. The cost of these computations can be very significant, and Chapter 9 in this
thesis analyzes the cost of the oracle calls when attacking a particular parameterization of CSIDH
(Chapter 3) using Kuperberg’s algorithm.

2.6.4 – Grover’s algorithm. Another fundamental quantum algorithm that impacts cryp-
tography is due to Grover [Gro96]. It can solve unstructured search problems with a square-root
speedup; to be precise, given a quantum circuit that computes a function

f : S → {0, 1}

on a set S of sizeN , with the property that f(x) = 0 almost everywhere, the algorithm finds an
input x ∈ S such that f(x) = 1 within O(

√
N) evaluations of f and a few additional quantum

operations.
“Groverizing” classical search algorithms is a common technique in cryptanalysis: In many

cases, it can accelerate attacks or substeps of attacks by an asymptotic square-root speedup, but
note that this asymptotic speedup does not always materialize in terms of concrete (in)security
due to the potentially high cost of implementing the oracle function f as a quantum circuit.
Another practical problem is that the algorithm performs many sequential operations, hence
requires the qubits in the quantum computer to remain coherent for a long time.

The internals of Grover’s algorithm are rather straightforward, but we will skip the details
here since they will not be of much interest in the sequel. See Chapter 7 for examples where
Groverization of some steps yields a faster quantum version of an a priori classical attack.

Chapter 3

CSIDH:
An efficient post-quantum group action

This chapter is for all practical purposes identical to the paper CSIDH: an efficient post-quantum
commutative group action [Cas+18] authored jointly with Wouter Castryck, Tanja Lange, Chloe
Martindale, and Joost Renes, which was published at Asiacrypt 2018.

3.1 — Introduction

During the past five to ten years, elliptic-curve cryptography (ECC) has taken over public-key
cryptography on the internet and in security applications. Many protocols such as Signal or
TLS 1.3 rely on the small key sizes and efficient computations to achieve forward secrecy, often
meaning that keys are used only once. However, it is also important to notice that security does
not break down if keys are reused. Indeed, some implementations of TLS, such as Microsoft’s
SChannel, reuse keys for some fixed amount of time rather than for one connection [Ber+14].
Google’s QUIC protocol relies on servers keeping their keys fixed for a while to achieve quick
session resumption. Several more examples are given by Freire, Hofheinz, Kiltz, and Paterson in
their paper [FHKP13] formalizing non-interactive key exchange. Some applications require this
functionality and for many it provides significant savings in terms of roundtrips or implement-
ation complexity. Finding a post-quantum system that permits non-interactive key exchange
while still offering decent performance is considered an open problem. This chapter presents a
solution to this problem using isogenies of elliptic curves.

The first proposal of an isogeny-based cryptosystem, made by Couveignes in 1997 [Cou06],
described a non-interactive key exchange protocol where the space of public keys equals the
set of Fq-isomorphism classes of ordinary elliptic curves over Fq whose endomorphism ring is
a given order O in an imaginary quadratic field and whose trace of Frobenius has a prescribed
value. It is well-known that the ideal-class group cl(O) acts freely and transitively on this set
through the application of isogenies. Couveignes’ central observation was that the commutativ-
ity of cl(O) naturally allows for a key-exchange protocol in the style of Diffie and Hellman [DH76].
His work was only circulated privately and thus not picked up by the community; the corres-
ponding paper [Cou06] was never formally published and posted on ePrint only in 2006. The
method was eventually independently rediscovered by Rostovtsev and Stolbunov in 2004 (in
Stolbunov’s master’s thesis [Sto04] and published on ePrint as [RS06] in 2006). In 2010, Childs,
Jao and Soukharev [CJS14] showed that breaking the Couveignes–Rostovtsev–Stolbunov scheme
amounts to solving an instance of the abelian hidden-shift problem, for which quantum al-
gorithms with a time complexity of Lq[1/2] are known to exist; see [Kup05; Reg04]. While this
may be tolerable (e.g., classical subexponential factorization methods have not ended the wide-
spread use of RSA), a much bigger concern is that the scheme is unacceptably slow: despite

42 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

recent clever speed-ups due to De Feo, Kieffer, and Smith [DKS18; Kie17], several minutes are
needed for a single key exchange at a presumed classical security level of 128 bits. Nevertheless,
in view of its conceptual simplicity, compactness, and flexibility, it seems a shame to discard the
Couveignes–Rostovtsev–Stolbunov scheme.

The attack due to Childs–Jao–Soukharev strongly relies on the fact that cl(O) is commutat-
ive, hence indirectly on the fact thatO is commutative. This led Jao and De Feo [JD11] to consider
the use of supersingular elliptic curves, whose full ring of endomorphisms is an order in a qua-
ternion algebra; in particular it is non-commutative. Their resulting (interactive) key-agreement
scheme, which nowadays goes under the name “Supersingular Isogeny Diffie–Hellman” (SIDH),
has attracted almost the entire focus of isogeny-based cryptography over the past six years. The
current state-of-the-art implementation is SIKE [Jao+17], which was recently submitted to the
NIST competition on post-quantum cryptography [NIST16].

It should be stressed that SIDH is not the Couveignes–Rostovtsev–Stolbunov scheme in which
one substitutes supersingular elliptic curves for ordinary elliptic curves; in fact SIDH is much
more reminiscent of an isogeny-based cryptographic hash function from 2006 due to Charles,
Goren, and Lauter [CLG09]. SIDH’s public keys consist of the codomain of a secret isogeny and
the image points of certain public points under that isogeny. Galbraith, Petit, Shani, and Ti
showed in [GPST16] that SIDH keys succumb to active attacks and thus should not be reused,
unless combined with a CCA transform such as the Fujisaki–Okamoto transform [FO99].

In this chapter we show that adapting the Couveignes–Rostovtsev–Stolbunov scheme to su-
persingular elliptic curves is possible, provided that one restricts to supersingular elliptic curves
defined over a prime field Fp. Instead of the full ring of endomorphisms over Fp, which is non-
commutative, one should consider the subring of Fp-rational endomorphisms, which is again
an order O in an imaginary quadratic field. As before cl(O) acts via isogenies on the set of
Fp-isomorphism classes of elliptic curves whose Fp-rational endomorphism ring is isomorphic
toO and whose trace of Frobenius has a prescribed value; in fact if p ≥ 5 then there is only one
option for this value, namely 0, in contrast with the ordinary case. See e.g. [Wat69, Theorem 4.5],
with further details to be found in [Brö08; DG16] and in Section 3.3. Starting from these observa-
tions, the desired adaptation of the Couveignes–Rostovtsev–Stolbunov scheme almost unrolls
itself; the details can be found in Section 3.4. We call the resulting scheme CSIDH, where the C
stands for “commutative”.1

While this fails to address Jao and De Feo’s initial motivation for using supersingular el-
liptic curves, which was to avoid the Lq[1/2] quantum attack due to Childs–Jao–Soukharev,
we show that CSIDH eliminates the main problem of the Couveignes–Rostovtsev–Stolbunov
scheme, namely its inefficiency. Indeed, in Section 3.8 we will report on a proof-of-concept im-
plementation which carries out a non-interactive key exchange at a presumed classical secur-
ity level of 128 bits and a conjectured post-quantum security level of 64 bits in about 80 milli-
seconds, while using key sizes of only 64 bytes. This is over 2000 times faster2 than the current
state-of-the-art instantiation of the Couveignes–Rostovtsev–Stolbunov scheme by De Feo, Kief-
fer and Smith [DKS18; Kie17], which itself presents many new ideas and speedups to even achieve
that speed.

For comparison, we remark that SIDH, which is the NIST submission with the smallest com-
bined key and ciphertext length, uses public keys and ciphertexts of over 300 bytes each. More

1Since this work was started while being very close to a well-known large body of salt water, we pronounce CSIDH
as ["si:­saId] rather than spelling out all the letters.

2This speed-up is explained in part by comparing our own C implementation to the Sage implementation of De Feo,
Kieffer, and Smith.

3.1. INTRODUCTION 43

precisely SIKE’s version p503 uses uncompressed keys of 378 bytes long [Jao+17] for achieving
CCA security. The optimized SIKE implementation is about ten times faster than our proof-of-
concept C implementation, but even at 80 ms, CSIDH is practical.

Another major advantage of CSIDH is that we can efficiently validate public keys, making it
possible to reuse a key without the need for transformations to confirm that the other party’s
key was honestly generated.

Finally we note that just like the original Couveignes–Rostovtsev–Stolbunov scheme, CSIDH
relies purely on the isogeny-finding problem; no extra points are sent that could potentially harm
security, as argued in [Pet17]; see also Chapter 7.

To summarize, CSIDH is a new cryptographic primitive that can serve as a drop-in replace-
ment for the (EC)DH key-exchange protocol while maintaining security against quantum com-
puters. It provides a non-interactive (static–static) key exchange with full public-key validation.
The speed is practical while the public-key size is the smallest for key exchange or KEM in the
portfolio of post-quantum cryptography. This makes CSIDH particularly attractive in the com-
mon scenario of prioritizing bandwidth over computational effort. In addition, CSIDH is com-
patible with 0-RTT protocols such as QUIC.

Why supersingular? To understand where the bulk of the speed-up comes from, it suffices to
record that De Feo–Kieffer–Smith had the idea of choosing a field of characteristic p, where p
is congruent to −1 modulo all small odd primes ` up to a given bound. They then look for an
ordinary elliptic curve E/Fp such that #E(Fp) is congruent to 0 modulo as many of these `’s
as possible, i.e., such that points of order ` exist over Fp. These properties ensure that `O de-
composes as a product of two prime ideals l = (`, π − 1) and l = (`, π + 1), where π denotes
the Frobenius endomorphism. For such primes the action of the corresponding ideal classes [l]

and [l] = [l]−1 can be computed efficiently through an application of Vélu-type formulae to E
(resp. its quadratic twist Et), the reason being that only Fp-rational points are involved. If this
works for enough primes `, we can expect that a generic element of cl(O) can be written as a
product of small integral powers of such [l], so that the class-group action can be computed ef-
ficiently. However, finding an ordinary elliptic curve E/Fp such that #E(Fp) is congruent to 0

modulo many small primes ` is hard, and the main focus of De Feo–Kieffer–Smith is on speeding
up this search. In the end it is only practical to enforce this for 7 primes, thus they cannot take
full advantage of the idea.

However, in the supersingular case the property #E(Fp) = p + 1 implies that #E(Fp)

is congruent to 0 modulo all primes ` | p + 1 that we started from in building p! Concretely,
our proof-of-concept implementation uses 74 small odd primes, corresponding to prime ideals
l1, l2, . . . , l74 for which we heuristically expect that almost all elements of our 256-bit size class
group can be written as [l1]e1 [l2]e2 · · · [l74]e74 , where the exponents ei are taken from the range
{−5, . . . , 5}; indeed, one verifies that log (2 · 5 + 1)74 ≈ 255.9979. The action of such an ele-
ment can be computed as the composition of at most 5 ·74 = 370 easy isogeny evaluations. This
should be compared to using 7 small primes, where the same approach would require exponents
in a range of length about 2256/7 ≈ 236, in view of which De Feo–Kieffer–Smith also resort to
other primes with less beneficial properties, requiring to work in extensions of Fp.

The use of supersingular elliptic curves over Fp has various other advantages. For instance,
their trace of Frobenius t is 0, so that the absolute value of the discriminant |t2 − 4p| = 4p is
as large as possible. As a consequence, generically the size of the class group cl(O) is close to
its maximal possible value for a fixed choice of p. Conversely, this implies that for a fixed secur-
ity level we can make a close-to-minimal choice for p, which directly affects the key size. Note

44 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

that this contrasts with the CM construction from [BS07], which could in principle be used to
construct ordinary elliptic curves having many points of small order, but whose endomorphism
rings have very small class groups, ruling them out for the Couveignes–Rostovtsev–Stolbunov
key exchange.

To explain why key validation works, note that we work over Fp with p ≡ 3 (mod 8) and
start from the curve E0 : y2 = x3 + x with Fp-rational endomorphism ring O = Z[π]. As it
turns out, all Montgomery curvesEA : y2 = x3 +Ax2 +x overFp that are supersingular appear
in the cl(O)-orbit of E0. Moreover their Fp-isomorphism class is uniquely determined by A.
So all one needs to do upon receiving a candidate public key y2 = x3 + Ax2 + x is check for
supersingularity, which is an easy task; see Section 3.5. The combination of large size of cl(O)

and representation by a single Fp-elementA explains the small key size of 64 bytes.

3.1.1 – One-way group actions. Although non-interactive key exchange is the main applic-
ation of our primitive, it is actually more general: It is (conjecturally) an instance of Couveignes’
hard homogeneous spaces [Cou06], ultimately nothing but a finite commutative group action for
which some operations are easy to compute while others are hard. Such group actions were first
formalized and studied by Brassard and Yung [BY90]. We summarize Couveignes’ definition:

Definition 3.1. A hard homogeneous space consists of a finite commutative group G acting freely
and transitively on some setX .
The following tasks are required to be easy (e.g., polynomial-time):

• Compute the group operations inG.
• Sample randomly fromG with (close to) uniform distribution.
• Decide validity and equality of a representation of elements ofX .
• Compute the action of a group element g ∈ G on some x ∈ X .

The following problems are required to be hard (e.g., not polynomial-time):
• Given x, x′ ∈ X , find g ∈ G such that g ∗ x = x′.
• Given x, x′, y ∈ X such that x′ = g ∗ x, find y′ = g ∗ y.

Any such primitive immediately yields a natural Diffie–Hellman protocol: Alice and Bob’s private
keys are random elements a, b of G, their public keys are a ∗ x0 resp. b ∗ x0, where x0 ∈ X is a
public fixed element, and the shared secret is b ∗ (a ∗ x0) = a ∗ (b ∗ x0). The private keys are
protected by the difficulty of the first hard problem above, while the shared secret is protected
by the second problem. Note that traditional Diffie–Hellman on a cyclic group C is an instance
of this, whereX is the set of generators ofC andG is the multiplicative group (Z/#C)∗ acting
by exponentiation.

3.1.2 – Notation and terminology. We stress that throughout this chapter, we consider
two elliptic curves defined over the same field identical whenever they are isomorphic over that
field. Note that we do not identify curves that are only isomorphic over some extension field, as
opposed to what is done in SIDH, for instance. In the same vein, for an elliptic curve E defined
over a finite field Fp, we let Endp(E) be the subring of the endomorphism ring End(E) con-
sisting of endomorphisms defined over Fp.3 This subring is always isomorphic to an order in
an imaginary quadratic number field. Conversely, for a given orderO in an imaginary quadratic

3This constraint only makes a difference for supersingular curves: in the ordinary case, all endomorphisms are
defined over the base field.

3.2. ISOGENY GRAPHS 45

Figure 3.1: Union of the supersingular `-isogeny graphs for ` ∈ {3, 5, 7} over F419. CSIDH makes use of the larger
component, corresponding to curves whose ring of F419-rational endomorphisms is isomorphic to Z[

√
−419].

field and an element π ∈ O, we let È `p(O, π) denote the set of elliptic curves E defined over
Fp with Endp(E) ∼= O such that π corresponds to the Fp-Frobenius endomorphism of E. In
particular, this implies thatϕ◦β = β ◦ϕ for all Fp-isogeniesϕ between two curves in È `p(O, π)

and all β ∈ O interpreted as endomorphisms.
Ideals are always assumed to be non-zero.
The notation “log” refers to the base-2 logarithm.

Acknowledgements. This project started during a research retreat on post-quantum crypto-
graphy, organized by the European PQCRYPTO and ECRYPT-CSA projects in Tenerife from 29
January until 1 February 2018. We would like to thank Jeffrey Burdges, whose quest for a flexible
post-quantum key exchange protocol made us look for speed-ups of the Couveignes–Rostovtsev–
Stolbunov scheme. We are grateful to Luca De Feo, Jean Kieffer, and Ben Smith for sharing a
draft of their paper [DKS18], and to Daniel J. Bernstein, Luca De Feo, Jeroen Demeyer, Léo Ducas,
Steven Galbraith, David Jao, and Fré Vercauteren for helpful feedback.

3.2 — Isogeny graphs

Good mixing properties of the underlying isogeny graph are relevant for the security of isogeny-
based cryptosystems. Just as in the original Couveignes–Rostovtsev–Stolbunov cryptosystem,
in our case this graph is obtained by taking the union of several large subgraphs (each being a
union of large isomorphic cycle graphs) on the same vertex set, one for each prime ` under con-
sideration; see Figure 3.1 for a (small) example. Such a graph is the Schreier graph associated with
our class-group action and the chosen generators. We refer to the lecture notes of De Feo [DeF17,
§14.1] for more background and to [JMV09] for a discussion of its rapid mixing properties. One
point of view on this is that one can quickly move between distant nodes in the subgraph cor-
responding to one generator by switching to the subgraph corresponding to another generator.
This thereby replaces the square-and-multiply algorithm in exponentiation-based cryptosys-
tems (such as classical Diffie–Hellman).

The goal of this section is to analyze the structure of the individual cycles.

46 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Definition 3.2. For a field k and a prime ` - char(k), the k-rational `-isogeny graphGk,` is defined
as having all the elliptic curves defined over k as its vertices, and having a directed edge (E1, E2) for each
k-rational `-isogeny fromE1 toE2.4

Remark 3.3. A priori Gk,` is a directed graph, but given two elliptic curves E1 and E2 whose j-
invariants are not in{0, 1728}, there are exactly as many edges (E2, E1) as (E1, E2), obtained by taking
dual isogenies. Annoyingly, the nodes with j-invariants 0 and 1728 are more complicated, since these are
exactly the curves with extra automorphisms: an elliptic curveE inGk,` has fewer incoming than outgo-
ing edges if and only if either j(E) = 0 and

√
−3 ∈ k, or if j(E) = 1728 and

√
−1 ∈ k. Throughout

this chapter, we will assume for simplicity that
√
−3,
√
−1 /∈ k, so that neither of these automorphisms

are defined overk and we may viewGk,` as an undirected graph. In the case of a finite prime fieldk = Fp,
it suffices to restrict to p ≡ 11 (mod 12), which will be satisfied in the class of instantiations we suggest.
See also Section 2.5.1.

If k = Fq is a finite field, then Gk,` is a finite graph that is the disjoint union of ordinary
connected components and supersingular connected components. The ordinary components
were studied in Kohel’s PhD thesis [Koh96]. Due to their regular structure, these components
later became known as isogeny volcanoes.

In general (e.g. over non-prime fields), the supersingular components may bear no similarity
at all to the volcanoes of the ordinary case. Traditionally, following Pizer [Piz90], one instead
studies the unique supersingular component of Gk,` where k = Fq , which turns out to be a
finite (`+1)-regular Ramanujan graph and forms the basis for the SIDH protocol.

However, Delfs and Galbraith [DG16] showed that if k = Fp is a finite prime field, then all
connected components are volcanoes, even in the supersingular case (where the depth is at most
1 at ` = 2 and 0 otherwise). We present a special case of a unified statement, restricting our at-
tention to the cases in whichGFp,` is a cycle. Recall that Endp(E) is an orderO in the imaginary
quadratic field

Endp(E)⊗Z Q ∼= Q(
√
t2 − 4p) = K,

where |t| ≤ 2
√
p denotes the (absolute value of the) trace of the Frobenius endomorphism, and

that two curves are isogenous over Fp if and only if their traces of Frobenius are equal [Tat66,
Theorem 1].

Theorem 3.4 (Kohel, Delfs–Galbraith). Let p ≥ 5 be a prime number and let V be a connected
component of GFp,`. Assume that p ≡ 11 (mod 12) or that V contains no curve with j-invariant 0

or 1728. Let t be the trace of Frobenius common to all vertices in V , and let K be as above. Assume that
` - t2 − 4p.

Then all elliptic curves inV have the same Fp-rational endomorphism ringO ⊆ K , andO is locally
maximal at `. Moreover if t2− 4p is a (non-zero) square modulo `, then V is a cycle whose length equals
the order of [l] in cl(O), where l is a prime ideal dividing `O. If not, then V consists of a single vertex and
no edges.

Proof. In the case of an ordinary component this is just a special case of [Sut12b, Theorem 7]. In
the case of a supersingular component this follows from the proof of [DG16, Theorem 2.7]. (In
both cases, we could alternatively (re)prove this theorem by proving that an `-isogeny can only
change the conductor of the endomorphism ring of an elliptic curve locally at ` and applying
Theorem 3.7.)

4Due to our convention of identifying k-isomorphic curves, we also identify isogenies if they are k-isomorphic, i.e.,
equal up to post-composition with a k-isomorphism.

3.3. THE CLASS-GROUP ACTION 47

In the ordinary case a curve and its quadratic twist can never appear in the same component
because they have a different trace of Frobenius. This is the main difference with the supersingu-
lar case, where this possibility is not excluded. To avoid confusion, we clarify that by the quad-
ratic twist of a given elliptic curve E : y2 = f(x) over Fp we mean the curve Et : dy2 = f(x),
where d ∈ F∗p is any non-square. If p ≡ 3 (mod 4) and j(E) = 1728 then this may deviate from
what some readers are used to, because in this caseEt andE are Fp-isomorphic. Note that such
a curve is necessarily supersingular.

y2 = x3 − x

y2 = x3 − 13x2 − xy2 = x3 + 13x2 − x

y2 = x3 + x

y2 = x3 − 11x2 + x

y2 = x3 − 12x2 + x

y2 = x3 − 6x2 + x

y2 = x3 + 13x2 + xy2 = x3 − 13x2 + x

y2 = x3 + 6x2 + x

y2 = x3 + 12x2 + x

y2 = x3 + 11x2 + x

Figure 3.2: The two supersingular components of GF83,3. The curves in the top component have Fp-rational endo-
morphism ring Z[(1 +

√
−83)/2], while those in the lower component correspond to Z[

√
−83]. Running clockwise

through these components corresponds to the repeated action of [(3, π − 1)].

Remark 3.5. In fact, ifp ≡ 3 mod 4 then there are two non-isomorphic curves overFpwith j-invariant
1728, namely y2 = x3 − x and y2 = x3 + x, whose endomorphism rings are the full ring of integers
Z[(1 +

√
−p)/2] and the order Z[

√
−p] of conductor 2 respectively. The connected component of each

curve is “symmetric”: if E is n steps along GFp,` in one direction from a curve of j-invariant 1728 then
the curve that is n steps in the other direction is the quadratic twist ofE. In the case ofGF83,3 we can see
this in Figure 3.2, which is taken from [DG16, Figure 8].

It is also interesting to observe that the symmetry around j = 1728 confirms the known fact that
the class numbers of Z[(1 +

√
−p)/2] and Z[

√
−p] are odd, at least in the case that p ≡ 3 (mod 4);

see [Mor61].

3.3 — The class-group action

It is well-known that the ideal-class group of an imaginary quadratic orderO acts freely via iso-
genies on the set of elliptic curves with Fp-rational endomorphism ring O. Using this group
action on a set of ordinary elliptic curves for cryptographic purposes was first put forward by
Couveignes [Cou06] and independently rediscovered later by Rostovtsev and Stolbunov [Sto04;
RS06]. Our suggestion is to use the equivalent of their construction in the supersingular setting,
thus the following discussion covers both cases at once. For concreteness, we focus on prime
fields with p ≥ 5 and point out that the ordinary (but not the supersingular) case generalizes

48 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

to all finite fields. We recall the following standard lemma, which is a special case of Proposi-
tion 2.30:

Lemma 3.6. Let E/Fp be an elliptic curve and G a finite Fp-rational (i.e., stable under the action
of the Fp-Frobenius) subgroup of E. Then there exists an elliptic curve E′/Fp and a separable isogeny
ϕ : E → E′ defined over Fp with kernel G. The codomain E′ and isogeny ϕ are unique up to Fp-
isomorphism.5

Proof. [Sil09, Proposition III.4.12, Remark III.4.13.2, and Exercise III.3.13e].

The ideal-class group. We recall the definitions and basic properties of class groups of quad-
ratic orders that will be needed in the following. This section is based on [Cox13, §7]. LetK be a
quadratic number field andO ⊆ K an order (that is, a subring which is a free Z-module of rank
2). The norm of anO-ideal a ⊆ O is defined as N(a) = |O/a|; it is equal to gcd({N(α) | α ∈ a}).
Norms are multiplicative: N(ab) = N(a)N(b).

A fractional ideal of O is an O-submodule of K of the form αa, where α ∈ K∗ and a is an
O-ideal.6 Fractional ideals can be multiplied and conjugated in the evident way, and the norm
extends multiplicatively to fractional ideals. A fractional O-ideal a is invertible if there exists a
fractionalO-ideal b such that ab = O. If such a b exists, we define a−1 = b. Clearly all principal
fractional ideals αO, where α ∈ K∗, are invertible.

By construction, the set of invertible fractional ideals I(O) forms an abelian group under
ideal multiplication. This group contains the principal fractional ideals P (O) as a (clearly nor-
mal) subgroup, hence we may define the ideal-class group ofO as the quotient

cl(O) = I(O)/P (O) .

Every ideal class [a] ∈ cl(O) has an integral representative, and for any non-zero M ∈ Z there
even exists an integral representative of norm coprime toM .

There is a unique maximal order ofK with respect to inclusion called the ring of integers and
denotedOK . The conductor ofO (inOK) is the index f = [OK : O]. Away from the conductor,
ideals are well-behaved; everyO-ideal of norm coprime to the conductor is invertible and factors
uniquely into prime ideals.

The class-group action. Fix a prime p ≥ 5 and an (ordinary or supersingular) elliptic curve E
defined over Fp. The Frobenius endomorphism π ofE satisfies a characteristic equation

π2 − tπ + p = 0

in Endp(E), where t ∈ Z is the trace of Frobenius. The curve E is supersingular if and only if
t = 0. The Fp-rational endomorphism ring Endp(E) is an order O in the imaginary quadratic
fieldK = O⊗ZQ ∼= Q(

√
∆), where ∆ = t2−4p. We note thatO always contains the Frobenius

endomorphism π, and hence the order Z[π].
Any invertible ideal a ofO splits into a product ofO-ideals as (πO)ras, where as * πO. This

defines an elliptic curveE/a and an isogeny

ϕa : E → E/a

5This statement remains true in vast generality, but we only need this special case.
6Note that the use of the word “ideal” is inconsistent in the literature. We make the convention that “ideal” without

qualification refers to an integral O-ideal (i.e., an ideal in the sense of ring theory), while fractional ideals are clearly
named as such.

3.3. THE CLASS-GROUP ACTION 49

of degree N(a) as follows [Wat69]: the separable part of ϕa has kernel
⋂
α∈as ker(α), and the

purely inseparable part consists of r iterations of Frobenius. The isogenyϕa and codomainE/a
are both defined over Fp and are unique up to Fp-isomorphism (by Lemma 3.6), justifying the
notationE/a. Multiplication of ideals corresponds to the composition of isogenies. Since prin-
cipal ideals correspond to endomorphisms, two ideals lead to the same codomain if and only if
they are equal up to multiplication by a principal fractional ideal. Moreover, every Fp-isogenyψ
between curves in È `p(O, π) comes from an invertibleO-ideal in this way, and the ideal as can
be recovered from ψ as as = {α ∈ O | ker(α) ⊇ ker(ψ)}. In other words:

Theorem 3.7. LetO be an order in an imaginary quadratic field and π ∈ O such that È `p(O, π) is
non-empty. Then the ideal-class group cl(O) acts freely and transitively on the set È `p(O, π) via the
map

cl(O)× È `p(O, π) −→ È `p(O, π)

([a], E) 7−→ E/a,

in which a is chosen as an integral representative.

Proof. See [Wat69, Theorem 4.5]. Erratum: [Sch87, Theorem 4.5].

To emphasize the fact that we are dealing with a group action, we will from now on write [a] ∗E
or simply [a]E for the curveE/a defined above.

The structure of the class group. The class group cl(O) is a finite abelian group whose cardin-
ality is asymptotically [Sie35]

#cl(O) ≈
√
|∆|.

The exact structure of cl(O) can be computed in subexponential timeL|∆|[1/2;
√

2+o(1)] using
an algorithm of Hafner and McCurley [HM89]. Unfortunately, this requires too much compu-
tation for the sizes of ∆ we are working with, but there are convincing heuristics concerning
the properties of the class group we need. See Section 3.7.1 for these arguments. If the absolute
value |t| of the trace of Frobenius is “not too big”, the discriminant ∆ is about the size of p, hence
by the above approximation we may assume #cl(O) ≈ √p. This holds in particular when E is
supersingular, where t = 0, hence |∆| = 4p.

We are interested in primes ` that split inO, i.e., such that there exist (necessarily conjugate)
distinct prime ideals l, lofOwith `O = ll. Such `are known as Elkies primes in the point-counting
literature. The ideal l is generated as l = (`, π − λ), where λ ∈ Z/` is an eigenvalue of the
Frobenius endomorphism π on the `-torsion, and its conjugate is l = (`, π − p/λ), where by
abuse of notation p/λ denotes any integral representative of that quotient modulo `. Note that
` splits inO if and only if ∆ is a non-zero square modulo `.

Computing the group action. Any element of the class group can be represented as a product
of small prime ideals [BV07, Propositions 9.5.2 and 9.5.3], hence we describe how to compute
[l]E for a prime ideal l = (`, π − λ). There are (at least) the following ways to proceed, which
vary in efficiency depending on the circumstances [DKS18; Kie17]:

• Find Fp-rational roots of the modular polynomial Φ`(j(E), Y) to determine the two j-
invariants of possible codomains (i.e., up to four non-isomorphic curves, though in the or-
dinary case wrong twists can easily be ruled out); compute the kernel polynomials [Koh96]
χ ∈ Fp[x] for the corresponding isogenies (if they exist); if (xp, yp) = [λ](x, y) modulo χ
and the curve equation, then the codomain was correct, else another choice is correct.

50 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

• Factor the `th division polynomialψ`(E) over Fp; collect irreducible factors with the right
Frobenius eigenvalues (as above); use Kohel’s formulas [Koh96, Section 2.4] to compute
the codomain.

• Find a basis of the `-torsion — possibly over an extension field — and compute the eigen-
spaces of Frobenius; apply Vélu’s formulas [Vél71] to a basis point of the correct eigenspace
to compute the codomain.

As observed in [DKS18; Kie17], the last method is the fastest if the necessary extension fields are
small. The optimal case isλ = 1; in that case, the curve has a rational point defined over the base
field Fp. If in addition p/λ = −1, the other eigenspace of Frobenius modulo ` is defined over
Fp2 , so both codomains can easily be computed using Vélu’s formulas over an at most quadratic
extension (but in fact, a good choice of curve model allows for pure prime field computations, see
Section 3.8; alternatively one could switch to the quadratic twist). Note that if p ≡ −1 (mod `),
then λ = 1 automatically implies p/λ = −1.

Much of De Feo–Kieffer–Smith’s work [DKS18; Kie17] is devoted to finding an ordinary el-
liptic curveE with many small Elkies primes ` such that bothE and its quadratic twistEt have
anFp-rational `-torsion point. Despite considerable effort leading to various improvements, the
results are discouraging. With the best parameters found within 17 000 hours of CPU time, eval-
uating one class-group action still requires several minutes of computation to complete. This
suggests that without new ideas, the original Couveignes–Rostovtsev–Stolbunov scheme will
not become anything close to practical in the foreseeable future.

3.4 — Construction and design choices

In this section, we discuss the construction of our proposed group action and justify our design
decisions. For algorithmic details, see Section 3.8. Notice that the main obstacle to performance
in the Couveignes–Rostovtsev–Stolbunov scheme — constructing a curve with highly compos-
ite order — becomes trivial when using supersingular curves instead of ordinary curves, since
for p ≥ 5 any supersingular elliptic curve over Fp has exactly p+ 1 rational points.

The cryptographic group action described below is a straightforward implementation of this
construction. Note that we require p ≡ 3 (mod 4) so that we can easily write down a supersin-
gular elliptic curve overFp and so that an implementation may use curves in Montgomery form.
It turns out that this choice is also beneficial for other reasons. In principle, this constraint is not
necessary for the theory to work, although the structure of the isogeny graph changes slightly
(see [DG16] and Remark 3.3 for details).

Parameters. Fix a large prime p of the form 4 ·`1 · · · `n−1, where the `i are small distinct odd
primes. Fix the elliptic curveE0 : y2 = x3 + x over Fp; it is supersingular since p ≡ 3 (mod 4).
The Frobenius endomorphism π satisfies π2 = −p, so its Fp-rational endomorphism ring is an
order in the imaginary quadratic field Q(

√
−p). More precisely, Proposition 3.8 (below) shows

Endp(E0) = Z[π], which has conductor 2.

Rational Elkies primes. By Theorem 3.4, the choices made above imply that the `i-isogeny
graph is a disjoint union of cycles. Moreover, since π2 − 1 ≡ 0 (mod `i) the ideals `iO split as
`iO = lili, where li = (`i, π− 1) and li = (`i, π+ 1). In other words, all the `i are Elkies primes.
In particular, we can use any one of the three algorithms described at the end of Section 3.3 to
walk along the cycles.

Furthermore, the kernel of ϕli is the intersection of the kernels of the scalar multiplication
[`i] and the endomorphism π − 1. That is, it is the subgroup generated by a point P of order `i

3.5. REPRESENTING AND VALIDATING Fp-ISOMORPHISM CLASSES 51

which lies in the kernel of π− 1 or, in other words, is defined over Fp. Similarly, the kernel ofϕli
is generated by a pointQ of order `i that is defined over Fp2 such that π(Q) = −Q. This greatly
simplifies and accelerates the implementation, since it allows performing all computations over
the base field (see Section 3.8 for details).

Sampling from the class group. Ideally,7 we would like to know the exact structure of the ideal-
class group cl(O) to be able to sample elements uniformly at random. However, such a compu-
tation is currently not feasible for the size of discriminant we need, hence we resort to heuristic
arguments. Assuming that the li do not have very small order and are “evenly distributed” in the
class group, we can expect ideals of the form le11 le22 · · · l

en
n for small ei to lie in the same class only

very occasionally. For efficiency reasons, it is desirable to sample the exponents ei from a short
range centered around zero, say {−m, . . . ,m} for some integerm. We will argue in Section 3.7.1
that choosing m such that 2m + 1 ≥ n

√
#cl(O) is sufficient. Since the prime ideals li are fixed

global parameters, the ideal
∏
i l
ei
i may simply be represented as a vector (e1, . . . , en).

Evaluating the class-group action. Computing the action of an ideal class represented by
∏
i l
ei
i

on an elliptic curve E proceeds as outlined in Section 3.3. Since π2 = −p ≡ 1 (mod `i), we are
now in the favourable situation that the eigenvalues of Frobenius on all `i-torsion subgroups are
+1 and−1. Hence we can efficiently compute the action of li (resp. li) by finding an Fp-rational
point (resp. Fp2-rational with Frobenius eigenvalue−1) of order `i and applying Vélu-type for-
mulas. This step could simply be repeated for each ideal l±1

i whose action is to be evaluated, but
see Section 3.8 for a more efficient method.

3.5 — Representing and validating Fp-isomorphism classes

A major unsolved problem of SIDH is its lack of public-key validation, i.e., the inability to verify
that a public key was honestly generated. This shortcoming leads to polynomial-time active at-
tacks [GPST16] on static variants for which countermeasures are expensive. For example, the act-
ively secure variant SIKE [Jao+17] applies a transformation proposed by Hofheinz, Hövelmanns,
and Kiltz [HHK17] which is similar to the Fujisaki–Okamoto transform [FO99], essentially doub-
ling the running time on the recipient’s side compared to an ephemeral key exchange.

The following proposition tackles this problem for the family of CSIDH instantiations we are
proposing. Moreover, it shows that the Montgomery coefficient forms a unique representative
for theFp-isomorphism class resulting from the group action, hence may serve as a shared secret
without taking j-invariants.

Proposition 3.8. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8), and let E/Fp be a supersingular
elliptic curve. Then Endp(E) = Z[π] if and only if there existsA ∈ Fp such thatE is Fp-isomorphic to
the curveEA : y2 = x3 +Ax2 + x. Moreover, if such anA exists then it is unique.

Proof. First suppose thatE is Fp-isomorphic toEA for someA ∈ Fp. IfEA has full Fp-rational
2-torsion, then Table 1 of [CS18] shows that either EA or its quadratic twist must have order
divisible by 8. However, both have cardinality p+ 1 ≡ 4 (mod 8). HenceEA can only have one
Fp-rational point of order 2. With Theorem 2.7 of [DG16], we can conclude Endp(E) = Z[π].

Now assume that Endp(E) = Z[π]. By Theorem 3.7, the class group cl(Z[π]) acts transit-
ively on È `p(Z[π], π), so in particular there exists [a] ∈ cl(Z[π]) such that [a]E0 = E, where

7No pun intended.

52 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

E0 : y2 = x3 + x. Choosing a representative a that has norm coprime to 2p yields a separ-
able Fp-isogeny ϕa : E0 → E of odd degree. Thus, by [Ren18, Proposition 1] there exists an
A ∈ Fp and a separable isogeny ψ : E0 → EA : y2 = x3 + Ax2 + x defined over Fp such
that ker(ψ) = ker(ϕa). As isogenies defined over Fp with given kernel are unique up to post-
composition with Fp-isomorphisms (Lemma 3.6), we conclude thatE is Fp-isomorphic toEA.

Finally, let B ∈ Fp such that EA ∼= EB : Y 2 = X3 + BX2 + X . Then by [Sil09, Proposi-
tion III.3.1(b)] there exist u ∈ F∗p and r, s, t ∈ Fp such that

x = u2X + r , y = u3Y + su2X + t .

Substituting this into the curve equation of EA and subtracting u6 times the equation of EB
equals zero in the function field and thus leads to a linear relation overFp between the functions
1, X , X2, Y , and XY . Writing∞ for the point at infinity of EB , it follows from Riemann–Roch
[Sil09, Thm. 5.4] thatL(5(∞)) is a 5-dimensionalFp-vector space with basis {1, X, Y,X2, XY }.
Hence the obtained linear relation must be trivial, and a straightforward computation yields

s = t = 0 , 3r2 + 2Ar + 1 = u4 ,

3r +A = Bu2 , r3 +Ar2 + r = 0 .

But sinceEA only has a single Fp-rational point of order 2, the only r ∈ Fp such that r3 +Ar2 +

r = 0 is simply r = 0. In that case u4 = 1, and hence u = ±1 since p ≡ 3 (mod 8). In particular,
u2 = 1 and thusA = B.

Therefore, using a Montgomery coefficientA ∈ Fp to represent public keys, Proposition 3.8 guar-
antees that A represents a curve in the correct isogeny class È `p(O, π), where π =

√
−p and

O = Z[π], under the assumption that it is smooth (i.e. A /∈ {±2}) and supersingular.

Verifying supersingularity. As p≥ 5, an elliptic curveE defined over Fp is supersingular if and
only if #E(Fp) = p + 1 [Sil09, Exercise 5.10]. In general, proving that an elliptic curve has a
given orderN is easy if the factorization ofN is known; exhibiting a subgroup (or in particular,
a single point) whose order d is a divisor of N greater than 4

√
p implies the order must be cor-

rect. Indeed, the condition d> 4
√
p implies that only one multiple of d lies in the Hasse interval

[p+ 1− 2
√
p; p+ 1 + 2

√
p] [Has36]. This multiple is the group order by Lagrange’s theorem.

Now note that a random point generally has very large order d. For our curves we have
E(Fp) ∼= Z/4 ×

∏n
i=1 Z/`i, so that `i | d with probability (`i − 1)/`i. Ignoring the even part,

this shows that the expected order is lower bounded by
n∏
i=1

(
`i − 1 +

1

`i

)
.

This product is about the same size as p, and it is easily seen that a random point will with over-
whelming probability have order (much) greater than 4

√
p. This observation leads to a straight-

forward verification method, see Algorithm 3.1.8

If the condition d > 4
√
p does not hold at the end of Algorithm 3.1, the point P had too small

order to prove #E(Fp) = p+1. In this case one may retry with a new random pointP (although
this outcome has negligible probability and could just be ignored). There is no possibility of
wrongly classifying an ordinary curve as supersingular.

8The same idea gives rise to a simpler Monte Carlo algorithm which does not require the factorization of p+ 1 but
has a chance of false positives [Sut12a, Section 2.3].

3.6. NON-INTERACTIVE KEY EXCHANGE 53

Algorithm 3.1: Verifying supersingularity.

Input: An elliptic curveE/Fp, where p = 4 · `1 · · · `n − 1.
Output: supersingular or ordinary.

1 Randomly pick a point P ∈ E(Fp) and set d← 1.
2 for each `i do
3 SetQi ← [(p+ 1)/`i]P .
4 If [`i]Qi 6=∞ then return ordinary. // since #E(Fp) - p+ 1

5 If Qi 6=∞ then set d← `i · d. // since `i | ordP

6 If d > 4
√
p then return supersingular.

Note moreover that ifx-only Montgomery arithmetic is used (as we suggest) and the pointP
is obtained by choosing a random x-coordinate in Fp, there is no need to differentiate between
points defined over Fp and Fp2 ; any x-coordinate in Fp works. Indeed, any point that has an
x-coordinate inFp but is only defined overFp2 corresponds to anFp-rational point on the quad-
ratic twist, which is supersingular if and only if the original curve is supersingular.

There are more optimized variants of this algorithm; the bulk of the work are the scalar mul-
tiplications required to compute the points Qi = [(p + 1)/`i]P . Since they are all multiples of
P with shared factors, one may more efficiently compute allQi at the same time using a divide-
and-conquer strategy (at the expense of higher memory usage). See Section 10, and in particular
Algorithm 3.3, for details.

3.6 — Non-interactive key exchange

Starting from the class-group action on supersingular elliptic curves and the parameter choices
outlined in Sections 3.3 and 3.4, one obtains the following non-interactive key-exchange pro-
tocol.

Setup. Global parameters of the scheme are a large prime p = 4 · `1 · · · `n − 1, where the `i
are small distinct odd primes, and the supersingular elliptic curve E0 : y2 = x3 + x over Fp
with endomorphism ringO = Z[π].

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, each sampled ran-
domly from a range {−m, . . . ,m}. These integers represent the ideal class [a] = [le11 · · · l

en
n] ∈

cl(O), where li = (`i, π − 1). The public key is the Montgomery coefficientA ∈ Fp of the el-
liptic curve [a]E0 : y2 = x3 + Ax2 + x obtained by applying the action of [a] to the curve
E0.

Key exchange. Suppose Alice and Bob have key pairs ([a], A) and ([b], B). Upon receiving
Bob’s public keyB ∈ Fp\{±2}, Alice verifies that the elliptic curveEB : y2 = x3 + Bx2 + x

is indeed in È `p(O, π) using Algorithm 3.1. She then applies the action of her secret key [a] to
EB to compute the curve [a]EB = [a][b]E0. Bob proceeds analogously with his own secret
[b] and Alice’s public key A to compute the curve [b]EA = [b][a]E0. The shared secret is the
Montgomery coefficientS of the common secret curve [a][b]E0 = [b][a]E0 written in the form
y2 = x3 + Sx2 + x, which is the same for Alice and Bob due to the commutativity of cl(O)

and Proposition 3.8.

54 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

E0 EA

E′

[a]

[b] [c]

Figure 3.3: A 1-bit identification protocol.

Remark 3.9. Besides key exchange, we expect that our cryptographic group action will have several
other applications, given the resemblance with traditional Diffie–Hellman and the ease of verifying the
correctness of public keys. We refer to previous papers on group actions for a number of suggestions in this
direction, in particular Brassard–Yung [BY90], Couveignes [Cou06, §4], and Stolbunov [Sto10]. We
highlight the following 1-bit identification scheme, which in our case uses a key pair ([a], A) as above. One
randomly samples an element [b] ∈ cl(O) and commits to a curveE′ = [b]E0. Depending on a challenge
bit b, one then releases either [b] or [c] := [b][a]−1, as depicted in Figure 3.3. As already pointed out in
Stolbunov’s PhD thesis [Sto12, §2.B], this can be turned into a signature scheme by repeated application of
the 1-bit protocol and by applying the Fiat–Shamir [FS86] or Unruh [Unr12] transformation. However,
we point out that it is not immediately clear how to represent [c] in a way that is efficiently computable
and leaks no information about the secret key [a]. We leave a resolution of this issue for future research, but
mention that a related problem was recently tackled by Galbraith, Petit and Silva [GPS17] who studied a
similar triangular identification protocol in the context of SIDH.9

3.7 — Security

The central problem of our new primitive is the following analogue to the classical discrete-
logarithm problem.

Problem 3.10 (Key recovery). Given two supersingular elliptic curvesE,E′ defined over Fp with the
same Fp-rational endomorphism ringO, find an ideal a ofO such that [a]E = E′. This ideal must be
represented in such a way that the action of [a] on a curve can be evaluated efficiently, for instance a could
be given as a product of ideals of small norm.

Just like in the classical group-based scenario, security notions of Diffie–Hellman schemes built
from our primitive rely on slightly different hardness assumptions (cf. Section 3.1.1) that are
straightforward translations of the computational and decisional Diffie–Hellman problems; see
Section 2.1.3. However, continuing the analogy with the classical case, and since we are not aware
of any ideas to attack the key exchange without recovering one of the keys, we will assume in
the following analysis that the best approach to breaking the key-exchange protocol is to solve
Problem 3.10.

We point out that the “inverse Diffie-Hellman problem” is easy in the context of CSIDH:
given [a]E0 we can compute [a]−1E0 by mere quadratic twisting; see Remark 3.5. This contrasts
with the classical group-based setting [Gal12, §21.1]. Note that just like identifying a point (x, y)

with its inverse (x,−y) in an ECDLP setting, this may imply a security loss of one bit under some
attacks: An attacker may consider the curves [a]E and [a]−1E identical, which reduces the search
space by half.

9The “square” SIDH counterparts of this protocol, as considered in [DJP14; GPS17; Yoo+17], are not meaningful in
the case of a commutative group action.

3.7. SECURITY 55

No torsion-point images. One of the most worrying properties of SIDH seems to be that Alice
and Bob publish the images of known points under their secret isogenies along with the codo-
main curve, i.e., a public key is of the form (E′, ϕ(P), ϕ(Q)) whereϕ : E → E′ is a secret isogeny
and P,Q ∈ E are publicly known points. Although thus far nobody has succeeded in making
use of this extra information to break the original scheme, Petit presented an attack using these
points when overstretched, asymmetric parameters are used; see [Pet17] and Chapter 7. The
Couveignes–Rostovtsev–Stolbunov scheme, and consequently our new scheme CSIDH, does not
transmit such additional points — a public key consists of only an elliptic curve. Thus we are con-
fident that a potential future attack against SIDH based on these torsion points would not apply
to CSIDH.

Chosen-ciphertext attacks. As explained in Section 3.5, the CSIDH group action features ef-
ficient public-key validation. This implies it can be used without applying a CCA transform
such as the Fujisaki–Okamoto transform [FO99], thus enabling efficient non-interactive key ex-
change (see Section 2.1.5) and other applications in a post-quantum world.

3.7.1 – Classical security. We begin by considering classical attacks.

Exhaustive key search. The most obvious approach to attack any cryptosystem is to simply
search through all possible keys. In the following, we will argue that our construction provides
sufficient protection against key search attacks, including dumb brute force and (less naïvely) a
meet-in-the-middle approach.

As explained in Section 3.4, a private key of our scheme is an exponent vector (e1, . . . , en)

where each ei is in the range {−m, . . . ,m}, representing the ideal class [le11 le22 · · · l
en
n] ∈ cl(O).

There may (and typically will) be multiple such vectors that represent the same ideal class and
thus form equivalent private keys. However, we argue (heuristically) that the number of short
representations per ideal class is small. Here and in the following, “short” means that all ei are
in the range {−m, . . . ,m}. The maximum number of such short representations immediately
yields the min-entropy10 of our sampling method, which measures the amount of work a brute-
force attacker has to do while conducting an exhaustive search for the key.

We assume in the following discussion that cl(O) is “almost cyclic” in the sense that it has a
very large cyclic component, say of orderN not much smaller than #cl(O). According to a heur-
istic of Cohen and Lenstra, this is true with high probability for a “random” imaginary quadratic
field [CL84, §9.I], and this conjecture is in line with our own experimental evidence. So suppose

ρ : cl(O)� (Z/N,+)

is a surjective group homomorphism (which may be thought of as a projection to the large cyclic
subgroup followed by an isomorphism) and define αi = ρ([li]). We may assume that α1 = 1;
this can be done without loss of generality whenever at least one of the [li] has order N in the
class group. For some fixed [a] ∈ cl(O), any short representation [le11 le22 · · · l

en
n] = [a] yields a

short solution to the linear congruence

e1 + e2α2 + · · ·+ enαn ≡ ρ([a]) (mod N),

so counting solutions to this congruence gives an upper bound on the number of short repres-
entations of [a]. These solutions are exactly the points in some shifted version (i.e., a coset) of

10The min-entropy of a random variable is the negative logarithm of the probability of the most likely outcome.

56 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

the integer lattice spanned by the rows of the matrix

L =


N 0 0 · · · 0

−α2 1 0 · · · 0

−α3 0 1 · · · 0
...

...
...

. . .
...

−αn 0 0 · · · 1

 ,

so by applying the Gaussian heuristic [NV10, Chapter 2, Definition 8] one expects

vol [−m;m]n /det(L) = (2m+ 1)n/N

short solutions. Since we assumed cl(O) to be almost cyclic, this ratio is not much bigger than
(2m+ 1)n/#cl(O), which is not very large whenm is minimal with (2m+ 1)n ≥ #cl(O).

As a result, we expect the complexity of a brute-force search to be around 2log
√
p−ε for some

positive ε that is small relative to log
√
p. To verify our claims, we performed computer experi-

ments with many choices of pof up to 40 bits (essentially brute-forcing the number of represent-
ations for all elements) and found no counterexamples to the heuristic result that our sampling
method loses only a few bits of brute-force security compared to uniform sampling from the
class group. For our sizes of p, the min-entropy was no more than 4 bits less than that of a per-
fectly uniform distribution on the class group (i.e. ε ≤ 4). Of course this loss factor may grow in
some way with bigger choices of p (a plot of the data points for small sizes suggests an entropy
loss proportional to log log p), but we see no indication for it to explode beyond a few handfuls
of bits, as long as we findm and n so that (2m+ 1)n is not much larger than #cl(O).

Meet-in-the-middle key search. Since a private key trivially decomposes into a product of two
smooth ideals drawn from smaller sets (e.g. splitting [le11 le22 · · · l

en
n] as [le11 · · · l

eν
ν] · [leν+1

ν+1 · · · l
en
n]

for some ν ∈ {1, . . . , n}), the usual time-memory trade-offs à la baby-step giant-step [Sha71]
with an optimal time complexity of O

(√
#cl(O)

)
≈ O(4

√
p) apply.11 Another interpretation of

this algorithm is finding a path between two nodes in the underlying isogeny graph by con-
structing a breadth-first tree starting from each of them, each using a certain subset of the edges,
and looking for a collision. Details, including a memoryless variation of this concept, can be
found in Delfs and Galbraith’s paper [DG16], and for the ordinary case in [Gal99].

Remark 3.11. The algorithms mentioned thus far scale exponentially in the size of the key space, hence
they are asymptotically more expensive than the quantum attacks outlined below which is subexponential
in the class-group size. This implies one could possibly balance the costs of the different attacks and use
a key space smaller than #cl(O) without any loss of security (unless the key space is chosen particularly
badly, e.g., as a subgroup), which leads to improved performance. We leave a more thorough analysis of
this idea for future work.

Pohlig–Hellman-style attacks. Notice that the set È `p(O, π) we are acting on does not form
a group with efficiently computable operations (that are compatible with the action of cl(O)).
Thus there seems to be no way to apply Pohlig–Hellman-style algorithms making use of the de-
composition of finite abelian groups. In fact, the Pohlig–Hellman algorithm relies on efficiently
computable homomorphisms to proper subgroups, which in the setting at hand would corres-
pond to an efficient algorithm that “projects” a given curve to the orbit of E0 under a subgroup

11Strictly speaking, the complexity depends on the size of the subset one samples private keys from, rather than the
size of the class group, but as was argued before, these are approximately equal for our choice ofm andn.

3.7. SECURITY 57

action. Therefore, we believe the structure of the class group to be largely irrelevant (assuming
it is big enough); in particular, we do not require it to have a large prime-order subgroup.

3.7.2 – Quantum security. We now discuss the state of quantum algorithms to solve Prob-
lem 3.10.

Grover’s algorithm and claw finding. Applying Grover search [Gro96] via claw finding as de-
scribed in [JD11] is fully applicable to CSIDH as well, leading to an attack on Problem 3.10 in
O(6
√
p) calls to a quantum oracle that computes our group action. The idea is to split the collision

search space into a classical O(6
√
p) target part and a O(3

√
p) search part on which a quantum

search is applied. Our choices of p that lead to classical security are also immediately large
enough to imply quantum security against this attack (cf. [NIST16, §4.A.5 in Call for Proposals]).
That is, the number of queries to our quantum oracle necessary to solve Problem 3.10 is larger
than the number of quantum queries to an AES oracle needed to retrieve the key of the corres-
ponding AES instantiation via Grover’s algorithm. For example, an AES-128 key can be recovered
with approximately 264 (quantum) oracle queries, which requires us to set p > 2384. However, p
is much larger than that (see Table 3.1) due to the existence of subexponential quantum attacks.

The abelian hidden-shift problem. A crucial result by Kuperberg [Kup05] is an algorithm to
solve the hidden-shift problem with time, query and space complexity 2O(

√
logN) in an abelian

groupH of orderN . He also showed that any abelian hidden-shift problem reduces to a dihed-
ral hidden-subgroup problem on a different but closely related oracle. A subsequent alternative
algorithm by Regev [Reg04] achieves polynomial quantum space complexity with an asymp-
totically worse time and query complexity of 2O(

√
logN log logN). A follow-up algorithm by Ku-

perberg [Kup13] uses 2O(
√

logN) time, queries and classical space, but only O(logN) quantum
space. All these algorithms have subexponential time and space complexity.

Attacking the isogeny problem. The relevance of these quantum algorithms to Problem 3.10
has been observed by Childs–Jao–Soukharev [CJS14] in the ordinary case and by Biasse–Jao–
Sankar [BJS14] in the supersingular setting. By defining functions f0, f1 : cl(O) → È `p(O, π)

as f0 : [b] 7→ [b]E and f1 : [b] 7→ [b]E′ = [b][a]E, the problem can be viewed as an abelian
hidden-shift problem with respect to f0 and f1. We note that each query requires evaluating the
functions fi on arbitrary ideal classes (i.e. without being given a representative that is a product
of ideals of small prime norm) which is non-trivial. However, Childs–Jao–Soukharev show this
can be done in subexponential time and space [CJS14, §4].

Subexponential vs. practical. An important remark about all these quantum algorithms is that
they do not immediately lead to estimates for runtime and memory requirements on concrete
instantiations withH = cl(O). Although the algorithms by Kuperberg and Regev are shown to
have subexponential complexity in the limit, this asymptotic behavior is not enough to under-
stand the space and time complexity on actual (small) instances. For example, Kuperberg’s first
paper [Kup05, Theorem 3.1] mentions O(23

√
logN) oracle queries to achieve a non-negligible

success probability when N is a power of a small integer. It also presents a second algorithm
that runs in Õ(3

√
2 log3N) = O(21.8

√
logN) [Kup05, Theorem 5.1]. His algorithms handle ar-

bitrary group structures but he does not work out more exact counts for those. Of course, this
does not contradict the time complexity of 2O(

√
logN) as stated above, but for a concrete security

analysis the hidden constants certainly matter a lot and ignoring theO typically underestimates

58 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

the security. Childs–Jao–Soukharev [CJS14, Theorem 5.2] prove a query complexity of

LN
[
1/2,
√

2
]

= exp
[(√

2 + o(1)
)√

lnN ln lnN
]
, (3.1)

where N = #cl(O), for using Regev’s algorithm for solving the hidden-shift problem. This
estimates only the query complexity, so does not include the cost of queries to the quantum
oracle (i.e. the isogeny oracle). Childs–Jao–Soukharev present two algorithms to compute the
isogeny oracle, the fastest of which is due to Bisson [Bis12]. In [CJS14, Remark 4.8] Childs–Jao–
Soukharev give an upper bound of

Lp[1/2, 1/
√

2] = exp
[(

1/
√

2 + o(1)
)√

ln p ln ln p
]

(3.2)

on the running time of Bisson’s algorithm.

Remark 3.12. Childs–Jao–Soukharev compute the total cost for computing the secret isogeny in [CJS14,
Remark 5.5] to beLp[1/2, 3/

√
2] (using Regev and Bisson’s algorithms, requiring only polynomial space).

They appear to obtain this by settingN = pwhen multiplying (3.1) and (3.2), but asN ∼ √p this is an
overestimation and should beLp[1/2, 1+1/

√
2]. Either way, this is the largest asymptotic complexity of

the estimates. Also, [GV18] points out this algorithm actually has superpolynomial space complexity due
to the high memory usage of the isogeny oracle in [CJS14], but see [JLLR18].

Childs–Jao–Soukharev additionally compute the total timeLp[1/2, 1/
√

2] for computing the
secret isogeny combining Kuperberg [Kup05] and Bisson. This requires superpolynomial storage
(also before considering the memory usage of the oracle). Note that in this combination the costs
of the oracle computation dominate asymptotically.

It is important to mention that asymptotically inferior algorithms may provide practical
improvements on our “small” instances over either of the algorithms studied by Childs–Jao–
Soukharev: For example, Couveignes [Cou06, §5] provides heuristic arguments that one can find
smooth representatives of ideal classes by computing the class-group structure (which can be
done in polynomial time on a quantum computer [Hal05]) and applying a lattice-basis-reduction
algorithm such as LLL [LLL82] to its lattice of relations. This might be more efficient than using
Childs–Jao–Soukharev’s subexponential oracle. However, note that this method makes evalu-
ating the oracle several times harder for the attacker than for legitimate users, thus immediately
giving a few additional bits of security, since users only evaluate the action of very smooth ideals
by construction. We believe further research in this direction is necessary and important, since
it will directly impact the cost of an attack, but we consider a detailed analysis of all these al-
gorithms and possible trade-offs to be beyond the scope of this work.12

Remark 3.13. After we posted a first version of the paper this chapter is based on on the Cryptology
ePrint Archive, there were several independent attempts at assessing the security of CSIDH.

Biasse, Iezzi, and Jacobson [BIJ18] work out some more details of the attack ideas mentioned above for
Regev’s algorithm. They focus on the class-group-computation part of the oracle and they describe how to
represent random elements of the class group as a product of small prime ideals. Their analysis is purely
asymptotic and an assessment of the actual cost on specific instances is explicitly left for future work.

Bonnetain and Schrottenloher [BS18] determine (quantum) query complexities for breaking CSIDH
under the assumption that the quantum memory can be made very large, which implies that Kuperberg’s
faster algorithms would be applicable. They estimate the number of oracle queries as (5π2/4)21.8

√
logN .

12The page margins are certainly too narrow to contain such an analysis.

3.7. SECURITY 59

The 1.8 appears to approximate the
√

2 log 3 in Kuperberg [Kup05, Theorem 5.1]. The number of qubits
required is stated as 21.8

√
logN+2.3.

While we ignored Kuperberg’s algorithm due to the large memory costs, they take the stance that “the
most time-efficient version is relevant”, and so do not ignore this algorithm. For small N the number
of qubits stated in [BS18] might be possible, which would indeed make Kuperberg’s algorithm relevant
for these sizes. However, in this case the total cost is dominated by the high cost of computing the oracle,
which Childs–Jao–Soukharev placed atLp[1/2, 1/

√
2]. Bonnetain and Schrottenloher instead make use

of Couveignes’ (exponential-time, but perhaps better for small parameters) LLL-based method for the
oracle computation, applying BKZ instead for more effective lattice-basis reduction.

Jao, LeGrow, Leonardi, and Ruiz-Lopez address the issue of superpolynomial space in the oracle com-
putation identified by Galbraith and Vercauteren (stated above) and give a new algorithm for finding
short representations of elements. Their paper focuses on the asymptotic analysis of the oracle step so that
they achieve overall polynomial quantum space, but does not obtain any concrete cost estimates.

We analyze the cost of quantum evaluation of the CSIDH group action in Chapter 9. Even after
introducing several speedups to arithmetic in finite fields and computing isogenies in superposition, for
CSIDH-512 it still takes 240 quantum operations on a quantum computer of 240 qubits to compute a single
evaluation of the Kuperberg or Regev oracle for success probability 2−32 and reduced range of exponents.

See Section 11.4 for an account of more recent developments.

3.7.3 – Instantiations. Finally we present estimates for some sizes of p.

Security estimates. As explained in §3.7.1, the best classical attack has query complexityO(4
√
p),

and the number of queries has been worked out for different quantum attacks. We consider
[CJS14] in combination with Regev and Kuperberg (Lp

[
1/2, 3/

√
2
]

andLp
[
1/2, 1/

√
2
]

, respect-
ively) as well as the pure query complexity of Regev’s and Kuperberg’s algorithms (LN

[
1/2,
√

2
]

,
O(23

√
logN), and O(21.8

√
logN), respectively). We summarize the resulting attack complexit-

ies, ignoring the memory costs and without restricting the maximum depth of quantum circuits,
for some sizes of p in Table 3.1. We note again that we expect these complexities to be subject
to more careful analysis, taking into account the implicit constants,13 the (in)feasibility of long
sequential quantum operations, and the large memory requirement. We also include the estim-
ates on the query complexity and full attack complexity by [BS18].

We point out a recent analysis [Adj+18] which shows that the classical attack on SIDH (which
is the same for CSIDH) is likely slower in practice than current parameter estimates assumed,
which is due to the huge memory requirements of the searches. Similarly, the cost of the quantum
attacks is significantly higher than just the query complexity multiplied with the cost of the
group action, since evaluating the oracle in superposition is significantly more expensive than
on a classical machine.

Recall that public keys consist of a single element A ∈ Fp, which may be represented us-
ing dlog pe bits. A private key is represented as a list of n integers in {−m, . . . ,m}, where m
was chosen such that n log(2m + 1) ≈ log

√
p, hence it may be stored using roughly (log p)/2

bits. Therefore the rows of Table 3.1 correspond to public key sizes of 64, 128, and 224 bytes, and
private keys are approximately half that size when encoded optimally.

13This is illustrated dramatically by the eighth column stating a complexity of Lp[1/2, 1/
√

2] for
[CJS14]-Kuperberg, which we recall arises by multiplying the query complexity of Kuperberg’s (first) algorithm
and Childs–Jao–Soukharev’s estimate Lp[1/2, 1/

√
2] for the running time of Bisson’s algorithm; so here it would

make more sense to add the corresponding entries of the fourth column, but we decided to leave the numbers as they
are in order to be consistent in the way we discard o(1)’s.

60 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Table 3.1: Estimated attack complexities ignoring limits on depth. The three rightmost columns state costs for the com-
plete attack; the others state classical and quantum query complexities. All numbers are rounded to whole bits and use
N = #cl(O) =

√
p, o(1) = 0, and all hiddenO-constants 1, except for numbers taken from [BS18].

CSIDH-(log p) cl
as

si
ca

l
lo

g
4√
p

Re
ge

v
[R

eg
04

]
lo

g
L
N

[1
/
2
,√

2
]

Ku
pe

rb
er

g
[K

up
05

]
3
√

lo
g
N

Ku
pe

rb
er

g
[K

up
05

]
1
.8
√

lo
g
N

Ta
bl

e7
in

[B
S1

8]

[C
JS

14
]-

Re
ge

v
lo

g
L
p
[1
/
2
,3
/
√

2
]

[C
JS

14
]-

Ku
pe

rb
er

g
lo

g
L
p
[1
/
2
,1
/
√

2
]

Ta
bl

e8
in

[B
S1

8]

CSIDH-512 128 62 48 29 32.5 139 47 71
CSIDH-1024 256 94 68 41 44.5 209 70 88
CSIDH-1792 448 129 90 54 57.5 288 96 104

Security levels. We approximate security levels as proposed by NIST for the post-quantum
standardization effort [NIST16, §4.A.5]. That is, the k-bit security level means that the required
effort for the best attacks is at least as large as that needed for a key-retrieval attack on a block
cipher with a k-bit key (e.g. AES-k for k ∈ {128, 192, 256}). In other words, under the assump-
tion that the attacks query an oracle on a circuit at least as costly as AES, we should have a query
complexity of at least 2k−1 resp.

√
2k to a classical resp. quantum oracle. NIST further restricts

the power of the quantum computation to circuits of maximum depth 240 up to 296, meaning
that theoretically optimal tradeoffs (such as the formulas in Table 3.1 above) might not be pos-
sible for cryptographic sizes.

The parameters for CSIDH-(log p) were chosen to match the query complexity of Regev’s
attack on the hidden-shift problem (see the third column in Table 3.1) for roughly 2k/2, which
should match NIST levels 1-3 as the group action computation has depth at least as large as AES.

Some other algorithms give lower estimates which makes it necessary to evaluate the exact
cost of the oracle queries or compute the lower-order terms in the complexity. The analysis in
[BS18, Table 8] states lower overall costs compared to AES. While this is a significant improve-
ment, it is not clear that this affects our security claim when accounting precisely for the actual
cost of oracle queries, as stated above. Our analysis in Chapter 9 shows costs of much more
than 240 qubit operations for evaluating the oracle for log p ≈ 512, whereas [BS18] assumed
only 237. See also Section 11.4, which discusses CSIDH security claims including more recent
developments.

3.8 — Implementation

In this section, we outline our most important tricks to make the system easier to implement or
the code faster. As pointed out earlier, the crucial step is to use a field of size 4·`1 · · · `n−1, where
the `i are small distinct odd primes; this implies that all `i are Elkies primes for a supersingular
elliptic curve over Fp and that the action of ideals (`i, π ± 1) can be computed efficiently using
Fp-rational points. See Section 3.4 for these design decisions. The following section focuses on
lower-level implementation details.

Montgomery curves. The condition p + 1 ≡ 4 (mod 8) implies (cf. Proposition 3.8) that all
curves in È `p(Z[π], π) can be written as y2 = x3 +Ax2 +xwithA ∈ Fp via anFp-isomorphism.

3.8. IMPLEMENTATION 61

This is commonly referred to as the Montgomery form [Mon87] of an elliptic curve and is popular
due to the very efficient arithmetic on its x-line. This extends well to computations of isogenies
on the x-line, as was first shown by Costello–Longa–Naehrig [CLN16, §3]. Our implementation
uses exactly the same formulas for operations on curves. For isogeny computations on Mont-
gomery curves we use a projectivized variant (to avoid almost all inversions) of the formulas
from Costello–Hişil [CH17] and Renes [Ren18]. This can be done as follows.

For a fixed prime ` ≥ 3, a point P of order `, and an integer k ∈ {1, . . . , `− 1}, let (Xk : Zk)

be the projectivized x-coordinate of [k]P . Then by defining ci ∈ Fp such that

`−1∏
i=1

(Ziw +Xi) =

`−1∑
i=0

ciw
i

as polynomials inw, we observe that

(τ(A− 3σ) : 1) =
(
Ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2`−1

)
,

where

τ =

`−1∏
i=1

Xi
Zi

, σ =

`−1∑
i=1

(
Xi
Zi
− Zi
Xi

)
andA is the Montgomery coefficient of the domain curve. By noticing thatx([k]P) = x([`−k]P)

for all k ∈ {1, . . . , (` − 1)/2}we can reduce the computation needed by about half. That is, we
can compute (τ(A − 3σ) : 1) iteratively in about 5`M + `S operations14, noting that τ(A −
3σ) is the Montgomery coefficient of the codomain curve of an isogeny with kernel 〈P 〉 [Ren18,
Proposition 1]. If necessary, a single division at the end of the computation suffices to obtain an
affine curve constant. We refer to the implementation for more details.

Note that for a given prime `, we could reduce the number of field operations by finding
an appropriate representative of the isogeny formulas modulo (a factor of) the `-division poly-
nomial ψ` (as done in [CLN16] for 3- and 4-isogenies). Although this would allow for a more
efficient implementation, we do not pursue this now for the sake of simplicity.

Rational points. Recall that the goal is to evaluate the action of (the class of) an ideal le11 · · · l
en
n

on a curveE ∈ È `p(Z[π], π), where each li = (`i, π−1) is a prime ideal of small odd norm `i and
the ei are integers in a short range {−m, . . . ,m}. We assume E is given in the form EA : y2 =

x3 +Ax2 + x.
The obvious way to do this is to consider each factor l±1

i in this product and to find the
abscissa of a point P of order `i on E, which (depending on the sign) is defined over Fp or
Fp2\Fp. This exists by our choice of p and `i (cf. Section 3.4). Finding such an abscissa amounts
to sampling a random Fp-rational x-coordinate, checking whether x3 + Ax2 + x is a square or
not (for l+1

i resp. l−1
i) in Fp (and resampling if it was wrong), followed by a multiplication by

(p+1)/`i and repeating from the start if the result is∞. The kernel of the isogeny given by l±1
i is

then 〈P 〉, so the isogeny may be computed using Vélu-type formulas. Repeating this procedure
for all l±1

i gives the result.
However, fixing a sign before sampling a random point effectively means wasting about half

of all random points, including an ultimately useless square test. Moreover, deciding on a prime
`i before sampling a point and doing the cofactor multiplication wastes another proportion of
the points, including both an ultimately useless square test and a scalar multiplication. Both of

14Here M and S denote a multiplication and squaring in Fp.

62 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

these issues can be remedied by not fixing an `i before sampling a point, but instead taking any
x-coordinate, determining the smallest field of definition (i.e. Fp or Fp2) of the corresponding
point, and then performing whatever isogeny computations are possible using that point (based
on its field of definition and order). The steps are detailed in Algorithm 3.2.

Algorithm 3.2: Evaluating the class-group action.

Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B such that [le11 · · · l

en
n]EA = EB (whereEB : y2 = x3 +Bx2 + x).

1 While some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 +Ax2 + x is a square in Fp, else s← −1.
4 Let S = {i | ei 6= 0, sign(ei) = s}. If S = ∅ then start over with a new x.
5 Let k ←

∏
i∈S `i and computeQ← [(p+ 1)/k]P .

6 For each i ∈ S do
7 ComputeR← [k/`i]Q. If R =∞ then skip this i.
8 Compute an isogeny ϕ : EA → EB : y2 = x3 +Bx2 + xwith ker(ϕ) = R.
9 SetA← B,Q← ϕ(Q), k ← k/`i, and finally ei ← ei − s.

10 ReturnA.

Due to the commutativity of cl(O), and since we only decrease (the absolute value of) each ei
once we successfully applied the action of l±1

i to the current curve, this algorithm indeed com-
putes the action of [le11 le22 · · · l

en
n].

Remark 3.14. Since the probability that a random point has order divisible by `i (and hence leads to
an isogeny step in Algorithm 3.2) grows with `i, the isogeny steps for big `i are typically completed before
those for small `i. Hence it may make sense to sample the exponents ei for ideals li from different ranges
depending on the size of `i, or to not include any very small `i in the factorization of p+ 1 at all to reduce
the expected number of repetitions of the loop above. Note moreover that doing so may also improve the
performance of straightforward constant-time adaptions of our algorithms, since it yields stronger upper
bounds on the maximum number of required loop iterations (at the expense of slightly higher cost per
isogeny computation). Varying the choice of the `i can also lead to performance improvements if the
resulting prime p has lower Hamming weight. Finding such a p is a significant computational effort but
needs to be done only once; all users can use the same finite field.

Remark 3.15. Algorithm 3.2 is obviously strongly variable-time when implemented naïvely. Indeed, the
number of points computed in the isogeny formulas is linear in the degree, hence the iteration counts of
certain loops in our implementation are very directly related to the private key. We note that it would not
be very hard to create a constant-time implementation based on this algorithm by always performing the
maximal required number of iterations in each loop and only storing the results that were actually needed
(using constant-time conditional instructions), although this incurs quite a bit of useless computation,
leading to a doubling of the number of curve operations on average. We leave the design of optimized
constant-time algorithms for future work.

Public-key validation. Recall that the public-key validation method outlined in Section 3.5
essentially consists of computing [(p+ 1)/`i]P for each i, where P is a random point onE. Per-

3.8. IMPLEMENTATION 63

forming this computation in the straightforward way is simple and effective. On the other hand,
a divide-and-conquer approach, such as the following recursive algorithm, yields better speeds
at the expense of slightly higher memory usage. Note that Algorithm 3.3 only operates on public
data, hence need not be constant-time in a side-channel resistant implementation.

Algorithm 3.3: Batch cofactor multiplication. [Sut07, Algorithm 7.3]

Input: An elliptic-curve point P and positive integers (k1, . . . , kn).
Output: The points (Q1, . . . , Qn), whereQi =

[∏
j 6=i kj

]
P .

1 If n = 1 then return (P). // base case

2 Setm← dn/2e and let u←
∏m
i=1 ki, v ←

∏n
i=m+1 ki.

3 ComputeL← [v]P andR← [u]P .
4 Recurse with inputL, (k1, . . . , km) giving (Q1, . . . , Qm). // left half

5 Recurse with inputR, (km+1, . . . , kn) giving (Qm+1, . . . , Qn). // right half

6 Return (Q1, . . . , Qn).

This routine can be used for verifying that an elliptic curveE/Fp is supersingular as follows: Pick
a random point P ∈ E(Fp) and run Algorithm 3.3 on input [4]P and (`1, . . . , `n) to obtain the
pointsQi = [(p + 1)/`i]P . Then continue like in Algorithm 3.1 to verify thatE is supersingular
using these precomputed points.

In practice, it is not necessary to run Algorithm 3.3 as a black-box function until it returns all
the points Q1, . . . , Qn: The order checking in Algorithm 3.1 can be performed as soon as a new
pointQi becomes available, i.e., in the base case of Algorithm 3.3. This reduces the memory us-
age (since the pointsQi can be discarded immediately after use) and increases the speed (since
the algorithm terminates as soon as enough information was obtained) of public-key validation
using Algorithms 3.1 and 3.3. We note that the improved performance of this algorithm com-
pared to Algorithm 3.1 alone essentially comes from a time-space trade-off, hence the memory
usage is higher (cf. Section 3.8.1). On severely memory-constrained devices one may instead opt
for the naïve algorithm, which requires less space but is slower.

3.8.1 – Performance results. On top of a minimal implementation in the Sage computer
algebra system [Sage] for demonstrative purposes, we created a somewhat optimized proof-
of-concept implementation of the CSIDH group action for a particular 512-bit prime p. While
this implementation features 512-bit field arithmetic written in assembly (for Intel Skylake pro-
cessors), it also contains generic C code supporting other field sizes and can therefore easily be
ported to other computer architectures or parameter sets if desired.15

The prime p is chosen as p = 4 · `1 · · · `74 − 1 where `1 through `73 are the smallest 73

odd primes and `74 = 587 is the smallest prime distinct from the other `i that renders p prime.
This parameter choice implies that public keys have a size of 64 bytes. Private keys are stored
in 37 bytes for simplicity, but an optimal encoding would reduce this to only 32 bytes. Table 3.2
summarizes performance numbers for our proof-of-concept implementation. Note that private-
key generation is not listed as it only consists of sampling n random integers in a small range
{−m, . . . ,m}, which has negligible cost.

15Our code for this chapter is published in the public domain and is available for download at https://yx7.cc/
code/csidh/csidh-latest.tar.xz.

https://yx7.cc/code/csidh/csidh-latest.tar.xz
https://yx7.cc/code/csidh/csidh-latest.tar.xz

64 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Table 3.2: Performance numbers for our proof-of-concept implementation (2018-08-26), averaged over 10 000 runs on
an Intel Skylake i5 processor clocked at 3.5 GHz.

Clock cycles Wall-clock time Stack memory

Key validation 5.5 · 106 cc 2.1 ms 4 368 bytes

Group action 106 · 106 cc 40.8 ms 2 464 bytes

We emphasize that both our implementations are intended as a proof of concept and unfit
for production use; in particular, they are explicitly not side-channel resistant and may contain
any number of bugs. We leave the design of hardened and more optimized implementations for
future work.

Chapter 4

Faster SeaSign signatures
through improved rejection sampling

This chapter is for all practical purposes identical to the paper Faster SeaSign signatures through
improved rejection sampling [DPV19] authored jointly with Thomas Decru and Frederik Vercaut-
eren, which was published at PQCrypto 2019.

4.1 — Introduction

CSIDH’s small key sizes prompted De Feo and Galbraith soon afterwards to transform it into
a signature scheme called SeaSign [DG19]. The construction uses the Fiat–Shamir with aborts
framework, a technique commonly used in lattice-based cryptography [Lyu09], in combination
with an isogeny-based identification scheme going back to Couveignes [Cou06] and independ-
ently Stolbunov [Sto12]. Their paper presents three different versions of SeaSign featuring vari-
ous trade-offs between signature size, public-key size, and secret-key size. One of these versions
attains 128 bits of security with signatures of less than one kilobyte. An issue impacting all of
these schemes, however, is that the signing and verification times are rather substantial. Indeed,
the basic SeaSign scheme takes (on average) almost two days to sign a message on a typical CPU,
whereas the variants with smaller signatures or public keys still take almost ten minutes to sign
(on average).

In this chapter we tackle this performance issue in the more general setting of using group
actions in a “Fiat–Shamir with aborts” scheme. We first discuss two (unfortunately mutually ex-
clusive) adjustments that reduce the likelihood of rejections, which decreases the expected num-
ber of failed signing attempts before a success and hence makes signing more efficient. Next, we
describe a modification that significantly speeds up the signing process at the cost of a small
increase in signature size. The basic idea is to allow the prover to refuse answering a small fixed
number of challenges, thereby reducing the overall probability of aborting. To attain a given se-
curity level, the total number of challenges — and correspondingly the signature size — will be
somewhat larger than for standard Fiat–Shamir with aborts. As an application of these general
techniques, we analyze the resulting speed-up for the various versions of the SeaSign signature
scheme. The improvement is most noticeable when applied to the basic scheme: the original
signing cost goes down from almost two days to just over half an hour. The other two, more ad-
vanced variants are still sped up by a factor of four to roughly two minutes per signature. Even
though this is still too slow for most (if not all) applications, it is a significant improvement over
the state of the art, and the underlying ideas of these speed-ups might be useful for other cryp-
tographic schemes as well.

66 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

Acknowledgements. We are thankful to Steven Galbraith for his observation about shorter sig-
natures in Remark 4.3, and to Taechan Kim for pointing out an error in an earlier version of the
script in Section 4.4.

4.1.1 – Notation. The notation [a; b] denotes the integer range {a, . . . , b}.
Fix n ≥ 1. Throughout, we will consider a transitive action of the abelian group Zn on a

finite setX , with a fixed elementE0 ∈ X . We will assume that “short” vectors in Zn are enough
to reach “almost all” elements ofX .1 Moreover, we assume that the cost of computing the action
[v]E of a vector v ∈ Zn on an element E ∈ X is linear in the 1-norm ‖v‖1 =

∑n
j=1|vj | of v.

(We will argue in Section 4.2.1 that these assumptions are satisfied in the CSIDH setting.)

4.2 — Preliminaries

We recall some facts from Chapters 2 and 3.

4.2.1 – CSIDH. Consider a supersingular elliptic curveE defined over Fp, where p is a large
prime. While the endomorphism ring End(E) of E over the algebraic closure of Fp is noncom-
mutative, the ring EndFp(E) of endomorphisms defined over Fp is an orderO in the imaginary
quadratic field Q(

√
−p).

The ideal class group of EndFp(E) = O is the quotient of the group of fractional invertible
ideals inO by the principal fractional invertible ideals inO, and will be denoted cl(O). The group
cl(O) acts on the set of Fp-isomorphism classes of elliptic curves with Fp-rational endomorph-
ism ringO through isogenies. More specifically, when given anO-ideal a and an elliptic curve
E with EndFp(E) = O, we define [a]E as the codomain of the isogeny ϕa : E → E/a whose
kernel is

⋂
α∈a ker(α). This isogeny is well-defined and unique up to Fp-isomorphism.

There are formulas for computing [a]E. However, for general a, this computation requires
large field extensions and hence has superpolynomial time complexity. To avoid this, CSIDH
restricts to ideals of the form a =

∏n
i=1 l

ei
i , where all li are prime ideals of small norm `i, and

such that the action of li can be computed entirely over the base fieldFp. The curve [a]E can then
be computed by chaining isogenies of degrees `i. In principle the cost of computing the action
of li is in Θ(`i), but for small values of `i it is dominated by a full-size scalar multiplication,
which is why assuming cost |e1|+ · · ·+ |en| for computing the action of

∏n
i=1 l

ei
i , as mentioned

in Section 4.1.1, comes close to the truth. (Moreover, in our setting, the |ei| are all identically
distributed, hence the differences in costs between various `i disappear on average.)

The CSIDH group action is defined as follows.

Parameters. Integers n ≥ 1, m ≥ 0. A prime p of the form 4 · `1 · · · `n − 1, with `i small
distinct odd primes. The elliptic curve E0 : y2 = x3 + x over Fp. Write È `p(O) for the set of
(Fp-isomorphism classes of) elliptic curves over Fp with EndFp(E) = O = Z[π], where π is the
Fp-Frobenius endomorphism.

Group action. A group element is represented2 by a vector (e1, . . . , en) ∈ Zn sampled uni-
formly at random from [−m;m]n, which defines the ideal a =

∏n
i=1 l

ei
i with li = 〈`i, π − 1〉.

A public element is a single coefficientA ∈ Fp, representing the curveEA : y2 = x3 +Ax2 + x.
The result of the action of an ideal a on a public elementA ∈ Fp, assuming thatEA has the right

1In other words: The action ofZn onX factors through the quotientQ = Zn/Λ, where Λ ≤ Zn is the stabilizer of
anyE ∈ X , and we assume thatQ is “sufficiently” covered by “short” vectors inZn under the quotient mapZn � Q.

2Note this representation matches the assumptions in Section 4.1.1.

4.2. PRELIMINARIES 67

E0

E1

E2

. . .

ES−1

[a(1)]

[a(2)]

...

[a(S−1)]

Figure 4.1: Structure of Alice’s key pair.

endomorphism ringO, is the coefficientB of the curve [a]EA : y2 = x3 +Bx2 + x.

The security assumption of the group action is that it is essentially a black-box version of the
group cl(O) on which anyone can efficiently act by translations. In particular, given two elliptic
curvesE,E′ ∈ X , it should be hard to find an ideal a ofO such thatE′ = [a]E.

Notice that it is not clear in general that the vectors in [−m;m]n cover the whole group,
or even a “large” fraction. Unfortunately, sampling uniformly random from cl(O) is infeasible
for large enough parameters, since there is no known efficient way to compute the structure of
cl(O) in that case. In fact, knowing the exact class group structure would be sufficient to obtain
much more efficient signatures, since no rejection sampling would be required [DG19]. Under
the right assumptions however, the elements represented by vectors in [−m;m]n are likely to
cover a large fraction of the group as long as (2m + 1)n ≥ #cl(O). The values suggested for
(n,m) in [Cas+18] are (74, 5), which aim to cover a group of size approximately 2256. This results
in group elements of 32 bytes, public elements of 64 bytes, and a performance of about 40 ms per
group action computation. For more details, see Chapter 3.

As stated in Section 4.1.1, we will from now on abstract away the underlying isogeny-based
constructions and work in the setting of the group (Zn,+) acting on a finite setX .

4.2.2 – SeaSign. SeaSign [DG19] is a signature scheme based on a sketch of an isogeny-
based identification scheme by Couveignes [Cou06] and Stolbunov [Sto10], in combination with
the “Fiat–Shamir with aborts” construction [Lyu09] from lattice-based cryptography to avoid
leakage. The identification part of SeaSign works as follows. Note that our exposition differs
from [DG19] for consistency with the following sections.

Parameters. Like CSIDH, and additionally integers δ ≥ 1 and S ≥ 2. 3

Keys. Alice’s private key is a list a = (a(1), . . . ,a(S−1)) of S− 1 vectors sampled uniformly
at random from [−m;m]n ⊆ Zn.

For i ∈ {1, . . . , S− 1}, writeEi := [a(i)]E0, that is, the result of applying the group element
represented bya(i) ∈ Zn; then Alice’s public key is the list [a]E0 := (E1, . . . , ES−1) of her secret
vectors applied to the starting elementE0.

This situation is summarized in Figure 4.1.

3Technically, there is no reason for δ to be an integer: it is sufficient that δ ∈ 1
m
· Z, but we will assume δ ∈Z

throughout for simplicity.

68 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

E0

E1

E2

. . .

ES−1

[a(1)]

[a(2)]

...

[a(S−1)]

E

[b]

[r]

Figure 4.2: The identification scheme in the scenario c = 2.

Identification. Alice samples an ephemeral vector b uniformly random from

[−(δ + 1)m; (δ + 1)m]n ⊆ Zn .

She then computesE = [b]E0 and commits toE. On challenge c ∈ {0, . . . , S−1}, she computes
r = b − a(c) (where a(0) is defined as 0). If r ∈ [−δm; δm]n, she reveals r; else she rejects the
challenge. Bob verifies that [r]Ec = E.

See Figure 4.2 for a visual representation of this protocol.
Since an attacker (who cannot break the underlying isogeny problems) has a 1/S chance

of winning, this identification scheme provides log2 S bits of security. In order to amplify the
security level, Alice typically computes t ≥ 1 independent vectors b1, . . . ,bt instead of just
one. The verifier responds with t challenges c1, . . . , ct ∈ {0, . . . , S − 1}. Alice then computes
ri = bi−a(ci) for all 1 ≤ i ≤ t and reveals them if all of them are in [−δm; δm]n; else she rejects
the challenge. In order to not have to reject too often, δ must be rather large; more specifically, δ
was chosen as nt in [DG19] to achieve a success probability of roughly 1/e.

As mentioned in the introduction, [DG19] gives three SeaSign constructions. The original
idea is the scheme above with S = 2, i.e., the public key is a single public element. This results
in a large t and therefore a very large signature. The second scheme lets the number of private
keys S range from 2 up to 216, which results in smaller, faster signatures at the expense of larger
public-key sizes.4 The final scheme reduced the size of the public key again by using a Merkle
tree, at the cost of increasing the signature size. We will not elaborate on all those variants in
detail.

To turn this identification scheme into a non-interactive signature protocol, the standard
Fiat–Shamir transformation can be applied [FS86]. In a nutshell, Alice computes the challenges
c1, . . . , ct herself by hashing the ephemeral public elements [b1]E0, . . . , [bt]E0 together with
her message. Alice then sends her signature ([b1]E0, . . . , [bt]E0; r1, . . . , rt) to Bob, who can
recompute the challenges c1, . . . , ct to verify that indeed [ri]Eci = [bi]E0 for all i ∈ {1, . . . , t}.

4.3 — The improved signature scheme

In this section we describe our improvements.

4.3.1 – Core ideas.

4In [DG19],S is always a power of 2, but anyS ≥ 2 works.

4.3. THE IMPROVED SIGNATURE SCHEME 69

1. The first improvement is minor (but still has significant implications) and concerns the
identification scheme itself: the following observations result in two variants that are
more efficient than the basic scheme.5

• VariantF : The ephemeral secret b is automatically independent of all secrets a(i),
hence can be revealed even if it lies outside of [−δm; δm]n. We remark that this vari-
ant is described in [DG19] already but disregarded as only a single signing attempt
is examined. When taking into account the average signing cost, however, it can
clearly improve performance, and we will quantify these improvements.

• Variant T : Depending on the entries of the concrete private keys a(i), the ephem-
eral secret b can be sampled from a smaller set than the worst-case range used in
SeaSign to reduce the probability of rejection. Indeed, although the j-th entry in
each a(i) is a priori sampled uniformly in [−m;m], which makes the j-th coefficient
of each ephemeral vector b lie in the interval [−(δ + 1)m; (δ + 1)m], it is useless
(since it will always lead to a rejection) to sample the j-th coefficient outside the
smaller interval [−δm+mj ; δm+Mj] wheremj = min{0, a(1)

j , . . . , a
(S−1)
j } and

Mj = max{0, a(1)
j , . . . , a

(S−1)
j }.

It is clear that Variant F and Variant T are mutually exclusive: in Variant T the ephem-
eral secret b is sampled from a set that is dependent on the private keys a(i), whereas for
VariantF to work it is required that this sampling is done completely independently.

2. The second improvement is more significant and modifies the “Fiat–Shamir with aborts”
transform as follows: assume the identification scheme usess-bit challenges (correspond-
ing to a probability of 2−s that an attacker can cheat), and that each execution has prob-
ability of rejection ε. The SeaSign approach to attain security level λ is to simultaneously
obtain t = dλ/se non-rejected executions of the identification protocol which happens
with probability (1− ε)t. Our approach increases the total number of challenges, but al-
lows the prover to refuse answering a fixed number u of them, since this tolerates much
higher rejection probabilities at the cost of a relatively small increase in public-key and
signature size.

We now provide more details on each of the above ideas.

4.3.2 – Identification scheme.

Parameters. Integers S ≥ 2 and δ ≥ 1.

Keys. Like in SeaSign (Section 4.2.2).

Identification. Using Alice’s key pair (a, [a]E0), a (log2 S)-bit identification protocol can be
constructed as shown in Figure 4.3.

Lemma 4.1. The distribution of revealed vectors r is independent of a(c).

Proof. This is trivial in VariantF in the event c = 0. For the other cases, note that I is constructed
such that r = b−a(c) is uniformly distributed on a set containing ∆ := [−δm; δm]n, no matter
what a(c) is. Therefore, the distribution of r conditioned on the event r ∈ ∆ is uniform on ∆

independently of a(c).
5The acronymsF and T refer to “full” and “truncated” ranges, respectively.

70 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

VariantF Variant T

Alice samples a vector b uniformly random from the set ...

I =
[
−(δ + 1)m; (δ + 1)m

]n ⊆ Zn .

I =

n∏
j=1

[
−δm+mj ; δm+Mj

]
⊆ Zn ,

where

mj = min{0, a(1)
j , . . . , a

(S−1)
j } ;

Mj = max{0, a(1)
j , . . . , a

(S−1)
j } .

She then computes E = [b]E0 and commits to E. On challenge c ∈ {0, . . . , S − 1}, she
computes r = b− a(c) (where a(0) is defined as 0).

If c = 0 or r ∈ [−δm; δm]n, ... If r ∈ [−δm; δm]n, ...

... then she reveals r; else she rejects the challenge. Bob verifies that [r]Ec = E.

Figure 4.3: Our (log2 S)-bit identification scheme

Remark 4.2. Lemma 4.1 only talks about the conditional distribution of r if it is revealed. Note that in
Variant T , the probability that it can be revealed is still correlated to the entries of a(c), which may have
security implications. We show in Section 4.3.3 how to get around this issue in a signature scheme.

4.3.3 – Signature scheme. Our improved signature scheme is essentially the “Fiat–Shamir
with aborts” construction also used in SeaSign (see Section 4.2.2), except that we allow the signer
to reject a few challenges in each signature. The resulting scheme is parameterized by two in-
tegers t ≥ 0, denoting the number of challenges the signer must answer correctly, and u ≥ 0,
the number of challenges she may additionally refuse to answer.

Write ID for (one of the variants of) the identification scheme in Section 4.3.2.

Keys. Alice’s identity key consists of a key pair (a, [a]E0) as in ID.

Signing. To sign a message m, Alice first generates a list b1, . . . ,bt+u of random vectors,
each sampled like the vector b in ID. She computes the corresponding list of public elements
[b1]E0, . . . , [bt+u]E0 and hashes them together with the message m to obtain a list of chal-
lenges c1, . . . , ct+u ∈ {0, . . . , S − 1}. To produce her signature, she then traverses the tuples
(bi, ci) in a random order, computing the correct response ri = bi − a(ci) (as in ID) if possible
and a rejection 7 otherwise. Once t successful responses have been generated, the remaining
challenges are all rejected in order not to leak any information about the rejection probability;
cf. Remark 4.2.6 Finally, the signature is

([b1]E0, . . . , [bt+u]E0; r1, . . . , rt+u) ,

where exactly u of the ri equal 7. (If less than t challenges could be answered, Alice aborts and
retries the whole signing process with new values of bi.)

6This is why the tuples are processed in a random order: Proceeding sequentially and rejecting the remaining tail
still leaks, since the number of 7 at the end would be correlated to the rejection probability.

4.4. ANALYSIS AND RESULTS 71

Verification. This again is standard: Bob first checks that at most u of the t+u values ri have
been rejected 7. He then recomputes the challenges c1, . . . , ct+u by hashing the message m
together with the ephemeral elements [bi]E0 and verifies that [ri]Eci = [bi]E0 holds for all
i ∈ {1, . . . , t+u}with ri 6= 7.

Remark 4.3. The signatures can be shortened further: Sending those [bi]E0 with ri 6= 7 is wasteful. It
is enough to send the hashH of all ephemeral elements [bi]E0 instead, since Bob can extract ci fromH ,
recompute [bi]E0 as [ri]Eci , and verify in the end that the hashH was indeed correct.

Remark 4.4. As mentioned earlier, one can reduce the public-key size by using a Merkle tree, but this
does not significantly alter the computation time for any part of the protocol. Given that the main focus
of our adjustments to SeaSign is speeding it up, we will therefore not investigate this avenue any further.

Security. The proof for the security for this scheme is completely analogous to the original
SeaSign scheme. This follows from Lemma 4.1 and the fact that there are always a fixed numberu
of 7 per signature in random positions. Instead of reproducing the proof here, we refer the reader
to [DG19].

4.4 — Analysis and results

In order to quantify our speed-ups compared to the original SeaSign scheme, we analyze our
adjustments in the same context as [DG19]. This means (n,m) = (74, 5) and log2 p ≈ 512.
Furthermore, we require 128 bits of security and let S range through powers of two between 2

and 216.
As mentioned before, Variant F and Variant T are mutually exclusive. For this reason, we

computed the results for both cases to compare which performs better under given conditions.
Variant T clearly converges to the original SeaSign scheme rapidly for growing S, while Vari-
ant F always keeps at least a little bit of advantage. It is clear that from a certain value of S
onward, Variant F will always be better. For small S however, Variant T will outperform Vari-
antF rather significantly for average-case key vectors.

We now discuss how to optimize the parameters (t, u, δ) for a givenS. The main cost metric
is the expected signing time7

δ · (t+ u)/q ,

where q is the probability of a full signing attempt being successful (i.e., at most u rejections 7).
This optimization problem depends on two random variables:

• The number Z of challenges that an attacker can successfully answer even though they
cannot break the underlying isogeny problems.

• The number Y of challenges that Alice can answer without leaking, i.e., the number of
non-rejected challenges.

Since the t+u challenges are independent, bothZ and Y are binomially distributed with count
t+ u. Let Tk,α denote the tail cumulative distribution function of Bink,α, i.e.,

Tk,α(x) =

k∑
i=x

(
k

i

)
αi(1− α)k−i ,

7Other optimizations could look at the sum of signing and verification time, or even take into account key generation
time, but we will not delve into those options.

72 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

which is the probability that a Bink,α-distributed variable attains a value of at least x. The suc-
cess probability for an attacker is 1/S, since he knows the correct answer to at most one of S
challenges c. In order to achieve 128 bits of security, it is required that

Pr[Z ≥ t] = Tt+u,1/S(t) ≤ 2−128 .

This condition implies that for fixed S and t, there is a maximal value umax (t) for u, the number
of allowed rejections 7, regardless of δ.

Letσ(δ) denote Alice’s probability of being able to answer (i.e., not reject 7) a single challenge
for a given value of δ; hence Y ∼ Bint+u,σ(δ). In order to find the optimal (u, δ) for a given t, we
need to minimize the expression

δ · (t+ u)/q(t, u, δ) ,

where
q(t, u, δ) = Pr[Y ≥ t] = Tt+u,σ(δ)(t)

is the probability of a full signing attempt being successful. The function σ depends on the vari-
ant (F or T). In case of VariantF we have

σ(δ) =
1

S
+
S − 1

S

(
2δm+ 1

2(δ + 1)m+ 1

)n
.

For Variant T , the function σ even depends on the private keys in use. With fixed private keys
a(1), ..., a(S−1) and writing mj = min{0, a(1)

j , ..., a
(S−1)
j } and Mj = max{0, a(1)

j , ..., a
(S−1)
j }

as before, the formula becomes

σ(δ) =

n∏
j=1

2δm+ 1

2δm+ 1−mj +Mj
.

For our analysis we work with the expected probability over all possible keys.
Our results for the optimization problem can be found in Table 4.1. The [Sage] code that

computes these values can be found in Section 4.4; it takes about twelve minutes on a single
core. We are quite confident that the values in Table 4.1 are optimal, but cannot strictly claim so
since we have not proven that the conditions used in the script to terminate the search capture
all optimal values, although this seems reasonable to assume.

There are two major differences in the way we present our data compared to [DG19]. First of
all, we list the expected signing time instead of a single signing attempt, which represents the real
cost more accurately. Second, we express the time in equivalents of “normal” CSIDH operations
instead of in wall-clock time, which makes the results independent of a concrete choice of CSIDH
implementation and eases comparison with other work.

Unsurprisingly, the biggest speed-up can be seen for the basic SeaSign scheme (i.e., S= 2),
since that is where the largest δ could be found. The expected signing time is reduced by a factor
of 65, whereas verification is sped up by a factor of roughly 31, at the cost of doubling the sig-
nature size. As predicted, VariantF outperforms Variant T from a certain point onward, which
apparently is for S ≥ 24. The case S = 216 gains a factor of 4.4 in the expected signing time and
6.0 in verification time. Note though that it only has 2.7% faster signing and 21% faster verific-
ation than the case S = 215 (which uses public keys half as big), which further emphasizes the
importance of choosing the right trade-offs. Perhaps unsurprisingly, taking u = umax (t) often
gives the best (expected) signing times, although this is not always the case: for instance, for
S = 216 we have umax (10) = 29, but u = 22 with a bigger δ yields (slightly) better results.

4.4. ANALYSIS AND RESULTS 73

Table 4.1: Parameters for our improved SeaSign variants, optimizing for signing time. All of these choices provide≥ 128
bits of security (of course assuming that the underlying isogeny problems are hard). Lines with variant “—” refer to
the original parameter selection methodology suggested in [DG19]. The signature sizes make use of the observation
in Remark 4.3. The “CSIDHs” columns express the computational load in terms of equivalents of a “normal” CSIDH
operation, i.e., with exponents in [−m;m]n, making use of the assumption that the cost is linear in the 1-norm of the
input vector. Using current implementations [MR18; Cas+18], computing one “CSIDH”-512 takes approximately 40 ms
of wall-clock time on a standard processor. Finally, the rightmost column shows the speed-up in signing and verification
times compared to the original SeaSign scheme.

S t u δ Var. Public-key
bytes

Signature
bytes

Expected
signing

attempts

Expected
signing
CSIDHs

Expected
verifying
CSIDHs

Speed-up
factors

21 128 0 9472 — 64 b 19600 b 2.718 3295480 1212416
21 337 79 114 T 64 b 36838 b 1.058 50175 38418 65.7 | 31.6

22 64 0 4736 — 192 b 9216 b 2.718 823818 303104
22 144 68 133 T 192 b 18256 b 1.063 29962 19152 27.5 | 15.8

23 43 0 3182 — 448 b 5967 b 2.718 371862 136826
23 83 56 141 T 448 b 11695 b 1.078 21119 11703 17.6 | 11.7

24 32 0 2368 — 960 b 4320 b 2.718 205928 75776
24 59 58 119 F 960 b 9376 b 1.076 14985 7021 13.7 | 10.8

25 26 0 1924 — 1984 b 3442 b 2.717 135937 50024
25 43 50 111 F 1984 b 7301 b 1.085 11198 4773 12.1 | 10.5

26 22 0 1628 — 4032 b 2866 b 2.717 97322 35816
26 33 42 108 F 4032 b 5835 b 1.089 8824 3564 11.0 | 10.0

27 19 0 1406 — 8128 b 2440 b 2.717 72585 26714
27 26 32 113 F 8128 b 4550 b 1.107 7254 2938 10.0 | 9.1

28 16 0 1184 — 16320 b 2020 b 2.717 51469 18944
28 22 30 106 F 16320 b 4028 b 1.114 6139 2332 8.4 | 8.1

29 15 0 1110 — 32704 b 1883 b 2.717 45235 16650
29 19 28 101 F 32704 b 3609 b 1.121 5321 1919 8.5 | 8.7

210 13 0 962 — 65472 b 1609 b 2.717 33974 12506
210 17 31 88 F 65472 b 3593 b 1.113 4703 1496 7.2 | 8.4

211 12 0 888 — 131008 b 1473 b 2.716 28946 10656
211 15 27 89 F 131008 b 3155 b 1.126 4208 1335 6.9 | 8.0

212 11 0 814 — 262080 b 1340 b 2.716 24322 8954
212 13 18 106 F 262080 b 2413 b 1.165 3828 1378 6.4 | 6.5

213 10 0 740 — 524224 b 1207 b 2.716 20099 7400
213 12 20 94 F 524224 b 2436 b 1.153 3467 1128 5.8 | 6.6

214 10 0 740 — 1048512 b 1208 b 2.716 20099 7400
214 11 19 92 F 1048512 b 2276 b 1.157 3193 1012 6.3 | 7.3

215 9 0 666 — 2097088 b 1075 b 2.716 16279 5994
215 10 15 100 F 2097088 b 1934 b 1.191 2977 1000 5.5 | 6.0

216 8 0 592 — 4194240 b 944 b 2.716 12861 4736
216 10 22 79 F 4194240 b 2369 b 1.147 2898 790 4.4 | 6.0

74 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

Script to produce Table 4.1
#!/usr/bin/env sage
RR = RealField(1000)

secbits = 128
pbits = 512
csidhn, csidhm = 74, 5
isz = lambda d: 2*d*csidhm+1 # interval size
sigsize = lambda S, t, u, delta, var = ’O’: ceil(1/8 * (0

+ ceil(min(t+u, u*log(t+u,2), t*log(t+u,2))) # indices of rejections
+ ceil(log(S,2)*(t+u)) # hash of ephemeral public keys
+ pbits*u # rejected ephemeral public keys
+ t*ceil(log(isz(delta+(var==’F’))**csidhn,2)))) # revealed secret keys

pksize = lambda t, S: ceil(1/8 * (S-1)*pbits)

def Bin(n, p, k): # Pr[Bin_n,p >= k]
return sum(RR(1) * binomial(n, i) * p**i * (1-p)**(n-i) for i in range(k, n+1))

@cached_function
def joint_minmax_cdf(n, x, y, a, b):

Pr that min and max of n independent uniformly random
integers in [a;b] satisfy min <= x and max <= y.
if x < a or y < a: return 0
if y > b: y = b
return RR((y-a+1)/(b-a+1))**n - (RR((y-x)/(b-a+1))**n if x < y else 0)

@cached_function
def joint_minmax(n, x, y, a, b):

Pr that min and max of n independent uniformly random
integers in [a;b] satisfy min = x and max = y.
F = lambda xx, yy: joint_minmax_cdf(n, xx, yy, a, b)
return F(x,y) - F(x-1,y) - F(x,y-1) + F(x-1,y-1)

def prob_accept_original(delta, S):
sample r from [-(delta+1)*m, (delta+1)*m];
reject r and a_c-r outside [-delta*m; +delta*m]
return (isz(delta) / isz(delta+1)) ** csidhn # entries are independent

def prob_accept_full(delta, S):
sample r from [-(delta+1)*m, (delta+1)*m];
reject a_c-r outside [-delta*m; +delta*m]
prob = (isz(delta) / isz(delta+1)) ** csidhn # entries are independent
prob = 1/S*RR(1) + (S-1)/S*prob # can always reveal r
return prob

def prob_accept_truncate(delta, S):
prob = RR(0)
for x in range(-csidhm, csidhm + 1):

for y in range(x, csidhm + 1):
Pr[min and max coeffs of S-1 secret keys are x and y]
weight = joint_minmax(S-1, x, y, -csidhm, +csidhm)
sample from [min(0,x)-delta*m, max(0,y)+delta*m];
reject outside [-delta*m; +delta*m]
prob += weight * isz(delta) / (isz(delta) + max(0,y) - min(0,x))

return prob ** csidhn # entries are independent

@cached_function
def max_u(t, S): # largest possible u for given S,t

u, F = 1, lambda u: Bin(t+u, 1/S, t)
while F(u) <= 2**-secbits: u *= 2
lo, hi = u//2, u+1
while hi - lo > 1:

m = (lo+hi+1)//2
if F(m) <= 2**-secbits: lo = m
else: hi = m

return lo

def prob_sign(t, u, sigma):
return Bin(t+u, sigma, t)

4.4. ANALYSIS AND RESULTS 75

def exp_csidhs_sign(t, u, delta, S, prob):
pr_single = prob(delta, S)
pr_all = prob_sign(t, u, pr_single)
return (t+u) * delta / pr_all

def csidhs_verif(t, delta):
return t * delta

for s in range(1, 17):
S = 2**s

t = ceil(secbits/log(S,2)) - 1
last_umax = -1

best_time, no_progress = 1./0, 0
while True:

if no_progress >= max(16, t/8): break #XXX hack
t += 1

if Bin(t + 4*t, 1/S, t) < 2**-secbits: umax = 4*t #XXX hack
else: umax = max_u(t,S)

no_progress_inner = True

for variant in (’OTF’ if t == ceil(secbits/log(S,2)) else ’TF’):

for u in ([0] if variant == ’O’ else reversed(range(last_umax+1, umax+1))):

print(log(S,2), variant, t, u, no_progress, file=sys.stderr)

prob = {’O’: prob_accept_original,
’F’: prob_accept_full,
’T’: prob_accept_truncate}[variant]

@cached_function
def f(x): return exp_csidhs_sign(t, u, x, S, prob)

if variant == ’O’:
delta = csidhn * t

else:
_, delta = find_local_minimum(f, 1, 2**24, tol=1)
delta = min((floor(delta), ceil(delta)), key = f)

if f(delta) < best_time:
print((’logS={:2d} t={:3d} u={:3d} delta={:4d} {} ~> ’ \

’pksize={:9,d}b sigsize={:7,d}b ’ \
’tries={:8.6f} signCSIDHs={:9,d} verifCSIDHs={:9,d}’) \
.format(log(S,2), t, u, delta, variant,

pksize(t,S),
sigsize(S, t, u, delta, variant),
float(1 / prob_sign(t, u, prob(delta, S))),
round(f(delta)),
csidhs_verif(t, delta))

)
best_time = f(delta)
no_progress_inner = False

no_progress = no_progress + 1 if no_progress_inner else 0

last_umax = umax

Chapter 5

Rational isogenies
from irrational endomorphisms

This chapter is for all practical purposes identical to the paper Rational isogenies from irrational
endomorphisms [CPV20] authored jointly with Wouter Castryck and Frederik Vercauteren, which
was published at Eurocrypt 2020.

5.1 — Introduction

In this chapter, we give a polynomial-time algorithm to compute a connectingO-ideal between
two supersingular elliptic curves over Fp with common Fp-endomorphism ring O, from a de-
scription of their full endomorphism rings. This algorithm provides a reduction of the security
of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular
elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally dif-
ferent techniques. Furthermore, we also show that any supersingular elliptic curve constructed
using the complex-multiplication method can be located precisely in the supersingular isogeny
graph by explicitly deriving a path to a known base curve. This result prohibits the use of such
curves as a building block for a hash function into the supersingular isogeny graph.

Isogeny-based cryptography is founded on the hardness of computing an isogeny between
two given isogenous elliptic curves over a finite field Fq , which appears to remain hard even for
quantum computers. The currently most efficient instantiations can be broadly classified into
two families, known as SIDH [JD11] and CSIDH [Cas+18], depending on which supersingular
elliptic curves and connecting isogenies are being used.

SIDH works in the full supersingular `-isogeny graph, i.e., one considers the graph consisting
of all (isomorphism classes of) supersingular elliptic curves defined over Fp for a specifically
chosen prime p and connecting isogenies of small prime degree `. The vertices of this graph are
the j-invariants of the isomorphism classes and are all contained inFp2 . Finding a path between
two given vertices j(E1) and j(E2) is equivalent to constructing an isogeny betweenE1 andE2

whose degree is a power of `.
The full endomophism ring of a supersingular elliptic curve is a maximal order in a qua-

ternion algebra. Kohel, Lauter, Petit and Tignol [KLPT14] showed that the above path-finding
problem can be solved in (heuristically) expected polynomial time when given the endomorph-
ism rings ofE1 andE2; we refer to this algorithm as “KLPT” (see Section 2.4.9). Galbraith, Petit,
Shani and Ti [GPST16] later extended the KLPT algorithm specifically for the SIDH setting and
showed that knowledge of the endomorphism rings of E1 and E2 suffices to break SIDH. Res-
ults by Eisenträger, Hallgren, Lauter, Morrison and Petit [Eis+18] show that finding a path in the
isogeny graph is essentially equivalent to computing endomorphism rings.

78 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

CSIDH, on the other hand, restricts the isogeny graph under consideration to supersingu-
lar elliptic curves and isogenies defined over Fp and mimics Couveignes’ construction of a “hard
homogeneous space”. In particular, if E is a supersingular elliptic curve over Fp, then its ring
of Fp-rational endomorphisms is an imaginary quadratic order O ⊆ Q(

√
−p). The letter C in

“CSIDH” refers to the commutativity of O, which gives rise to an action of the (commutative)
ideal-class group cl(O) on the set of supersingular elliptic curves over Fp havingO as their ring
of Fp-rational endomorphisms; see Section 2.4.5. This class-group action immediately lends it-
self to several cryptographic primitives such as identification, non-interactive key agreement,
and even signature schemes.

5.1.1 – Contributions. Our first contribution reduces the key recovery problem in CSIDH
to computing the full endomorphism ring of the target curve, where in many cases even one
non-Fp-rational endomorphism suffices. More precisely, given two supersingular elliptic curves
E,E′ over Fp with Fp-rational endomorphism ring O, assuming sufficient knowledge of their
full endomorphism rings End(E) and End(E′), we show how to compute in polynomial time
an ideal a ⊆ O such thatE′ = [a]E. This result can be seen as an analogon of [GPST16] for SIDH,
but uses different techniques, and in particular it does not rely on the KLPT algorithm [KLPT14].

Several remarks on this result are in order:
• In CSIDH all curves have the same known Fp-rational endomorphism ringO, which there-

fore does not contain any information specific to E, nor to [a]. This explains why we re-
quire knowledge of at least one endomorphism ofE that is not Fp-rational.

• Since both End(E0) and End(E) are assumed to be known, one can run the KLPT al-
gorithm to obtain an isogeny α : E0 → E. However, this isogeny is most likely not Fp-
rational and as such does not correspond to the CSIDH private key. It is easy to verify that
the isogeny β = α ◦ πE0

+ πE ◦ α, with π the p-power Frobenius endomorphism on
the respective curves, is an Fp-rational isogeny1 from E0 to E. Note that β can be eval-
uated efficiently on points of E0, but it is unclear how to efficiently derive an invertible
ideal b ⊆ Owhose action onE0 corresponds to β. Such an ideal b is required to break the
CSIDH Diffie–Hellman key agreement and other derived protocols, since it is essentially
a curve-independent way of specifying an Fp-rational isogeny.

• Our polynomial-time algorithm returns an ideal awhose norm is not necessarily smooth.
To efficiently compute the action of [a] therefore requires an extra smoothing step, which
obtains an ideal of smooth norm in the ideal class [a]. This smoothing step is standard and
consists of a combination of a class-group computation and lattice reduction to solve an
instance of the approximate closest-vector problem (CVP). The class-group computation
requires subexponential time using classical computers [HM89], but runs in polynomial
time on a quantum computer [Kit96]. Using the BKZ algorithm [SE94], one can solve the
CVP problem up to a subexponential approximation factor in subexponential time. This
last step therefore implies that asymptotically, the smoothing step requires subexponen-
tial time. However, we note that for some practical instantiations of CSIDH, solving the
approximate CVP problem can be done fairly efficiently [BKV19].

Our second contribution is motivated by an important open problem in isogeny-based cryp-
tography, namely how to hash into a supersingular isogeny graph without revealing a path to
a known base curve. This problem remains open both in the SIDH (full isogeny graph) and the
CSIDH (Fp-rational isogeny graph) setting. The hash function introduced by Charles, Goren and

1Unless β = 0.

5.2. PRELIMINARIES 79

Lauter [CLG09] can be used to hash any string into the supersingular isogeny graph, but by con-
struction, the hash function itself leaks an isogeny path from a base curve. To illustrate the issue,
we can compare with the standard elliptic-curve discrete-logarithm setting: The equivalent of
the CGL construction would start from the public base pointP ∈ E(Fq) and construct a pointQ
by multiplying P with a scalar computed deterministically from the message. As such, anyone
would know the discrete logarithm of Q with respect to P , which voids cryptographic applica-
tions relying on the assumption that the relationship between Q and P cannot be discovered.
To remedy this, elliptic-curve cryptosystems instead hash to curve points using maps like Ellig-
ator [BHKL13], which computes a point directly without passing through a scalar first, but an
equivalent of these constructions in isogeny-based cryptography is not known.

Besides the random-walk approach à la CGL, it is also possible to generate supersingular el-
liptic curves using the complex-multiplication (CM) method [Brö09]. It is therefore natural to
wonder whether CM can be useful to hash into the supersingular isogeny graph, and in partic-
ular, whether finding paths between the resulting curves could be computationally hard. Our
second result squashes this hope by locating these curves (and therefore also a path to a base
curve) in the supersingular isogeny graph, in a surprisingly explicit manner (see Theorem 5.25(iii)
for the exact statement).

The remainder of the chapter is organized as follows. In Section 5.2 we recall the necessary
mathematical background. In Section 5.3 we introduce the notion of twisting endomorphisms
and explain their relation to Fp-rational isogenies. Section 5.4 describes our new algorithm to
compute a connecting ideal between two supersingular elliptic curves over Fp given their en-
domorphism rings and argues that (at least classically) our approach appears to be optimal. Fi-
nally, Section 5.5 shows how to locate supersingular elliptic curves constructed via CM in the
isogeny graph, by explicitly deriving a path to a known starting curve.

Acknowledgements. We thank Benjamin Wesolowski, Robert Granger, Christophe Petit, and
Ben Smith for interesting discussions regarding this work, and Lixia Luo for pointing out an er-
ror in an earlier version of Lemma 5.21, as well as a few smaller mistakes. Thanks to Daniel J.
Bernstein for providing key insights regarding the proof of Lemma 5.23.

5.2 — Preliminaries

In this section we recall the required mathematical background and fix notation. Our focus lies
on supersingular elliptic curves over finite prime fields Fp, although much of what follows read-
ily generalizes to arbitrary elliptic curves over arbitrary finite fields. Some of the observations
below seem new.

For ease of exposition, we shall assume p ≥ 5 throughout, noting that this is not necessarily
a requirement for all of the statements.

5.2.1 – Quadratic twisting. For each odd prime number pwe fix a non-square ξ ∈ Fp along
with a square root

√
ξ ∈ Fp2\Fp; if p ≡ 3 (mod 4) then our default choice is ξ = −1 and we

write i =
√
−1 ∈ Fp2 . For an elliptic curve E : y2 = f(x) over Fp defined by some squarefree

cubic polynomial f(x) ∈ Fp[x], we call the curve Et : ξ−1y2 = f(x) the quadratic twist of E
over Fp. The map τE : E → Et, (x, y) 7→ (x,

√
ξ · y) is a non-Fp-rational isomorphism. From√

ξ
p

= −
√
ξ one easily sees that

τE ◦ πE = −πEt ◦ τE , (5.1)

with πE and πEt the respective Frobenius endomorphisms ofE andEt.

80 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

It can exceptionally happen that our definition of the quadratic twist is a trivial twist in the
sense of [Sil09, § X.2]:

Lemma 5.1. An elliptic curve E/Fp is Fp-isomorphic to its quadratic twist Et if and only if p ≡ 3

(mod 4) and j(E) = 1728.

Proof. After anFp-isomorphism, we can assumeE : y2 = x3+Ax+BwithA,B ∈ Fp satisfying
4A3 + 27B2 6= 0. Then its quadratic twist is Fp-isomorphic to y2 = x3 +Aξ2x+Bξ3 for some
non-square ξ. According to [Sil09, Prop. III.3.1] this curve is Fp-isomorphic to E if and only if
Aξ2 = Au4 and Bξ3 = Bu6 for some u ∈ Fp\{0}. This holds if and only if B = 0 and ξ2 is a
fourth power, from which the lemma follows.

5.2.2 – Hard homogeneous spaces on supersingular curves. Fix a prime number p ≥ 5

and consider the imaginary quadratic number fieldK = Q(
√
−p) along with its maximal order

OK . If E is a supersingular elliptic curve defined over Fp, then its ring Endp(E) of Fp-rational
endomorphisms admits an isomorphism to an order O ⊆ K , under which πE is mapped to√
−p. In particular, O always contains the subring Z[

√
−p], hence if p ≡ 1 (mod 4) then the

only possibility is O = OK = Z[
√
−p], while if p ≡ 3 (mod 4) then either O = Z[

√
−p]

or O = OK = Z[(1+
√
−p)/2]. Recall from Definition 2.54 that È `p(O) denotes the set of

Fp-isomorphism classes of (necessarily supersingular) elliptic curves having endomorphism
ringO.

Remark 5.2. If p ≡ 3 (mod 4), then the Fp-endomorphism ring of a supersingular elliptic curve
E/Fp is determined by its 2-torsion; see [DG16]: either we have #E(Fp)[2] = 2, in which case E ∈
È `p(Z[

√
−p]), or #E(Fp)[2] = 4, in which caseE ∈ È `p(Z[(1+

√
−p)/2]).

Every such orderO comes equipped with its (ideal-)class group cl(O), which consists of in-
vertible ideals modulo non-zero principal ideals; the class of an invertible ideal a ⊆ O is denoted
by [a]. The number of elements of cl(O) is called the class number and denoted by h(O).

Lemma 5.3. If p ≡ 3 (mod 4) then h(O) is odd, while if p ≡ 1 (mod 4) then cl(O) has a unique
element of order 2, in particular h(O) is even.

Proof. This follows from genus theory [Cox13].

Through the map

cl(O)× È `p(O) −→ È `p(O) : ([a], E) 7−→ [a]E := E/E[a]

from Theorem 2.55, the class group acts in a free and transitive manner on the set È `p(O). Here
E[a] denotes the intersection of the kernels of all elements of a interpreted as endomorphisms
ofE; to compute this intersection it suffices to consider a set of generators of a.

Ignoring constructive issues, this group action (for large enough p) is conjectured to turn
È `p(O) into a “hard homogeneous space”, in which the following problems are assumed to be
computationally infeasible:

Definition 5.4.
(Vectorization problem.) GivenE,E′ ∈ È `p(O), find the ideal class [a] ∈ cl(O) for whichE′ = [a]E.
(Parallelization problem.) GivenE,E′, E′′ ∈ È `p(O), find the curve [a][b]E where [a], [b] ∈ cl(O)

are such thatE′ = [a]E andE′′ = [b]E.

5.2. PRELIMINARIES 81

The hardness of parallelization naturally relates to the security of the Diffie–Hellman-style key
exchange protocol built from the above group action: starting from a publicly known base curve
E ∈ È `p(O), the two parties Alice and Bob secretly sample [a] resp. [b] from cl(O), compute
[a]E resp. [b]E, and publish the result. The shared secret is then [a][b]E, which Alice computes
as [a]([b]E) and which Bob computes as [b]([a]E). Clearly, in order to solve the parallelization
problem, it suffices to solve the vectorization problem. On a quantum computer, the converse
holds as well; see Chapter 6.

For later use we recall the following rule, which was pointed out in Remark 3.5, albeit very
briefly and without proof (see also [Arp+19, Prop. 3.31]).

Lemma 5.5. For all [a] ∈ cl(O) and allE ∈ È `p(O) we have [a]−1E = ([a]Et)t.

Proof. It is convenient to assume that a is generated by elements of Z[
√
−p], which can be done

without loss of generality by scaling with an appropriate principal ideal if needed. We claim that
the composition

E
τE−−−→ Et −� Et/Et[a] = [a]Et

τ[a]Et−−−−−→ ([a]Et)t

is an Fp-rational isogeny whose kernel equals the ideal a obtained from a by complex conjuga-
tion. This claim implies the lemma because aa is the principal ideal generated by N(a).

Let ϕ be the middle isogenyEt � Et/Et[a]. Two applications of (5.1) yield

π([a]Et)t ◦ (τ[a]Et ◦ ϕ ◦ τE) = (τ[a]Et ◦ ϕ ◦ τE) ◦ πE ,

implying the Fp-rationality. One verifies that a+ b
√
−p ∈ a if and only if a+ bπEt vanishes on

ker(ϕ), which holds if and only if a − bπE vanishes on ker(ϕ ◦ τE), from which it follows that
ker(τ[a]Et ◦ ϕ ◦ τE) = ker(ϕ ◦ τE) = E[a].

5.2.3 – CSIDH. CSIDH (Chapter 3) is an efficient instantiation of the more general supersin-
gular hard-homogeneous-spaces construction described in the previous section. Recall that we
let n ∈ Z≥1 and consider a prime p of the form p = 4`1`2 · · · `n − 1, where the `i’s are distinct
odd prime numbers. This implies p ≡ 3 (mod 8), so a priori there are two options forO, namely
Z[
√
−p] and the maximal orderOK = Z[(1+

√
−p)/2]. CSIDH chooses the former option. Recall

from Remark 5.2 that this corresponds to supersingular elliptic curves over Fp having a unique
Fp-rational point of order 2.

Remark 5.6. In volcano terminology (see Section 2.5.1), the set È `p(Z[
√
−p]) is the floor, and the set

È `p(Z[(1+
√
−p)/2]) is the surface of the corresponding 2-volcano. We stress that CSIDH can be set up

equally well on the surface, although a convenient feature of the floor is that each E ∈ È `p(Z[
√
−p])

is Fp-isomorphic to a Montgomery curve EA : y2 = x3 + Ax2 + x for a unique coefficient A ∈ Fp;
furthermore, the coefficient definingEt is then given by−A.

The prime pwas chosen such that the primes `1, `2, . . . , `n exhibit particularly easy splitting
behaviour in Z[

√
−p], namely

(`i) = (`i,
√
−p− 1)(`i,

√
−p+ 1). (5.2)

We refer to the respective factors, which are complex conjugates of each other, by li and li. If
we define `0 := 4 then (5.2) also applies to i = 0, so we can similarly define l0 and l0. All these
ideals are clearly invertible, so we can consider their classes [li] and [li] = [li]

−1 inside cl(O).
Although this is not known in general, it seems likely that the [li]’s together generate the entire
class group.

82 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

Example 5.7. The concrete instantiation CSIDH-512 from [Cas+18] has n = 74, where `1, `2, . . . , `73

are the odd primes up to 373 and where `74 = 587. This results in a 511-bit prime p. The structure
of cl(Z[

√
−p]) was computed by Beullens, Kleinjung and Vercauteren [BKV19], whose results show that

[l1] = [(3,
√
−p− 1)] is in fact a generator.

The basic idea is then to let Alice and Bob choose their secrets as

[a] = [l1]a1 [l2]a2 · · · [ln]an resp. [b] = [l1]b1 [l2]b2 · · · [ln]bn,

for exponent vectors (a1, a2, . . . , an) and (b1, b2, . . . , bn) sampled randomly from some bounded
subset of Zn, for instance uniformly from a (discrete) hypercube {−m, ...,m}n of cardinality
(2m + 1)n ≈ h(Z[

√
−p]) ≈ √p. The resulting public keys and shared secret are then com-

puted using |a1| + . . . + |an| resp. |b1| + . . . + |bn| repeated actions of [li] or [li]
−1 = [li]. If

E ∈ È `p(Z[
√
−p]) then the subgroups

E[li] = {P ∈ E[`i] | πE(P) = P } = E(Fp)[`i]

E[li] = {P ∈ E[`i] | πE(P) = −P }

consist of points having Fp-rational x-coordinates; therefore, these actions are easy to evaluate
using low-degree Vélu-type formulas and involving only arithmetic in Fp.

We also point out the following class group relations:2

Lemma 5.8. In cl(Z[
√
−p]), we have

[l1][l2] · · · [ln] = [l0] 6= [1] and [l1]3[l2]3 · · · [ln]3 = [1].

Proof. One easily verifies that

l1l2 · · · ln =
(p+ 1

4
,
√
−p− 1

)
and l0l1l2 · · · ln =

(√
−p− 1

)
.

The latter identity implies that [l1][l2] · · · [ln] = [l0]−1 = [l0], while the former shows that
[l1][l2] · · · [ln] is an element of order 3. Indeed, it represents a non-trivial ideal class because
Z[
√
−p] contains no elements of norm (p+ 1)/4, while its order divides 3 since(p+ 1

4
,
√
−p− 1

)
OK =

1 +
√
−p

2
OK ,

i.e., it belongs to the kernel of the group homomorphism

cl(O) −→ cl(OK), a 7−→ aOK

which is 3-to-1 by [Con, Thm. 5.2].

Note that this allows for reduction of the secret exponent vectors of Alice and Bob modulo
(3, 3, . . . , 3). It also shows that the action of [l1][l2] · · · [ln] can be evaluated using a single ap-
plication of [l0] = [(4,

√
−p + 1)]. The latter step can be taken using an isogeny of degree 4, or

using a composition of two isogenies of degree 2, which necessarily makes us pass through the
surface.

2After we posted a version of the paper this chapter is based upon online, we learned that this was observed inde-
pendently and quasi-simultaneously in [OT20], with a more elaborate discussion.

5.3. TWISTING ENDOMORPHISMS 83

5.2.4 – The full endomorphism ring. The “full” endomorphism ring of a supersingular
elliptic curve, as opposed to merely the Fp-rational endomorphisms, plays a fundamental role
in the theory of supersingular isogeny graphs.

We recall the following facts from Section 2.4.6: An elliptic curve E is supersingular if and
only if End(E) is non-commutative. In that case, End(E) embeds as a maximal order into a
certain quaternion algebraBp,∞ ramified at p and infinity, which is unique up to isomorphism.
Concretely, Bp,∞ can be constructed as a four-dimensional Q-algebra of the form Q ⊕ Qi ⊕
Qj ⊕ Qij, subject to the multiplication rules i2 = −q, j2 = −p, and ji = −ij, for some positive
integer q that depends on p. In the common case that p ≡ 3 (mod 4), we can and will use
q = 1. (Thus Bp,∞ may be viewed as two imaginary quadratic fields “glued together” non-
commutatively.) We certainly cannot stress enough that the embedding End(E) ↪−→ Bp,∞ is
extremely non-unique; in fact, there are always infinitely many choices, and usually none of them
sticks out as being particularly natural.

The notions of dual, degree, and trace of endomorphisms carry over toBp,∞: Taking the dual
corresponds to conjugation, which mapsα = a+bi+cj+dij toα = a−bi−cj−dij. The degree
turns into N(α) = αα = a2 + b2q + c2p + d2qp, and the trace is simply tr(α) = α + α = 2a.
Moreover, the trace yields a symmetric bilinear map 〈α, β〉 = tr(αβ) on Bp,∞, with respect to
which the basis 1, i, j, ij is orthogonal. With this, finding an embedding End(E) ↪−→Bp,∞when
being given rational maps that span End(E) in some computationally effective way is easy: A
variant of Schoof’s point counting algorithm [Sch85] can be used to compute traces of endo-
morphisms, and thereby the map 〈·, ·〉, which can then be used in the Gram–Schmidt process
to compute an orthogonal basis of the given endomorphism ring. Once the basis is orthogonal,
some norm computations are necessary to align the given maps with the algebraic properties
of the abstract quaternion representation. See [Eis+18, § 5.4] for details. We will commonly use
the Q-basis (1, i, j, ij) in the forthcoming algorithms to compute with End(E); the isomorph-
ism to the corresponding rational maps of curves will be made explicit whenever it is realized
computationally.

One reason why the endomorphism rings are interesting for cryptographic applications is
because they contain all the information necessary to construct an isogeny between two curves:
Given End(E) and End(E′), it is easy to find a connecting idealI between them; that is, a lattice in
Bp,∞ that is a left ideal of End(E) and a right ideal of End(E′). For example, the choiceI = QQ′

from Proposition 2.64 works. The intersection of all kernels of endomorphisms contained in (a
scaled, integral equivalent of) this ideal is a finite subgroup determining a separable isogeny
E −→ E′. Recall (Proposition 2.46) that the codomain curve of the isogeny given by such a left
ideal of End(E) only depends on the left-ideal class of I : This is what the Kohel–Lauter–Petit–
Tignol algorithm (Section 2.4.9) exploits to find a smooth-degree, hence efficiently computable,
isogeny betweenE andE′ given their endomorphism rings.

Since we are working with supersingular elliptic curves defined over Fp, our endomorph-
ism rings — maximal orders in Bp,∞— will (by Section 2.4.1) always contain a copy of the
Frobenius order Z[

√
−p] ∼= Z[πE] ⊆ Endp(E). It thus makes sense to fix the image of the

Frobenius endomorphism πE when embedding End(E) into Bp,∞ once and for all: We will
always assume that πE is mapped to j.

5.3 — Twisting endomorphisms

As before, we focus on the case of finite fields Fp with p ≥ 5 prime.

84 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

Definition 5.9. LetE be an elliptic curve defined over Fp. An endomorphism α ∈ End(E) is called a
twisting endomorphism ofE if

α ◦ πE = −πE ◦ α.

(Note thatE must necessarily be supersingular for this to be possible.)

Lemma 5.10. Let E be an elliptic curve defined over Fp. The non-zero twisting endomorphisms of E
are precisely the elements of End(E) that are purely imaginary over Endp(E).

Proof. Write α = a+ bi + cj + dij with a, b, c, d ∈ Q; then using the fact that πE is mapped to j,
the equality α ◦ πE = −πE ◦ α implies a = c = 0.

Lemma 5.11. Twisting endomorphisms have kernels defined over Fp. (Thus they always equal either
the zero map or an Fp-isogeny followed by an isomorphism.)

Proof. Sinceπ−1
E (ker(α)) = ker(α◦πE) = ker(−πE ◦α) = ker(α), the subgroup ker(α) is stable

under the action of Gal(Fp/Fp), hence Fp-rational.

Lemma 5.12. LetE be an elliptic curve as above and let α be a non-zero twisting endomorphism ofE.
Then τE ◦ α : E → Et is an Fp-rational isogeny of degree N(α).

Proof. Since τE is an isomorphism we have deg(τE ◦α) = deg(α) = N(α), so it remains to prove
the Fp-rationality, which follows from

τE ◦ α ◦ πE = −τE ◦ πE ◦ α = πEt ◦ τE ◦ α

where the last equality uses that
√
ξ ∈ Fp2\Fp and therefore

√
ξ
p

= −
√
ξ.

5.4 — Isogenies from known endomorphisms

In this section, we describe how to find a connecting ideal between two supersingular elliptic
curves over Fp given their full endomorphism rings.

The basic idea behind our approach is to exploit the symmetry of the isogeny graph over Fp
with respect to quadratic twisting; cf. Lemma 5.5: Intuitively, the distance between a curve and
its quadratic twist tells us where in the graph it is located, and combining this information for
two curves allows finding the distance between them. See Figure 5.1 below for an illustration.

In more mathematical terms, the “distance” betweenE and its quadratic twist corresponds
to an invertible ideal a ⊆ O that connects E to Et, i.e., satisfies [a]E = Et. We will show in
Algorithm 5.1 how to find such an ideal, given the full endomorphism ring of E. Subsequently,
given two arbitrary supersingular elliptic curves E,E′ with the same Fp-endomorphism ring
O together with such a “twisting ideal” for each of them, Algorithm 5.2 can be used to find a
connecting ideal fromE toE′, i.e., an invertible ideal c ⊆ O such that [c]E = E′.

The following lemma shows the relationship between ideals in Endp(E) and End(E) that
determine the same subgroup; it is of crucial significance for the forthcoming algorithms.

Lemma 5.13. LetE be a supersingular elliptic curve over Fp. Consider a non-zero ideal c ⊆ Endp(E)

and a non-zero left ideal I ⊆ End(E) such that the corresponding subgroupsE[I] andE[c] are equal.
Then I ∩ Endp(E) = πkEc for some k ∈ Z.3

3One could handle the purely inseparable part — powers of πE — in a unified way by working with scheme-
theoretic kernels. Since this issue is only tangential to our work, we will for simplicity avoid this technical complication
and deal with πE explicitly.

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 85

Proof. Following [Wat69, Thm. 4.5], we know that for every order O which can arise as an en-
domorphism ring, every ideal ofO is a kernel ideal, and thus

I = {γ ∈ End(E) | ker(γ) ⊇ E[I]} · πrE
c = {γ ∈ Endp(E) | ker(γ) ⊇ E[c]} · πsE

with non-negative integers r, s ∈ Z. Now E[I] = E[c] by assumption, hence it follows that
I ∩ Endp(E) = πr−sE c, which shows the claim.

5.4.1 – The algorithm. Throughout this section, we writeOE := Endp(E) for brevity.
Recall from Section 5.2.4 that we assume End(E) is represented as a maximal order inBp,∞

with respect to the 1, i, j, ij basis, and such that the Frobenius endomorphism πE is mapped to
j ∈ Bp,∞ under the embedding.

We start off with an algorithm to find an ideal that connects a curve to its quadratic twist,
which will be used as a building block for the main algorithm to connect two arbitrary curves
with the same Fp-endomorphism ring in the Fp-isogeny graph.

Algorithm 5.1: Connecting ideal of a curve and its twist.

Input: a supersingularE/Fp and the full endomorphism ring End(E).
Output: an invertible ideal a ⊆ OE such that [a]E = Et.

1 Find a non-zero element α ∈ End(E) of the form xi + yij.
2 Compute the ideal a :=

(
End(E) · α

)
∩ OE .

3 Return a.

Lemma 5.14. Algorithm 5.1 is correct and runs in polynomial time.

Proof. Note that α ∈ iOE is a twisting endomorphism of E according to Lemma 5.10. Hence,
E[End(E) ·α] = ker(α) is an Fp-rational subgroup of E giving rise to an Fp-rational isogeny
E −→ Et, which is necessarily horizontal since OE = OEt . Therefore, there exists an in-
vertible ideal c of OE such that E[c] = kerα, and we may apply Lemma 5.13 to conclude that
a =

(
End(E) · α

)
∩ OE in fact equals the desired ideal c — up to powers of πE , which is an

endomorphism.
Regarding the runtime, everything consists of basic arithmetic in Bp,∞ and some linear al-

gebra over Q and Z.

As mentioned before, the inherent symmetry of the Fp-isogeny graph with respect to quad-
ratic twisting implies that the “location” of a curve E in the graph is somehow related to the
properties of ideals that connect E to its quadratic twist Et. The following lemma makes this
intuition precise, in the sense that it determines a connecting ideal between two curves almost
uniquely when given a twisting ideal for each of them. This correspondence is then used in an
explicit manner to compute a connecting ideal in Algorithm 5.2.

Lemma 5.15. LetE0, E1 be supersingular elliptic curves defined overFpwith Endp(E0) ∼= Endp(E1),
such that we may simply write O for both. If b, c ⊆ O are invertible ideals such that [b]E0 = Et0 and
[c]E1 = Et1, then the unique ideal class [a] such that [a]E0 = E1 satisfies the equation [a]2 = [b][c]−1.

86 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

tw
is

tin
g

ax
is

of
re

fle
ct

io
n

E0 Et0

[b]

E1 Et1

[c][a] [a]

[t]E0[t]Et0
[b]

[t]E1[t]Et1

[c] [a][a]

[t]

Figure 5.1: Illustration of Lemma 5.15 and the square-root issue in Lemma 5.16. If the ideal t = (2,
√
−p) is non-principal

and invertible inO, it corresponds to a point symmetry with respect to the “center” of the isogeny cycle, and the entire
relationship betweenE0,1 and their twists is replicated on the “opposite” side with the “dual” curves [t]E0,1 and their
twists. This explains why the output of Algorithm 5.2 is a priori only correct up to multiplication by t; the quadratic
equation determining [a] simply cannot distinguish whether [a] jumps between the two worlds or not.

Proof. By Lemma 5.5, applying the action of an ideal class [u] toEt gives the same result as first
applying [u] = [u]−1 and then twisting. Hence, if [a]E0 = E1, then [a]−1Et0 = Et1. However,
by the assumptions, we have [a]−1Et0 = [a]−1[b]E0 on the left-hand side and Et1 = [c]E1 =

[c][a]E0 on the right-hand side, which implies the claimed equality of ideal classes as the class-
group action is free. See Figure 5.1 for a visualization of the situation on an isogeny cycle.

Lemma 5.16. Algorithm 5.2 is correct and runs in polynomial time.

Proof. Most of this follows from Lemmas 5.15 and 5.14. The square root in cl(O) to determine the
ideal a can be computed in polynomial time using the algorithm in [BS96, § 6].

Regarding the correctness of the output, recall from Lemma 5.3 that the class number ofO is
odd if p ≡ 3 (mod 4), hence the square root [a] is unique. On the other hand, if p ≡ 1 (mod 4),
then Lemma 5.3 implies that there are exactly two square roots. Now the orderO has discrim-
inant−4p, hence (p) = (

√
−p)2 and (2) = (2, 1+

√
−p)2 are the only ramified primes. The prin-

cipal ideal (
√
−p) becomes trivial in cl(O). However, t := (2, 1+

√
−p) is non-principal as there

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 87

Algorithm 5.2: Connecting ideal of two curves.

Input: supersingular elliptic curvesE0, E1/Fp withOE0
= OE1

= O, together with
their full endomorphism rings End(E0) and End(E1).

Output: an invertible ideal a ⊆ O such that [a]E0 = E1.

1 Using Algorithm 5.1, find an invertible ideal b ⊆ Owith [b]E0 = Et0.
2 Likewise, find an invertible ideal c ⊆ O such that [c]E1 = Et1.
3 Compute an ideal a ⊆ O such that [a]2 = [b][c]−1 in cl(O) using [BS96, § 6].
4 If p ≡ 1 (mod 4) and the right order of End(E0) · a inBp,∞ is not isomorphic

to End(E1), then replace a by a · (2, 1+
√
−p).

5 Return a.

is no element of norm 2 in O, hence [t] is an element of order 2 in cl(O). Thus the two square
roots of [b][c]−1 are [a] and [at]. The final check in the algorithm identifies the correct choice by
lifting a to a left End(E0)-ideal and comparing its right order to the endomorphism ring ofE1;
they must be isomorphic if a determines an isogenyE0 → E1 as intended.

An example. To illustrate the algorithms in this section, we will show their workings on a
concrete, rather special example.

Lemma 5.17. Assume p ≡ 3 (mod 4) and letE1 be a supersingular elliptic curve defined overFp with
Fp-endomorphism ringO. LetE0 be the elliptic curve in È `p(O) having j-invariant 1728. If b ⊆ O is
an invertible ideal such that [b]E1 = Et1, then the unique ideal class [a] such that [a]E0 = E1 is given
by [b](h(O)−1)/2.

Proof. This follows from Lemmas 5.1 and 5.15, together with the fact that the class number ofO
is odd.

Example 5.18. Assume that p ≡ 11 (mod 12). We illustrate Algorithm 5.2 by computing a connect-
ing ideal a between E0 : y2 = x3 + x and E1 : y2 = x3 + 1. Note that both curves are contained
in È `p(Z[

√
−p]), as can be seen by considering E(Fp)[2]. If ω ∈ Fp2\Fp denotes a primitive 3rd root

of unity, then E1 admits the automorphism (x, y) 7→ (ωx, y), which will, by abuse of notation, be de-
noted by ω as well. According to [McM14, Prop. 3.2],4 the endomorphism ring ofE1 is isomorphic to the
Bp,∞-order

Q = Z + Z−1 + i

2
+ Zj + Z3 + i + 3j + ij

6 ,

where i corresponds to 2ω + 1 and satisfies5 i2 = −3, and as usual j corresponds to the Frobenius
endomorphism πE1

. If we choose the twisting endomorphism α = i in Algorithm 5.1, then we find
Qi ∩ Z[j] = (3, j − 1). (Of course, this also follows from the fact that 2ω + 1 is a degree-3 isogeny
whose kernel {(0,±1),∞} is Fp-rational.) SoEt1 = [(3,

√
−p− 1)]E1, and we can take

a = (3,
√
−p− 1)(h(Z[

√
−p])−1)/2 (5.3)

4Unfortunately, the statement of [McM14, Prop. 3.2] wrongly attributes this description to the quadratic twist ofE1.
5Here we deviate from our convention that i2 = −1 as soon as p ≡ 3 (mod 4).

88 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

by Lemma 5.17. Thus, in the 3-isogeny graph associated with È `p(Z[
√
−p]), which is a union of cycles,

the curve E1 and its twist Et1 : y2 = x3 − 1 can be found “opposite” of our starting curve E0, on the
same cycle. We will generalize this example in Section 5.5.

Example 5.19. In particular, the findings of Example 5.18 hold for a CSIDH primep = 4`1`2 · · · `n−1

with `1 = 3, so that (3,
√
−p − 1) = l1. Note that E : y2 = x3 + 1 is isomorphic to the Montgomery

curveE−√3 : y2 = x3 −
√

3 · x2 + x through

E−
√

3 −→ E, (x, y) 7−→ (δ2x− 1, δ3y),

where
√

3 ∈ Fp denotes the square root of 3 which is a square itself, and δ2 =
√

3. In view of the class-
group computation carried out in [BKV19] for the CSIDH-512 parameter set, the previous example shows
that the ideal

l127326221114742137588515093005319601080810257152743211796285430487798805863095
1

takes the starting Montgomery coefficient 0 to the coefficient −
√

3, and one further application of l1
takes it to

√
3. Smoothing this ideal using the class-group relations of cl(Z[

√
−p]) from [BKV19] yields

(for instance) the CSIDH-512 exponent vector
(5, −7, −1, 1, −4, −5, −8, 4, −1, 5, 1, 0, −2, −4, −2, 2, −9, 4, 2,
5, 1, 1, 1, 5, −4, 2, 6, 5, −1, 0, 0, −4, −1, −3, −1, −4, 1, 7,
1, 4, 1, 4, −7, 0, −3, −1, 0, 1, 2, 3, 1, 2, −4, −5, 9, −1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2, −1, 2, 1, −1, 11, 3),

which can indeed be readily verified to connectE0 toE−√3 by plugging it into a CSIDH-512 implement-
ation, such as that of [Cas+18], as a private key.

Example 5.20. If in Example 5.18, we instead choose the twisting endomorphism

α =
i + ij

3
= −1− j + 2

3 + i + 3j + ij

6
∈ Q ,

then we obtain a twisting ideal of norm (p+ 1)/3. In the CSIDH setting of Example 5.19 above, one can
deduce that this ideal is nothing but l̄0 l̄2 l̄3 · · · l̄n, so this confirms the first class-group relation stated in
Lemma 5.8.

5.4.2 – Incomplete knowledge of endomorphism rings. At first sight, there appears to
be no strong reason why one requires the full endomorphism rings to be known exactly in Al-
gorithm 5.1, rather than for instance a full-rank proper subring Q (End(E) containing O:
Twisting endomorphisms α can clearly be found in every full-rank subring, and one can still
compute the left idealQ · α, which can then be intersected withO. The result is indeed an ideal
a ofO, as desired, but unfortunately it turns out that a usually falls short of connectingE to its
quadratic twist unless in factQ = End(E). This is not surprising: IfQ is contained in multiple
non-isomorphic maximal orders, then the algorithm would need to work for all those maximal
orders — and therefore elliptic curves — simultaneously, which is absurd. However, luckily, one
can prove that a is only locally “wrong” at the conductor, i.e., the index f :=

[
End(E) : Q

]
.

Lemma 5.21. LetQ ⊆ End(E) a full-rank subring containingO and α ∈ Q\{0} a twisting endo-
morphism. Defining a := (Q · α) ∩ O and bc :=

(
End(E) · cα

)
∩ O for c∈Z, we have inclusions of

O-ideals
bf ⊆ a ⊆ b1,

where the norm of the quotient (b1 : bf) divides the squared conductor f2.

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 89

Proof. The inclusions are obvious from End(E) · f ⊆ Q ⊆ End(E). Moreover,

fb1 =
(
f · End(E) · α

)
∩ (f · O) ⊆

(
End(E) · fα

)
∩ O = bf ,

and the inclusions we have just established imply a chain of surjections

b1/fb1 −� b1/bf −� b1/a

on the quotients of b1. The first module in this sequence is clearly isomorphic to Z2/fZ2, there-
fore the index [b1 : bf] must be a divisor of |Z2/fZ2| = f2.

Note that both ideals b1 and bf from Lemma 5.21 would be correct outputs for a generaliza-
tion of Algorithm 5.1 to proper subrings of End(E), but a typically is not. However, the lemma
still suggests an easy strategy for guessing b1 after having obtained a from the subring variant of
Algorithm 5.1, at least when factoring f is feasible and there are not too many prime factors: In
that case, one may simply brute-force through all ideals c ⊆ O of norm dividing f2 and output
ac for each of them. The lemma guarantees that a correct such c exists, since the ideal (b1 : a) is
a good choice. This procedure is summarized in Algorithm 5.3.

Algorithm 5.3: Twisting a curve using an endomorphism subring.

Input: a supersingularE/Fp and a rank-4 subringQ ⊆ End(E) withQ ⊇ OE .
Output: a setA of invertible ideals a ⊆ OE such that ∃ a∈Awith [a]E = Et.

1 Find a non-zero element α ∈ Q of the form xi + yij.
2 Compute the ideal a :=

(
Q · α

)
∩ OE .

3 Determine f = [End(E) : Q] as the (reduced) discriminant ofQ divided by p.
4 Factor f and iterate through all ideals c ⊆ O of norm dividing f2 to compute the set
A := {ac | c ⊆ O ideal, N(c) | f2}.

5 ReturnA.

We can bound the size of the setA returned by the algorithm as follows: If the conductor f
factors into primes as f =

∏r
i=1 p

ei
i , then there are at most
r∏
i=1

(
2ei + 2

2

)
∈ O

(
(log f)2r)

distinctO-ideals of norm dividing f2. Hence, if f is factorable in polynomial time and the num-
ber of distinct prime factors r is bounded by a constant, then Algorithm 5.3 takes polynomial
time to output polynomially many ideals, and at least one of them is guaranteed to be correct.

5.4.3 – Can we do better? It is a natural question to ask whether one can tweak the KLPT
quaternion-ideal algorithm [KLPT14] to simply output an ideal corresponding to an isogeny
defined overFp, while preserving the main characteristics of the algorithm, namely the smooth-
ness of the ideal that is returned and the (heuristic) polynomial runtime.

In this section, we argue that the answer is likely “no”, at least for classical algorithms: More
concretely, we show that such an algorithm can be used as a black-box oracle to construct, un-
der a few mild assumptions, a polynomial-time algorithm for the discrete-logarithm problem
in those imaginary-quadratic class groups where the prospective KLPT variant would apply. In
contrast, the currently best known algorithm is only subexponential-time [HM89]. Thus, the

90 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

basic conclusion appears to be that either our result is essentially optimal, or there exists an im-
proved classical algorithm to compute class-group discrete logarithms in (at least) some cases.

In a sense, this is not surprising: The requirement that the output be generated by an ideal
of the two-dimensional subring Endp(E) removes about the same amount of freedom as was
“adjoined” when moving from Q(

√
−p) to Bp,∞ in the first place. In fact, the KLPT algorithm

makes explicit constructive use of a quadratic subring of Bp,∞ to achieve its functionality; an
advantage that can be expected to cease when imposing strong restrictions on the output.

We formalize the situation as follows. Suppose we are given an algorithmAwith the same
interface as Algorithm 5.2, i.e., it takes as input two supersingular elliptic curves E,E′/Fp with
the same Fp-endomorphism ringO, together with their full endomorphism rings, and outputs
an ideal a ⊆ O such that [a]E = E′. In addition, our hypothetical algorithmA now guarantees
that all prime factors of the returned ideal a are elements of some polynomially-sized set SO ,
which may depend on the prime p or the ringO but not on the concrete input curvesE andE′.
For example, SO might consist of the prime ideals ofO with norm bounded by a polynomial in
log p.6

Then, Algorithm 5.5 can use such an oracleA to compute discrete logarithms in the subgroup
of cl(O) generated by the subset SO in expected polynomial time, assuming that querying A
takes polynomial time. Note that the core of the reduction is Algorithm 5.4, which employsA to
decompose class-group elements as a relation over the factor base SO , and those relations are
subsequently used by Algorithm 5.5 in a generic and fairly standard index-calculus procedure.

A remark on notation: we make use of vectors and matrices indexed by finite sets I such
as SO— in real implementations this would correspond to fixing an ordering of I and simply
storing normal vectors or matrices of length |I|. We use the notation |I′ to restrict a vector or
matrix to the columns indexed by a subset I ′ ⊆ I .

Algorithm 5.4: Finding a class-group relation usingA.

Input: an oracleA as above, and an ideal a ⊆ O such that [a] ∈
〈
[s] | s ∈ SO

〉
.

Output: a vector (es | s ∈ SO) ∈ ZSO such that [a] =
[∏

s∈SO ses
]

.

1 Find a supersingularE/Fp with Endp(E) = O and known End(E).
2 Apply KLPT to End(E) · a to get an equivalent powersmooth left ideal I .
3 Find the codomainE′ = [a]E by computing the isogeny defined by I .
4 Compute End(E′) as the right order of I inBp,∞.
5 Now queryA to find an ideal c ∈ 〈SO〉 such that [c]E = E′ = [a]E.
6 By assumption, c is of the form

∏
s∈SO ses.

7 Return that exponent vector e = (es | s ∈ SO).

Lemma 5.22. Algorithm 5.4 is correct. It takes polynomial time under the heuristic that the KLPT
algorithm runs in polynomial time.

Proof. Note that finding a curve E as desired is easy: first construct an arbitrary supersingular
elliptic curve over Fp using [Brö09], then potentially walk to the surface or floor of a 2-volcano.

6Under GRH, Bach [Bac90] proved that cl(O) is generated by prime ideals of norm less than C(log p)2 for an
explicitly computable small constant C . It is not known unconditionally whether a polynomial bound on the norms
suffices.

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 91

Next, note that the curveE′ in fact equals [a]E, since End(E) ·a and a define the same subgroup
ofE and I is equivalent as a left ideal to End(E) · a. Computing End(E′) given I is easy linear
algebra. Now, c is a product of ideals in SO by assumption on A, and it must be equivalent to
a in cl(O) since the latter acts freely on È `p(O). In conclusion, Algorithm 5.4 indeed returns a
correct relation vector for a and takes polynomial time to do so.

Using Algorithm 5.4, we can then follow the generic index-calculus procedure shown in Al-
gorithm 5.5 to compute discrete logarithms in cl(O):

Algorithm 5.5: Solving DLP using index calculus (generic).

Input: • a generating set S of a finite abelian groupG.
• an upper boundB on the cardinality |G|.
• elements g, h ∈ G such that h ∈

〈
g
〉

.
• a probabilistic algorithm ∆: G→ ZS , such that for all inputs a ∈ G,

we have ‖∆(a)‖∞ < B and a =
∏

b∈S b∆(a)b.
Output: an integer x such that gx = h.

1 Fix a large integerH � B2|S|+1. (In practice, use much smallerH .)

2 Initialize empty matricesM ∈ Z0×2 andL ∈ Z0×S.
3 for n = 1, 2, ... do
4 Pick integers u, v uniformly random in {−H, ...,H}.
5 Invoke ∆ to obtain a vector e ∈ ZS such that guhv =

∏
b∈S beb.

6 Append (u, v) toM as a new row. Append e toL as a new row.
7 Compute a basis matrixK ∈ Zr×n of the left kernel ofL, which is a lattice in Zn of

rank r.
8 If the row span ofK ·M contains a vector of the form (x, −1) then
9 Return x.

Lemma 5.23. Algorithm 5.5 is correct and runs in expected polynomial time.7

Proof sketch. It is not hard to check that the output of the algorithm is correct if it terminates; we
thus only have to bound the expected runtime.

Since the proof is rather technical, we will merely show the overall strategy. Note that it
suffices to lower bound the success probability of the algorithm when r = 2 by a constant: Since
r ≥ n− |S| throughout, it is evident that running |S|+α iterations of Algorithm 5.5 has success
probability at least as big as bα/2c independent executions of the modified algorithm. We thus
want to lower bound the probability that two entries λ1, λ2 in the second column ofK ·M are
coprime.

First, since ∆ cannot distinguish from which scalars (u, v) the element guhv was obtained,
the conditional distribution of each coefficient ofM after fixing a certain oracle output e is close

7Note that this does not require any assumptions on the output distribution of ∆(a), other than that the returned
vectors are correct. (The algorithm still takes polynomial time if the oracle ∆ only succeeds on an inverse polynomial
fraction of inputs.)

92 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

to uniform on {−H, ...,H}. As the lattice spanned by the rows ofK ·M is clearly independent of
a basis choice, we may without loss of generality assume that the rows ofK form a shortest basis
ofZrK ; using lattice techniques, one can then show that the norms of vectors in a shortest basis
of ZrK are upper bounded by B2|S|. (This uses the bound on the size of integers returned by
∆.) Hence λi is a “small” coprime linear combination of random variables essentially uniform
on {−H, ...,H}, which in turn implies that λi is close to uniform modulo all potential prime
divisors. Thus the probability that gcd(λ1, λ2) = 1 is lower bounded by a constant, similar to
the well-known fact that the density of coprime pairs in Z2 is ζ(2)−1 = 6/π2.

For concreteness, we briefly spell out how to instantiate Algorithm 5.5 for our particular ap-
plication to cl(O). Clearly, Algorithm 5.4 will serve as the oracle ∆, so the factor base S equals
the set SO from Algorithm 5.4. In order to keep the representation sizes limited and to ob-
tain unique representatives of ideal classes, the required products guhv should be computed
using the square-and-multiply algorithm combined with reduction of binary quadratic forms;
see [Cox13] for more context on the correspondence between quadratic forms and ideals (§ 7.B)
and the notion of reduction (§ 2.A). To select the estimateB on the group order, recall the upper
bound h(O) ∈ O(

√
p log p) from the class number formula.

5.5 — Vectorizing CM curves

To the best of our knowledge, there exist two practical methods for constructing supersingular
elliptic curves over a large finite field Fp: either one reduces curves having CM by some orderR
in an imaginary quadratic field F modulo (appropriately chosen) primes that do not split in F ,
or one performs isogeny walks starting from known supersingular curves. As pointed out earlier,
outside of trusted setup, the latter method is not suitable for most cryptographic applications.
In this section we focus on the former method; additional details can be found in Bröker’s pa-
per [Brö09] and the references therein. As we will see, from a security point of view, the situation
is even more problematic in this case: we show that the vectorization problem associated with
a CM-constructed supersingular elliptic curve over Fp admits a surprisingly easy and explicit
solution.

In practice, when constructing supersingular elliptic curves over Fp one does not explicitly
write down CM curves. Rather, one computes the Hilbert class polynomial HR(T) ∈ Z[T] for
R, which is a monic irreducible polynomial whose roots are the j-invariants of the curves hav-
ing CM byR. This polynomial can be computed effectively, although the existing methods are
practical for orders having small discriminants only, one reason being that the degree ofHR(T)

equals h(R). The roots of HR(T) mod p ∈ Fp[T] are precisely those j ∈ Fp which arise as the
j-invariant of a supersingular elliptic curve obtained by reducing an elliptic curve having CM
byR. It is well-known that all these j-invariants are in fact elements of Fp2 , i.e., the irreducible
factors of HR(T) mod p are at most quadratic. The linear factors then correspond to elliptic
curves over Fp.

Example 5.24. The Hilbert class polynomial for Z[
√
−17] is given by

HZ[
√
−17]

(T) = T 4 − 178211040000T 3 − 75843692160000000T 2

− 318507038720000000000T − 2089297506304000000000000,

5.5. VECTORIZING CM CURVES 93

whose reduction modulo 83 factors as (T − 28)(T − 50)(T 2 + 7T + 73). This gives rise to two pairs of
quadratic twists of elliptic curves over F83 that appear as the reduction modulo 83 of a curve with CM by
Z[
√
−17].

The main result of this section is the following theorem; for conciseness, our focus lies on
the setting where p ≡ 3 (mod 4) and where

Z[
√
−`] ⊆ R ⊆ Q(

√
−`)

for some odd prime number `, i.e., we want our CM curves to come equipped with an endo-
morphism Ψ satisfying Ψ◦Ψ = [−`]. This leaves us with two options forR, namely Z[

√
−`] and

Z[(1+
√
−`)/2]. In Remark 5.31 we will briefly comment on how to locate curves having CM by

more general imaginary quadratic orders.

Theorem 5.25. Let p ≡ 3 (mod 4) and ` < (p+ 1)/4 be primes with
(
−p
`

)
= 1.

(i) If ` ≡ 1 (mod 4) then
HZ[
√
−`](T) mod p

has precisely two Fp-rational roots, both corresponding to a pair of quadratic twists of supersin-
gular elliptic curves. One pair is contained in È `p(Z[

√
−p]) while the other pair is contained in

È `p(Z[(1+
√
−p)/2]).

(ii) If ` ≡ 3 (mod 4) then both

HZ[(1+
√
−`)/2](T) mod p and HZ[

√
−`](T) mod p

have exactly one Fp-rational root each, in both cases corresponding to a pair of quadratic twists of
elliptic curves. The first such pair is contained in È `p(Z[

√
−p]), while the other pair is contained

in È `p(Z[(1+
√
−p)/2]).

(iii) LetO ∈ {Z[
√
−p],Z[(1+

√
−p)/2]} and letE,Et ∈ È `p(O) be a pair of supersingular elliptic

curves over Fp arising as above. Up to order, this pair is given by the curves

[l](h(O)−1)/2E0 and [l](h(O)+1)/2E0 (5.4)

for any prime ideal l ⊆ O lying above `. Here E0 : y2 = x3 ± x is the unique curve in È `p(O)

with j-invariant 1728.

This theorem can be seen as a vast generalization of (5.3) from Example 5.18, where we dealt
with the reduction modulo p of the curve E : y2 = x3 + 1 over Q having CM by the ring of
Eisenstein integers Z[e2πi/3] = Z[(1+

√
−3)/2]. Up to twisting it is the only such curve: the

Hilbert class polynomial for Z[(1+
√
−3)/2] is just T . An endomorphism Ψ satisfying Ψ2 = −3

can be constructed as 2ω + 1, where ω is the automorphismE → E, (x, y) 7→ (e2πi/3x, y).
One particularly interesting range of parameters satisfying the stated assumptions is where
• p = 4`1`2 · · · `n − 1 is a CSIDH prime with n ≥ 2, and
• ` = `i for some i ∈ {1, 2, . . . , n}.

If n = 1 then `1 = (p + 1)/4, so Theorem 5.25 can no longer be applied. However, the reasons
for excluding the boundary case ` = (p+ 1)/4 are rather superficial and the statement remains
largely valid in this case (the exclusion is related to the possible occurrence of j = 1728 as a
root ofHR(T) mod p, which comes with some subtleties in terms of quadratic twisting; see the
proof).

94 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

5.5.1 – Twisting endomorphisms from Deuring reduction. Before proving Theorem 5.25,
we discuss Deuring lifting and reduction, with a focus on how the endomorphism Ψ behaves
under reduction.

Theorem 5.26 (Deuring’s reduction theorem). Let p be a prime number and let E be an elliptic
curve over a number fieldK which has CM by some orderR in an imaginary quadratic number field F .
Let p be a prime ofK above p at whichE has good reduction. ThenE mod p is supersingular if and only
if p ramifies or is inert in F .

Proof. This is part of [Lan87, Thm. 12 of Ch. 13].

When applying this to an elliptic curve E/K having CM by our order R ⊆ Q(
√
−`) from

above, the endomorphism Ψ satisfying Ψ ◦ Ψ = [−`] reduces modulo p to an endomorphism
ψ which also satisfies ψ ◦ ψ = [−`]. This is because reduction modulo p induces an (injective)
homomorphism of endomorphism rings; see for instance [Lan87, § 2 of Ch. 9]. The following
proposition gives sufficient conditions for ψ to be a twisting endomorphism.

Proposition 5.27. Assume K = Q(j(E)), p > 2 and ` ≤ (p + 1)/4. If E mod p is supersingular
and j(E mod p) ∈ Fp then deg(p) = 1 and

πE mod p ◦ ψ = −ψ ◦ πE mod p, (5.5)

i.e., ψ anticommutes with the p-power Frobenius endomorphism ofE mod p.

The proof of this proposition relies on the following observation:

Lemma 5.28. Let α be an algebraic integer andK = Q(α). Consider a prime number p and a prime
ideal p ⊆ OK above p. If Fp(α mod p) (OK/p, then p divides the discriminant of the minimal
polynomial f(x) ∈ Z[x] of α over Q.

Proof. If p does not divide the discriminant of f(x), then

p =
(
p, g(α)

)
,

where g(x) ∈ Z[x] is a monic polynomial of degree deg(p) whose reduction modulo p is an irre-
ducible factor in Fp[x] of f(x) mod p; this is a well-known fact, see e.g. [Mar18a, Thm. 27]. But
this implies that α mod p is a generator of OK/p over Fp, so the lemma follows by contradic-
tion.

Proof of Proposition 5.27. The minimal polynomial of j(E) over Q is precisely the Hilbert class
polynomial HR(T) for R. The field H = Q(

√
−`, j(E)) is a quadratic extension of K known

as the ring class field forR, see [Cox13, proof of Prop. 1.32]. IfR is a maximal order, then this is
better known as the Hilbert class field.

Using that ` ≤ (p + 1)/4, we see that p does not ramify in Q(
√
−`), hence it must be inert

by our assumption that E mod p is supersingular. This implies that pOH splits as a product
of prime ideals P of degree 2, see [Cox13, Cor. 5.25] for a proof in case R is a maximal order
and [Cox13, proof of Prop. 9.4] for the general case (this is where we use the assumption p > 2).
Our prime ideal p is necessarily dominated by such a P, so it follows that

• either deg(p) = 1, in which case p must be inert inH , i.e., pOH = P,
• or deg(p) = 2, in which case p must split inH .

5.5. VECTORIZING CM CURVES 95

But the latter option would imply that

Fp(j(E) mod p) = Fp(j(E mod p)) = Fp (OK/p

and therefore, in view of Lemma 5.28, it would follow that p divides the discriminant ofHR(T).
This is impossible: by Gross–Zagier [GZ85, p. 195] the primes p dividing the discriminant of
HR(T) cannot be larger than the absolute value of the discriminant ofR, which is at most 4`.

We have thus established that deg(p) = 1. Now let Σ be the non-trivial automorphism ofH
overK . From [Lan87, § 4 of Ch. 10] we see that Ψ is not defined overK and therefore ΨΣ = −Ψ.
But Σ necessarily descends to the Frobenius automorphism σ ofOH/P ∼= Fp2 overOK/p ∼= Fp,
from which it follows that ψσ = −ψ. This implies (5.5) and thereby concludes the proof.

We remark that the last part of the preceding proof mimics the proof of [GR04, Prop. 6.1].
However, the statement of [GR04, Prop. 6.1] is lacking an assumption on deg(p). For instance,
in our case, if deg(p) = 2 and therefore p splits in H , the reasoning fails because the extension
OH/P overOK/p becomes trivial. And indeed, in these cases it may happen that the reduction
of Ψ mod p does not anticommute with Frobenius:

Example 5.29. The discriminant of the Hilbert class polynomial for Z[
√
−29] is divisible by 83. More

precisely, its reduction modulo 83 factors as T (T − 50)(T − 67)2(T 2 + 7T + 73). One can verify that
insideK = Q[T]/(HZ[

√
−29]

(T)), we have

83OK = (83, T)(83, T − 50)(83, T 2 − 7)(83, T 2 + 7T + 73),

where the third factor is a degree-2 prime ideal p modulo which T reduces to 67; note that 672 ≡ 7

(mod 83). So in this case we have Fp(T mod p) (OK/p.
LetE be any of the two elliptic curves over F83 having j-invariant 67. By exhaustive search through

the possible kernels of order 29, one can check that E admits four distinct endomorphisms squaring to
[−29]. These appear in the form±ψ,±ψσ , where as in the proof of Proposition 5.27 we use σ to denote
the action of the p-power Frobenius. In particular ψ does not anticommute with πE . Nevertheless, by
Deuring’s lifting theorem (recalled below), the pair (E,ψ) must arise as the reduction of some CM curve
along with an endomorphism Ψ satisfying Ψ ◦Ψ = [−29]. (Note: this also applies to the pair (E,ψσ),
which is reflected in the fact that 67 appears as a double root ofHZ[

√
−`](T) mod 83.)

Theorem 5.30 (Deuring’s lifting theorem). Let E/Fp be an elliptic curve and let α ∈ End(E).
There exists an elliptic curveE′ over a number fieldK along with an endomorphismα′ ∈ End(E′) and
a prime p ofK above p at whichE′ has good reduction, such thatE′ mod p is isomorphic toE and such
that α′ reduces to αmodulo p.

Proof. See [Lan87, Thm. 14 of Ch. 13].

5.5.2 – Proof of Theorem 5.25.

Proof of Theorem 5.25. Using quadratic reciprocity one checks that(−p
`

)
= 1 ⇐⇒

(
−`
p

)
= −1,

from which we see thatp is inert inQ(
√
−`). Hence a curve with CM byZ[

√
−`] has supersingular

reduction modulo p and therefore the Fp-rational roots of the Hilbert class polynomial

HZ[
√
−`](T) mod p

96 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

should correspond to pairs of quadratic twists in either the floor È `p(Z[
√
−p]) or the surface

È `p(Z[(1+
√
−p)/2]). If ` ≡ 3 (mod 4), then the same conclusions apply to Z[(1+

√
−`)/2].

As a side note, we remark that ` < (p + 1)/4 implies that y2 = x3 ± x does not admit any
twisting endomorphisms of norm `, which is easy to elaborate from [McM14, Prop. 3.1]. In view of
Proposition 5.27, we therefore see that theFp-rational roots of the Hilbert class polynomial never
include 1728. Hence by Lemma 5.1 there is no ambiguity in what is meant by “pairs of quadratic
twists”. (Apart from this ambiguity, the theorem remains true under the weaker assumption
` ≤ (p+ 1)/4.)

We first claim that È `p(Z[
√
−p]) and È `p(Z[(1+

√
−p)/2]) both contain at most one such

pairE,Et. Indeed, using Proposition 5.27 we see thatE comes equipped with a twisting endo-
morphism ψ of degree `, which by Lemma 5.12 corresponds to an Fp-rational degree-` isogeny
E → Et. Its kernel is necessarily of the form E[l] for some prime ideal l above `, i.e., we must
have Et = [l]E. But then we can solve the vectorization problem E = [a]E0: from Lemma 5.17
we get that [a] = [l](h(O)−1)/2. Since the pair{

[l](h(O)−1)/2, [l](h(O)+1)/2 = [l](h(O)−1)/2}
does not depend on the choice of l, this shows that the pair {E,Et} is fully characterized by `,
implying the claim. At the same time this proves (iii).

Next, let us explain why È `p(Z[
√
−p]) and È `p(Z[(1+

√
−p)/2]) contain at least one such pair

E,Et. We remark that this comes for free if ` ≡ 3 (mod 4), since in this case the Hilbert class
polynomials forZ[

√
−`] andZ[(1+

√
−`)/2] have odd degree and split overFp2 , their roots being

supersingular j-invariants: hence they must admit at least one Fp-rational root. In general, we
can reverse the reasoning from the previous paragraph and define E,Et using (5.4), for some
choice of prime ideal l above `. In particular Et = [l]E, which provides us with an Fp-rational
degree-` isogeny ϕ : E → Et, which we use to construct an endomorphism ψ = τEt ◦ ϕ of
E that is not Fp-rational. In contrast, it is easily verified that ψ ◦ ψ is Fp-rational. Therefore
the minimal polynomial of ψ cannot admit a non-zero linear term, i.e., ψ ◦ ψ must be a scalar-
multiplication map, necessarily of the form [±`]. By Deuring’s lifting theoremE can be lifted to
an elliptic curve over a number field carrying an endomorphism Ψ whose reduction modulo a
suitable prime above p yieldsψ. Since Ψ must belong to an imaginary quadratic ring we see that
Ψ ◦Ψ = [−`] as wanted.

Altogether this proves (i), while for (ii) it leaves us with the task of showing that if ` ≡ 3

(mod 4), then the unique Fp-rational root of

HZ[(1+
√
−`)/2](T) mod p

corresponds to a pair of elliptic curves {E,Et}with endomorphism ring Z[
√
−p]. Equivalently,

we need to show that such curves admit a unique Fp-rational point of order 2, rather than three
such points. To this end, let P ∈ E be an Fp-rational point of order 2 and let ϕ be the endo-
morphism of E corresponding to (1+

√
−`)/2. Proposition 5.27 implies that πE ◦ ϕ = ϕ ◦ πE ,

whereϕ corresponds to (1−
√
−`)/2. But then clearly (ϕ+ϕ)(P) = P 6=∞, which implies that

ϕ(P) 6= ϕ(P) and therefore that πE(ϕ(P)) 6= ϕ(P), i.e., ϕ(P) is a non-rational point of order 2.
This concludes the proof.

Remark 5.31. The above ideas can be generalized to locate reductions mod p of CM curves carrying an
endomorphism Ψ such that Ψ ◦ Ψ = [−`1`2 · · · `s], where the `i ≤ (p + 1)/4 are distinct odd primes
for which (

−`1`2 · · · `s
p

)
= −1. (5.6)

5.5. VECTORIZING CM CURVES 97

We did not elaborate this in detail, but assume for instance that each `i splits in Q(
√
−p); note that this

implies (5.6). LettingO ∈ {Z[
√
−p],Z[(1+

√
−p)/2]}, one expects that 2s−1 pairs E,Et in È `p(O)

can be obtained as the reduction mod p of an elliptic curve carrying such an endomorphism Ψ. Fixing for
each i = 1, 2, . . . , s a prime ideal li ⊆ O of norm `i, these pairs are characterized by

Et = [l1][l2]e2 [l2]e3 · · · [ls]esE

with (e2, e3, . . . , es) ∈ {±1}s−1. As before, an application of Lemma 5.17 then solves the corresponding
vectorization problems.

Code. A proof-of-concept [Sage] script demonstrating some of the algorithms in Section 5.4
is available at https://yx7.cc/files/quat.sage.

https://yx7.cc/files/quat.sage

Chapter 6

Quantum equivalence of DLP and CDH
for group actions

This chapter is an updated version of the preprint Quantum equivalence of the DLP and CDHP
for group actions [GPSV18] authored jointly with Steven Galbraith, Benjamin Smith, and Frederik
Vercauteren.

6.1 — Introduction

In their seminal 1976 paper [DH76], Diffie and Hellman conjectured that breaking their new
key exchange protocol (in the sense of computing the shared secret from the public keys) was
as hard as computing discrete logarithms. This polynomial-time equivalence was later proven
(assuming knowledge of suitable auxiliary algebraic groups of smooth order) for all groups by
Maurer [Mau94], based on earlier results of den Boer [dB88] covering certain special cases.

In this short chapter, we prove an unconditional reduction between the analogous prob-
lems for group actions in the quantum setting. This result has important implications for the
quantum security of the CSIDH key-exchange scheme (Chapter 3).

Cryptographic group actions. Couveignes in 1997 introduced the notion of a hard homogeneous
space [Cou06], essentially a free and transitive finite abelian group action ∗ : G×X → X which
is efficiently computable while other computational problems are hard. In Couveignes’ termin-
ology, these problems are vectorization and parallelization, named by analogy with the archetyp-
ical example of a homogeneous space: a vector space acting on affine space by translations (cf.
Figure 6.1). The vectorization problem is: given x and g∗x inX , compute g ∈ G. The paralleliz-
ation problem is: given x, g∗x, and h∗x in X , compute gh∗x ∈ X . The group-exponentiation
analogues of these problems are the discrete logarithm problem (DLP) and computational Diffie–
Hellman problem (CDH); see Section 2.1.2.

Figure 6.1: The vectorization and parallelization problems.

For twenty years, there was little interest in the hard-homogeneous-spaces framework, since
all known (conjectural) instantiations were either painfully slow in practice or already captured
by the group-exponentiation point of view. However, interest in these one-way group actions

100 QUANTUM EQUIVALENCE OF DLP AND CDH FOR GROUP ACTIONS

has reemerged in the more recent past due to the current focus on post-quantum cryptography,
where group-exponentiation Diffie–Hellman is broken in polynomial time by Shor’s algorithm,
but group actions are not.

Throughout, letG×X → X denote a homogeneous space. In analogy with CSIDH, we write
a, b, . . . for elements of the groupG, andE for elements of the setX .

DLP–CDH reductions. Just like in the classical group-exponentiation setting, it is evident
that parallelization reduces to vectorization: recover a from a∗E, then apply a to b∗E to ob-
tain ab∗E. Traditionally, the other direction is much more subtle. The reduction essentially
relies on the existence of auxiliary algebraic groups of smooth group order over Fqi , where the
qi are the prime divisors of the order of the group in which the DLP and CDH are defined. The
first result was given by den Boer [dB88] who showed the DLP and CDH to be equivalent in F×p
when p is a prime such that the Euler totientϕ(p−1) is smooth. The auxiliary groups are simply
F×qi for each prime divisor qi | p − 1, and the smoothness assumption implies that the DLP in
each F×qi is easy. Maurer [Mau94] generalized this result to arbitrary cyclic groupsG, assuming
that for each large prime divisor qi of |G|, there exists an efficiently constructible elliptic curve
E/Fqi with smooth group order. On classical computers, these reductions do not apply in the
group-action setting [Smi18, §11].

However, we show that there exists a polynomial-time quantum reduction from the vectoriz-
ation to the parallelization problem for group actions without relying on any extra assumptions,
thereby proving the polynomial-time equivalence of both problems in the quantum setting.

6.2 — The reduction

Let π be an algorithm that reliably solves the parallelization problem for a homogeneous space
G×X → X . In other words, π takes a∗E and b∗E and returns ab∗E. We show that quantum
access to a quantum circuit that computes π allows one to solve the vectorization problem in
G×X → X in polynomial time.

Lemma 6.1. Given an element a∗E ∈ X and access to a parallelization oracle π, one can compute
an ∗E for any integer n ≥ 0 using Θ(logn) queries to π.

Proof. We perform double-and-add in the “implicit group” [Smi18] of exponents, using the or-
acle π : (ax ∗E, ay ∗E) 7→ ax+y ∗E for addition and doubling.

Theorem 6.2. Given a perfect (classical or) quantum parallelization algorithm π, one can construct a
quantum algorithm that recovers a from elementsE and a∗E inX in polynomial time.

Proof. From the public description ofG, one can compute the group structureZ/d1 × · · · × Z/dr
ofG together with a basis {g1, . . . , gr} ⊆ G in quantum polynomial time using Boneh–Lipton’s
[BL95] or Kitaev’s [Kit96] generalisation of Shor’s algorithm [Sho97a]; see Theorem 2.79.

Now, for x ∈ Zr , write gx =
∏r
i=1 g

xi
i and define

f : Zr × Z −→ X

(x, y) 7−→ gx ∗ (ay ∗E) ,

where ay ∗E is computed using Lemma 6.1.1 Using the circuit forπ one can construct a quantum
circuit that computes f . The function f is clearly a group homomorphism (to the implicit group

1For negativey, one may generally take a positive representative modulo the exponent lcm(d1, . . . , dr) ofG. This
is not needed in the CSIDH setting, since a−1 ∗E can be obtained by merely quadratic-twisting a∗E.

6.3. IMPLICATIONS FOR CSIDH 101

onX), hence defines an instance of the hidden-subgroup problem with respect to its kernel, i.e.,
the lattice

L = {(x, y) ∈ Zr × Z : gx+yv = 1 ∈ G} ,

where v ∈ Zr is any vector such that a = gv .2 This (abelian) hidden-subgroup problem can
be solved in polynomial time again using Shor’s algorithm. Finally, any vector in L of the form
(x, 1) satisfies g−x = a, hence yields a representation of a.

Remark 6.3. It is unclear how to perform the reduction above when π is only guaranteed to succeed
with non-negligible probability α, meaning that the probability over all triples (E, a∗E, b∗E) ∈ X3

that the oracle outputs ab∗E is at least α.
In the classical discrete-logarithm setting, it is straightforward to amplify the success probability of

CDH oracles using random self-reduction of problem instances [MW96; Sho97b]: one computes lists of
possible values of gab by blinding the inputs and unblinding the outputs, and uses majority vote to de-
termine the correct result. Any exponentially small failure probability can be achieved using polynomially
many queries [Sho97b, § 5].

In the group-action setting, however, blinding does not work: The results cited above use a blinding
map of the form ga 7→ (ga)xgy = gax+y , which relies on the fact that we can multiply two public keys.
But the best we can do for a mere group action is to translate the inputs by random elements, i.e., blind as
a∗E 7→ x∗(a∗E) with a random x ∈ G, which is insufficient: For example, ifA is a perfect CDH oracle,
then the oracle B that returns the output ofA either unmodified (with some probability ε), or shifted by
a fixed element z ∈ G, is entirely unaffected by blinding and hence cannot be amplified using this idea.
Thus, we must unfortunately leave the case of imperfect oracles as an open problem.

6.3 — Implications for CSIDH

Group actions are a useful, simple abstraction for reasoning about CSIDH and other isogeny-
based cryptosystems where the endomorphism rings of the underlying curves are commutative
(see Chapters 3, 4). In each of these cryptosystems, the group is G = cl(O), the ideal-class
group of a maximal order O in some quadratic imaginary field, and the set X is comprised of
isomorphism classes of elliptic curvesE (over a fixed finite fieldFq) such that the endomorphism
ring End(E) is isomorphic toO. The actionG×X → X is given by (a, E) 7→ a∗E := E′ where
E′ is the codomain of an isogeny φa : E → E′ with kernel E[a], i.e., the finite subgroup of E
annihilated by all of the elements of a ⊆ End(E). Public keys are instances (E, a∗E) of the
vectorization problem in this homogeneous space. In CSIDH, the Diffie–Hellman secret shared
between Alice and Bob, with public keys (E, a∗E) and (E, b∗E), isab∗E. Recovering the shared
secret from the public keys is therefore solving a parallelization problem.

At first glance, then, Theorem 6.2 would appear to imply a polynomial-time equivalence
between the Diffie–Hellman problem for CSIDH and recovering CSIDH secrets from public keys.
However, this ignores an important subtlety: It is not known how to compute the action of ar-
bitrary ideals a ⊆ O in polynomial time. CSIDH gets around this issue by using secret keys of the
form a =

∏
i l
ei
i , where e = (e1, . . . , en) ∈ Zn are short exponent vectors and the li are a fixed

set of “small” ideals whose action is efficient.3 Computationally, this manifests in a linear cost
in the 1-norm ‖(e1, . . . , en)‖1 for evaluating the action of a.

2Note that v is only defined modulo the relation latticeR = d1Z ⊕ · · · ⊕ drZ ofGwith respect to g1, . . . , gr .
The choice of v does not matter sinceL ⊇ R⊕ {0}.

3Another way to view this is as an action of the group (Zn,+).

102 QUANTUM EQUIVALENCE OF DLP AND CDH FOR GROUP ACTIONS

When applied to CSIDH, the algorithm in Theorem 6.2 will return some presentation of the
secret ideal class [a] as a product of generators gi (which can be chosen as the ideals li), but
in general its action is not known to be computable in polynomial time: the exponent vector e
may have large norm. We can reduce the norm of e ∈ Zn by solving a close(st)-vector problem
for the relation lattice ker(Zn→ cl(O)). But asymptotically, polynomial-time lattice reduction
algorithms cannot guarantee that the output will have norm small enough to ensure that the
resulting group action is computable in polynomial time.

However, this is not a problem for practical key sizes used in CSIDH. Since the dimensions n
used in CSIDH are rather small (e.g. the CSIDH-512 parameter set from [Cas+18] uses 74 prime
ideals), an efficient lattice-reduction algorithm such as BKZ [SE94] with moderate block size
suffices to obtain highly practical results. For example: reducing a random relation lattice of
dimension 74 using BKZ with block size 20 yields exponent vectors only 8 times longer than
normal CSIDH-512 private keys. Therefore, our reduction is efficient in the CSIDH context for
some practical parameter sizes, despite the aforementioned asymptotical annoyances.

Chapter 7

Weak instances of SIDH variants from
improved torsion-point attacks

This chapter is an updated version of the preprint Weak instances of SIDH variants under improved
torsion-point attacks [Kut+20] authored jointly with Péter Kutas, Chloe Martindale, Christophe
Petit, Victoria de Quehen, and Katherine E. Stange.

7.1 — Introduction

In recent years, isogeny-based cryptography has been receiving increased interest, partly due to
the fact that isogeny-based key exchange has the smallest key sizes of all current post-quantum
candidates while still performing at a reasonable speed. The Supersingular Isogeny Diffie–Hellman
protocol, or SIDH, was the first practical isogeny-based key-exchange protocol, proposed by Jao
and De Feo in 2011 [JD11]. The most obvious way to attack SIDH is to solve the following problem:

Problem 7.1. For a large primepand smooth coprime integersAandB, given two supersingular elliptic
curves E0/Fp2 and E/Fp2 connected by a degree-A isogeny φ : E0 → E, and given the action of φ on
theB-torsion ofE0, recover φ.1

Notice that this problem provides the attacker with more information than the ‘pure’ isogeny
problem, where the goal is to find an isogeny between two given curves without any further
hints or restrictions. The best known way to break SIDH by treating it as a pure isogeny problem
is a claw-finding approach on the isogeny graph having both classical and quantum complexity
O(
√
A · polylog(p)) [JS19].2 However, Problem 7.1 could be easier than finding isogenies in gen-

eral, and indeed a line of work started in [Pet17], continued in [Bot+19], and now also with this
chapter, suggests that this may hold at least for some instantiations.

The additional torsion-point information clearly does aid active attackers: In 2016, Galbraith,
Petit, Shani, and Ti [GPST16] presented an active attack against SIDH that sends key-exchange
messages with manipulated torsion points and detects whether the key exchange succeeds; this
allows recovering the secret withinO(logA) queries. To mitigate this attack, [GPST16] proposes
using the Fujisaki–Okamoto transform, which generically renders a CPA-secure public-key en-
cryption scheme CCA-secure, and therefore thwarts those so-called reaction attacks. The result
of applying (a variant of) the Fujisaki–Okamoto transform to SIDH is called Supersingular Isogeny
Key Encapsulation, or SIKE [Jao+19] for short. It is the only isogeny-based submission to NIST’s

1These constraints do not necessarily uniquely determineφ, but any efficiently computable isogeny fromE0 toE
is usually enough to recover the SIDH secret [GPST16]. Moreover,φ is unique wheneverB2 > 4A. [MP19, § 4]

2Note that the naïve meet-in-the-middle approach has prohibitively large memory requirements. Collision finding
à la van Oorschot–Wiener thus performs better in practice, although its time complexity is worse in theory [Adj+18].

104 IMPROVED TORSION-POINT ATTACKS

standardization project for post-quantum cryptography [NIST16] and is currently a Round 3 ‘Al-
ternate Candidate for Public-key Encryption and Key-establishment Algorithms’.

A particular choice made in SIKE is that one of the two curves, the ‘starting curve’ E0, is a
special curve: It is defined over Fp and has small-degree non-scalar endomorphisms, both of
which are very rare properties within the set of all supersingular curves defined over Fp2 . On its
own, this fact does not seem to have any negative security implications for SIKE, but [GPST16]
shows that given an explicit description of both curves’ endomorphism rings, it is (under reas-
onable heuristic assumptions) possible to recover the secret isogeny; hence, breaking SIKE is no
harder than computing endomorphism rings of supersingular elliptic curves in some sufficiently
explicit representation.

In 2017, Petit [Pet17] introduced a method to solve some instances of Problem 7.1 based on
endomorphisms of the special starting curve. It uses the given action of the secret isogeny on a
large torsion subgroup to recover the isogeny itself, giving a passive heuristic polynomial-time
attack on non-standard variants of SIDH satisfying B > A4 and A > p. However, in practice
both A and B are taken to be about the size of√p for efficiency reasons; thus this attack does
not apply to the SIKE parameters.

7.1.1 – Contributions. We improve upon and extend Petit’s 2017 torsion-point attacks [Pet17]
in several ways. We argue heuristically in Section 7.3 that the imbalance conditions can be re-
laxed to [B > A2 and A > p] or [B > A3 and A > p1/2], and that furthermore allowing for
arbitrarily large B/A gives an attack for AB ≈ p. We also show that even a mild imbalance of
parameters may lead to a heuristic improvement over the generic meet-in-the-middle or claw-
finding attack, and we show the relationship between the extremity of the imbalance and the
estimated complexity of the torsion-point attack.

Recall also that in SIKE, the starting curveE0 is taken to be the curve with j-invariant 1728.3

In Section 7.4 we introduce the notion of a ‘trapdoor’ curve, which allows breaking or redu-
cing the security of an SIDH key exchange when used as the starting curve: We give a heur-
istic polynomial-time torsion-point attack on SIDH variants using a trapdoored starting curve
when B > A2 (note the absence of a condition on p), and an attack of classical complexity
Õ(p2/5) and quantum complexity Õ(p1/8) on SIDH variants using a trapdoored starting curve
withB ≈ A ≈ p1/2. Note that this is as in SIKE, but starting from a trapdoored starting curve in-
stead of the curve with j-invariant 1728; thus, such curves could potentially be utilized as back-
doors. We also give the relationship between the extremity of the imbalance of the paramet-
ers and the complexity of the torsion-point attack applied to this case of trapdoored starting
curves, and argue that we expect there to be exponentially many trapdoor curves. Finally, we
show that it is possible to construct special primes p, together with an appropriate A and B,
for which torsion-point attacks are especially effective, even when using balanced parameters
A ≈ B and/or using a starting curve with j-invariant 1728.

We emphasize that none of our attacks apply to the NIST candidate SIKE: for each attack
described in this chapter, at least one aspect of SIKE needs to be changed (e.g., the balance of the
degrees of the secret isogenies, the starting curve, or the base field prime). There are, however,
SIDH variants in the literature for which there are realistic parameter sets where our attacks may
have practical impact.

Of the existing proposals in the literature, our attacks are the most effective on the recent
proposal B-SIDH [Cos20], presented at ASIACRYPT 2020. As discussed in more detail in Sec-
tion 7.3.3, using parameters A ≈ B ≈ p as suggested in [Cos20] may affect the security of the

3One can also take a neighbour, but this does not affect the security analysis.

7.2. PRELIMINARIES 105

scheme due to our torsion-point attacks: Our quantum attack heuristically achieves a complex-
ity of Õ(p1/3), which is asymptotically the best known attack under the assumptions (1) that
the cost of breaking B-SIDH even after solving the generic isogeny problem is still greater than
Õ(p1/3), and (2) that Tani’s quantum claw-finding algorithm [Tan07] has complexity higher
than Õ(p1/3). The latter appears to be the case [JS19]; the former is unclear. Note that in any
case, none of this violates the rather conservative security claims of [Cos20].

As a second example, we consider the recent n-party group key exchange proposal [AJJS19];
this can be interpreted for cryptanalysis purposes as an unbalanced (two-party) SIDH instance
with B ≈ An−1 and AB ≈ p. While we currently cannot break the case AB ≈ p, the torsion-
point attacks we describe in Section 7.3 give rise to, for example, a quantum attack of complexity
O(A0.41 ·polylog(p)) on a 3-party key exchange withAB ≈ p1.15, a 10-party key exchange with
AB ≈ p1.04, or a 100-party key exchange with AB ≈ p1.004; these kinds of instantiations are
perfectly plausible by combining the group key exchange with ideas from B-SIDH. Furthermore,
the attack variant for trapdoored starting curves is heuristically classical polynomial-time for
three or more parties.

7.1.2 – Comparison to earlier work. Bottinelli, de Quehen, Leonardi, Mosunov, Pawlega,
and Sheth [Bot+19] also gave an improvement on the balance from Petit’s 2017 paper [Pet17].
Our work overlaps with theirs (only) in Corollary 7.5, and the only similarity in techniques is in
the use of “triangular decomposition” [Bot+19, § 5.1]. Unfortunately, we have not found a way to
combine the two methods. Moreover, our results go beyond [Bot+19] in several ways: we con-
sider multiple trade-offs by allowing for superpolynomial attacks, as well as considering other
starting curves and base-field primes.

Acknowledgements. Thanks to Daniel J. Bernstein for his help with Section 7.3.5, and to John Voight
for answering a question of ours concerning Section 7.4.3. We would also like to thank the an-
onymous reviewers of an earlier version for their useful feedback.

7.2 — Preliminaries

7.2.1 – Notation. Throughout this chapter, we will neglect factors polynomial in log p. As
such, from this point on we will abbreviate O(g · polylog(p)) as O∗(g).4 Similarly, ‘smooth’
without further qualification always means polylog(p)-smooth. “Polynomial time” without ex-
plicitly mentioning the variables means “polynomial in the representation size of the input” —
usually the logarithms of integers. We let Bp,∞ denote the quaternion algebra ramified at p
and∞, for which we use a fixed Q-basis 〈1, i, j, ij〉 such that j2 = −p and i is a nonzero endo-
morphism of minimal norm with ij = −ji.

7.2.2 – Quantum computation cost assumptions. In the context of NIST’s post-quantum
cryptography standardization process [NIST16], there is a significant ongoing effort to estimate
the quantum cost of fundamental cryptanalysis tasks in practice. In particular, while it seems
well-accepted that Grover’s algorithm provides a square-root quantum speedup, the complexity
of the claimed cube-root claw-finding algorithm of Tani [Tan07] has been disputed by Jaques
and Schanck [JS19], and the topic is still subject to ongoing research [JS20].

Several attacks we present in this chapter use claw-finding algorithms as a subroutine, and
the state-of-the-art algorithms against which we compare them are also claw-finding algorithms.

4Each occurrence of polylog(p) is shorthand for a concrete, fixed polynomial in log p. (The notation is not meant
to imply that all instances of polylog(p) be the same.)

106 IMPROVED TORSION-POINT ATTACKS

We stress, however, that the insight provided by our attacks is independent of the choice of the
quantum computation model. For concreteness we chose the RAM model studied in detail by
Jaques and Schanck in [JS19], in which it is argued that quantum computers do not seem to offer
a significant speedup over classical computers for the task of claw-finding. Adapting our vari-
ous calculations to other existing and future quantum computing cost models, in particular with
respect to claw-finding, is certainly possible.

7.2.3 – The Supersingular Isogeny Diffie–Hellman protocol. We give a high-level de-
scription of SIDH [JD11]. The public parameters of the system are two smooth coprime numbers
A and B, a prime p of the form p = ABf − 1, where f is a small cofactor, and a supersin-
gular elliptic curve E0 defined over Fp2 together with points PA, QA, PB , QB ∈ E0 such that
E0[A] = 〈PA, QA〉 andE0[B] = 〈PB , QB〉.
The protocol then proceeds as follows:

1. Alice chooses a random cyclic subgroup ofE0[A] asGA = 〈PA+[xA]QA〉and Bob chooses
a random cyclic subgroup ofE0[B] asGB = 〈PB + [xB]QB〉.

2. Alice computes the isogeny φA : E0 → E0/〈GA〉 =: EA and Bob computes the isogeny
φB : E0 → E0/〈GB〉 =: EB .

3. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Similarly, Bob
sends

(
EB , φB(PA), φB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curveE0/〈GA, GB〉:
Alice computesφB(GA) = φB(PA)+[xA]φB(QA) and uses the fact thatE0/〈GA, GB〉 ∼=
EB/〈φB(GA)〉. Bob proceeds analogously.
(Publishing the action of the secret isogeny on public points can be considered the core idea behind SIDH: Alice needsφB(GA)
to complete the key exchange, but Bob must keepφB secret and Alice must keepGA secret. Handing out the action ofφB on
a publicly known group that contains the secretGA is a clever workaround for this problem.)

The SIKE proposal [Jao+19] suggests various choices of (p,A,B) depending on the targeted
security level: All parameter sets use powers of two and three for A and B, respectively, with
A ≈ B and f = 1. For example, the smallest parameter set suggested in [Jao+19] uses the prime
p = 2216 · 3137 − 1. Other constructions belonging to the SIDH ‘family tree’ of protocols use
different types of parameters [Cos20; AJJS19; SGP19].

We may assume knowledge of End(E0): The only known way to construct supersingular
elliptic curves is by reduction of elliptic curves with CM by a small discriminant (which implies
small-degree endomorphisms: see Chapter 5 or [LB20]), or by isogeny walks starting from such
curves (where knowledge of the path reveals the endomorphism ring, thus requiring trusted
setup). A common choice when p ≡ 3 (mod 4) is j(E0) = 1728 or a small-degree isogeny
neighbour of that curve [Jao+19].

7.2.4 – Petit’s torsion-point attacks. “Traditional” attacks on SIDH attempt to solve the
general isogeny problem or reduce isogeny finding to computing endomorphism rings. How-
ever, SIDH is based on Problem 7.1 introduced above, in which an adversary also gets the action
of the secret isogeny on the B-torsion of the starting curve E0, which is the basis of another
attack strategy due to Petit [Pet17].

Remark 7.2. Problem 7.1 is a slight generalization of the Computational Supersingular Isogeny (CSSI)
Problem introduced in [JD11]. Here we do not require A and B to be prime powers (just smooth) and

7.3. IMPROVED TORSION-POINT ATTACKS 107

we do not require p to have a special form. We remark that some instances of Problem 7.1 require super-
polynomial space, as the extension fields required to represent ker(φ) and E0[B] generally have degree
at least linear inA andB. Broadly speaking, the interesting cases are the ‘efficient’ instantiations where
computing φ and its action onE0[B] takes time and space polynomial in log p, logA, and logB.

We outline Petit’s approach [Pet17] to solve some cases of Problem 7.1. The main steps are:

1. Compute a non-scalar endomorphism θ ∈ End(E0) and integers d, e ∈ Z such that
deg(φ ◦ θ ◦ φ̂+ [d]) = Bewith e smooth and relatively small.

2. Recover an efficient representation of τ = φ ◦ θ ◦ φ̂+ [d] using the fact that the action on
theB-torsion of φ, hence of τ , is known.

3. Compute ker(τ − [d]) ∩ E[A] and from that compute φ itself.

Notice that step 1 can be done as precomputation as it only depends on E0, but not on the par-
ticular public key under attack. (The degree of τ depends on the degree of φ, but not on which
particular degree-A isogeny φ happens to be.)

First we address steps 2 and 3. In step 2, the endomorphism τ can be decomposed into iso-
genies η ◦ ψ, where deg(ψ) = B and deg(η) = e. The isogeny ψ can be computed since θ is
known and we know the action of φ (and thus of φ̂) onE0[B] (resp.E[B]). Then η can be found
by meet-in-the-middle usingO∗(

√
e) operations. In step 3 we have ker(φ̂) ⊆ ker(τ − [d])∩E[A],

and in fact they are usually equal. They are not equal if and only if ker(τ − [d]) contains E[M]

for some divisorM ofA; it is shown in [Pet17, Section 4.3] how to resolve this issue.
The complexity of the algorithm clearly depends on the size of e, thus the efficiency of the

algorithm is dependent on the effectiveness of step 1. While the endomorphism ring of E0 is
usually known, it is not obvious how to find an element θ as above. For example, in SIKE, the
starting curve has j-invariant 1728,5 whose endomorphism ring is (up to small denominators)
generated by Frobenius π : (x, y) 7→ (xp, yp) and the automorphism ι : (x, y) 7→ (−x,

√
−1 · y),

hence step 1 reduces to solving the norm equation

A2(pa2 + pb2 + c2) + d2 = Be; (7.1)

the left-hand-side of this equation is just the degree of τ = φ◦θ◦ φ̂+[d] when θ = aιπ+bπ+cι.
Petit [Pet17] gives an algorithm to solve Equation (7.1) in the regime A > p and B > A4: The
main idea is to choose e such that Be is a square modulo A2, solve for d modulo A2, and then
solve for cmodulo p. What remains is the equation a2 + b2 = Be−d2−c2A2

pA2 , which can be solved
efficiently by Cornacchia’s algorithm if the right-hand side is efficiently factorizable; else the
procedure is restarted with a new choice of e. Under the conditionsA > p andB > A4, this al-
gorithm can heuristically be expected to find a suitable solution in polynomial time. This already
suggests that there exist parameters for which Problem 7.1 is easier than the general supersin-
gular isogeny problem.

7.3 — Improved torsion-point attacks

In this section we generalize and improve the torsion-point attacks from Petit’s 2017 paper [Pet17].
Our setup is as in [Pet17]: we study SIDH instances in which Alice and Bob use the starting curve

5Note that the newest version of [Jao+19] changed the starting curve to a 2-isogenous neighbour of j = 1728, but
this does not affect the asymptotic complexity of the (in fact, any) attack and thus we will stick with the original starting
curve for simplicity.

108 IMPROVED TORSION-POINT ATTACKS

E0/Fp : y2 = x3 + x, with p is a prime congruent to 3 (mod 4),6 Alice’s secret isogeny has de-
greeA = pα, and Bob’s secret isogeny has degreeB = pβ . SIKE consists of such instances with
α ≈ β ≈ 1/2, but in our analysis we will allowα andβ to vary. The caseα+β > 1 may seem arti-
ficial to readers mostly familiar with traditional SIDH or SIKE [JD11; Jao+17], but note that [Pet17]
and B-SIDH [Cos20] propose cryptographically interesting variants of SIDH with such paramet-
ers; furthermore, studying these cases helps our understanding of the case α + β ≈ 1, cf. Fig-
ure 7.1. We assume without loss of generality that A ≤ B and that we are attacking Alice’s key,
i.e., the secret isogeny is of degreeA and we are given the action of φ on theB-torsion ofE0.

Caution: (In)equalities such as α+ β > 1 are not to be interpreted as sharp bounds, but as
parameter regimes, and the claims may only hold asymptotically.

Petit’s 2017 classical, polynomial-time attack [Pet17] requires unbalanced parameters, un-
like those in SIKE, namely β > 4α > 4. In this section, we argue that even a mild imbalance
between α and β may result in a better (quantum) attack than the generic claw-finding/meet-
in-the-middle algorithm, thus far considered to be the best attack for any parameters not broken
by [Pet17] or [Bot+19]. We also reduce the degree of imbalance needed for the polynomial-time
algorithm to apply via a different method to [Bot+19]. Once more, we stress that these results
are based on heuristic assumptions and ignore factors polynomial in log p. The results of this
section are summarized in Figures 7.1 and 7.2, which will be justified by Theorem 7.8 and Heur-
istic Result 7.10. Note that Figure 7.1 illustrates a trade-off: The closerA andB are to each other,
the bigger their product AB must be for the attacks to apply, and conversely reducing AB re-
quires a stronger imbalance. Figure 7.1 shows that allowing for extremely unbalanced paramet-
ersB � A, we approach an attack onAB ≈ p as in (for instance) SIKE.

Our results suggest that the choiceα ≈ β ≈ 1/2 made in SIKE also minimizes the applicab-
ility of the torsion-point attack avenue. As we will show in Section 7.4, it is possible to improve
on the meet-in-the-middle/claw-finding complexity for balanced parameters with a different
starting curve, but with SIKE’s starting curve it does not seem possible to get an attack via this
method. However, since any imbalance can lead to a lower attack complexity, our results may
have an impact on SIDH variants such as B-SIDH [Cos20] and group key exchange [AJJS19]; see
Figure 7.2.

Remark 7.3. A couple of notes on the choices made in Figure 7.1:
• Algorithms with complexity polynomial in log p correspond to C = 0.
• The complexity of the attack is measured as a power of A, the degree of Alice’s secret isogeny. To-

gether with our assumption thatA ≤ B, this allows for easy comparison with the ‘generic attack’,
i.e., classical or quantum claw finding.

• As discussed in Section 7.2.2, we use the RAM model studied in detail for claw-finding by Jaques
and Schanck in [JS19] for our quantum computation model. For the classical attack, we compare
against the basic meet-in-the-middle algorithm. Therefore, in this chapter, we take the complexity
of both classical and quantum claw-finding to beO∗(A1/2).

7.3.1 – Improved balance of the polynomial-time attack. Among many other tradeoffs,
our work improves from a balance ofB > A4 > p4 as in [Pet17] to a balance ofB > A3 > p3/2

orB > A2 > p2. This improvement comes from one simple trick, explained below.

6More generally, these attacks apply for any ‘special’ starting curve in the sense of [KLPT14].

7.3. IMPROVED TORSION-POINT ATTACKS 109

1 2 3 4 5 6 7 β/α

1

2

3

α+β

1 2 3 4 5 6 7 β/α

1

2

3

α+β

Figure 7.1: Possible choices of (α, β) allowing for a classical attack (left) of complexityO∗(AC) for C = 0.5, 0.4, 0.3,
0.2, 0.1, 0.0, and a quantum attack (right) of complexity O∗(AC) for C = 0.5, 0.4, 0.3, 0.2, 0.1, 0.0. The attack uses
Algorithm 7.3 and the complexities are justified in Theorem 7.8.

Petit’s attack solves Problem 7.1, in which we want to compute the isogeny φ, by computing
θ ∈ End(E0) and a, b, c, d ∈ Z such that there exists a small smooth integer e for which

A2(pa2 + pb2 + c2) + d2 = deg(φ ◦ θ ◦ φ̂+ [d]) = Be. (7.2)

The restrictionsB > A4 andA > pare necessary for Petit’s algorithm to find a solution (a, b, c, d, e)

in polynomial time and output a sufficiently small, smooth e.
We show in the following theorem that (7.2) can be relaxed to

A2(pa2 + pb2 + c2) + d2 = deg(φ ◦ θ ◦ φ̂+ [d]) = B2e.

This in turn allows us to relax the balance of A and B to B > A3 > p3/2 or B > A2 > p2

to find a solution (a, b, c, d, e) with sufficiently small e, just by applying the same algorithm as
Petit [Pet17]. We do not repeat the algorithm here for conciseness, as we give a more general al-
gorithm in the next section that also encompasses our non-polynomial time attacks; the balance
ofA andB is also addressed in the analysis in the following section.

Theorem 7.4. Let A,B be coprime smooth integers. Let E0 be a supersingular elliptic curve defined
over Fp2 . Let φ be a secret isogeny of degree A from E0 to some curve E, and suppose that we are given
the action of φ on E0[B]. Furthermore, assume we are given a trace-zero endomorphism θ ∈ End(E0)

in a representation that can be efficiently evaluated onE0[B], an integer d coprime toB, and a smooth
integer e such that

deg(φ ◦ θ ◦ φ̂+ [d]) = B2e.

Then we can compute φ in timeO∗(
√
e) = O(

√
e · polylog(p)).

Proof. Let τ = φ◦ θ ◦ φ̂+ [d]. Since the degree of τ isB2e, it can be decomposed as τ = ψ′ ◦η ◦ψ
where ψ and ψ′ are isogenies of degree B and η is an isogeny of degree e. The isogeny ψ can be
computed from the given action on theB-torsion as in Section 7.2.4.

To compute the isogenyψ′, we claim that ker(ψ̂′) contains τ(E[B]) with index at most two.
Thus, we can first evaluate τ on the B-torsion using the given action of θ, then find ker(ψ̂′) by
potentially brute-forcing a 2-isogeny, and finally compute ψ′ from ψ̂′ and run the rest of the
algorithm for each choice of ψ′ the brute-force-of-η step yields.

110 IMPROVED TORSION-POINT ATTACKS

We now prove the claim: First, ψ̂′ ◦ τ = [B] ◦ η ◦ ψ establishes that ker(ψ̂′) ⊇ τ(E[B]). We
show that ker(τ) + E[m] for anym > 2 dividingB. Suppose that τ decomposes as τ ′ ◦ [m] for
τ ′ ∈ End(E),m ∈ Z. Thenm divides tr(τ) = 2d, but note that gcd(m, 2d) ∈ {1, 2} since dwas
assumed coprime to B. Thus, the subgroup of E[B] killed by τ is isomorphic to either Z/B or
Z/B×Z/2, which shows that |τ(E[B])| ∈ {B,B/2} and therefore [ker(ψ̂′) : τ(E[B])] ∈ {1, 2}.

Finally, for each choice of ψ′, we attempt to recover the isogeny η by a generic meet-in-the-
middle algorithm, which runs in timeO∗(

√
e) since e is smooth. Note that if e ∈ O∗(1), then the

entire algorithm runs in time polylog(p).

For (a neighbour of) the initial curve used in SIKE [Jao+17] we deduce the following:

Corollary 7.5. Let p ≡ 3 (mod 4) and j(E0) = 1728. Consider coprime smooth integers A,B and
suppose that we are given an integer solution (a, b, c, d, e), with e smooth, to the equation

A2(pa2 + pb2 + c2) + d2 = B2e . (7.3)

Then we can solve Problem 7.1 with the above parameters in timeO∗(
√
e).

Proof. For a degree-A isogeny ϕ : E0 → E, the left side of (7.3) is the norm form of

Z + ϕEnd(E0)ϕ̂ ∼= Z +AEnd(E0).

Choosing θ = aιπ + bπ + cι ∈ End(E0) yields the desired result.

7.3.2 – Non-polynomial time torsion-point attacks. In this section we generalize Petit’s
polynomial-time attack to allow for attacks with any complexity better than O∗(A1/2), that is,
attacks that improve upon the best known generic attack (cf. Section 7.2.2). Recall that A = pα

andB = pβ are the degrees of Alice and Bob’s secret isogenies respectively, and that we measure
the complexity of the overall attack relative toA by writing it asO∗(AC). The attack, following
the approach of Petit [Pet17] together with the improvements described above, naturally splits
into two stages: First, the ‘precomputation’ phase (Algorithm 7.1) in which a solution to (7.3)
is computed — notably, this depends only on the parameters (p,A,B) and not on the concrete
public key under attack. Second, the ‘online’ phase (Algorithm 7.2) in which we utilize said solu-
tion to recover the secret isogeny as in Theorem 7.4 for a specific public key. Our modifications
to Petit’s method come in three independent guises, and the resulting algorithm is shown in
Algorithm 7.3:

• Precomputation phase:

– Larger d: When computing a solution to Equation (7.3), we fix e and then try up
to Aδ values for d until the equation has solutions. This allows us to further relax
the constraints between A, B, and p, at the price of an exhaustive search of cost
O∗(Aδ) = O∗(pαδ).

• Online phase:

– Larger e: We search for a solution to Equation (7.3) where e is any smooth number
≤ Aε with ε ∈ [0, 1], whereas in [Pet17] the integer ewas required to be polynomial
in log p. This relaxes the constraints onAandB, at a price of aO∗(e1/2) = O∗(pαε/2)

computation (to retrieve the endomorphism η defined in the proof of Theorem 7.4).

7.3. IMPROVED TORSION-POINT ATTACKS 111

– Smaller A: We first naïvely guess part of the secret isogeny and then apply Petit’s
techniques only on the remaining part for each guess. More precisely, we iterate
through isogenies of degree Aγ | A, with γ ∈ [0, 1], and for each possible guess we
apply Petit’s techniques on Problem 7.1 with A′ := A1−γ = pα(1−γ) in place of A.
The Diophantine equation to solve thus turns into

A′2(pa2 + pb2 + c2) + d2 = B2e . (7.4)

Algorithm 7.1: Solving the norm equation; precomputation.

Input: • SIDH parameters p,A = pα, B = pβ .
• Attack parameters δ, γ, ε ∈ [0, 1], withAγ | A.

Output: A solution (a, b, c, d, e) to (7.4) withA′ = A1−γ and e ≤ Aε smooth.
1 Pick a smooth number e ≤ Aε which is a square moduloA′2.
2 Compute d0 as the smallest positive integer such that d2

0 ≡ eB2 (mod A′2).
3 for d′ = 1, 2, ..., bAδc such that d0 +A′2d′ <

√
eB do

4 Let d = d0 +A′2d′.
5 Find the smallest positive integer c such that c2A′2 = eB2 − d2 (mod p),

or continue if no such c exists.
6 If eB2 > d2 + c2A′2 then
7 Try finding (a, b) such that a2 + b2 = eB2−d2−c2A′2

A′2p
.

If a solution is found, return (a, b, c, d, e).

Algorithm 7.2: Recovering the secret isogeny; online phase.
Input: • All the inputs of Algorithm 7.1.

• An instance of Problem 7.1 with those parameters, namely a curveE and points
P,Q ∈ E[B] where there exists a degree-A isogeny ϕ : E0 → E such that P,Q are the
images by ϕ of a canonical basis ofE0[B].

• θ ∈ End(E0) and d, e ∈ Z such that deg(A′θ + d) = B2ewith e ≤ Aε smooth.
Output: An isogeny ϕmatching the constraints given by the input.

1 for ϕg : E → E′ anAγ-isogeny do
2 Compute P ′ = [A−γ mod B]ϕg(P) andQ′ = [A−γ mod B]ϕg(Q).
3 Use Theorem 7.4 to compute ϕ′ : E0 → E′ of degreeA′ = A1−γ ,

assuming that P ′ andQ′ are the images by ϕ′ of the canonical basis ofE0[B],
or conclude that no such isogeny exists.

4 If ϕ′ is found then
5 Return ϕ = ϕ̂g ◦ ϕ′.

Algorithm 7.3: Solving Problem 7.1.

1 Invoke Algorithm 7.1, yielding a, b, c, d, e ∈ Z, and then Algorithm 7.2 with
θ = aιπ + bπ + cι.

112 IMPROVED TORSION-POINT ATTACKS

Let us analyze the conditions under which Algorithm 7.1 can be expected to succeed:

Heuristic Result 7.6. We expect Algorithm 7.1 to produce a solution to Equation (7.4) in the regime

2β + αε ≥ max {4α+ 2αδ − 4αγ, 2 + 2α− 2αδ − 2αγ} .

Justification. By construction we expect d0 ≈ A′2, d ≈ A′2Aδ ≈ A2(1−γ)+δ and eB2 ≈ AεB2,
so the ‘for’ loop in Algorithm 7.1 will run forAδ iterations if

2α(2(1− γ) + δ) ≤ αε+ 2β.

The value c is then computed as a square root modulo p. We therefore expect c ≈ pmost of
the time, and c ≈ pA−δ with probabilityA−δ , thus a constant number of times over all possible
choices for d. For this particular c, we have c2A′2 ≈ p2A−2δA′2 ≈ p2−2αδ+2α(1−γ) and we
expect to satisfy the second ‘if’ condition in step 5 when

2− 2αδ + 2α(1− γ) ≤ αε+ 2β.

The two inequalities together give Heuristic Result 7.6.

Lemma 7.7. Assume Heuristic Result 7.6 is satisfied.

1. The complexity of Algorithm 7.1 isO∗(Aδ) classically andO∗(Aδ/2) quantumly.

2. The complexity of Algorithm 7.2 isO∗(Aγ+ε/2) classically andO∗(A(γ+ε)/2) quantumly.

Proof. The loop in Algorithm 7.1 hasAδ steps, each with polynomial complexity (use Cornacchia
for step 6). Quantumly, this search takes a square root of the classical cost (using Grover).

The loop in Algorithm 7.2 has approximately Aγ steps, and the main cost in each step is an
application of Theorem 7.4 with e ≈ Aε. On a classical computer the cost is approximately
O∗(Aγe1/2) = O∗(Aγ+ε/2). Using quantum search to guess the correct degree-Aγ isogeny ϕg
in step 7.2, Algorithm 7.2 has quantum complexityO∗(Aγ/2e1/2) = O∗(A(γ+ε)/2).

Theorem 7.8. Let 0 < α ≤ β and 0 ≤ C ≤ 1/2, and define

Γ := max
{1 + 3α− 2β

3α
,

2α− β
2α

,
1 + α− β

2α

}
.

There exists a configuration (δ, γ, ε) ∈ [0; 1]3 of Algorithm 7.3 satisfying the condition given in
Heuristic Result 7.6, such that the attack cost according to Lemma 7.7 is at most O∗(AC), if and only if
C ≥ Γ for classical attacks, or C ≥ Γ/2 for quantum attacks.

Proof. Write f = 1 for classical algorithms and f = 1
2 for quantum algorithms; hence, the

complexity according to Lemma 7.7 equals C = max{fδ, fγ+ 1
2 ε}. Call a tuple (δ, γ, ε) ∈ [0; 1]3

“admissible” if it satisfies the bounds

(4 + 2δ − 4γ − ε)α ≤ 2β and (2− 2δ − 2γ − ε)α ≤ 2β − 2 (∗)

from Heuristic Result 7.6. Suppose given an admissible tuple (δ, γ, ε) with cost C ≤ 1/2. First,
notice that setting γ′ := max{δ, γ+ 1

2f ε}, the tuple (δ, γ′, 0) is still admissible with the same C .
(Since C ≤ 1/2, we have γ′ ≤ 1

2f ≤ 1.) Thus, it suffices to consider admissible tuples (δ, γ′, 0)

with 0 ≤ δ ≤ γ′ ≤ 1 when optimizing. The bounds (∗) simplify to

1 + α− β − αγ′ ≤ αδ ≤ β − 2α+ 2αγ′ , (∗′)

7.3. IMPROVED TORSION-POINT ATTACKS 113

which (leaving out the middle term αδ and simplifying) implies

γ′ ≥ 1 + 3α− 2β

3α
. (∗1)

This establishes a lower bound on γ′, but it is not yet clear which of these values are actually
possible: For a given γ′, we additionally require a δ ∈ [0; γ′] that satisfies the bounds (∗′). Hence,
the upper bound β − 2α+ 2αγ′ on αδ in (∗′) must be non-negative, which simplifies to

γ′ ≥ 2α− β
2α

. (∗2)

Similarly, the lower bound 1 + α− β − αγ′ on αδ in (∗′) must not be greater than αγ′, yielding

γ′ ≥ 1 + α− β
2α

. (∗3)

Recalling that C = fγ′, this shows the claim.

7.3.3 – Impact on B-SIDH. A recent proposal called B-SIDH [Cos20] consists of instantiat-
ing SIDH with parameters where AB is a divisor of p2 − 1. Theorem 7.8 suggests that we may
expect a quantum attack of complexity O∗(p1/3) when A ≈ B ≈ p. This compares to other
attack complexities in the literature as follows:

• Tani’s quantum claw-finding algorithm [Tan07] was claimed to have complexityO∗(p1/3),
but [JS19] argues that the complexity is actually no lower thanO∗(p2/3) when the cost of
data-structure operations is properly accounted for.

• A quantum algorithm due to Biasse, Jao, and Sankar [BJS14] finds some isogeny between
the start and end curve in timeO∗(p1/4). While there is a heuristic argument for “stand-
ard” SIDH/SIKE that any isogeny suffices to find the correct isogeny [GPST16], this argu-
ment relies on the fact that the isogeny sought in SIKE has relatively small degree com-
pared to p, which is not true for B-SIDH, so this does currently not yield a complete attack.
The B-SIDH paper [Cos20] conservatively views [BJS14] as the best quantum attack.

• The cost of known classical attacks is no lower thanO∗(A1/2), which is achieved by meet-
in-the-middle techniques (using exponential memory) and potentially memoryless by
Delfs and Galbraith [DG16] when A ≈ p assuming a sufficiently efficient method to pro-
duce the isogeny from some isogeny.

Thus, assuming our heuristics hold true, Algorithm 7.3 is asymptotically the best known attack
against B-SIDH at the moment. Should it turn out in the future that finding any isogeny suf-
fices to compute the right isogeny in time less thanO∗(p1/3), then combining that method with
Biasse–Jao–Sankar will yield a better quantum attack; at present it is not known how to do this.

Note that for 1/2 < α ≈ β < 1, the (quantum) attack cost in terms of p may be lower than
O∗(p1/3), but it does not get smaller thanO∗(p1/4) for balanced parameters.

The concrete example parameters in [Cos20] do not allow very strong torsion-attacks since
constructing optimal B-SIDH parameters (thus allowing for the most effective attacks) seems
difficult. For example, consider the kind of parameters proposed as an alternative for SIKEp610
using the Mersenne prime p = 2521− 1: In this example, A = 2305 and B ≈ 2305, hence α ≈
β ≈ 0.58, and by Theorem 7.8 our methods can be expected to lead to a quantum attack of
asymptotic complexity O∗(A0.46) ⊆ O∗(p0.27) on parameters with these size ratios. The full
range of B-SIDH parameters to which our attacks apply is summarized in Figure 7.1.

114 IMPROVED TORSION-POINT ATTACKS

7.3.4 – Impact on other variants of SIDH. The group key exchange protocol from [AJJS19]
with k parties can be reduced to an instance of Problem 7.1 with A ≈ p1/k and B ≈ p(k−1)/k .
Although our attacks only apply for AB > p, Figure 7.1 (or equivalently Theorem 7.8) shows
that as the imbalance increases, the attack applies forAB approachingp. In particular, for a large
number of parties k, the productAB does not have to be much larger than p for an (exponential)
torsion-point attack to apply.

Hence, our attacks do not seem to apply to the group key exchange as described in [AJJS19],
which (like SIKE) satisfies AB < p. However, it is not inconceivable that someone implement-
ing a group key exchange protocol may borrow ideas from B-SIDH in order to improve efficiency,
especially given the scarcity of appropriate base field primes for group key exchange follow-
ing [AJJS19]. Such a combined group key exchange with ideas from B-SIDH could easily yield
a torsion-point attack: For example, even for 3 parties, parameters with AB ≈ p2 lead to a
quantum attack of (heuristic) complexity O∗(A1/8), a fourth-root improvement over generic
claw finding.

7.3.5 – Improvement prospects. In this section we consider how future improvements on
the resolution of Equation (7.3) might impact the hardness of Problem 7.1. We first estimate the
minimal size of e for a given set of parameters (p,A,B).

Heuristic Result 7.9. Solutions (a, b, c, d, e) to Equation (7.3) can be expected to satisfy

e2 ≥ A3p
B2 .

Justification. We consider solutions with e ≤ M for some fixed bound M . Since all summands
on the left-hand side are non-negative, they cannot be bigger than the upper boundMB2 of the
right-hand side. This yields the bounds

a ≤
√
MB
A
√
p ; b ≤

√
MB
A
√
p ; c ≤

√
MB
A ; d ≤

√
MB .

Hence the number of possible assignments of the variables e, a, b, c, d is about

M ·
√
MB
A
√
p ·
√
MB
A
√
p ·
√
MB
A ·

√
MB = M3B4

A3p
.

Heuristically modelling both left- and right-hand side as uniformly random integers in the range
{0, . . . ,MB2}, this implies the expected number of solutions is about

M3B4

A3p
/(MB2) = M2B2

A3p .
Solving this for one expected solution yields the claimed estimate.

Heuristic Result 7.10. Assume that we are given a solution to Equation 7.3 for parameters as in Heur-
istic Result 7.9. Then we expect to solve Problem 7.1:

1. with classical complexityO∗(1) whenB ≥ p1/2A3/2,

2. with classical complexityO∗(A1/2) whenB ≥ p1/2A1/2, and

3. with quantum complexityO∗(A1/2) whenB ≥ p1/2.

Justification. As we are given a solution to Equation (7.3), we no longer need Algorithm 7.1 and
can apply Algorithm 7.2 right away. Heuristic Result 7.9 gives the constraint

2(β + αε) ≥ 1 + 3α(1− γ), (7.5)

7.3. IMPROVED TORSION-POINT ATTACKS 115

which we now use in place of Heuristic Result 7.6 to optimally balance parameters.

1. For polynomial-time attacks we need ε = γ = 0 by Lemma 7.7. Plugging this into (7.5)
gives 2β > 1 + 3α, hence the result.

2. Increasing either γ or ε will contribute to relaxing Inequality (7.5), and by Lemma 7.7 we
need γ + ε/2 ≤ 1/2. Substituting γ for (1− ε)/2 in (7.5) gives

2β ≥ 1 + α(3− ε)/2.

Setting ε = 1 and γ = 0 simplifies this to 2β ≥ 1 + α, hence the result.

3. Increasing either γ or ε will contribute to relaxing Inequality (7.5), and by Lemma 7.7 we
need γ + ε < 1. Substituting γ for 1− ε in (7.5), we get

2β ≥ 1 + αε.

Setting ε = 0 and γ = 1/2 simplifies this to 2β ≥ 1, hence the result.

Remark 7.11. In the group key exchange protocol of [AJJS19] with k parties we have A ≈ p1/k and
B ≈ p(k−1)/k . A better solver for Equation (7.3) could give an improved quantum attack when k > 2,
an improved classical attack when k > 3, and a (classical) polynomial-time attack when k > 5.

Remark 7.12. In contexts where several instances of Problem 7.1 need to be solved with the same para-
meters, Algorithm 7.1 only needs to be executed once. In this case the algorithm’s parameters can be
tweaked to reduce the average cost per instance.

1 2 3 α

1

2

3

4
β

1 2 3 α

1

2

3

4
β

Figure 7.2: Performance of our current attacks. Left: Algorithm 7.3. Right: Hypothetical attack assuming an optimal
polynomial-time solver for Equation 7.3 combined with Algorithm 7.2. Here A = pα and B = pβ . Parameters
(α, β) above the red, orange and yellow lines are parameters admitting a polynomial-time attack, a classical attack
inO∗(A1/2), and a quantum attack inO∗(A1/2), respectively. Parameters below the upper dashed line are those al-
lowing AB | (p2 − 1) as in [Cos20]. Parameters below the lower dashed line are those allowing AB | (p − 1) as
in [Jao+17; Jao+19].

116 IMPROVED TORSION-POINT ATTACKS

7.4 — Trapdoor instances

In this section we give a method to specifically create instantiations of the SIDH framework for
which we can solve Problem 7.1 more efficiently given some extra information. Recall that we let
A ≤ B denote the degrees of Alice’s and Bob’s secret isogenies, respectively, and letA = pα and
B = pβ . Recall that for all the instances studied in Section 7.3, our attack methods can improve
upon the complexity of claw finding only when AB are greater than p (see Figures 7.1 and 7.2),
and that we can only expect solutions to Equation 7.3 with a polynomially small7 value of ewhen
[B > A3 and A > p1/2] or [B > A2 and A > p]. However, all of this was only considering cases
where the starting curve has j-invariant 1728. In Section 7.4.1 we explore the question: For given
A,B can we construct starting curves for which we can solve Problem 7.1 with a better balance?
We will call such curves trapdoor curves (see Definition 7.13), and quantify the number of trapdoor
curves in Section 7.4.3.

In Sections 7.4.4 and 7.4.5, we also consider trapdoored choices of p,A, andB, for which we
can solve Problem 7.1 more efficiently even when starting from the curve with j-invariant 1728.

7.4.1 – Trapdoor curves. This section introduces the concept of trapdoor curves and how to
find such curves. Roughly speaking, these are specially crafted curves which, if used as starting
curves for the SIDH protocol, are susceptible to a torsion-point attack by the party who chose
the curve, under only moderately imbalanced parameters A,B; in particular, the imbalance is
independent of p. In fact, when we allow for non-polynomial time attacks we get an asymp-
totic improvement on the best general attack for balanced SIDH parameters (but starting from
a trapdoor curve). These curves could potentially be utilized as backdoor curves, for example by
suggesting the use of such a curve as a standardized starting curve. We note that it does not seem
obvious how trapdoored curves, such as those generated by Algorithm 7.4, can be detected by
other parties: The existence of an endomorphism of large degree which satisfies Equation 7.3
does not seem to be detectible without trying to recover such an endomorphism, which is hard
using all currently known algorithms.

The notion of trapdoor curves is dependent on the parameters A,B, which motivates the
following definition:

Definition 7.13. Let A,B be coprime positive integers and 0 ≤ C ≤ 1/2. An (A,B,C)-trapdoor
curve is a tuple (E0, θ, d, e) of a supersingular elliptic curveE0 defined over some Fp2 , an endomorph-
ism θ ∈ End(E0) in an efficient representation, and two integers d, e, such that Algorithm 7.2 solves
Problem 7.1 for that particular E0 in time O∗(AC) when given (θ, d, e). An (A,B)-trapdoor curve is
an (A,B, 0)-trapdoor curve, i.e., one for which Algorithm 7.2 takes time polynomial in log p.

Remark 7.14. It is important that θ is efficiently represented as it might not have smooth degree.

We summarize the complexity of our attack on SIDH instances starting at trapdoor curves
in Figure 7.3; this figure follows from Theorem 7.21. Note that these attacks do apply to balanced
parameters withAB ≈ p and give a significant improvement on the meet-in-the-middle claw-
finding complexity for these cases. We stress however that this relies on using a special starting
curve and hence does not give an attack on SIKE when using the proposed (neighbour of a) start-
ing curve with j-invariant 1728, unless there happens to be short path from this starting curve
to a backdoor curve that can be found efficiently.

Algorithm 7.4 computes (A,B)-trapdoor curves in heuristic polynomial time, assuming we
have a factoring oracle (see Theorem 7.15).

7Recall that this is necessary to obtain a polynomial-time online cost in our attack.

7.4. TRAPDOOR INSTANCES 117

1 2 3 4
β/α

0.25

0.5
C

Figure 7.3: Choices of A = pα and B = pβ for which we can (heuristically) find an (A,B,C)-trapdoor curve
(E0, θ, d, e) within time O∗(AC). An SIDH variant starting at E0 can be broken in time O∗(AC) using our attack
when (θ, d, e) is given. Red: Complexity of best known attack without having (θ, d, e). Green: Classical complexity
of our attack when starting at a (A,B,C)-trapdoor curve. Blue: Quantum complexity of our attack when starting
at a (A,B,C)-trapdoor curve. Yellow: SIKE parameters. Violet: SIKE-like parameters, but starting instead from an
(A,B,C)-trapdoor curve.

Algorithm 7.4: Generating (A,B)-trapdoor curves.

Input: A prime p ≡ 3 (mod 4) and smooth coprime integersA,B withB > A2.
Output: An (A,B)-trapdoor curve (E0, θ, d, e) withE0/Fp2 .

1 Set e := 1.
2 While true do
3 Find an integer d such that d2 ≡ B2e (mod A2).
4 If d is coprime toB then
5 If B

2e−d2
A2 is square modulo p then

6 Find rational a, b, c such that pa2 + pb2 + c2 = B2e−d2
A2 .

7 break

8 Set e to the next square.

9 Set ϑ = aij + bj + ci ∈ Bp,∞.
10 Compute a maximal orderO ⊆ Bp,∞ containing θ.
11 Compute an elliptic curveE0 whose endomorphism ring is isomorphic toO.
12 Construct an efficient representation of the endomorphism θ ofE0 corresponding to ϑ.
13 Return (E0, θ, d, e).

Theorem 7.15. Given an oracle for factoring, Algorithm 7.4 can heuristically be expected to succeed in
polynomial time.

Remark 7.16. The imbalance β > 2α is naturally satisfied for a group key exchange in the style of
[AJJS19] with three or more participants; we can break (in polynomial time) such a variant when starting
at an (A,B)-trapdoor curve.

Before proving Theorem 7.15 we need the following easy lemma:

Lemma 7.17. Let p be a prime congruent to 3 modulo 4. LetD be a positive integer. Then the quadratic
form Q(x1, x2, x3, x4) = px2

1 + px2
2 + x2

3 − Dx2
4 has a nontrivial integer root if and only if D is a

quadratic residue modulo p.

118 IMPROVED TORSION-POINT ATTACKS

Proof. The proof is essentially a special case of [Sim05, Proposition 10], but we give a brief sketch
of the proof here. IfD is a quadratic residue modulo p, then px2

1 +px2
2 +x2

3−Dx2
4 has a solution

in Qp by setting x1 = x2 = 0 and x4 = 1 and applying Hensel’s lemma to the equation x2
3 = D.

The quadratic formQ also has local solutions everywhere else (the 2-adic case involves looking
at the equation modulo 8 and applying a 2-adic version of Hensel’s lemma). If on the other hand
D is not a quadratic residue modulo p, then one has to choose x3 and x4 to be divisible by p.
Dividing the equation Q(x1, x2, x3, x4) = 0 by p and reducing modulo p yields x2

1 + x2
2 ≡ 0

(mod p). This does not have a solution as p ≡ 3 (mod 4). Finally, one can show that this implies
thatQ does not have a root in Qp.

Proof of Theorem 7.15. The main idea is to apply Theorem 7.4 in the following way: using Al-
gorithm 7.4, we find integers D, d, and e, with e polynomially small and D a quadratic residue
mod p, such that A2D + d2 = B2e, and an element θ ∈ Bp,∞ of trace zero and such that
θ2 = −D. We then construct a maximal order O ⊆ Bp,∞ containing θ and an elliptic curve
E0 with End(E0) ∼= O.

Most steps of Algorithm 7.4 obviously run in polynomial time, although some need further
explanation. We expect d2 ≈ A4 since we solved for d modulo B2, and we expect e to be small
since heuristically we find a quadratic residue after a small number of tries. Then the right-hand
side in step 6 should be positive sinceB > A2, so by Lemma 7.17 step 6 returns a solution using
Simon’s algorithm [Sim05], assuming an oracle for factoring B2e−d2

A2 . For step 10, we can apply
either of the polynomial-time algorithms [IR93; Voi13] for finding maximal orders containing a
fixed order in a quaternion algebra, which again assume a factoring oracle. Steps 11 and 12 can
be accomplished using the heuristically polynomial-time algorithm from [PL17; Eis+18] which
returns both the curve E0 and (see [Eis+18, § 5.3, Algorithm 5]) an efficient representation of θ.

Remark 7.18. The algorithm uses factorization twice. In Section 7.5 we discuss how one can ensure in
practice that the numbers to be factored have an easy factorization.

Remark 7.19. The main contribution of Simon’s paper is a polynomial-time algorithm for finding non-
trivial roots of (not necessarily diagonal) quadratic forms which does not rely on an effective version of
Dirichlet’s theorem. In our case, however, we only need a heuristic polynomial-time algorithm for find-
ing a nontrivial root (x, y, z, u) of a form px2 + py2 + z2 − Du2. We sketch an easy way to do this:
Suppose that D is squarefree, and pick a prime q ≡ 1 (mod 4) such that −pq is a quadratic residue
modulo every prime divisor ofD. It is then easy to see that the quadratic equations px2 + py2 = pq and
Du2 − z2 = pq both admit a nontrivial rational solution which can be found using [CR03].

Remark 7.20. Weak curves also have a constructive application: An improvement on the recent paper
[SKPS19] using Petit’s attack to build a one-way function ‘SÉTA’. In this scheme, the secret key is a secret
isogeny to a curveEs that starts from the elliptic curve with j-invariant 1728 and the message is the end
point of a secret isogeny fromEs to some curveEm, together with the image of some torsion points. The
reason for using j-invariant 1728 is in order to apply Petit’s attack constructively. One could instead use
a weak curve; this provides more flexibility to the scheme as one does not need to disclose the starting curve
and the corresponding norm equation is easier to solve.

7.4.2 – Non-polynomial time attacks for trapdoor curves. In this section we give a fur-
ther generalization of Algorithm 7.3 to utilize some extra techniques available to us when the
starting curveE0 is trapdoored. Recall, as above, thatA ≤ B are the degrees of Alice’s and Bob’s

7.4. TRAPDOOR INSTANCES 119

secret isogenies respectively, and A = pα and B = pβ . Recall the definition of an (A,B,C)-
trapdoor curve (E0, θ, d, e) from Definition 7.13; in particular that such a curve gives rise to a
torsion-point attack of complexityO∗(AC).

We show in this section that forα ≈ β, we can modify Algorithm 7.4 to compute a classically
(A,B, 2/5)-trapdoor curve or a quantumly (A,B, 1/4)-trapdoor curve. We also show how the
attack on trapdoor curves improves for imbalanced parameters; see Figure 7.3 for a comparison
of previous results with Theorem 7.21.

Theorem 7.21. Heuristically:
• Let C ∈ [0, 0.4]. For A, B such that B > A2−5/2·C , a classical algorithm can construct a

(A,B,C)-trapdoor curve in timeO∗(AC), assuming an oracle for factoring.
• Let C ∈ [0, 0.25]. For everyA,B such thatB > A2−4·C , a quantum algorithm can construct a

(A,B,C)-trapdoor curve in polynomial time.

Proof. Modify Algorithm 7.4 as follows:
• UseA′ = A1−γ instead ofA, namely we will guess part of the isogeny with degreeAγ | A.
• Instead of starting from e = 1, start the loop at e such thatB2e > A′4.
• Choose Aε

′
random values of e ≤ Aε (note e is not necessarily an integer square) until

there exists d such that d2 = B2e mod (A′)2,

B2e− d2 > 0, (7.6)

andB2e− d2 is a square modulo p. Once these values of d and e are found, continue like
in Algorithm 7.4, step 6.

The attacker can then invoke Algorithm 7.2 to compute the secret isogeny, using the data (θ, d, e)

from Algorithm 7.4.
We analyze the complexity of running the modified Algorithm 7.4 followed by Algorithm

7.2. The two quadratic residuosity conditions are heuristically satisfied one in four times, so we
ignore them in this analysis. The cost of Algorithm 7.4 modified in this way becomesO∗(Aε

′
) for

a classical adversary andO∗(Aε
′/2) for a quantum adversary.

Note also that by construction we have e ≤ Aε, so the cost of running Algorithm 7.2 will be
O∗(Aγ+ε/2) for a classical adversary and O∗(A(γ+ε)/2) for a quantum adversary, following the
same reasoning as in the complexity analysis of Algorithm 7.3.

We now look at the conditions for existence of a solution in Algorithm 7.4. Note that d is a
priori bounded by (A′)2 = A2(1−γ). However, after trying Aε values for e we may hope to find
some d bounded byA2(1−γ)−ε. To satisfy (7.6) we need

2β > α(4− 4γ − 2ε′ − ε),

and by construction we also need ε′ ≤ ε.
For a classical adversary, setting ε = ε′ = 2γ = C gives the result. For a quantum adversary,

setting ε = ε′ = 0 and γ = 2 · C gives the result.

Remark 7.22. We found these choices for ε, ε′, γ by solving the following optimization problems for
α = β = 1/2, so at least in that case (which corresponds to SIKE) we expect there to be no better choice
with respect to overall complexity: For the best classical attack whenα = β = 1/2 we solved the following
linear optimization problem:

min
4γ+2ε′+ε≥2,

ε≥ε′

max
{
ε′, γ + ε/2

}
.

120 IMPROVED TORSION-POINT ATTACKS

For the best quantum attack when α = β = 1/2 we solved the following linear optimization problem:

min
4γ+2ε′+ε≥2

ε≥ε′

max
{
ε′/2, (γ + ε)/2

}
.

Remark 7.23. We have implemented the computation of the maximal orders for the SIKEp434 para-
metersA = 2216 andB = 3137.

7.4.3 – Counting trapdoor curves. Having shown how to construct trapdoor curves and
how to exploit them, a natural question to ask is how many of these curves we can find using the
methods of the previous section. Recall that the methods above search for an elementϑ ∈ Bp,∞
with reduced norm D. Theorem 7.24, due to Onuki [Onu20], suggests they can be expected to
produce exponentially (in logD) many different maximal orders, and using Lemma 7.25 we can
prove this rigorously for the (indeed interesting) case of (A,B)-trapdoor curves with AB ≈ p

andA2 < B < A3 (cf. Theorem 7.15).
We first recall some notation from [Onu20]. The set ρ(È `(O)) consists of the reductions

modulopof all elliptic curves overQwith complex multiplication byO. Each curveE = E mod p

in this set comes with an optimal embedding ι : O ↪→ End(E), referred to as an ‘orientation’
ofE, and conversely, [Onu20, Prop. 3.3] shows that — up to conjugation — each oriented curve
(E, ι) defined over Fp is obtained by the reduction modulo p of a characteristic-zero curve; in
other words, either (E, ι) or (E(p), ι(p)) lies in ρ(È `(O)). Onuki proves:

Theorem 7.24 [Onu20, Theorem 3.4]. Let K be an imaginary quadratic field such that p does not
split inK , andO an order inK such that p does not divide the conductor ofO. Then the ideal class group
cl(O) acts freely and transitively on ρ(È `(O)).

Thus, it follows from well-known results about imaginary quadratic class numbers [Sie35] that
asymptotically, there are h(−D) ∈ Ω(D1/2−ε) many trapdoor elliptic curves counted with mul-
tiplicities given by the number of embeddings of O. However, it is not generally clear that this
corresponds to many distinct curves (or maximal orders). As an (extreme) indication of what
could go wrong, consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 7.24 should not consist only of one elliptic curve
with lots of independent copies ofO in its endomorphism ring.

We can however at least prove that this does not always happen. In fact, in the case that D
is small enough relative to p, one can show that there cannot be more than one embedding ofO
into any maximal order inBp,∞, implying that theh(−D) oriented supersingular elliptic curves
indeed must constitute h(−D) ≈

√
D distinct quaternion maximal orders:

Lemma 7.25. LetO be a maximal order in Bp,∞. If D ≡ 3, 0 (mod 4) is a positive integer smaller
than p, then there exists at most one copy of the imaginary quadratic order of discriminant−D insideO.

Proof. This follows readily from Theorem 2’ of [Kan89].

This lemma together with Theorem 7.15 shows that there are Θ(h(−D)) many (A,B)-trapdoor
maximal orders under the restrictions that B > A2 and D < p. Consider the case (of interest)
in whichAB ≈ p: Following the same line of reasoning as in the proof of Theorem 7.15 we have
thatB2/A2 −A2 ≈ D, which ifD < p ≈ AB implies thatB / A3. Hence, as advertised above,
Lemma 7.25 suffices to prove that there are Θ(h(−D)) many (A,B)-trapdoor maximal orders
under the restriction that AB ≈ p and roughly A2 < B < A3. For larger choices of B, it is no

7.4. TRAPDOOR INSTANCES 121

longer true that there is only one embedding ofO into a quaternion maximal order: indeed, at
some point h(−D) will exceed the number Θ(p) of available maximal orders, hence there must
be repetitions. While it seems hard to imagine cases where the orbit of cl(Z[θ]) covers only a
negligible number of curves (recall that θ was our endomorphism of reduced norm D), we do
not currently know how (and under which conditions) to rule out this possibility.

Remark 7.26. Having obtained any one maximal order O that contains θ, it is efficient to compute
more such orders (either randomly or exhaustively): For any ideal a in Z[θ], another maximal order with
an optimal embedding of Z[θ] is the right order of the left ideal I = Oa. (One way to see this: a defines
a horizontal isogeny with respect to the subringO; multiplying by the full endomorphism ring does not
change the represented kernel subgroup; the codomain of an isogeny described by a quaternion left ideal
has endomorphism ring isomorphic to the right order of that ideal. Note that this is similar to a technique
used by [CPV20] in the contextO ⊆ Q(π).)

7.4.4 – Trapdoored p for given A and B with starting vertex j = 1728. Another way
of constructing trapdoor instances of an SIDH-style key exchange is to keep the starting vertex
as j = 1728 (or close to it), keep A and B smooth or powersmooth (but not necessarily only
powers of 2 and 3 as in SIKE), and construct the base-field prime p to turn j = 1728 into an
(A,B)-trapdoor curve. In this section, letE0 denote the curveE0 : y2 = x3 + x.

An easy way of constructing such a p is to perform steps 1 and 3 of Algorithm 7.4, and then
letD := B2e−d2

A2 . Allowing p to be a variable, we can solve

D = p(a2 + b2) + c2

in variables a, b, c, p ∈ Z, p prime, as follows. Factor D − c2 for small c until the result is of the
form pmwhere p is a large prime congruent to 3 modulo 4 andm is a number representable as a
sum of squares.8

Then, with θ = aιπ + bπ + cι the tuple (E0, θ, d, e) is (A,B)-trapdoor. (Note that, in this
construction, we cannot expect to satisfy a relationship such as p = ABf −1 with small f ∈ Z.)

As an (unbalanced) example, let us choose A = 2216 and B = 3300 and set e = 1. Then we
can use d = B mod A2. LetD = B2−d2

A2 , for which we will now produce two primes: First, pick
c = 53, thenD − c2 is a prime number (i.e., a = 1, b = 0). Second, pick c = 355, thenD − c2 is
5 times a prime number (i.e., a = 2, b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, let A be the product of every other prime from 3 up through
317, and let B be the product of all remaining odd primes≤ 479. With e = 4, we can again use
d = B mod A2 and computeD as above. ThenD − 1532 is prime and congruent to 3 modulo 4

(i.e., a = 1, b = 0).

7.4.5 – Insecure A ≈ B for j = 1728. ForA ≈ B, finding (A,B)-trapdoor curves seems
difficult. However, in this section we show that certain choices of (power)smooth parametersA
andB allow us to findf such that j = 1728 can be made insecure over anyFp2 withp = ABf−1.

One approach to this is to find Pythagorean triplesA2+d2 = B2 whereA andB are coprime
and (power)smooth; thenE0 : y2 = x3 + x is a trapdoor curve with θ = ι, the d value from the
Pythagorean triple, and e = 1. With this construction, we can then use any p ≡ 3 (mod 4), in
particular one of the form p = ABf − 1.

8Some choices ofA andB result inD ≡ 2 (mod 4) which is an obstruction to this method.

122 IMPROVED TORSION-POINT ATTACKS

Note that given the isogeny degrees A,B, it is easy for anyone to detect if this method has
been used by simply checking whetherB2 −A2 is a square; hence, an SIDH key exchange using
such degrees is simply weak and not just trapdoored.9

Problem 7.27. Find Pythagorean triples B2 = A2 + d2 such that A and B are coprime and smooth
(or powersmooth).

Pythagorean triples can be parameterized in terms of Gaussian integers. To be precise, prim-
itive integral Pythagorean triples a2 = b2 +c2 are in bijection with Gaussian integers z = m+ni

with gcd(m,n) = 1 via the correspondence (a, b, c) =
(
N(z),Re(z2), Im(z2)

)
. The condition

that m and n are coprime is satisfied if we take z to be a product of split Gaussian primes, i.e.,
z =

∏
i wi where N(w) ≡ 1 (mod 4) is prime, taking care to avoid simultaneously including

a prime and its conjugate. Thus the following method applies provided thatB is taken to be an
integer divisible only by primes congruent to 1 modulo 4, andB > A.

In order to guarantee thatB = N(z) is powersmooth, one may take many smallwi. In order
to guarantee thatB is smooth, it is convenient to take z = wk for a single small Gaussian prime
w, and a large composite power k.

It so happens that the sequence of polynomials Re(zk) in variables n and m (recall that
z = n+mi) factors generically into relatively small factors for composite k, so that, whenB2 =

A2 + d2, we can expect that A is frequently smooth or powersmooth. In practice, running a
simple search using this method, one very readily obtains example insecure parameters:

B = 5105

A = 22 · 11 · 19 · 29 · 41 · 59 · 61 · 139 · 241 · 281 · 419 · 421 · 839 · 2381 · 17921

· 21001 · 39761 · 74761 · 448139 · 526679 · 771961 · 238197121

d = 32 · 13 · 79 · 83 · 239 · 307 · 2801 · 3119 · 3361 · 3529 · 28559 · 36791 · 53759

· 908321 · 3575762705759 · 23030958433523039

For this example, if we take p = 105AB − 1, we obtain a prime which is 3 modulo 4. Note
that hereB ≈ 2244 andA ≈ 2238. Many other primes can easily be obtained (replacing 105 with
214, 222, etc).

Remark 7.28. When choosing parameter sets to run B-SIDH [Cos20], if the user is very unlucky, they
could hit an instance of such a weak prime. With this in mind, it would be prudent to check that a given
combination ofA,B, and p does not fall into this category before implementing such a B-SIDH instance.

7.5 — Implementation

In this section we report on computations regarding Algorithm 7.4 for some concrete paramet-
ers. We chose parameters A = 2216, B = 3300, p = AB · 277 − 1. It is easy to see that we can
choose e = 1 and d equal to B modulo A2. Now we need to factor B

2−d2
A2 . The way we chose

d makes it easy as B2−d2
A2 = B−d

A2 (B + d). This is something which applies in other cases as
well, and to make sure that factorization is easy one can try choices of d until factoringB + d is

9We resist the temptation of referring to such instantiations as ‘door’ instead of ‘trapdoor’.

7.6. ADDITIONAL EXAMPLES OF TRAPDOORED PRIMES 123

feasible (e.g.,B + d is a prime number). For completeness, the factorization of B
2−d2
A2 is

22 · 5 · 23 · 359 · 2089 · 39733 · 44059 · 74353 ·
37628724343042581190433455539389264355404578964704347 ...

... 59039416676945740598806299461624575502089058332472952 ...

... 9427908921244148421914499463.

Once the factorization is known, we apply Simon’s algorithm, implemented in Pari/GP [Pari]
as qfsolve(), to compute a rational solution to the equation pa2 + pb2 + c2 = B2−d2

A2 . A ra-
tional solution is given by

a = 32319123496536786843254458765608553095663568521872334 ...

... 297530315749275438736572/z

b = 37902893736016880777193854875253045553175457573067191 ...

... 2406340378400674751175560/z

c = 85437128777417136022423941321585505761757160615798739 ...

... 72406075696054195168847143870020389324092617191284723 ...

... 80905798835064955553407208320599901478282089806543945 ...

... 266931422175906643935346/z,
where
z = 87978348577011335417453239649099382225650021375809220 ...

... 4820354441211407993264179570949123846469170675585119.

Once θ is computed one has to compute an orderO0 which contains θ. This can be accom-
plished in various ways. One way is to find a θ′ such that θθ′ + θ′θ = 0 and θ′2 is an integer
multiple of the identity. This amounts to finding the kernel of the linear map η 7→ θη + ηθ,
which is a 2-dimensional vector space over Q (i.e., one chooses an element in this kernel and
then multiplies it with a suitable integer). It is preferable to constructO0 in this way so that the
discriminant of the order is the square of the reduced norm of θθ′. In particular, if we choose
a θ′ whose norm is easy to factor, then the discriminant is also easy to factor. One has a lot of
flexibility in choosing θ′ and lattice reduction techniques help finding one which is sufficiently
small and has an easy factorization. Note that the norm of θ′ will always be divisible by p since
the discriminant of every order is a multiple of p (and the norm of θ is coprime to p). Finally, one
can compute a maximal order containingO0 using [Magma]’s MaximalOrder() function.

7.6 — Additional examples of trapdoored primes

In the examples in Subsection 7.4.4, we letA = 2216,B = 3300, e = 1. We let d equalB mod A2,
andD = B−d2

A2 , hence

D = 16896420333246701930066245846797285820453043046692612 ...

... 34160275705261296847619733634147787139416180071370253 ...

... 151875694583397987452872630971686172791991823800180.

124 IMPROVED TORSION-POINT ATTACKS

We first choose c = 53, thenD − c2 is a prime number (i.e., a = 1, b = 0),

p = 16896420333246701930066245846797285820453043046692612 ...

... 34160275705261296847619733634147787139416180071370253 ...

... 151875694583397987452872630971686172791991823797371.

When c = 355, thenD − c2 is 5 times a prime number, namely,

p = 33792840666493403860132491693594571640906086093385224 ...

... 68320551410522593695239467268295574278832360142740506 ...

... 30375138916679597490574526194337234558398364734831.

Both of these primes are congruent to 3 modulo 4.

We also give additional examples of Pythagorean triples as described in Section 7.4.5.
In particular, let

B = 1760,

A = 25 · 32 · 52 · 7 · 11 · 13 · 19 · 23 · 41 · 47 · 59 · 61 · 101 · 181 · 191 · 199 · 239 · 421

· 541 · 659 · 769 · 2281 · 16319 · 30119 · 285599 · 391679 · 1039081 · 1109159

For this, 177AB − 1 ≡ 3 (mod 4) is prime. Finally, a powersmooth example is given by

B = 58 · 134 · 174 · 294 · 374 · 414 · 534 · 614 · 734 · 894 · 974,

A = 24 · 3 · 7 · 11 · 23 · 31 · 127 · 199 · 811 · 2903 · 155383 · 842041 · 933199 · 1900147

· 8333489 · 21629743 · 30583723 · 69375497

For this, 19AB − 1 ≡ 3 (mod 4) is prime.

Chapter 8

How to not break SIDH

This chapter is for all practical purposes identical to the paper How to not break SIDH [MP19]
authored jointly with Chloe Martindale, which was published at CFAIL 2019.

8.1 — Introduction

This chapter’s topic of interest is the historically first practical isogeny-based key exchange: Su-
persingular Isogeny Diffie–Hellman (SIDH), conceived by Jao and De Feo in 2011 [JD11], is first and
foremost an ephemeral Diffie–Hellman-like key exchange. Unfortunately, it seems impossible
to efficiently determine whether a public key was generated honestly; this leads to an active
reaction attack which recovers a static private key in a linear (in the key size) number of quer-
ies [GPST16]. Based on this observation, SIDH was later transformed into SIKE [Jao+17], a key-
encapsulation mechanism (KEM) which is currently a second-round contestant in NIST’s call
for post-quantum cryptographic constructions [NIST16]. In SIKE, one party (the server) can use
a static key, while the other party generates a new ephemeral key pair for every connection. The
construction is generally the same as SIDH, except that as part of his side of the key exchange,
Bob encrypts his private key with the shared secret and sends it to Alice, who can then verify that
the public key matches what one would get from Bob’s alleged private key when following the
protocol honestly. If Alice performs this check before doing anything else with the shared secret,
she can be sure not to leak any information to dishonest clients: Bob only learns whether he was
honest or not, but he is probably already aware of that.

This chapter summarizes some of our and others’ fruitless attempts to cryptanalyze SIDH,
including a discussion of the reasons why they failed. We hope that this will be useful to other (in
particular, novice) researchers in the field of isogeny-based cryptography: In the past, we have
observed a tendency among practitioners to rediscover, and sink time into, some of the ideas
outlined in the following. Ideally, this work will provide a shortcut for those poor souls, allow-
ing them to skip past some of the approaches doomed to fail. Finally, we strongly believe that
publishing negative results can be valuable: One person’s useless observation may be another
person’s missing link.

Finally, note that we do expect the ideas outlined in the following to strike experienced read-
ers as naïve or foolish. This is by design: Documenting the insight to be gained while debunk-
ing — in hindsight — flawed ideas is exactly the point of this work. “Trivial” is but another word
for “we understood it”.

Acknowledgements. The negative results presented here are the result of discussions with many
other researchers. We have tried to acknowledge all specific discussions in the relevant subsec-
tions. We would like to especially thank Tanja Lange for useful discussions regarding almost
every part, if not every part, of this chapter, as well as Dan Bernstein, Dan Boneh, Steven Gal-
braith, Ben Smith, and Fré Vercauteren for many insightful discussions.

126 HOW TO NOT BREAK SIDH

Figure 8.1: Left: Diffie–Hellman on a (too) structured graph. Right: The supersingular {2, 3}-isogeny graph overF4312 .

8.2 — Preliminaries

In this section, we give an account of the SIDH construction, introduce the problems it poses to
cryptanalysts, and finally summarize the most important mathematical properties of the objects
of interest.

8.2.1 – The SIDH key-exchange protocol [JD11]. The core idea in isogeny-based key ex-
change is to compose two random walks on an isogeny graph of elliptic curves in such a way
that the end node of both ways of composing is the same. However, the graph used in SIDH is
chaotic — it does not carry a computationally useful structure regular enough to support the
evident Diffie–Hellman-style key exchange depicted in Figure 8.1.

This creates a serious correctness challenge for key-exchange schemes trying to make use
of this graph. The resolution of this problem is the core contribution of SIDH: By sending ex-
tra information (so-called “auxiliary points”) that helps Alice and Bob orient themselves when
walking from the other party’s public key node, they are able complete the DH “diamond”
to obtain a shared secret.

Recall from Proposition 2.30 the following fundamental result:

Lemma 8.1. LetE be an elliptic curve andH a finite subgroup ofE. Then there exists an elliptic curve
E/H and a separable isogeny ϕH : E −→ E/H whose kernel is H . The codomain E/H and isogeny
ϕH are unique up to isomorphism.

Parameters. The main parameter in SIDH is a large prime p of the form p = `nAA `nBB f − 1,
where À, B̀ are distinct small primes (typically 2, 3) and f is a small cofactor (often 1) that is
not divisible by À or B̀ .1

Other parameters are: a supersingular elliptic curve E0/Fp,2 a basis (PA, QA) of E0[`nAA],
and a basis (PB , QB) ofE0[`nBB]. Typically,E0 : y2 = x3 + x is used.

Note that the choice of p andE0 implies thatPA, QA, PB , QB are all defined over Fp2 , since
E0(Fp2) ∼= Z/(p+ 1)× Z/(p+ 1).

We refer to the curves used in SIDH as “SIDH curves”. These curves form a complete set of
representatives of all isomorphism classes of supersingular elliptic curves over Fp.

1In Chapter 7, the more general notationA = `
nA
A andB = `

nB
B was used.

2In principle, it is not required thatE0 be defined over Fp, but this is beneficial for a variety of reasons. However,
there are some reasons to be concerned about special curves like the common choice j = 1728; see Section 8.4.3.

8.2. PRELIMINARIES 127

Keys. Alice’s secret key is an integer a ∈ {0, ..., `nAA − 1}, which defines the cyclic subgroup
A = 〈PA + [a]QA〉 ≤ E0[`nAA].

Her public key is the curveE0/A together with the imagesϕA(PB), ϕA(QB) of Bob’s public
basis under her (secret) isogeny ϕA : E0 → E0/A.

Bob follows the same process: his secret key is an integer b ∈ {0, ..., `nBB −1}, which defines a
cyclic subgroupB = 〈PB + [b]QB〉 ≤ E0[`nBB], and his public key is (E0/B, ϕB(PA), ϕB(QA)).

Key exchange. Bob takes Alice’s public key (E0/A, ϕA(PB), ϕA(QB)) and uses the points
contained in it to shift his secretB ≤ E0[`nBB] toE0/A: He obtains

B′ := ϕA(B) = 〈ϕA(PB) + [b]ϕA(QB)〉 ≤ (E0/A)[`nBB] .

This allows him to compute the shared secret (E0/A)/B′ ∼= E0/〈A,B〉.
Alice proceeds in exactly the same way: she computes A′ := ϕB(A) to obtain the shared

secret (E0/B)/A′ ∼= E0/〈A,B〉.

8.2.2 – Basic observations.

Rational points. Tate’s Theorem 2.35 implies thatEA andEB have the same number of points
asE0, that is, (p+ 1)2. Even stronger, [Was08, Theorem 4.4] shows that all SIDH curvesE have
isomorphic groups of Fp2-rational points:

E(Fp2) ∼= Z/(p+ 1)× Z/(p+ 1) .

Among other things, this (together with the smoothness of p + 1) implies that logarithms in
E(Fp2) can be computed in polynomial time, and very efficiently in practice, using the Pohlig–
Hellman algorithm. Similarly, the generalization to “two-dimensional discrete logarithms” —
or in other words, decomposing a point inE(Fp2) over a basis of the group of rational points — is
efficient [Sut07, Algorithm 9.3]. Hence, the informationϕA(PB), ϕA(QB) andϕB(PA), ϕB(QA)

that Alice and Bob transmit reveals much more than just the action of the secret on mere two
points: it encodes the action of ϕA resp. ϕB on the entire `nBB - resp. `nAA -torsion.

The graph structure. As mentioned before, the set of (isomorphism classes of) SIDH curves
together with (a subset of) the rational isogenies between them can be viewed as a graph, a
very useful viewpoint for understanding and arguing about isogeny-based cryptosystems. For
example, for every finite set S ⊆ Z≥2, one obtains an S-isogeny graph where the edges are
isogenies whose degree is inS; an important special case isS = {`}where ` is a (typically small)
prime. One can prove [Eic38] that (up to isomorphism) there are bp/12c+ε supersingular elliptic
curves defined over Fp, where ε ∈ {0, 1, 2}.3 It turns out that all of these isomorphism classes
have a representative defined over Fp2 , hence the SIDH protocol actually works on the graph of
all supersingular elliptic curves defined over characteristic-p fields.

Moreover, the `-isogeny graph is always connected (for p - `), and it has excellent mixing
properties [Piz90; JD11]: Any two nodes are expected to be connected via onlyO(log` p) steps in
the `-isogeny graph, that is, an `O(log` p)-isogeny. By counting, it is clear that one cannot hope
for faster mixing: Since the `-isogeny graph is O(`)-regular, there are at most O(`d) nodes at
distance≤ d from any given point in the graph. Setting d ∈ Ω(log` p) makes sure one can at least
hope to reach all Θ(p) nodes within d steps, and the theory guarantees that this is indeed true.
More careful handling of the constants in the relevant mixing bounds shows that the leading
coefficient of the O(log` p) is in fact a small constant (< 6 for reasonably-sized p), hence the

3In the SIDH setting, where p ≡ 11 (mod 12), we have ε = 2.

128 HOW TO NOT BREAK SIDH

SIDH shared secret is close to uniformly random in the supersingular isogeny graph. On the
other hand, this is clearly not true for the public keys, which (by counting) lie in a negligibly
small subset whose density is onlyO(1/

√
p).

Endomorphism rings. It is a classical result of Deuring [Deu41] that the (full) endomorphism
ring of a supersingular elliptic curve defined over Fp is (isomorphic to) a maximal order in the
quaternion algebra Bp,∞ ramified at p and∞. In the SIDH setting,4 this means there exists a
ring isomorphism from the endomorphism algebra End◦(E) = End(E)⊗Z Q to the Q-algebra
Bp,∞ = Q ⊕ Qi ⊕ Qj ⊕ Qij with multiplication rules i2 = −1, j2 = −p, and ij = −ji. The
endomorphism ring End(E) is thus generated by four linearly independent elements of Bp,∞
which span a maximal proper subring with respect to inclusion. The most prominent example
is the SIDH starting curve E0 : y2 = x3 + x, whose endomorphism ring is generated as a ring
by the endomorphisms ι and (ι+ π)/2, where ι : (x, y) 7→ (−x,

√
−1 · y) is an automorphism of

order 4 and π : (x, y) → (xp, yp) is the p-power Frobenius endomorphism.5 Hence a Z-basis of
End(E0) is given by 〈1, ι, ι+π2 , 1+ιπ

2 〉. Note that one can in principle, although there are usually
computational hurdles, express the endomorphisms of any other supersingular elliptic curve
over Fp with respect to this basis: Fixing an `-isogeny ψ : E0 → E, we get an injective ring
homomorphism

End(E) ↪→ End◦(E0) ∼= Bp,∞, α 7→ ψαψ̂/`. (8.1)

Notice that evaluating an endomorphism given in this representation requires first comput-
ing an elliptic-curve point division by `, which typically lies in a field extension of degree Ω(`),
hence special care needs to be taken to make sure this is feasible: for instance, choose ` to be
powersmooth [Eis+18, Algorithm 5].

Also note that End(E) has many commutative subrings, the most important example being
Z[π] whenE is defined over Fp. In principle, an efficient commutative subring can give rise to a
subexponential quantum attack [CJS14], although it seems just as hard to find an endomorphism
as to break the scheme in the first place. Therefore the only known example of this idea being
useful is Z[π]. It does mean, however, that finding an isogeny to a curve defined over Fp can lead
to a subexponential quantum attack; cf. Section 8.3.1.

Not only is the endomorphism ring isomorphic to a maximal quaternion order, but the Deur-
ing correspondence also works in the other direction: there is a bijection between the set of super-
singular elliptic curves over Fp, up to isomorphism, and the set of “oriented” maximal orders in
Bp,∞ [Voi18, Section 42.4]. Simply put, this means for every maximal orderO ⊆ Bp,∞ there is
a set {j, j′} ⊆ Fp2 such that curves with j-invariant j or j′ have endomorphism ringO; further-
more, we have j′ = jp, hence there is either one such curve, which can be defined over Fp, or the
two curves are both defined over Fp2 and Galois conjugates of each other.

Moreover, this correspondence is categorical: Fixing a supersingular elliptic curve E0 as a
base object, every `-isogenyα : E0 → E corresponds to a left6 ideal a ⊆ End(E0) of norm `, and
vice-versa (up to post-composition with isomorphisms) [Voi18, Section 42.3]. The codomainE
is determined up to isomorphism by the left-ideal class of a, hence finding different representat-
ives of an ideal class corresponds to finding different isogenies between two fixed curves. Not-
ably, given a left ideal a ⊆ E0, it is easy to find the endomorphism ring of the image curve of the

4The technical condition here is p ≡ 3 (mod 4); the other cases are slightly different but not harder in principle.
5To see why (ι+π)/2 is an (integral) endomorphism ofE0, note that the affine 2-torsion points ofE0 are all of the

form (ξ, 0) where ξ3+ξ = 0, hence ξ ∈ {0,±
√
−1}. Since ξp = −ξ, we have (ι+π)(ξ, 0) = (−ξ, 0)+(ξp, 0) =

[2](−ξ, 0) =∞.
6Since conjugation swaps left and right multiplication, one could equivalently use right ideals.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM 129

corresponding isogeny: Under the embedding End(E0) ↪→ Bp,∞ given in (8.1), it is isomorphic
to another maximal order ofBp,∞, and in fact, it turns out that the right order is the adequately
named right order

OR(a) = { r ∈ Bp,∞ | ar ⊆ a } .

It may suggest itself at first that this correspondence will be very useful as an attack tool
against SIDH. However, it seems that one simply cannot efficiently transcend into this alternate,
equivalent reality: All known approaches to compute the endomorphism ring of a given curve
essentially go through first finding an isogeny to either another curve with known endomorph-
ism ring (such that one can compute the right order as above), or to itself [Koh96].

8.2.3 – Attack avenues against SIDH. The obvious way to attack SIDH is to try to recover
one of the secret isogenies ϕA, ϕB from the public information. (We will often, without loss of
generality, silently assume that we are attacking Alice’s key.) A priori, it may seem like one re-
quires one of the actual secret isogenies; however, Galbraith–Petit–Shani–Ti have demonstrated
that any isogeny ψ betweenE0 and one of {EA, EB} is enough to recover the right isogeny and
therefore break the system [GPST16]. The reduction makes use of the fact that the secret iso-
genies in SIDH are relatively “short” compared to a “random” isogeny between two given curves:
There are Θ(

√
p) different secrets, while the graph size is Θ(p), hence only an exponentially small

fraction of SIDH curves can be reached from the starting curve by isogenies shorter than the
secret keys. This observation is combined with the fact that isogenies fromE0 correspond to left
ideals of End(E0), and isogeny codomains correspond to left-ideal classes (see Section 8.2.2): The
reduction first finds the ideal defining the known isogeny ψ : E0 → EA, then employs lattice-
basis reduction to compute an equivalent ideal of small norm. Except for rare cases of bad luck,
this small-norm ideal corresponds to the secret isogeny ϕA. The “pure” problem of finding an
isogeny betweenE0 and a given SIDH curve is discussed in Section 8.3.

The isogeny-finding problem does not capture the full power of an attacker in SIDH. In ad-
dition to the target curve, attackers also see the action of the secret isogeny on a coprime tor-
sion subgroup, represented by the action on a few points that span said subgroup. These aux-
iliary points are the main innovation of SIDH, and the new setting they enable is the reason
for SIDH’s improved quantum security over other isogeny-based key exchanges [Cou06; RS06;
Cas+18], but the additional information that Alice and Bob disclose may also be worrisome: Petit
has obtained cryptanalysis results on modified variants of SIDH using these extra points [Pet17].
(Un)fortunately, it seems like there is little hope for his approach to apply to the original, bal-
anced parameters; see Section 8.4.3. Other potential (but fruitless) approaches based on the
extra points are outlined in Section 8.4.

Finally, note that analogously to the classical Diffie–Hellman setting, there is of course also
the potential for an attack that obtains the shared secret without first recovering one party’s
secret key. Similar to the classical case, we are not aware of any ideas to attack SIDH from this
direction.

8.3 — Failed attempts to attack the pure isogeny problem

The pure isogeny problem for supersingular elliptic curves is:
Given supersingular E and E′/Fp2 , optionally with the guarantee that E and E′
are `n-isogenous for some `n, compute an isogeny φ : E → E′.

We refer to this as the “pure” isogeny problem because the hardness assumption on which SIDH
is based features a stronger attacker: they also have knowledge of the images of some points

130 HOW TO NOT BREAK SIDH

under the isogenies ϕA, ϕB in addition to just the domain and the codomains. Moreover, recall
from Section 8.2.3 that it is sufficient to recover an isogeny between E0 and one of EA, EB ; the
correct isogeny can then (usually) be found by employing ideal-based techniques.

The best known classical or quantum attack to find an isogenyE0 → EA in the SIDH setting
is essentially a generic approach searching for Alice’s secret isogenyϕA: compute and store ran-
dom walks of length nA/2 in the À-isogeny graph starting from E0 and EA until two of them
“meet in the middle”; this algorithm takes time Õ(p1/4) as Alice’s isogeny from E0 to EA has
degree approximately p1/2. In practice, the memory cost of this algorithm is prohibitively high,
so parallel versions of van Oorschot–Wiener’s collision search algorithm with almost the same
theoretical time complexity but much better time-space tradeoffs and hence superior real-world
performance, are considered to be the best known attack against SIDH/SIKE [Adj+18; Cos+20].
Note that Tani’s Õ(p1/6) quantum algorithm [Tan07] for the claw-finding problem is deemed
unlikely to outperform the classical algorithm of van Oorschot–Wiener:

Our conclusion is that an adversary with enough quantum memory to run Tani’s
algorithm with the query-optimal parameters could break SIKE faster by using the
classical control hardware to run van Oorschot–Wiener. [JS19]

8.3.1 – Finding the Fp-subgraph. The idea of using the Fp-subgraph to get a better clas-
sical attack on the pure isogeny problem was first studied by Delfs and Galbraith [DG16]. Biasse,
Jao, and Sankar [BJS14] later7 applied the same ideas to construct a more efficient quantum al-
gorithm. The (other) attempts at exploiting theFp-subgraph presented here have certainly been
considered by many people, but not written down as it has not (yet?) led to an improved attack
on SIDH.

Trying to find a path to a curve in the Fp-subgraph turns out to be common theme in at-
tempts at attacking SIDH, so we now discuss the consequences such an algorithm would have.

Definition 8.2. Let S be a set of nodes in the SIDH `-isogeny graphG, and let S′ ⊆ S be the subset of
those nodes that are defined over Fp. We define the Fp-subgraph ofG to be the full subgraph ofG with
nodes from S′.

Fundamentally, the Fp-subgraph forms a distinguished subset of the full isogeny graph that is
easily recognizable once we have found it, and it is also easy to identify those edges that go to
another node inside this subgraph.

Delfs–Galbraith use this observation to split the problem of finding an `-isogeny between
two arbitrary curvesE,E′ into two smaller subproblems: finding a path from bothE andE′ to
curves defined overFp, and then connecting these two curves by an isogeny inside the subgraph.
The composition of these three isogenies forms an isogenyE → E′.

In total, one can show that there are approximately√p supersingular elliptic curves defined
over Fp. The Fp-subgraph G′ of the SIDH `-isogeny graph, with ` a prime, is either (if ` odd) a
disjoint union of cycles of the same length, or (if ` = 2) such a union of cycles with one single
extra leaf “hanging down” from each node in the cycles. The components of these graphs are
known as a volcanoes, and we call the set of non-leaf nodes the surface.

Note that this implies that the surface subgraph is 2-regular, hence using a single `-isogeny
Fp-subgraph leads to a time complexity of Θ(

√
p) for either finding a path between two given

nodes or determining that they do not lie in the same component. Using multiple ` yields an

7The publication dates suggest the opposite chronology, but a preprint of [DG16] was available online on the arXiv
as early as October 2013.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM 131

improvement, though: One can show that subexponentially many ` are sufficient to connect all
nodes, and (under GRH) that random walks on this combined graph mix quickly [JMV09]. Thus
the usual meet-in-the-middle techniques apply, reducing the time complexity of connecting
twoFp-subgraph curves to Õ(p1/4). Note how this is not better at attacking SIDH than the easier
meet-in-the-middle attack outlined before; this is because the isogenies in SIDH are known to be
particularly short, a property which cannot be exploited by the Delfs–Galbraith approach since
almost none of the curves on the path are defined over Fp.

Moreover, finding the Fp-subgraph in the first place by brute force costs Õ(
√
p): The density

of that subgraph is roughly 1/
√
p, hence random walks can be expected to find a curve defined

over Fp after walking approximately a number of steps that is the reciprocal of this proportion,
i.e.,√p.

With respect to quantum attacks, similar problems apply: Once the Fp-subgraph has been
found, isogeny walks can be interpreted as a commutative class-group action of an imaginary
quadratic number ring, and therefore two nodes can be connected using a subexponential-time
hidden-shift quantum algorithm [Kup05; Kup13]. This was first applied to isogeny graphs of
elliptic curves in [CJS14]. However, there is still no known efficient quantum algorithm to find
the Fp-subgraph, hence this does not lead to an improved attack.

An Fp-compass? As stated above, the main problem to solve is finding an isogeny to a curve
defined over Fp. The evident brute-force approach is not cheaper than breaking SIDH “directly”
using meet-in-the-middle or collision finding, and more sophisticated methods seem out of
reach. For instance, one observation is that a curve at distance d from the Fp-subgraph in the
`-isogeny graph has an endomorphism of degree `2dp given by walking to the Fp-subgraph, ap-
plying Frobenius, and walking back. Why this may seem a promising approach for detecting the
Fp-subgraph, it runs into the same problems as always: Checking whether a curve has an en-
domorphism of a certain norm seems to boil down to simply trying to find that endomorphism,
which is infeasible unless (here) the distance d to the Fp-subgraph is already extremely small.
We have seen many similar or equivalent, but equally fruitless, attempts in this direction come
and go in the past. For example, if a curveE is close to the Fp-subgraph, there is a short isogeny
betweenE and its Galois conjugateE(p), but again there is no known way to detect that isogeny
unless we are already close enough to find the Fp-subgraph with a generic approach.

Other subrings? One way to interpret the Fp-subgraph is as the subset of curves with a cer-
tain endomorphism of normp, namely thep-power Frobenius endomorphism. Hence, one is im-
plicitly looking for those supersingular elliptic curves whose endomorphism ring contains the
Frobenius order Z[π], and in principle the same sort of subgraph exists for other commutative
subrings, like for example Z[ι], although in this case it only consists of the single nodeE0.

Finding, for instance, a bigger commutative subring thanZ[π] that is contained in almost all
endomorphism rings in the graph would potentially allow to spend less time on searching for
the associated subgraph, but still apply the subexponential quantum attack once it is found.

However, there are a number of problems associated with this approach, one fundamental
in nature and the others (as usual) computational: The embedding End(E) ↪→ Bp,∞ is highly
non-canonical. This means that even if one was able to compute (subrings of) the endomorphism
rings of two curves, there is still no way to tell how these rings are related under the embedding
from (8.1). The usual strategy to deal with this problem in theory is to make sure the embed-
dings are always compatible when considering two isogenous curves, but without knowing an
isogeny, this of course seems impossible to do in practice. This issue does not apply to Z[π] as,

132 HOW TO NOT BREAK SIDH

given a curve E/Fp, the endomorphism π is always trivial to find (it is just (x, y) 7→ (xp, yp)),
and since (by definition) isogenies defined over Fp commute with π, we automatically have
ψπψ̂/(deg(ψ)) = πψψ̂/(deg(ψ)) = π for all isogenies ψ : E → E′ defined over Fp. Therefore
it is possible to identify a canonical subring of the endomorphism ring which is automatically
compatible between different Fp-isogenous curves.

The computational problems are the usual: It is not clear how to tell whether a given curve
E has an endomorphism of a given norm and trace, it seems impossible to make sure these en-
domorphisms are compatible choices without first finding an isogeny between the two curves
in question, and for the quantum part of the attack it must also be efficient to evaluate the endo-
morphisms on points.

8.3.2 – Lifting to characteristic zero. It is relatively well-known that to an ordinary el-
liptic curve E/Fq one can canonically associate an elliptic curve E′/Qq8 with the same endo-
morphism ring (viewed as an order in a quadratic number field) — this is normally referred to
as the “canonical lift” [LST64] [Mes72, Appendix], andE is the (unique) reduction ofE′.

It is possible to compute this lift, for example via Satoh’s algorithm [Sat00], albeit not ef-
ficiently for large characteristic p. Furthermore, it is functorial — we can also lift (and reduce)
isogenies. A natural question is:

Given a supersingular elliptic curve E/Fp2 with endomorphism ring O, is there a
way to canonically construct an elliptic curve E′/C whose endomorphism ring is
isomorphic to a (well-chosen) commutative subring ofO?

Suppose for the sake of argument that such a construction is efficiently computable and that
we can also lift and reduce isogenies. Then to find a path between E1/Fq and E2/Fq we could
first compute their canonical liftsE′1/Qq andE′2/Qq respectively and then compute an isogeny
E′1 → E′2, which one could subsequently hope to reduce back toFq . AsQq ↪→ C, the liftsE′1 and
E′2 can be viewed as complex elliptic curves. As a complex elliptic curve is nothing but a torus
and an isogeny between two such curves is just aC-linear map, one may hope to be able to easily
compute an isogeny over C using some linear algebra.

Unfortunately, the computational methods for lifting an ordinary elliptic curve E/Fq , such
as Satoh’s [Sat00], all exploit a known endomorphism τ onE — in their case τ is the Frobenius
π — and construct an elliptic curveE′/C with endomorphism algebra End◦(E′) ∼= Q(τ).

For a generic supersingular elliptic curve E/Fp2 , the only endomorphisms we know of are
scalar multiplications, i.e., lie in Z. (Recall that in the SIDH case the p2-power Frobenius is just
[−p].) So even if we could liftE in a meaningful and computable way toE′/Cwhile preserving a
known endomorphism, we simply would not know how to find that endomorphism in the first
place (as usual).

Computing a path from a generic supersingular elliptic curveE/Fp2 to a curve defined over
Fp would be helpful in this context, but then there would then be easier ways to proceed, see
Section 8.3.1.

8.3.3 – Weil restrictions. Acknowledgements. Some of the ideas in this section were discussed
with participants of the Spontaneous Isogeny Day in Leuven in October 2018. We had particu-
larly enlightening discussions on this topic with Wouter Castryck, Steven Galbraith, Joost Renes,
Ben Smith, and Fré Vercauteren (alphabetical order).

8The field Qq , which can be embedded into C, is the fraction field of Zq , which is a finite extension of the p-adic
integers Zp, which has as elements power series in p.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM 133

To any (supersingular) elliptic curve E/Fp2 , one can in a natural way associate a (super-
singular) principally polarizable abelian surface9 W (E)/Fp called the Weil restriction.10 Modulo
(many) technical details, the fundamental idea is to interpret the defining equation ofE overFp2
as a set of equations over Fp instead by plugging in, then splitting over, an Fp-basis of Fp2 . The
Weil restriction is functorial: isogenies of elliptic curves defined over Fp2 restrict to isogenies of
their Weil restrictions overFp. This means that the isogeny graph of supersingular elliptic curves
defined over Fp2 can be viewed as a subgraph of the isogeny graph of supersingular principally
polarized abelian surfaces over Fp.

The center of the Fp-rational endomorphism ring EndFp(A) of an abelian variety defined
over Fp is is an order in Q(π), where π is the p-power Frobenius ofA [Tat66, Theorem 2].

One might hope that in fact EndFp(A)⊗ZQ = Q(π), as happens when dim(A) = 1. We con-
sidered what the consequences of this might be: Assume that for the Weil restrictionW (EA) of
EA (Alice’s public key), the Fp-rational endomorphism ring is commutative. For all but finitely
many primes `, we then expect that the (`, `)-isogeny11 graph of supersingular principally po-
larized abelian surfaces defined over Fp is a disjoint union of cycles, as justified at the end of
this section. If there is a list `1, . . . , `n such that the connected component of the union of the
(`1, `1), . . . , (`n, `n)-isogeny graphs containsW (E0) andW (EA), then the problem of finding a
path fromW (E0) toW (EA) can be viewed as a hidden shift problem, for which, if the individual
steps in the path, i.e., isogenies, can be efficiently computed, there is a subexponential quantum
algorithm due to Kuperberg [Kup05; Kup13].

Any hope? We need the probability ofW (E0) andW (EA) being in the same connected com-
ponent C of the union of the (`1, `1), . . . , (`n, `n)-isogeny graphs to be high, which can only
happen ifC contains the Weil restrictions of almost all the supersingular elliptic curves defined
over Fp2 .

We expect (as justified at the end of this section) that the (`i, `i)-isogeny graphs will be the
disjoint union of cycles of length O(

√
p). There exist Θ(p) (Weil restrictions of) supersingular

elliptic curves defined overFp2 , so to have any chance ofC covering almost all of these, we would
need to take n to be at least Ω(

√
p).

Currently we cannot compute (`, `)-isogenies efficiently enough unless ` = 2,12 so we as-
sume for the sake of argument that the complexity of a somewhat optimized algorithm to do
this would scale at least as badly as Vélu’s formulas for elliptic curves. That is, we assume that
the evaluation of an (`, `)-isogeny takes time Ω(`). Since we need to take at least Ω(

√
p) different

primes `, it is then definitely not true that “the individual steps in the path, i.e. isogenies, can be
efficiently computed”.

More ideas? We considered two variations on this idea:

1. Instead of hoping thatW (EA) is in the same connected component isW (E0), hope that
it is in the same connected component of the Weil restriction of some curve defined over
Fp. Approximately one in√p (Weil restrictions of) elliptic curves over Fp2 are (Weil re-
strictions of) elliptic curves over Fp, so looking at one cycle of lengthO(

√
p), i.e., just one

(`, `)-isogeny graph, might be enough.

9To read more about principally polarized abelian varieties, see [EvM07, Chapter 11].
10To read more about Weil restrictions, see [DN03].
11To read more about (`, `)-isogenies, see [CR15].
12To read more about computing (2,2)-isogenies efficiently, see [Cos18].

134 HOW TO NOT BREAK SIDH

However, since we do not know which curve over Fp we are looking for, it seems im-
possible to phrase this as a hidden shift problem, so Kuperberg’s algorithm does not apply.

2. Recall that we assume that EndFp(W (EA)) is an order in Q(π), where π is the p-power
Frobenius on W (EA). We explain below that π = ζ8

√
p, where ζ8 is an eighth root of

unity, and that we then expect that the application of an (`, `)-isogeny to a supersingular
principally polarized abelian surface A/Fp can be viewed as the action of an ideal in the
class group cl(OQ(ζ8

√
p)) (the ` are chosen so thatOQ(ζ8

√
p) = Z[ζ8

√
p] locally at `). The

reason that we expect the cycles in the (`, `)-isogeny graph to have length approximately
√
p comes from this action — this is (heuristically) the size of this class group.

HoweverOQ(ζ8
√
p) is not the largest commutative subring of EndFp(A) (locally at `): Since

Frobenius commutes with every endomorphism, we could add another endomorphism to
get a rank-4Z-module, the class group of which is likely to have a higher class number. But
this is of course equivalent to finding non-obvious endomorphisms, which, if we could do,
would lead to a much easier way of attacking SIDH, as explained in Section 8.2.2.

A couple of handwavy mathematical details. As stated above, we expect the following property,
under the assumption that EndFp(W (EA)) is commutative: For all but finitely many primes `,
the (`, `)-isogeny graph of supersingular principally polarized abelian surfaces defined over Fp
is a disjoint union of cycles. We also conjectured that the cycles have length Ω(

√
p) (subject to

some heuristics). We briefly justify our expectations here.
Suppose that ` does not divide the index

[
OQ(π) : Z[π]

]
, where π is the p-power Frobenius

onW (EA). Since under our assumptions, for any supersingular abelian surface S over Fp with
commutative Fp-rational endomorphism ring, we have

Z[π] ⊆ EndFp(S) ⊆ OQ(π),

it follows that every supersingular abelian surface S/Fp has endomorphism ringOQ(π) locally
at `. An isogeny of abelian surfaces is uniquely determined by its kernel (just like with elliptic
curves). In particular, if I is an ideal of EndFp(S) then we define fI to be the isogeny fromS with
kernel ⋂

α∈I
ker(α).

Following exactly the same proof strategy as for elliptic curves, it is believable that the class
group of OQ(π) acts on the set of supersingular abelian surfaces over Fp with endomorphism
ringOQ(π) via

I ∗ E = fI(E).

Going one step further, we suppose for the sake of argument that horizontal (`, `)-isogenies even
come from the action of an ideal l such that `OQ(

√
−p) = ll. If, as in the elliptic curve case, the

results for supersingular abelian surfaces over a prime field turn out to be analogous to results
for ordinary abelian surfaces, then such an ideal would send a supersingular abelian surface
S/Fp with endomorphism ring OQ(π) equipped with a principal polarization ζ : S → S∨ to a
supersingular abelian surface fl(S)/Fp with endomorphism ringOQ(π) equipped with a prin-
cipal polarization `ζ . The analogous result for the ordinary case that we refer to here is [Mar18b,
Proposition 3.6.1].

8.4. FAILED ATTACK ATTEMPTS THAT USE THE AUXILIARY POINTS 135

If all of this holds, then the (`, `)-isogeny graph of any prime ` not dividing
[
OQ(π) : Z[π]

]
that splits inOQ(π) is a cycle. Suppose that `OQ(π) = ll. Then the length of the cycle is given by
the order of [l] in cl(OQ(π)).

Furthermore, by a theorem of Manin and Oort [Oor74, p. 116], the Frobenius π equals ζ√p,
where ζ is a root of unity. By a theorem of Tate [Tat66, Theorem 2], our assumption that the
endomorphism algebraB = EndFp(W (EA))⊗Z Q is commutative is equivalent to saying that
[B : Q] = 4, so ζ = ζ8 is in fact an eighth root of unity, and the characteristic polynomial
of Frobenius is x4 − p2. According to standard class group heuristics [CL84], we expect that
cl(OQ(ζ8

√
p)) is cyclic or almost cyclic, and has order Ω(

√
p) — hence the (`, `)-isogeny graph,

where ` satisfies all of the conditions above, is heuristically speaking the disjoint union of cycles
of length approximately√p.

8.4 — Failed attack attempts that use the auxiliary points

The attacker has more information available than just two isogenous curves: They also get the
action of Alice’s and Bob’s secret isogenies ϕA resp. ϕB on the `nBB - resp. `nAA -torsion. We focus
on the problem of recovering the secret from a public key. Without loss of generality, suppose
that `nAA < `nBB and we are attacking Alice’s public key (EA, ϕA(PB), ϕA(QB)).

First, note that the extra information defines the secret isogeny uniquely: Consider two dis-
tinctd-isogeniesφ, ψ : E → E′with the same action on them-torsion. Then ker(φ−ψ) ⊇ E[m],
hence deg(φ − ψ) ≥ # ker(φ − ψ) ≥ m2. On the other hand, Lemma V.1.2 of [Sil09] implies
deg(φ − ψ) ≤ 4d. Combining these bounds yields m2 ≤ 4d. In SIDH, this implies that an `nAA -
isogeny is uniquely defined by its action on the `nBB -torsion unless the parameters are highly
unbalanced. However, no efficient way to make use of this information is known.

8.4.1 – Interpolation problems. By definition, isogenies are rational maps, hence it is clear
that given enough inputs and outputs, one can in principle recover the coefficients of that ra-
tional map [GG13, Section 5.8]. One can show [Ren18, Proposition 1] that in the SIDH setting, the
isogeny ϕA can be written as

ϕA : (x, y) 7−→
(
f(x), c0y · f ′(x)

)
for some rational map f ∈ Fp2(x) of degree `nAA and a constant c0 ∈ Fq . Therefore, being given
the action ofϕA, and thereby f , on “enough” points, one might hope to recover f and thus Alice’s
secret isogeny ϕA.

However, this is computationally infeasible: Even printing the result of the interpolation
takes time linear in the degree, which in SIDH is exponentially large (in the bit length of the
involved objects). One might wonder whether it is possible to evaluate the function while recon-
structing it, thus circumventing the exponentially big output, but all known ways to do (polyno-
mial or rational) interpolation still take time at least linear in the degree. The only conceivable
way to succeed with this approach would be to reconstruct the rational map while at the same
time rewriting it as a composition of rational maps, such that each of these maps has a degree
polynomially small in À. While there are of course methods to decompose polynomials and ra-
tional maps into a composition of smaller-degree maps, these algorithms require first storing
the input in full.

Generally, the approach of rational-function interpolation seems similar in spirit to the in-
terpolation idea in the next section, except that so far we have not made any use of the group
structure underlying the rational maps in question. Since we have been working with less than

136 HOW TO NOT BREAK SIDH

all the available structure, it seems reasonable to assume that this approach is fundamentally
inferior to the ideas in the next sections.

8.4.2 – Group-theoretic approaches. Perhaps the most obvious idea to make use of the
auxiliary points is to try to extrapolate the known action of ϕA on the `nBB -torsion to a bigger
torsion subgroup to subsequently recover (part of) the secret.

Unfortunately, it is evident that purely group-theoretic methods are doomed to fail: Let
gcd(m, `nBB) = 1. By the structure theorem of finite abelian groups, the `nBB - andm-torsion sub-
groups of an elliptic curve are independent; i.e., there are simply no nontrivial relations between
points of B̀-power order and points of order m in the curve group. (In other words, the `nBB m-
torsion subgroup is an internal direct product of the `nBB - and them-torsion.) Perhaps a reliable
extrapolation is too much to ask for, but it seems that even obtaining any information about the
action on the À-torsion with success probability (non-negligibly) better than random guessing
seems infeasible. In a sense, this is remarkable, since elliptic curves are also equipped with a geo-
metric structure, and many purely group-theoretical morphisms defined on elliptic curve groups
do not come from an isogenies, i.e., do not respect the geometric structure. However, nobody has
yet discovered an efficient way to exploit this.

An effective Tate’s theorem? Rather than extrapolating to a coprime torsion subgroup, one may
instead attempt to lift the action of ϕA on the `nBB -torsion to a higher B̀-power torsion sub-
group. In the limit, this lifting process would yield the action ofϕA on the B̀-adic Tate modules
T
B̀

(E0).13 Write ` = `B .
If one knew how to do the lifting step, this observation may inspire hope: It is known [Sil09,

Theorem 7.7] that the natural map

HomFp2 (E0, EA)⊗Z Z` −→ HomFp2 (T`(E0), T`(EA))

is an isomorphism of Z`-modules, hence the action of an isogeny defined over Fp2 on a suffi-
ciently high `k-torsion completely determines the map. While this is a priori an abstract result,
Petit [Pet17] found a way to turn this into an efficient algorithm assuming k grows big enough;
see Section 8.4.3.

However, in any case, it seems that similar obstacles as in the previous section (extrapolating
to another torsion subgroup) apply: Group-theoretically, the action onE[`k] can be lifted to an
action on E[`k+1] in `4 different ways. Also taking into account the known information about
the degree (coprime to `), this expansion factor shrinks slightly,14 but there still is no hope to
learn anything about the action on the `∞-torsion without making use of the geometry of the
underlying elliptic curve.

8.4.3 – Constructing endomorphisms to exploit the auxiliary points. Acknowledgements.
The ideas in this section are all based on Petit’s paper [Pet17], and in particular are the result
of discussions with Dan Bernstein (who showed us the technique used below to estimate the
expected size of solutions), Tanja Lange, and Christophe Petit (alphabetical order).

13The functor T` is defined as the inverse limit T`(E) = lim←−n E[`n] under the evident restriction maps
[`] : E[`n+1]� E[`n]; see for instance [Sil09, Section III.7].

Note that if ` 6= 0 in the field of definition of the curveE, then T`(E) ∼= Z` × Z`.
14The expansion factor is smaller, but still significant, for endomorphisms with known degree and trace: Forcing the

characteristic polynomial limits the amount of choice. Concretely, there are `2 different ways to lift a known action on
the `n-torsion to the `n+1-torsion while satisfying a given characteristic polynomialχ mod `n+1.

8.4. FAILED ATTACK ATTEMPTS THAT USE THE AUXILIARY POINTS 137

Recall that in two-party SIDH
`nAA ≈ `nBB ≈ √p ,

corresponding to Alice’s and Bob’s secret isogenies having roughly the same degree. Petit [Pet17]
shows how to construct an endomorphism onEA if instead

`nBB � `nAA ,

such that the capability to evaluate this endomorphism on the `nBB -torsion — which is granted
to the attacker in the SIDH setting by means of the auxiliary points (see Section 8.2.2) — allows
one to reconstruct Alice’s secret isogeny.

Petit’s attack. Following the notation of Section 8.2.2, let π be the p-power Frobenius on E0 and
let ι be the order-4 automorphism (x, y) 7→ (−x,

√
−1 · y) on E0. Then for any a, b, c ∈ Z,

we have an endomorphism aιπ + bπ + cι ∈ End(E0), and using the (unknown) `nAA -isogeny
ϕA : E0 → EA we can, for every d ∈ Z, define the endomorphism

α = ϕA(aιπ + bπ + cι)ϕ̂A + d ∈ End(EA)

of degree (or equivalently, norm)15

deg(α) = `2nAA pa2 + `2nAA pb2 + `2nAA c2 + d2.

Of course, since the attacker does not know ϕA, they cannot compute α directly. However,
writing N1 = `nAA and N2 = `nBB , Petit gives conditions under which one can efficiently find
a, b, c, d ∈ Z such that

N2
1 pa

2 +N2
1 pb

2 +N2
1 c

2 + d2 = eN2 , (8.2)

where e is a small cofactor controlling the remaining amount of brute-force work the attacker
has to do. If N2 = `nBB is big enough relative to N1 = `nAA , then ker(α), and subsequently the
secret ker(ϕA), can be recovered from the action of ϕA on the `nBB -torsion in polynomial time.

Any hope for `nAA ≈ `nBB ≈ √p? We can heuristically estimate the expected size of solutions
to (8.2) as follows. Suppose we want to count solutions with e ≤ M for some fixed bound
M . Since all the terms in (8.2) are nonnegative, they cannot be bigger than the right-hand side,
which is≈M√p. Hence

a, b <∼
√
M · p−3/4 ; c <∼

√
M · p−1/4 ; d <∼

√
M · p1/4 .

This means the total number of possible assignments for the variables a, b, c, d, e is approxim-
ately

M3p−3/2 .

Assuming (wrongly, but for the sake of a rough estimate) that for each such assignment, the
left- and right-hand side of (8.2) are uniformly random nonnegative integers upper bounded by
≈M√p, the expected number of solutions with e ≤M is seen to be about

M3p−3/2

M
√
p

= M2p−2 ,

implying that one needs to increase M to approximately p before a solution can be expected.
This means that the smallest expected solution to (8.2) features the undesirable property e ≈ p,

15A reader comparing this with the formula given in [Pet17, p. 15] may wonder where q has gone, but the norm of this
specific endomorphism ι is q = 1.

138 HOW TO NOT BREAK SIDH

which means that in this case, Petit’s attack performs much worse than simply applying one of
the known graph-walking attacks from Section 8.3 directly. We can therefore conclude that at
least heuristically, it seems extremely unlikely that Petit’s attack can possibly apply to the actual,
balanced SIDH parameters.

Chapter 9

Quantum circuits for CSIDH

This chapter is for all practical purposes identical to the paper Quantum circuits for the CSIDH: op-
timizing quantum evaluation of isogenies [BLMP19] authored jointly with Daniel J. Bernstein, Tanja
Lange, and Chloe Martindale, which was published at Eurocrypt 2019.

9.1 — Introduction

This chapter is devoted to the study of the cost of breaking CSIDH (Chapter 3) using a quantum
computer. When only considering classical attacks, CSIDH (and its predecessor scheme due to
Couveignes and Rostovtsev–Stolbunov [Cou06; RS06], which we refer to as CRS) has public keys
and ciphertexts only about twice as large as traditional elliptic-curve keys and ciphertexts for a
similar security level against all known pre-quantum attacks.

For comparison, the SIDH (and SIKE) isogeny-based cryptosystems [JD11; DJP14; Jao+17] are
somewhat faster than CSIDH, but they do not support non-interactive key exchange, and their
public keys and ciphertexts are 6 times larger1 than in CSIDH. Furthermore, there are concerns
that the extra information in SIDH keys might allow attacks; see [Pet17] and Chapter 7.

These SIDH disadvantages come from avoiding the commutative structure used in CRS and
now in CSIDH. SIDH deliberately avoids this structure because the structure allows quantum
attacks that asymptotically take subexponential time; see below. The CRS/CSIDH key size thus
grows superlinearly in the post-quantum security level. For comparison, if the known attacks
are optimal, then the SIDH key size grows linearly in the post-quantum security level.

However, even in a post-quantum world, it is not at all clear how much weight to put on
these asymptotics. It is not clear, for example, how large the keys will have to be before the
subexponential attacks begin to outperform the exponential-time non-quantum attacks or an
exponential-time Grover search. It is not clear when the superlinear growth in CSIDH key sizes
will outweigh the factor 6 mentioned above. For applications that need non-interactive key ex-
change in a post-quantum world, the SIDH/SIKE family is not an option, and it is important
to understand what influence these attacks have upon CSIDH key sizes. The asymptotic per-
formance of these attacks is stated in Chapter 3, but it is challenging to understand the concrete
performance of these attacks for specific CSIDH parameters.

9.1.1 – Contributions. The most important bottleneck in the quantum attacks mentioned
above is the cost of evaluating the class-group action, a series of isogenies, in superposition.

1When the goal is for pre-quantum attacks to take 2λ operations (without regard to memory consumption), CRS,
CSIDH, SIDH, and SIKE all choose primes p ≈ 24λ. The CRS and CSIDH keys and ciphertexts use (approximately)
log2 p ≈ 4λ bits, whereas the SIDH and SIKE keys and ciphertexts use 6 log2 p ≈ 24λ bits for 3 elements of Fp2 .
There are compressed variants of SIDH that reduce 6 log2 p to 4 log2 p ≈ 16λ (see [Aza+16]) and to 3.5 log2 p ≈ 14λ
(see [Cos+17] and [Zan+18]), at some cost in runtime.

140 QUANTUM CIRCUITS FOR CSIDH

Each quantum attack incurs this cost many times; see below. The goal of this chapter is to ana-
lyze and optimize this cost. We focus on CSIDH because CSIDH is much faster than CRS.

Our main result has the following shape: the CSIDH group action can be carried out in B
nonlinear bit operations (counting ANDs and ORs, allowing free XORs and NOTs) with failure
probability at most ε. (All of our algorithms know when they have failed.) This implies a revers-
ible computation of the CSIDH group action with failure probability at most ε using at most 2B

Toffoli gates (allowing free NOTs and CNOTs). This in turn implies a quantum computation of
the CSIDH group action with failure probability at most ε using at most 14B T -gates (allowing
free Clifford gates). Section 9.11 reviews these cost metrics and their relationships.

We explain how to compute pairs (B, ε) for any given CSIDH parameters. For example, we
show how to compute CSIDH-512 for uniform random exponent vectors in {−5, . . . , 5}74 using

• 1118827416420 ≈ 240 nonlinear bit operations using the algorithm of Section 9.7, or
• 765325228976 ≈ 0.7 · 240 nonlinear bit operations using the algorithm of Section 9.8,

in both cases with failure probability below 2−32. CSIDH-512 is the smallest parameter set con-
sidered in Chapter 3. For comparison, computing the same action with failure probability 2−32

using the Jao–LeGrow–Leonardi–Ruiz-Lopez algorithm [JLLR18], with the underlying modular
multiplications computed by the same method as in Roetteler–Naehrig–Svore–Lauter [RNSL17],
would use approximately 251 nonlinear bit operations.

We exploit a variety of algorithmic ideas, including several new ideas pushing beyond the
previous state of the art in isogeny computation, with the goal of obtaining the best pairs (B, ε).
We introduce a new constant-time variable-degree isogeny algorithm, a new application of the
Elligator map, new ways to handle failures in isogeny computations, new combinations of the
components of these computations, new speeds for integer multiplication, and more.

9.1.2 – Impact upon quantum attacks. Kuperberg [Kup05] introduced an algorithm using
exp
(
(logN)1/2+o(1)) queries to the oracle and exp

(
(logN)1/2+o(1)) quantum operations on

exp((logN)1/2+o(1)) qubits to solve the order-N dihedral hidden-subgroup problem. A variant
of the algorithm due to Regev [Reg04] uses only a polynomial number of qubits, although with
a worse o(1) for the number of queries and operations. A followup paper by Kuperberg [Kup13]
introduced further algorithmic options and tradeoffs.

Childs, Jao, and Soukharev [CJS14] pointed out that these algorithms could be used to attack
CRS. They analyzed the asymptotic cost of a variant of Regev’s algorithm in this context. This
cost is dominated by queries, in part because the number of queries is large but also because the
cost of each query is large. Each query evaluates the CRS group action using a superposition of
group elements.

We emphasize that computing the exact attack costs for any particular set of CRS or CSIDH
parameters is complicated and requires a lot of new work. The main questions are (1) the exact
number of queries for various dihedral-hidden-subgroup algorithms, not just asymptotics; and
(2) the exact cost of each query, again not just asymptotics.

The first question is outside the scope of this chapter. Some of the simpler algorithms were
simulated for small sizes in [Kup05], [BN18], and [BS18], but note that Kuperberg commented
in [Kup05, page 5] that his “experiments with this simulator led to a false conjecture for [the]
algorithm’s precise query complexity”.

This chapter addresses the second question for CSIDH: the concrete cost of quantum al-
gorithms for evaluating the action of the class group, which means computing isogenies of el-
liptic curves in superposition.

9.1. INTRODUCTION 141

9.1.3 – Comparison to previous claims regarding query cost. Bonnetain and Schrotten-
loher claim in [BS18, online versions 4, 5, and 6] that CSIDH-512 can be broken in “only” 271

quantum gates, where each query uses 237 quantum gates (“Clifford+T” gates; see Section 9.11.4).
We work in the same simplified model of counting operations, allowing any number of qubits

to be stored for free. We further simplify by counting only T -gates. We gain considerable per-
formance from optimizations not considered in [BS18]. We take the best possible distribution of
input vectors, disregarding the 22 overhead estimated in [BS18]. Our final gate counts for each
query are nevertheless much higher than the 237 claimed in [BS18]. Even assuming that [BS18]
is correct regarding the number of queries, the cost of each query pushes the total attack cost
above 280.

The query-cost calculation in [BS18] is not given in enough detail for full reproducibility.
However, some details are provided, and given these details we conclude that costly parts of the
computation are overlooked in [BS18] in at least three ways. First, to estimate the number of
quantum gates for multiplication in Fp, [BS18] uses a count of nonlinear bit operations for mul-
tiplication in F2[x], not noticing that all known methods for multiplication in Z (never mind
reduction modulo p) involve many more nonlinear bit operations than multiplication in F2[x].
Second, at a higher level, the strategy for computing an `-isogeny requires first finding a point of
order `, an important cost not noticed in [BS18]. Third, [BS18] counts the number of operations
in a branching algorithm, not noticing the challenge of building a non-branching (constant-time)
algorithm for the same task, as required for computations in superposition. Our analysis ad-
dresses all of these issues and more.

9.1.4 – Memory consumption. We emphasize that our primary goal is to minimize the
number of bit operations. This cost metric pays no attention to the fact that the resulting quantum
algorithm for, e.g., CSIDH-512 uses a quantum computer with 240 qubits.

Most of the literature on quantum algorithms pays much more attention to the number of
qubits. This is why [CJS14], for example, uses a Regev-type algorithm instead of Kuperberg’s
algorithm. Similarly, [Cas+18] takes Regev’s algorithm “as a baseline” given “the larger memory
requirement” for Kuperberg’s algorithm.

An obvious reason to keep the number of qubits under control is the difficulty of scaling
quantum computers up to a huge number of qubits. Post-quantum cryptography starts from the
assumption that there will be enough scalability to build a quantum computer using thousands
of logical qubits to run Shor’s algorithm, but this does not imply that a quantum computer with
millions of logical qubits will be only 1000 times as expensive, given limits on physical chip size
and costs of splitting quantum computation across multiple chips.

On the other hand, [BS18] chooses Kuperberg’s algorithm, and claims that the number of
qubits used in Kuperberg’s algorithm is not a problem:

The algorithm we consider has a subexponential memory cost. More precisely, it
needs exactly one qubit per query, plus the fixed overhead of the oracle, which can
be neglected.

Concretely, for CSIDH-512, [BS18, online versions 1, 2, 3] claim 229.5 qubits, and [BS18, online
versions 4, 5, 6] claim 231 qubits. However, no justification is provided for the claim that the
number of qubits for the oracle “can be neglected”. There is no analysis in [BS18] of the number
of qubits used for the oracle.

We are not saying that our techniques need 240 qubits. On the contrary: later we mention
various ways in which the number of qubits can be reduced with only moderate costs in the

142 QUANTUM CIRCUITS FOR CSIDH

number of operations. However, one cannot trivially extrapolate from the memory consumption
of CSIDH software (a few kilobytes) to the number of qubits used in a quantum computation.
The requirement of reversibility makes it more challenging and more expensive to reduce space,
since intermediate results cannot simply be erased. See Section 9.11.3.

Furthermore, even if enough qubits are available, simply counting qubit operations ignores
critical bottlenecks in quantum computation. Fault-tolerant quantum computation corrects er-
rors in every qubit at every time step, even if the qubit is merely being stored; see Section 9.11.5.
Communicating across many qubits imposes further costs; see Section 9.11.6. It is thus safe to
predict that the actual cost of a quantum CSIDH query will be much larger than indicated by
our operation counts. Presumably the gap will be larger than the gap for, e.g., the AES attack
in [GLRS16], which has far fewer idle qubits and much less communication overhead.

Acknowledgements. Thanks to Bo-Yin Yang for suggesting factoring the average over vectors
of the generating function in Section 9.7.3. Thanks to Joost Renes for his comments.

9.2 — Overview of the computation

We recall the definition of the CSIDH group action, focusing on the computational aspects of the
concrete construction rather than discussing the general case of the underlying algebraic theory.

Parameters. The only parameter in CSIDH is a prime number p of the form p = 4 · `1 · · · `n − 1,
where `1 < · · · < `n are (small) odd primes and n ≥ 1. Note that p ≡ 3 (mod 8) and p > 3.

Notation. For eachA ∈ Fp withA2 6= 4, defineEA as the Montgomery curve y2 = x3 +Ax2 +x

over Fp. This curve EA is supersingular, meaning that #EA(Fp) ≡ 1 (mod p), if and only if it
has trace zero, meaning that #EA(Fp) = p + 1. HereEA(Fp) means the group of points ofEA
with coordinates in Fp, including the neutral element at∞; and #EA(Fp) means the number of
points.

Define Sp as the set of A such that EA is supersingular. For each A ∈ Sp and each i ∈
{1, . . . , n}, there is a unique B ∈ Sp such that there is an `i-isogeny from EA to EB whose
kernel is EA(Fp)[`i], the set of points Q ∈ EA(Fp) with `iQ = 0. Define Li(A) = B. One
can show that Li is invertible: specifically, L−1

i (A) = −Li(−A). Hence Lei is defined for each
integer e.

Inputs and output. Given an element A ∈ Sp and a list (e1, . . . , en) of integers, the CSIDH
group action computesLe11 (Le22 (· · · (Lenn (A)) · · ·)) ∈ Sp.

9.2.1 – Distribution of exponents. The performance of our algorithms depends on the dis-
tribution of the exponent vectors (e1, . . . , en), which in turn depends on the context.

Constructively, [Cas+18] proposes to sample each ei independently and uniformly from a
small range {−C, . . . , C}. For example, CSIDH-512 in [Cas+18] has n = 74 and uses the range
{−5, . . . , 5}, so there are 1174 ≈ 2256 equally likely exponent vectors. We emphasize, however,
that all known attacks actually use considerably larger exponent vectors. This means that the
distribution of exponents (e1, . . . , en) our quantum oracle has to process is not the same as the
distribution used constructively.

The first step in the algorithms of Kuperberg and Regev, applied to a finite abelian groupG, is
to generate a uniform superposition over all elements ofG. The CRS and CSIDH schemes define
a map from vectors (e1, . . . , en) ∈ Zn to elements le11 · · · l

en
n of the ideal-class groupG. This map

has a high chance of being surjective but it is far from injective: its kernel is a lattice of rank n.
Presumably taking, e.g., 1774 length-74 vectors with entries in the range {−8, . . . , 8} produces a

9.2. OVERVIEW OF THE COMPUTATION 143

close-to-uniform distribution of elements of the CSIDH-512 class group, but the literature does
not indicate how Kuperberg’s algorithm behaves when each group element is represented as
many different strings.

In his original paper on CRS, Couveignes [Cou06] suggested instead generating a unique
vector representing each group element as follows. Compute a basis for the lattice mentioned
above; on a quantum computer this can be done using Shor’s algorithm [Sho97a] which runs in
polynomial time, and on a conventional computer this can be done using Hafner and McCurley’s
algorithm [HM89] which runs in subexponential time. This basis reveals the group size #G and
an easy-to-sample set R of representatives for G, such as {(e1, 0, . . . , 0) : 0 ≤ e1 < #G} in the
special case that l1 generates G; for the general case see, e.g., [Mic01, Section 4.1]. Reduce each
representative to a short representative, using an algorithm that finds a close lattice vector. If
this algorithm is deterministic (for example, if all randomness used in the algorithm is replaced
by pseudorandomness generated from the input) then applying it to a uniform superposition
overR produces a uniform superposition over a set of short vectors uniquely representingG.

The same idea was mentioned in the Childs–Jao–Soukharev paper [CJS14] on quantum at-
tacks against CRS, and in the description of quantum attacks in Chapter 3. However, close-vector
problems are not easy, even in dimensions as small as 74. Bonnetain and Schrottenloher [BS18]
estimate that CSIDH-512 exponent vectors can be found whose 1-norm is 4 times larger than
vectors used constructively. They rely on a very large precomputation, and they do not justify
their assumption that the 1-norm, rather than the∞-norm, measures the cost of a class-group
action in superposition. Jao, LeGrow, Leonardi, and Ruiz-Lopez [JLLR18] present an algorithm
that guarantees (log p)O(1) bits in each exponent, i.e., in the∞-norm, but this also requires a
subexponential-time precomputation, and the exponents appear to be rather large.

Perhaps future research will improve the picture of how much precomputation time and per-
vector computation time is required for algorithms that find vectors of a specified size; or, al-
ternatively, will show that Kuperberg-type algorithms can handle non-unique representatives
of group elements. The best conceivable case for the attacker is the distribution used in CSIDH
itself, and we choose this distribution as an illustration in analyzing the concrete cost of our
algorithms.

9.2.2 – Verification of costs. To ensure that we are correctly computing the number of bit
operations in our group-action algorithms, we have built a bit-operation simulator, and imple-
mented our algorithms inside the simulator. The simulator is available from https://quantum.

isogeny.org/software.html.
The simulator has a very small core that implements — and counts the number of — NOT,

XOR, AND, and OR operations. Higher-level algorithms, all the way from basic integer arithmetic
up through isogeny computation, are built on top of this core.

The core also encapsulates the values of bits so that higher-level algorithms cannot inspect
those values by accident. There is an explicit mechanism to break the encapsulation so that out-
put values can be checked against separate computations in the Sage computer-algebra system.

9.2.3 – Verification of failure probabilities. Internally, each of our algorithms computes
the group action by moving the exponent vector (e1, . . . , en) step by step towards 0. The al-
gorithm fails if the vector does not reach 0 within the specified number of iterations. Analyzing
the failure probability requires analyzing how the distribution of exponent vectors interacts with
the distribution of curve points produced inside the algorithm; each ei step relies on finding a
point of order `i.

https://quantum.isogeny.org/software.html
https://quantum.isogeny.org/software.html

144 QUANTUM CIRCUITS FOR CSIDH

We mathematically calculate the failure probability in a model where each generated curve
point has probability 1−1/`i of having order divisible by `i, and where these probabilities are all
independent. The model would be exactly correct if each point were generated independently
and uniformly at random. We actually generate points differently, so there is a risk of our failure-
probability calculations being corrupted by inaccuracies in the model. To address this risk, we
have carried out various point-generation experiments, suggesting that the model is reasonably
accurate. Even if the model is inaccurate, one can compensate with a minor increase in costs. See
Sections 9.4.3 and 9.5.2.

There is a more serious risk of errors in the failure-probability calculations that we carry out
within the model. To reduce this risk, we have carried out 107 simple trials of the following
type for each algorithm: generate a random exponent vector, move it step by step towards 0 the
same way the algorithm does (in the model), and see how many iterations are required. The
observed distribution of the number of iterations is consistent with the distribution that we cal-
culate mathematically. Of course, if there is a calculation error that somehow affects only very
small probabilities, then this error will not be caught by only 107 experiments.

9.2.4 – Structure of the computation. We present our algorithms from bottom up, start-
ing with scalar multiplication in Section 9.3, generation of curve points in Section 9.4, compu-
tation of Li in Section 9.5, and computation of the entire CSIDH group action in Sections 9.6,
9.7, and 9.8. Lower-level subroutines for basic integer and modular arithmetic appear in Ap-
pendices 9.12 and 9.13 respectively.

Various sections and subsections mention ideas for saving time beyond what we have imple-
mented in our bit-operation simulator. These ideas include low-level speedups such as avoid-
ing exponentiations in inversions and Legendre-symbol computations (see Section 9.13.4), and
higher-level speedups such as using division polynomials (Section 9.9) and/or modular poly-
nomials (Section 9.10) to eliminate failures in the computation of Li for small primes. All of
the specific bit-operation counts that we state, such as the 1118827416420 ≈ 240 nonlinear bit
operations mentioned above, have been fully implemented.

9.3 — Scalar multiplication on an elliptic curve

This section analyzes the costs of scalar multiplication on the curves used in CSIDH: supersin-
gular Montgomery curvesEA : y2 = x3 +Ax2 + x over Fp.

For CSIDH-512, our simulator shows (after our detailed optimizations; see Appendices 9.12
and 9.13) that a squaring S in Fp can be computed in 349596 nonlinear bit operations, and that
a general multiplication M in Fp can be computed in 447902 nonlinear bit operations, while
addition in Fp takes only 2044 nonlinear bit operations. We thus emphasize the number of S
and M in scalar multiplication (and in higher-level operations), although in our simulator we
have also taken various opportunities to eliminate unnecessary additions and subtractions.

9.3.1 – How curves are represented. We consider two options for representing EA. The
affine option uses A ∈ Fp to represent EA. The projective option uses A0, A1 ∈ Fp, with
A0 6= 0, to representEA whereA = A1/A0.

The formulas to produce a curve in Section 9.5 naturally produce (A1, A0) in projective form.
Dividing A1 by A0 to produce A in affine form costs an inversion and a multiplication. Staying
in projective form is an example of what Section 9.13.5 calls “eliminating inversions”, but this
requires some extra computation whenA is used, as we explain below.

The definition of the class-group action requires producing the output A in affine form at

9.3. SCALAR MULTIPLICATION ON AN ELLIPTIC CURVE 145

the end of the computation. It could also be beneficial to convert each intermediate A to affine
form, depending on the relative costs of the inversion and the extra computation.

9.3.2 – How points are represented. As in [Mil85, page 425, last paragraph] and [Mon87,
page 261], we avoid computing the y-coordinate of a point (x, y) onEA. This creates some am-
biguity, since the points (x, y) and (x,−y) are both represented as x ∈ Fp, but the ambiguity
does not interfere with scalar multiplication.

We again distinguish between affine and projective representations. As in [Ber06], we rep-
resent both (0, 0) and the neutral element onEA as x = 0, and (except where otherwise noted)
we allow X/0, including 0/0, as a projective representation of x = 0. The projective represent-
ation thus uses X,Z ∈ Fp to represent x = X/Z if Z 6= 0, or x = 0 if Z = 0. These definitions
eliminate branches from the scalar-multiplication techniques that we use.

9.3.3 – Computing nP . We use the Montgomery ladder to compute nP , given a b-bit ex-
ponent n and a curve point P . The Montgomery ladder consists of b “ladder steps” operating
on variables (X2, Z2, X3, Z3) initialized to (1, 0, x1, 1), where x1 is the x-coordinate of P . Each
ladder step works as follows:

• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit in iteration i is bit
nb−1−i of n. This means computing X2 ⊕ X3, ANDing each bit with the condition bit,
and XORing the result into bothX2 andX3; and similarly forZ2 andZ3.

• Compute Y = X2 − Z2, Y 2, T = X2 + Z2, T 2, X4 = T 2Y 2, E = T 2 − Y 2, and Z4 =

E(Y 2 + ((A + 2)/4)E). This is a point doubling: it uses 2S + 3M and a few additions
(counting subtractions as additions). We divide A + 2 by 4 modulo p before the scalar
multiplication, using two conditional additions of p and two shifts.

• ComputeC = X3 +Z3,D = X3−Z3,DT ,CY ,X5 = (DT +CY)2, andZ5 = x1(DT −
CY)2. This is a differential addition: it also uses 2S + 3M and a few additions.

• Set (X2, Z2, X3, Z3)← (X4, Z4, X5, Z5).
• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit is again nb−1−i. We

merge this conditional swap with the conditional swap at the beginning of the next iter-
ation by using nb−i−i ⊕ nb−i−2 as condition bit.

ThennP has projective representation (X2, Z2) by [BL17, Theorem 4.5]. The overall cost is 4bS+

6bM plus a small overhead for additions and conditional swaps.
Representing the input point projectively asX1/Z1 means computingX5 = Z1(DT+CY)2

and Z5 = X1(DT − CY)2, and starting from (1, 0, X1, Z1). This costs bM extra. Beware that
[BL17, Theorem 4.5] requiresZ1 6= 0.

Similarly, representing A projectively as A1/A0 means computing X4 = T 2(4A0Y
2) and

Z4 = E(4A0Y
2 + (A1 + 2A0)E), after multiplying Y 2 by 4A0. This also costs bM extra.

Other techniques. The initial Z2 = 0 and Z3 = 1 (for an affine input point) are small, and
remain small after the first conditional swap, saving time in the next additions and subtractions.
Our framework for tracking sizes of integers recognizes this automatically. The framework does
not, however, recognize that half of the output of the last conditional swap is unused. We could
use dead-value elimination and other standard peephole optimizations to save bit operations.

Montgomery [Mon87, page 260] considered computing many scalar multiplications at once,
using affine coordinates (e.g., x2 = X2/Z2), for intermediate points inside each scalar multi-
plication and batching inversions across the scalar multiplications. This could be slightly less

146 QUANTUM CIRCUITS FOR CSIDH

expensive than the Montgomery ladder for large b, depending on the S/M ratio. Our compu-
tation of a CSIDH group action involves many scalar multiplications, but not in large enough
batches to justify considering affine coordinates for intermediate points. Computing the group
action for a batch of inputs might change the picture, but for simplicity we focus on the problem
of computing the group action for one input.

A more recent possibility is scalar multiplication on a birationally equivalent Edwards curve.
For large b, sliding-window Edwards scalar multiplication is somewhat less expensive than the
Montgomery ladder; see generally [BL08] and [Hiş10]. On the other hand, for constant-time
computations it is important to use fixed windows rather than sliding windows. Despite this
difficulty, we estimate that small speedups are possible for b = 512.

9.3.4 – Computing P, 2P, 3P, . . . , kP . An important subroutine in isogeny computation
(see Section 9.5) is to compute the sequence P, 2P, 3P, . . . , kP for a constant k ≥ 1.

We compute 2P by a doubling, 3P by a differential addition, 4P by a doubling, 5P by a dif-
ferential addition, 6P by a doubling, etc. In other words, each multiple of P is computed by
the Montgomery ladder as above, but these computations are merged across the multiples (and
conditional swaps are eliminated). This takes 2(k − 1)S + 3(k − 1)M for affine P and affineA.
Projective P adds b(k − 1)/2cM, and projectiveA adds bk/2cM.

We could instead compute 2P by a doubling, 3P by a differential addition, 4P by a differ-
ential addition, 5P by a differential addition, 6P by a differential addition, etc. This again takes
2(k − 1)S + 3(k − 1)M for affine P and affine A, but projective P and projective A now have
different effects: projective P adds (k − 2)M if k ≥ 2, and projective A adds M if k ≥ 2. The
choice here also has an impact on metrics beyond bit operations: doublings increase space re-
quirements but allow more parallelism.

9.4 — Generating points on an elliptic curve

This section analyzes the cost of several methods to generate a random point on a supersingular
Montgomery curve EA : y2 = x3 + Ax2 + x, given A ∈ Fp. As in Section 9.2, p is a standard
prime congruent to 3 modulo 8.

Sometimes one instead wants to generate a point on the twist of the curve. The twist is the
curve−y2 = x3 +Ax2 +x over Fp; note that−1 is a non-square in Fp. This curve is isomorphic
toE−A by the map (x, y) 7→ (−x, y). Beware that there are several slightly different concepts of
“twist” in the literature; the definition here is the most useful definition for CSIDH, as explained
in [Cas+18].

9.4.1 – Random point on curve or twist. The conventional approach is as follows: gener-
ate a uniform random x ∈ Fp; compute x3 +Ax2 +x; compute y = (x3 +Ax2 +x)(p+1)/4; and
check that y2 = x3 +Ax2 + x.

One always has y4 = (x3 +Ax2 +x)p+1 = (x3 +Ax2 +x)2 so±y2 = x3 +Ax2 +x. About
half the time, y2 will matchx3 +Ax2 +x; i.e., (x, y) will be a point on the curve. Otherwise (x, y)

will be a point on the twist.
Since we work purely with x-coordinates (see Section 9.3.2), we skip the computation of y.

However, we still need to know whether we have a curve point or a twist point, so we compute
the Legendre symbol of x3 +Ax2 + x as explained in Section 9.13.4.

The easiest distribution of outputs to mathematically analyze is the uniform distribution
over the following p+ 1 pairs:

• (x,+1) where x represents a curve point;

9.4. GENERATING POINTS ON AN ELLIPTIC CURVE 147

• (x,−1) where x represents a twist point.
One can sample from this distribution as follows: generate a uniform random u ∈ Fp ∪ {∞};
set x to u if u ∈ Fp or to 0 if u =∞; compute the Legendre symbol of x3 +Ax2 + x; and replace
symbol 0 with +1 if u = 0 or−1 if u =∞.

For computations, it is slightly simpler to drop the two pairs with x = 0: generate a uniform
random x ∈ F∗p and compute the Legendre symbol of the value x3 + Ax2 + x. This generates a
uniform distribution over the remaining p− 1 pairs.

9.4.2 – Random point on curve. What if twist points are useless and the goal is to produce
a point specifically on the curve (or vice versa)? One approach is to generate, e.g., 100 random
curve-or-twist points as in Section 9.4.1, and select the first point on the curve. This fails with
probability 1/2100. If a computation involves generating 210 points in this way then the overall
failure probability is 1− (1− 1/2100)210

≈ 1/290. One can tune the number of generated points
according to the required failure probability.

We save time by applying “Elligator” [BHKL13], specifically the Elligator 2 map. Elligator 2
is defined for all the curves EA that we use, except the curve E0, which we discuss below. For
each of these curves EA, Elligator 2 is a fast injective map from {2, 3, . . . , (p− 1)/2} to the set
EA(Fp) of curve points. This produces only about half of the curve points; see Section 9.5.2 for
analysis of the impact of this nonuniformity upon our higher-level algorithms.

Here are the details of Elligator 2, specialized to these curves, further simplified to avoid com-
puting y, and adapted to allow twists as an option:

• InputA ∈ Fp withA2 6= 4 andA 6= 0.
• Input s ∈ {1,−1}. This procedure generates a point onEA if s = 1, or on the twist ofEA

if s = −1.
• Input u ∈ {2, 3, . . . , (p− 1)/2}.
• Compute v = A/(u2 − 1).
• Compute e, the Legendre symbol of v3 +Av2 + v.
• Compute x as v if e = s, otherwise−v −A.

To see that this works, note first that v is defined since u2 6= 1, and is nonzero since A 6= 0.
One can also show that A2 − 4 is nonsquare for all of the CSIDH curves, so v3 + Av2 + v 6= 0,
so e is 1 or −1. If e = s then x = v so x3 + Ax2 + x is a square for s = 1 and a nonsquare
for s = −1. Otherwise e = −s and x = −v − A so x3 + Ax2 + x = −u2(v3 + Av2 + v),
which is a square for s = 1 and a nonsquare for s = −1. This uses that v and −v − A satisfy
(−v −A)2 +A(−v −A) + 1 = v2 +Av + 1 and−v −A = −u2v.

The (p − 3)/2 different choices of u produce (p − 3)/2 different curve points, but we could
produce any particular x output twice since we suppress y.

The case A = 0. One way to extend Elligator 2 to the curve E0 is to set v = u when A = 0

instead of v = A/(u2−1). The point of the construction of v is thatx3 +Ax2 +x forx = −v−A
is a non-square times v3 + Av2 + v, i.e., that (−v − A)/v is a non-square; this is automatic for
A = 0, since−1 is a non-square.

We actually handle E0 in a different way: we precompute a particular base point on E0

whose order is divisible by (p + 1)/4, and we always return this point ifA = 0. This makes our
higher-level algorithms slightly more effective (but we disregard this improvement in analyzing
the success probability of our algorithms), since this point guarantees a successful isogeny com-

148 QUANTUM CIRCUITS FOR CSIDH

putation starting from E0; see Section 9.5. The same guarantee removes any need to generate
other points onE0, and is also useful to start walks in Section 9.10.

9.4.3 – Derandomization. Rather than generating random points, we generate a determ-
inistic sequence of points by taking u = 2 for the first point, u = 3 for the next point, etc. We
precompute the inverses of 1− 22, 1− 32, etc., saving bit operations.

An alternative, saving the same number of bit operations, is to precompute inverses of 1−u2

for various random choices of u, embedding the inverses into the algorithm. This guarantees
that the failure probability of the outer algorithm for any particular inputA, as the choices of u
vary, is the same as the failure probability of an algorithm that randomly choosesuupon demand
for eachA.

We are heuristically assuming that failures are not noticeably correlated across choices ofA.
To replace this heuristic with a proof, one can generate the u sequence randomly for each input
A. This randomness, in turn, may be replaced by the output of a stream cipher. The stream-
cipher inputs are (1) A as a nonce, and (2) a randomly chosen key used for all A. This output is
indistinguishable from true randomness if the cipher is secure. In this setting one cannot pre-
compute the reciprocals of 1− u2, but one can still batch the inversions.

9.5 — Computing an `-isogenous curve

This section analyzes the cost of computing a single isogeny in CSIDH. There are two inputs: A,
specifying a supersingular Montgomery curveEA overFp; and i, specifying one of the odd prime
factors `i of (p+ 1)/4 = `1 · · · `n. The output isB = Li(A). We abbreviate `i as ` andLi asL.

Recall that B is characterized by the following property: there is an `-isogeny from EA to
EB whose kernel isEA(Fp)[`]. Beyond analyzing the costs of computingB = L(A), we analyze
the costs of applying the `-isogeny to a point onEA, obtaining a point onEB . See Section 9.5.4.

The basic reason that CSIDH is much faster than CRS is that the CSIDH construction allows
(variants of) Vélu’s formulas [Vél71; CH17; Ren18] to use points in EA(Fp), rather than points
defined over larger extension fields. This section focuses on computing B via these formulas.
The cost of these formulas is approximately linear in `, assuming that a point of order ` is known.
There are two important caveats here:

• Finding a point of order ` is not easy to do efficiently in constant time; see Section 9.5.1. We
follow the obvious approach, namely taking an appropriate multiple of a random point;
but this is expensive — recall from Section 9.3 that a 500-bit Montgomery ladder costs
2000S+3000M when bothA and the input point are affine — and has failure probability
approximately 1/`.

• In some of our higher-level algorithms, i is a variable. Then ` = `i is also a variable, and
Vélu’s formulas are variable-time formulas, while we need constant-time computations.
Generic branch elimination produces a constant-time computation taking time approx-
imately linear in `1 + `2 + · · · + `n, which is quite slow. However, we show how to do
much better, reducing `1 + `2 + · · ·+ `n to max{`1, `2, . . . , `n}, by exploiting the internal
structure of Vélu’s formulas. See Section 9.5.3.

There are other ways to compute isogenies, as explored in [Kie17; DKS18]:

• The “Kohel” strategy: Compute a univariate polynomial whose roots are thex-coordinates
of the points in EA(Fp)[`]. Use Kohel’s formulas [Koh96, Section 2.4] to compute an iso-
geny corresponding to this polynomial. This strategy is (for CSIDH) asymptotically slower

9.5. COMPUTING AN `-ISOGENOUS CURVE 149

than Vélu’s formulas, but could nevertheless be faster when ` is very small. Furthermore,
this strategy is deterministic and always works.

• The “modular” strategy: Compute the possible j-invariants of EB by factoring modular
polynomials. Determine the correct choice ofB by computing the corresponding isogeny
kernels or, on subsequent steps, simply by not walking back.

We analyze the Kohel and modular strategies in Sections 9.9 and 9.10.

9.5.1 – Finding a point of order `. We now focus on the problem of finding a point of order
` inEA(Fp). By assumption (p+1)/4 is a product of distinct odd primes `1, . . . , `n; ` = `i is one
of those primes; and #EA(Fp) = p+ 1. One can show thatEA(Fp) has a point of order 4 and is
thus cyclic:

EA(Fp) ∼= Z/(p+ 1) ∼= Z/4× Z/`1 × · · · × Z/`n .

We can try to find a pointQ of order ` inEA(Fp) as follows:
• Pick a random point P ∈ EA(Fp), as explained in Section 9.4.
• Compute a “cofactor” (p + 1)/`. To handle the case ` = `i for variable i, we first use bit

operations to compute the list `′1, . . . , `′n, where `′j = `j for j 6= i and `′i = 1; we then use
a product tree to compute `′1 · · · `′n. (Computing (p+ 1)/` by a general division algorithm
could be faster, but the product tree is simpler and has negligible cost in context.)

• ComputeQ = ((p+ 1)/`)P as explained in Section 9.3.
IfP is a uniform random element ofEA(Fp) thenQ is a uniform random element ofEA(Fp)[`] ∼=
Z/`. The order ofQ is thus the desired `with probability 1− 1/`. OtherwiseQ is∞, the neutral
element on the curve, which is represented by x = 0. Checking for x = 0 is a reliable way to
detect this case: the only other point represented by x = 0 is (0, 0), which is outside EA(Fp)[`]

since ` is odd.

Different concepts of constant time. Beware that there are two different notions of “con-
stant time” for cryptographic algorithms. One notion is that the time for each operation is in-
dependent of secrets. This notion allows the CSIDH user to generate a uniform random element
of EA(Fp)[`] and try again if the point is∞, guaranteeing success with an average of `/(` − 1)

tries. The time varies, but the variation is independent of the secretA.
A stricter notion is that the time for each operation is independent of all inputs. The time

depends on parameters, such as p in CSIDH, but does not depend on random choices. We em-
phasize that a quantum circuit operating on many inputs in superposition is, by definition, using
this stricter notion. We thus choose the sequence of operations carried out by the circuit, and
analyze the probability that this sequence fails.

Amplifying the success probability. Having each 3-isogeny fail with probability 1/3, each 5-
isogeny fail with probability 1/5, etc. creates a correctness challenge for higher-level algorithms
that compute many isogenies.

A simple workaround is to generate many points Q1, Q2, . . . , QN , and use bit operations
on the points to select the first point with x 6= 0. This fails if all of the points have x = 0.
Independent uniform random points have overall failure probability 1/`N . One can make 1/`N

arbitrarily small by choosingN large enough: for example, 1/3N is below 1/232 forN ≥ 21, and
is below 1/2256 forN ≥ 162.

We return to the costs of generating so many points, and the costs of more sophisticated
alternatives, when we analyze algorithms to compute the CSIDH group action.

150 QUANTUM CIRCUITS FOR CSIDH

9.5.2 – Nonuniform distribution of points. We actually generate random points using
Elligator (see Section 9.4.2), which generates only (p − 3)/2 different curve points P . At most
(p + 1)/` of these points produce Q = ∞, so the probability of failure is upper bounded by
(2/`)(p+ 1)/(p− 3) ≈ 2/`.

This bound cannot be simultaneously tight for ` = 3, ` = 5, and ` = 7 (assuming that
3 · 5 · 7 divides p+ 1): if it were then the Elligator outputs would include all points having orders
dividing (p + 1)/3 or (p + 1)/5 or (p + 1)/7, but this accounts for more than 54% of all curve
points; contradiction.

Points generated by Elligator actually appear to be much better distributed modulo each `,
with failure chance almost exactly 1/`. Experiments support this conjecture. Readers concerned
with the gap between the provable 2/` and the heuristic 1/`may prefer to add or subtract a few
Elligator 2 outputs, obtaining a distribution provably close to uniform (see [Tib14]) at a moderate
cost in performance. A more efficient approach is to accept a doubling of failure probability and
use a small number of extra iterations to compensate.

We shall later see other methods of obtaining rational `-torsion points, e.g., by pushing
points through `′-isogenies. This does not make a difference in the analysis of failure probabil-
ities.

For comparison, generating a random point on the curve or twist (see Section 9.4.1) has fail-
ure probability above 1/2 at finding a curve point of order `. See Section 9.6.2 for the impact of
this difference upon higher-level algorithms.

9.5.3 – Computing an `-isogenous curve from a point of order `. Once we have obtained
the x-coordinate of a pointQ of order ` inEA(Fp), we compute the x-coordinates of the points
Q, 2Q, 3Q, . . . , ((` − 1)/2)Q. We use this information to compute B = L(A), the coefficient
determining the `-isogenous curveEB .

Recall from Section 9.3.4 that computingQ, 2Q, 3Q, . . . , ((`−1)/2)Qhas a cost of (`−3)S+

1.5(`− 3)M for affineQ and affineA, and just 1M extra for affineQ and projectiveA. Chapter 3
took more time here, namely (` − 3)S + 2(` − 3)M, to handle projective Q and projective A.
We decide, based on comparing ` to the cost of an inversion, whether to spend an inversion
convertingQ to affine coordinates.

Given the x-coordinates ofQ, 2Q, 3Q, . . . , ((`− 1)/2)Q, Chapter 3 took approximately 3`M

to computeB. Meyer and Reith [MR18] pointed out that CSIDH benefits from using the Edwards-
coordinate isogeny formulas from Moody and Shumow [MS16]; we reuse this speedup. These
formulas work as follows:

• Compute a = A+ 2 and d = A− 2.
• Compute the Edwards y-coordinates of Q, 2Q, 3Q, . . . , ((` − 1)/2)Q. The Edwards y-

coordinate is related to the Montgomery x-coordinate by y = (x − 1)/(x + 1). We are
given each x projectively as X/Z , and compute y projectively as Y/T where Y = X − Z
and T = X + Z . Note that Y and T naturally occur as intermediate values in the Mont-
gomery ladder.

• Compute the product of these y-coordinates: i.e., compute
∏
Y and

∏
T . This uses a total

of (`− 3)M.
• Compute a′ = a`(

∏
T)8 and d′ = d`(

∏
Y)8. Each `th power takes a logarithmic (in `)

number of squarings and multiplications; see Section 9.13.4.
• Compute, projectively,B = 2(a′+d′)/(a′−d′). Subsequent computations decide whether

to convertB to affine form.

9.6. COMPUTING THE ACTION: BASIC ALGORITHMS 151

These formulas are almost three times faster than the formulas used in [Cas+18]. The total cost
of computingB fromQ is almost two times faster than in [Cas+18].

Handling variable `. We point out that isogeny computations for ` = 3, ` = 5, ` = 7, etc., have
a Matryoshka-doll structure, allowing a constant-time computation to handle many different
values of `with essentially the same cost as a single computation for the largest value of `.

Concretely, the following procedure takes approximately `nS + 2.5`nM, and allows any
` ≤ `n. If the context places a smaller upper bound upon ` then one can replace `n with that
upper bound, saving time; we return to this idea later.

Compute the Montgomery x-coordinates and the Edwards y-coordinates ofQ, 2Q, 3Q, . . . ,
((`n − 1)/2)Q. Use bit operations to replace each Edwardsy-coordinate with 1 after the first (`−
1)/2 points. Compute the product of these modified y-coordinates; this is the desired product
of the Edwards y-coordinates of the first (` − 1)/2 points. Finish computing B as above. Note
that the exponentiation algorithm in Section 9.13.4 allows variable `.

9.5.4 – Applying an `-isogeny to a point. The following formulas define an `-isogeny from
EA toEB with kernelEA(Fp)[`]. The x-coordinate of the image of a point P1 ∈ EA(Fp) under
this isogeny is

x(P1) ·
(`−1)/2∏
j=1

(
x(P1)x(jQ)− 1

x(P1)− x(jQ)

)2

.

Each x(jQ) appearing here was computed above in projective form X/Z , and the expression
(x(P1)x(jQ)− 1)/(x(P1)−x(jQ)) is (x(P1)X −Z)/(x(P1)Z−X). This takes 2M to compute
projectively if x(P1) is affine, and thus (` − 1)M across all j. Multiplying the numerators takes
((` − 3)/2)M, multiplying the denominators takes ((` − 3)/2)M, squaring both takes 2S, and
multiplying by x(P1) takes 1M, for a total of (2`− 3)M + 2S.

Ifx(P1) is instead given in projective form asX1/Z1, computingX1X−Z1Z andX1Z−Z1X

might seem to take 4M, but one can instead compute the sum and difference of the products
(X1 −Z1)(X +Z) and (X1 +Z1)(X −Z), using just 2M. The only extra cost compared to the
affine case is four extra additions. This speedup was pointed out by Montgomery [Mon87] in
the context of the Montgomery ladder. The initial CSIDH software accompanying [Cas+18] did
not use this speedup but [MR18] mentioned the applicability to CSIDH.

In the opposite direction, if inversion is cheap enough to justify making x(P1) and every
x(jQ) affine, then 2M drops to 1M, and the total cost drops to approximately 1.5`M.

As in Section 9.5.3, we allow ` to be a variable. The cost of variable ` is the cost of a single
computation for the maximum allowed `, plus a minor cost for bit operations to select relevant
inputs to the product.

9.6 — Computing the action: basic algorithms

Jao, LeGrow, Leonardi, and Ruiz-Lopez [JLLR18] suggested a three-level quantum algorithm to
compute Le11 · · · L

en
n . This section shows how to make the algorithm an order of magnitude

faster for any particular failure probability.

9.6.1 – Baseline: reliably computing each Li. The lowest level in [JLLR18] reliably com-
putesLi as follows. Generate r uniform random points on the curve or twist, as in Section 9.4.1.
Multiply each point by (p+ 1)/`i, as in Section 9.5.1, hoping to obtain a point of order `i on the
curve. Use Vélu’s formulas to finish the computation, as in Section 9.5.3.

152 QUANTUM CIRCUITS FOR CSIDH

Each point has success probability (1/2)(1−1/`i), where 1/2 is the probability of obtaining a
curve point (rather than a twist point) and 1−1/`i is the probability of obtaining a point of order
`i (rather than order 1). The chance of all r points failing is thus (`i+1)r/(2`i)

r , decreasing from
(2/3)r for `i = 3 down towards (1/2)r as `i grows . One chooses r to obtain a failure probability
as small as desired for the isogeny computation, and for the higher levels of the algorithm.

The lowest level optionally computes L−1
i instead of Li. The approach in [JLLR18], follow-

ing [Cas+18], is to use points on the twist instead of points on the curve; an alternative is to
computeL−1

i (A) as−Li(−A).
The middle level of the algorithm computes Lei , where e is a variable whose absolute value

is bounded by a constantC . This level calls the lowest level exactlyC times, performing a series
ofC steps of L±1

i , using bit operations on e to decide whether to retain the results of each step.
The±1 is chosen as the sign of e, or as an irrelevant 1 if e = 0.

The highest level of the algorithm computes Le11 · · · L
en
n , where each ei is between−C and

C , by calling the middle level n times, starting with Le11 and ending with Lenn . (Our definition
of the action appliedLenn first, but theLi operators commute with each other, so the order does
not matter.)

Importance of bounding each exponent. We emphasize that this algorithm requires each
exponent ei to be between −C and C , i.e., requires the vector (e1, . . . , en) to have∞-norm at
mostC .

We useC = 5 for CSIDH-512 as an illustrative example, but all known attacks use larger vec-
tors (see Section 9.2.1). C is chosen in [JLLR18] so that every input, every vector in superposition,
has∞-norm at mostC ; smaller values ofC create a failure probability that needs to be analyzed.

We are not saying that the∞-norm is the only important feature of the input vectors. On
the contrary: our constant-time subroutine to handle variable-` isogenies creates opportunities
to share work between separate exponents. See Sections 9.5.3 and 9.7.

Concrete example. For concreteness we suppose that the input vectors are uniformly random
in e ∈ {−5, . . . , 5}74. The highest level calls the middle level n = 74 times, and the middle level
calls the lowest levelC = 5 times. Taking r = 70 guarantees failure probability at most (2/3)70

at the lowest level, and thus failure probability at most 1− (1− (2/3)70)74·5 ≈ 0.750 · 2−32 for
the entire algorithm.

This type of analysis is used in [JLLR18] to select r. We point out that the failure probability
of the algorithm is actually lower, and a more accurate analysis allows a smaller value of r. One
can, for example, replace (1 − (2/3)r)74 with

∏
i(1 − (`i + 1)r/(2`i)

r), showing that r = 59

suffices for failure probability below 2−32. With more work one can account for the distribution
of input vectors e, rather than taking the worst-case e as in [JLLR18]. However, one cannot hope
to do better than r = 55 here: there is a 10/11 chance that at least one 3-isogeny is required,
and taking r ≤ 54 means that this 3-isogeny fails with probability at least (2/3)54, for an overall
failure chance at least (10/11)(2/3)54 > 2−32.

With the choice r = 70 as in [JLLR18], there are 74 · 5 · 70 = 25900 iterations, in total using
more than 100 million multiplications inFp. In the rest of this section we will reduce the number
of iterations by a factor 30, and in Section 9.7 we will reduce the number of iterations by another
factor 3, with only moderate increases in the cost of each iteration.

9.6.2 – Fewer failures, and sharing failures. We now introduce Algorithm 9.1, which im-
proves upon the algorithm from [JLLR18] in three important ways. First, we use Elligator to tar-
get the curve (or the twist if desired); see Section 9.4.2. This reduces the failure probability of

9.6. COMPUTING THE ACTION: BASIC ALGORITHMS 153

Algorithm 9.1: Basic class-group action evaluation.

Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1, and
positive integers (r1, . . . , rn).

Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · L

en
n (A) or “fail”.

1 for i← 1 to n do
2 for j ← 1 to ri do
3 Let s = sign(ei) ∈ {−1, 0,+1}.
4 Find a random point P onEsA using Elligator.
5 ComputeQ← ((p+ 1)/`i)P .
6 ComputeB withEB ∼= EsA/〈Q〉 ifQ 6=∞.
7 SetA← sB ifQ 6=∞ and s 6= 0.
8 Set ei ← ei − s ifQ 6=∞.

9 SetA← “fail” if (e1, . . . , en) 6= (0, . . . , 0).
10 ReturnA.

r points from (2/3)r to, heuristically, (1/3)r for `i = 3; from (3/5)r to (1/5)r for `i = 5; from
(4/7)r to (1/7)r for `i = 7; etc.

Second, we allow a separate ri for each `i. This lets us exploit the differences in failure prob-
abilities as `i varies.

Third, we handle failures already at the middle level instead of the lowest level. The strategy
in [JLLR18] to compute Lei with −C ≤ e ≤ C is to perform C iterations, where each iteration
builds up many points on one curve and reliably moves to the next curve. We instead perform
ri iterations, where each iteration tries to move from one curve to the next by generating just
one point. For C = 1 this is the same, but for larger C we obtain better tradeoffs between the
number of points and the failure probability.

As a concrete example, generating 20 points on one curve with Elligator has failure prob-
ability (1/3)20 for `i = 3. A series of 5 such computations, overall generating 100 points, has
failure probability 1− (1− (1/3)20)5 ≈ 2−29.37. If we instead perform just 50 iterations, where
each iteration generates one point to move 1 step with probability 2/3, then the probability that
we move fewer than 5 steps is just 3846601/350 ≈ 2−57.37; see Section 9.6.3. Our iterations are
more expensive than in [JLLR18] — next to each Elligator computation, we always (even when
Q = ∞) perform the steps for computing an `i-isogeny — but (for CSIDH-512 etc.) this is not a
large effect: the cost of each iteration is dominated by scalar multiplication.

We emphasize that all of our algorithms take constant time. Expressions like “Compute
X ← Y if c” mean that we always compute Y and the bit c, and we then replace the jth bit
Xj ofX with the jth bit Yj of Y for each j if c is set, by replacingXj withXj ⊕ c(Xj ⊕Yj). This
is why Algorithm 9.1 always carries out the bit operations for computing an `i-isogenous curve,
as noted above, even whenQ =∞.

9.6.3 – Analysis. We consider the inner loop body of Algorithm 9.1 for a fixed i, hence write
` = `i, e = ei, and r = ri for brevity.

Heuristically (see Section 9.5.2), we model each point Q as independent and uniform ran-

154 QUANTUM CIRCUITS FOR CSIDH

Table 9.1: Examples of choices of ri for Algorithm 9.1 for three levels of failure probability for uniform random CSIDH-
512 vectors with entries in {−5, . . . , 5}. Failure probabilities ε are rounded to three digits after the decimal point. The
“total” column is

∑
ri, the total number of iterations. The “[JLLR18]” column is 74 · 5 · r, the number of iterations in

the algorithm of [JLLR18], with r chosen as in [JLLR18] to have 1− (1− (2/3)r)74·5 at most 2−1 or 2−32 or 2−256.
Compare Table 9.2 for {−10, . . . , 10}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [JLLR18]

0.499 · 2−1 11 9 8 7 7 6 . . . 5 5 5 5 406 5920
0.178 · 2−32 36 25 21 18 17 16 . . . 10 10 10 9 869 25900

0.249 · 2−256 183 126 105 85 80 73 . . . 37 37 37 34 3640 167610

Table 9.2: Examples of choices ofri for Algorithm 9.1 for three levels of failure probability for uniform random CSIDH-512
vectors with entries in {−10, . . . , 10}. Failure probabilities ε are rounded to three digits after the decimal point. The
“total” column is

∑
ri, the total number of iterations. The “[JLLR18]” column is 74 · 10 · r, the number of iterations in

the algorithm of [JLLR18], with r chosen as in [JLLR18] to have 1− (1− (2/3)r)74·10 at most 2−1 or 2−32 or 2−256.
Compare Table 9.1 for {−5, . . . , 5}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [JLLR18]

0.521 · 2−1 20 15 14 13 12 12 . . . 10 10 10 10 786 13320
0.257 · 2−32 48 34 30 25 24 22 . . . 15 15 15 14 1296 52540

0.215 · 2−256 201 139 116 96 90 82 . . . 43 43 43 41 4185 335960

dom in a cyclic group of order `, soQ has order 1 with probability 1/` and order `with probab-
ility 1− 1/`. The number of points of order ` through r iterations of the inner loop is binomially
distributed with parameters r and 1 − 1/`. The probability that this number is |e| or larger is
prob`,e,r =

∑r
t=|e|

(r
t

)
(1− 1/`)t/`r−t. This is exactly the probability that Algorithm 9.1 suc-

cessfully performs the |e| desired iterations ofLsign(e).
LetC be a nonnegative integer. The overall success probability of the algorithm for a partic-

ular input vector (e1, . . . , en) ∈ {−C, . . . , C}n is
n∏
i=1

prob`i,ei,ri ≥
n∏
i=1

prob`i,C,ri .

Average over vectors to see that the success probability of the algorithm for a uniform random
vector in {−C, . . . , C}n is

∏n
i=1

(∑
−C≤e≤C prob`i,e,ri/(2C + 1)

)
.

9.6.4 – Examples of target failure probabilities. The acceptable level of failure probabil-
ity for our algorithm depends on the attack using the algorithm. For concreteness we consider
three possibilities for CSIDH-512 failure probabilities, namely having the algorithm fail for a uni-
form random vector with probabilities at most 2−1, 2−32, and 2−256.

Our rationale for considering these probabilities is as follows. Probabilities around 2−1 are
easy to test, and may be of interest beyond this chapter for constructive scenarios where failing
computations can simply be retried. If each computation needs to work correctly, and there are
many computations, then failure probabilities need to be much smaller, say 2−32. Asking for
every input in superposition to work correctly in one computation (for example, [JLLR18] asks

9.7. REDUCING THE TOP NONZERO EXPONENT 155

for this) requires a much smaller failure probability, say 2−256. Performance results for these
three cases also provide an adequate basis for estimating performance in other cases.

Table 9.1 presents three reasonable choices of (r1, . . . , rn), one for each of the failure prob-
abilities listed above, for the case of CSIDH-512 with uniform random vectors with entries in
{−5, . . . , 5}. For each target failure probability δ and each i, the table chooses the minimum
ri such that

∑
−C≤e≤C prob`i,e,ri/(2C + 1) is at least (1 − δ)1/n. The overall success prob-

ability is then at least 1 − δ as desired. The discontinuity of choices of (r1, . . . , rn) means that
the actual failure probability ε is somewhat below δ, as shown by the coefficients 0.499, 0.178,
0.249 in Table 9.1. We could move closer to the target failure probability by choosing successively
rn, rn−1, . . ., adjusting the probability (1−δ)1/n at each step in light of the overshoot from pre-
vious steps. The values ri for ε ≈ 0.499 ·2−1 have been experimentally verified using a modified
version of the CSIDH software. To illustrate the impact of larger vector entries, we also present
similar data in Table 9.2 for uniform random vectors with entries in {−10, . . . , 10}.

The “total” column in Table 9.1 shows that this algorithm uses, e.g., 869 iterations for fail-
ure probability 0.178 · 2−32 with vector entries in {−5, . . . , 5}. Each iteration consists mostly
of a scalar multiplication, plus some extra cost for Elligator, Vélu’s formulas, etc. Overall there
are roughly 5 million field multiplications, accounting for roughly 241 nonlinear bit operations,
implying a quantum computation using roughly 245 T -gates.

As noted in Section 9.1, using the algorithm of [JLLR18] on top of the modular-multiplication
algorithm from [RNSL17] would use approximately 251 nonlinear bit operations for the same dis-
tribution of input vectors. We save a factor 30 in the number of iterations compared to [JLLR18],
and we save a similar factor in the number of bit operations for each modular multiplication
compared to [RNSL17].

We do not analyze this algorithm in more detail: the algorithms we present below are faster.

9.7 — Reducing the top nonzero exponent

Most of the iterations in Algorithm 9.1 are spent on exponents that are already 0. For example,
consider the 869 iterations mentioned above for failure probability 0.178 ·2−32 for uniform ran-
dom CSIDH-512 vectors with entries in {−5, . . . , 5}. Entry ei has absolute value 30/11 on aver-
age, and needs (30/11)`i/(`i − 1) iterations on average, for a total of

∑
i(30/11)`i/(`i − 1) ≈

206.79 useful iterations on average. This means that there are 662.21 useless iterations on aver-
age, many more than one would expect to be needed to guarantee this failure probability.

This section introduces a constant-time algorithm that achieves the same failure probab-
ility with far fewer iterations. For example, in the above scenario, just 294 iterations suffice to
reduce the failure probability below 2−32. Each iteration becomes (for CSIDH-512) about 25%
more expensive, but overall the algorithm uses far fewer bit operations.

9.7.1 – Iterations targeting variable `. It is obvious how to avoid useless iterations for
variable-time algorithms: when an exponent reaches 0, move on to the next exponent. In other
words, always focus on reducing a nonzero exponent, if one exists.

What is new is doing this in constant time. This is where we exploit the Matryoshka-doll
structure from Section 9.5.3, computing an isogeny for variable ` in constant time. We now pay
for an `n-isogeny in each iteration rather than an `-isogeny, but the iteration cost is still domin-
ated by scalar multiplication. Concretely, for CSIDH-512, an average `-isogeny costs about 600

multiplications, and an `n-isogeny costs about 2000 multiplications, but a scalar multiplication
costs about 5000 multiplications.

156 QUANTUM CIRCUITS FOR CSIDH

Algorithm 9.2: Evaluating CSIDH by reducing the top nonzero exponent.

Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1, and a
positive integer r.

Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · L

en
n (A) or “fail”.

1 for j ← 1 to r do
2 Let i = max{k : ek 6= 0}, or i = 1 if each ek = 0.
3 Let s = sign(ei) ∈ {−1, 0,+1}.
4 Find a random point P onEsA using Elligator.
5 ComputeQ← ((p+ 1)/`i)P .
6 ComputeB withEB ∼= EsA/〈Q〉 ifQ 6=∞, using the `i-isogeny formulas from

Section 9.5.3 with maximum degree `n.
7 SetA← sB ifQ 6=∞ and s 6= 0.
8 Set ei ← ei − s ifQ 6=∞.
9 SetA← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

10 ReturnA.

We choose to always reduce the top exponent that is not already 0. “Top” here refers to po-
sition, not value: we reduce the nonzero ei where i is maximized. See Algorithm 9.2.

9.7.2 – Upper bounds on the failure probability. One can crudely estimate the failure
probability of Algorithm 9.2 in terms of the 1-normE = |e1|+ · · ·+ |en| as follows. Model each
iteration as having failure probability 1/3 instead of 1/`i; this produces a loose upper bound for
the overall failure probability of the algorithm.

In this model, the chance of needing exactly r iterations to find a point of order `i is the
coefficient of xr in the power series

(2/3)x+ (2/9)x2 + (2/27)x3 + · · · = 2x/(3− x).

The chance of needing exactly r iterations to find all E points is the coefficient of xr in the Eth
power of that power series, namely cr =

(r−1
E−1

)
2E/3r for r ≥ E. See generally [Wil94] for

an introduction to the power-series view of combinatorics; there are many other ways to de-
rive the formula

(r−1
E−1

)
2E/3r , but we make critical use of power series for fast computations in

Sections 9.7.3 and 9.8.3.
The failure probability of r iterations of Algorithm 9.2 is at most the failure probability of r it-

erations in this model, namelyf(r, E) = 1−cE−cE+1−· · ·−cr . The failure probability ofr itera-
tions for a uniform random vector with entries in{−C, . . . , C} is at most

∑
0≤E≤nC f(r, E)g[E].

Here g[E] is the probability that a vector has 1-norm E, which we compute as the coefficient of
xE in the nth power of the polynomial (1 + 2x + 2x2 + · · · + 2xC)/(2C + 1). For example,
with n = 74 and C = 5, the failure probability in this model (rounded to 3 digits after the
decimal point) is 0.999 · 2−1 for r = 302; 0.965 · 2−2 for r = 319; 0.844 · 2−32 for r = 461;
and 0.570 · 2−256 for r = 823. As a double-check, we observe that a simple simulation of
the model for r = 319 produces 241071 failures in 1000000 experiments, close to the predicted
0.965 · 2−2 · 1000000 ≈ 241250.

9.7. REDUCING THE TOP NONZERO EXPONENT 157

9.7.3 – Exact values of the failure probability. The upper bounds from the model above
are too pessimistic, except for `i = 3. We instead compute the exact failure probabilities as
follows.

The chance thatLe11 · · · L
en
n requires exactly r iterations is the coefficient of xr in the power

series (
(`1 − 1)x

`1 − x

)|e1|
· · ·
(

(`n − 1)x

`n − x

)|en|
.

What we want is the average of this coefficient over all vectors (e1, . . . , en) ∈ {−C, . . . , C}n.
This is the same as the coefficient of the average, and the average factors nicely as ∑

−C≤e1≤C

1

2C + 1

(
(`1 − 1)x

`1 − x

)|e1| · · ·
 ∑
−C≤en≤C

1

2C + 1

(
(`n − 1)x

`n − x

)|en| .

We compute this product as a power series with rational coefficients: for example, we compute
the coefficients of x0, . . . , x499 if we are not interested in 500 or more iterations. We then add
together the coefficients of x0, . . . , xr to find the exact success probability of r iterations of Al-
gorithm 9.2.

As an example we again take CSIDH-512 withC = 5. The failure probability (again rounded
to 3 digits after the decimal point) is 0.960 · 2−1 for r = 207; 0.998 · 2−2 for r = 216; 0.984 · 2−32

for r = 294; 0.521 · 2−51 for r = 319; and 0.773 · 2−256 for r = 468. We double-checked these
averages against the results of Monte Carlo calculations for these values of r. Each Monte Carlo
iteration sampled a uniform random 1-norm (weighted appropriately for the initial probabil-
ity of each 1-norm), sampled a uniform random vector within that 1-norm, and computed the
failure probability for that vector using the single-vector generating function.

9.7.4 – Analysis of the cost. We have fully implemented Algorithm 9.2 in our bit-operation
simulator. One iteration for CSIDH-512 uses 9208697761 ≈ 233 bit operations, which includes
3805535430 ≈ 232 nonlinear bit operations. More than 95% of the cost is explained as follows:

• Each iteration uses a Montgomery ladder with a 511-bit scalar. (We could save a bit here:
the largest useful scalar is (p + 1)/3, which is below 2510.) We use an affine input point
and an affineA, so this costs 2044S + 3066M.

• Each iteration uses the formulas from Section 9.5.3 with ` = 587. This takes 602S +

1472M: specifically, 584S+876M for multiples of the point of order ` (again affine); 584M

for the product of Edwards y-coordinates; 18S+10M for two `th powers; and 2M to mul-
tiply by two 8th powers. (We merge the 6S for the 8th powers into the squarings used for
the `th powers.)

• Each iteration uses two inversions to obtain affine Q and A, each 507S + 97M, and one
Legendre-symbol computation, 506S + 96M.

This accounts for 4166S+4828Mper iteration, i.e., 4166·349596+4828·447902 = 3618887792 ≈
232 nonlinear bit operations.

The cost of 294 iterations is simply 294 · 3805535430 = 1118827416420 ≈ 240 nonlinear bit
operations. This justifies the first (B, ε) claim in Section 9.1.

9.7.5 – Decreasing the maximum degrees. Always performing isogeny computations cap-
able of handling degrees up to `n is wasteful: With overwhelming probability, almost all of the
294 iterations required for a failure probability of less than 2−32 with the approach discussed
so far actually compute isogenies of degree (much) less than `n. For example, with e uniformly

158 QUANTUM CIRCUITS FOR CSIDH

random in {−5, . . . , 5}, the probability that 10 iterations are not sufficient to eliminate all 587-
isogenies is approximately 2−50. Therefore, using smaller upper bounds on the isogeny degrees
for later iterations of the algorithm will not do much harm to the success probability while sig-
nificantly improving the performance. We modify Algorithm 9.2 as follows:

• Instead of a single parameter r, we use a list (r1, . . . , rn) of non-negative integers, each ri
denoting the number of times an isogeny computation capable of handling degrees up to
`i is performed.

• The loop iterating from 1 through r is replaced by an outer loop on u from n down to 1,
and inside that an inner loop on j from 1 up to ru. The loop body is unchanged, except
that the maximum degree for the isogeny formulas is now `u instead of `n.

For a given sequence (r1, . . . , rn), the probability of success can be computed as follows:

• For each i ∈ {1, . . . , n}, compute the generating function

φi(x) =
∑

−C≤ei≤C

1

2C + 1

(
(`i − 1)x

`i − x

)|ei|
of the number of `i-isogeny steps that have to be performed.

• Since we are no longer only interested in the total number of isogeny steps to be com-
puted, but also in their degrees, we cannot simply take the product of all φi as before.
Instead, to account for the fact that failing to compute a `i-isogeny before the maximal
degree drops below `i implies a total failure, we iteratively compute the product of the φi
from k = n down to 1, but truncate the product after each step. Truncation after some
power xt means eliminating all branches of the probabilistic process in which more than
t isogeny steps are needed for the computations so far. In our case we use t =

∑n
j=i rj

after multiplying by φi, which removes all outcomes in which more isogeny steps of de-
gree≥ `i would have needed to be computed.

• After allφi have been processed (including the final truncation), the probability of success
is the sum of all coefficients of the remaining power series.

Note that we have only described a procedure to compute the success probabilty once r1, . . . , rn
are known. It is unclear how to find the optimal values ri which minimize the cost of the result-
ing algorithm, while at the same time respecting a certain failure probability. We tried various
reasonable-looking choices of strategies to choose the ri according to certain prescribed failure
probabilities after each individual step. Experimentally, a good rule seems to be that the fail-
ure probability after processing φi should be bounded by ε · 22/i−2, where ε is the overall target
failure probability. The results are shown in Table 9.3.

The average degree of the isogenies used constructively in CSIDH-512 is about 174.6, which
is not much smaller than the average degree we achieve. Since we still need to control the error
probability, it does not appear that one can expect to get much closer to the constructive case.

Also note that the total number of isogeny steps for ε ≈ 2−32 and ε ≈ 2−256 is each only
one more than the previous number r of isogeny computations, hence one can expect significant
savings using this strategy. Assuming that about 1/4 of the total time is spent on Vélu’s formulas
(which is close to the real proportion), we get a speedup of about 16% for ε ≈ 2−32 and about
17% for ε ≈ 2−256.

9.8. PUSHING POINTS THROUGH ISOGENIES 159

Table 9.3: Examples of choices of ri, . . . , ri for Algorithm 9.2 with reducing the maximal degree in Vélu’s formulas for
uniform random CSIDH-512 vectors with entries in{−5, . . . , 5}. Failure probabilities ε are rounded to three digits after
the decimal point.

ε rn . . . r1
∑
ri avg. `

0.594 · 2−1

5 3 4 5 3 5 5 4 3 5 4 3 4 4 3 4 3 4 3 3 3 4 3 3 3 4 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 3 3 3 3 2 3 3 3 2
3 3 2 3 2 3 2 3 2 2 3 2 2 2 1 1 1 0 0

218 205.0

0.970 · 2−32

9 5 5 5 5 5 4 5 5 5 4 5 4 5 5 4 5 4 4 5 5 4 4 4 5 4 4
4 4 4 3 5 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 3 4 3
3 4 4 3 3 4 3 3 4 3 4 3 3 4 3 3 3 4 3 3 4

295 196.0

0.705 · 2−256
34 8 6 6 5 6 6 5 5 6 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 6 5 5 5 5 5 4 6
5 5 5 5 5 5 5 6 5 5 6 6 6 6 7 7 11 16 38

469 182.7

9.8 — Pushing points through isogenies

Algorithms 9.1 and 9.2 spend most of their time on scalar multiplication. This section pushes
points through isogenies to reduce the time spent on scalar multiplication, saving time overall.

The general idea of balancing isogeny computation with scalar multiplication was intro-
duced in [DJP14] in the SIDH context, and was reused in the variable-time CSIDH algorithms
in [Cas+18]. This section adapts the idea to the context of constant-time CSIDH computation.

9.8.1 – Why pushing points through isogenies saves time. To illustrate the main idea,
we begin by considering a sequence of just two isogenies with the same sign. Specifically, as-
sume that, given distinct `1 and `2 dividing p+ 1, we want to computeL1L2(A) = B. Here are
two different methods:

• Method 1. The method of Algorithm 9.1 uses Elligator to find P1 ∈ EA(Fp), computes
Q1 ← [(p + 1)/`1]P1, computes EA′ = EA/〈Q1〉, uses Elligator to find P2 ∈ EA′(Fp),
computesQ2 ← [(p+1)/`2]P2, and computesEB = EA′/〈Q2〉. Failure cases: ifQ1 =∞
then this method computesA′ = A, failing to computeL1; similarly, ifQ2 =∞ then this
method computesB = A′, failing to computeL2.

• Method 2. The method described in this section instead uses Elligator to findP ∈EA(Fp),
computesR← [(p+ 1)/`1`2]P , computesQ← [`2]R, computesϕ : EA → EA′ =EA/〈Q〉
andQ′ = ϕ(R), and computesEB = EA′/〈Q′〉. Failure cases: ifQ =∞ then this method
computes Q′ = R (which has order dividing `2) and A′ = A, failing to compute L1; if
Q′ =∞ then this method computesB = A′, failing to computeL2.

For concreteness, we compare the costs of these methods for CSIDH-512. The rest of this sub-
section uses approximations to the costs of lower-level operations to simplify the analysis. The
main costs are as follows:

• For p a 512-bit prime, Elligator costs approximately 600M.

• Given P ∈ E(Fp) and a positive integer k, the computation of [k]P via the Montgomery
ladder, as described in Section 9.3.3, costs approximately 10(log2 k)M, i.e., approximately
(5120− 10 log2 `)M if k = (p+ 1)/`.

160 QUANTUM CIRCUITS FOR CSIDH

• The computation of a degree-` isogeny via the method described in Section 9.5.3 costs
approximately (3.5`+ 2 log2 `)M.

• Given an `-isogeny ϕ` : E → E′ and P ∈ E(Fp), the computation of ϕ`(P) via the
method described in Section 9.5.4 costs approximately 2`M.

In conclusion, Method 1 costs approximately

(2 · 600 + 2 · 5120 + 3.5`1 + 3.5`2 − 8 log2 `1 − 8 log2 `2)M,

while Method 2 costs approximately

(600 + 5120 + 5.5`1 + 3.5`2 − 8 log2 `1 + 2 log2 `2)M.

The savings of (600+5120)M clearly outweighs the loss of (2`1 +10 log2 `2)M, since the largest
value of `i is 587.

There are limits to the applicability of Method 2: it cannot combine two isogenies of opposite
signs, it cannot combine two isogenies using the same prime, and it cannot save time in applying
just one isogeny. We will analyze the overall magnitude of these effects in Section 9.8.3.

9.8.2 – Handling the general case, two isogenies at a time. Algorithm 9.3 computes the
result of Le11 · · · L

en
n (A) for any exponent vector (e1, . . . , en). Each iteration of the algorithm

tries to perform two isogenies: one for the top nonzero exponent (if the vector is nonzero), and
one for the next exponent having the same sign (if the vector has another exponent of this sign).
As in Section 9.7, “top” refers to position, not value.

The algorithm pushes the first point through the first isogeny, as in Section 9.8.1, to save the
cost of generating a second point. Scalar multiplication, isogeny computation, and isogeny ap-
plication use the constant-time subroutines described in Sections 9.3.3, 9.5.3, and 9.5.4 respect-
ively. The cost of these algorithms depends on the bound `n for the prime for the top nonzero
exponent and the bound `n−1 for the prime for the next exponent. The two prime bounds have
asymmetric effects upon costs; we exploit this by applying the isogeny for the top nonzero ex-
ponent after the isogeny for the next exponent.

Analyzing the correctness of Algorithm 9.3 — assuming that there are enough iterations; see
Section 9.8.3 — requires considering three cases. The first case is that the exponent vector is 0.
Then i, i′, s are initialized to 0, 0, 1 respectively, and i, i′ stay 0 throughout the iteration, so A
does not change and the exponent vector does not change.

The second case is that the exponent vector is nonzero and the top nonzero exponent ei is the
only exponent having sign s. Then i′ is 0 throughout the iteration, so the “first isogeny” portion
of Algorithm 9.3 has no effect. The point Q = R in the “second isogeny” portion is cP where
c = (p + 1)/`i, so `iQ = ∞. If Q = ∞ then i is set to 0 and the entire iteration has no effect,
except for setting A to sA and then back to s(sA) = A. If Q 6= ∞ then i stays nonzero and A
is replaced by Li(A), so A at the end of the iteration is Lsi applied to A at the beginning of the
iteration, while s is subtracted from ei.

The third case is that the exponent vector is nonzero and that ei′ is the next exponent having
the same sign s as the top nonzero exponent ei. By construction i′ < i ≤ n so `i′ ≤ `n−1. Now
R = cP where c = (p + 1)/(`i`i′). The first isogeny uses the point Q = `iR, which is either
∞ or a point of order `i′ . If Q is∞ then i′ is set to 0; both A and the vector are unchanged; the
pointRmust have order dividing `i; and the second isogeny proceeds as above using this point.
IfQ has order `i′ then the first isogeny replacesAwithLi′(A), while subtracting s from ei′ and
replacingRwith a point of order dividing `i on the new curve (note that the `i′-isogeny removes

9.8. PUSHING POINTS THROUGH ISOGENIES 161

Algorithm 9.3: Evaluating the class-group action by reducing the top nonzero exponent
and the next exponent with the same sign.

Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1, and a
positive integer r.

Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · L

en
n (A) or “fail”.

1 for j ← 1 to r do
2 Set I ← {k : 1 ≤ k ≤ n and ek 6= 0}.
3 Set i← max I and s← sign(ei) ∈ {−1, 1}, or i← 0 and s← 1 if I = {}.
4 Set I ′ ← {k : 1 ≤ k < i and sign(ek) = s}.
5 Set i′ ← max I ′, or i′ ← 0 if I ′ = {}.
6 Twist. SetA← sA.
7 Isogeny preparation. Find a random point P onEA using Elligator.
8 ComputeR← cP where c = 4

∏
1≤j≤n,j 6=i,j 6=i′ `j .

9 First isogeny. ComputeQ← `iR, where `0 means 1.
10 [Now `i′Q =∞ if i′ 6= 0.] Set i′ ← 0 ifQ =∞.
11 ComputeB withEB ∼= EA/〈Q〉 if i′ 6= 0, using the `i′-isogeny formulas from

Section 9.5.3 with maximum degree `n−1.
12 SetR to the image ofR inEB if i′ 6= 0, using the `i′-isogeny formulas from

Section 9.5.4 with maximum degree `n−1.
13 SetA← B and ei′ ← ei′ − s if i′ 6= 0.
14 Second isogeny. SetQ← R.
15 [Now `iQ =∞ if i 6= 0.] Set i← 0 ifQ =∞.
16 ComputeB withEB ∼= EA/〈Q〉 if i 6= 0, using the `i-isogeny formulas from

Section 9.5.3 with maximum degree `n.
17 SetA← B and ei ← ei − s if i 6= 0.
18 Untwist. SetA← sA.
19 SetA← “fail” if (e1, . . . , en) 6= (0, . . . , 0).
20 ReturnA.

any `i′ from orders of points in the same cyclic subgroup); again the second isogeny proceeds as
above.

9.8.3 – Analysis of the failure probability. Consider a modified dual-isogeny algorithm
in which the isogeny with a smaller prime is saved to handle later:

• Initialize an iteration counter to 0.

• Initialize an empty bank of positive isogenies.

• Initialize an empty bank of negative isogenies.

• For each ` in decreasing order:

162 QUANTUM CIRCUITS FOR CSIDH

– While an `-isogeny needs to be done and the bank has an isogeny of the correct sign:
Withdraw an isogeny from the bank, apply the isogeny, and adjust the exponent.

– While an `-isogeny still needs to be done: Apply an isogeny, adjust the exponent,
deposit an isogeny with the bank, and increase the iteration counter.

This uses more bit operations than Algorithm 9.3 (since the work here is not shared across two
isogenies), but it has the same failure probability for the same number of iterations. We now
focus on analyzing the distribution of the number of iterations used by this modified algorithm.

We use three variables to characterize the state of the modified algorithm before each `:

• i ≥ 0 is the iteration counter;

• j ≥ 0 is the number of positive isogenies in the bank;

• k ≥ 0 is the number of negative isogenies in the bank.

The number of isogenies actually applied so far is 2i− (j + k) ≥ i. The distribution of states is
captured by the three-variable formal power series

∑
i,j,k si,j,kx

iyjzk where si,j,k is the prob-
ability of state (i, j, k). Note that there is no need to track which primes are paired with which;
this is what makes the modified algorithm relatively easy to analyze.

If there are exactly h positive `-isogenies to perform then the new state after those isogenies
is (i, j − h, k) if h ≤ j, or (i + h − j, h − j, k) if h > j. This can be viewed as a composition of
two operations on the power series. First, multiply by y−h. Second, replace any positive power
of y−1 with the same power of xy; i.e., replace xiyjzk for each j < 0 with xi−jy−jzk .

We actually have a distribution of the number of `-isogenies to perform. Say there are h iso-
genies with probability qh. We multiply the original series by

∑
h≥0 qhy

−h, and then eliminate
negative powers of y as above. We similarly handle h < 0, exchanging the role of (j, y) with the
role of (k, z).

As in the analyses earlier in the chapter, we model each point Q for an `-isogeny as having
order 1 with probability 1/` and order `with probability 1−1/`, and we assume that the number
of `-isogenies to perform is a uniform random integer e ∈ {−C, . . . , C}. Then qh for h ≥ 0 is the
coefficient of xh in

∑
0≤e≤C(((`− 1)x)/(`− x))e/(2C + 1); also, q−h = qh.

We reduce the time spent on these computations in three ways. First, we discard all states
with i > r if we are not interested in more than r iterations. This leaves a cubic number of
states for each `: every i between 0 and r inclusive, every j between 0 and i inclusive, and every
k between 0 and i− j inclusive.

Second, we use fixed-precision arithmetic, rounding each probability to an integer multiple
of (e.g.) 2−512. We round down to obtain lower bounds on success probabilities; we round up to
obtain upper bounds on success probabilities; we choose the scale 2−512 so that these bounds
are as tight as desired. We could save more time by reducing the precision slightly at each step of
the computation, and by using standard interval-arithmetic techniques to merge computations
of lower and upper bounds.

Third, to multiply the series
∑
i,j,k si,j,kx

iyjzk by
∑
h≥0 qhy

−h, we instead actually mul-
tiply

∑
j si,j,ky

j by
∑
h≥0 qhy

−h for each (i, k) separately. We use Sage for these multiplica-
tions of univariate polynomials with integer coefficients. Sage, in turn, uses fast multiplication
algorithms whose cost is essentially bd for d b-bit coefficients, so our total cost for n primes is
essentially bnr3.

Concretely, we used under two hours on one core of a 3.5GHz Intel Xeon E3-1275 v3 to com-
pute lower bounds on all the success probabilities for CSIDH-512 with b = 512 and r = 349, and

9.9. COMPUTING `-ISOGENIES USING DIVISION POLYNOMIALS 163

under three hours2 to compute upper bounds. Our convention of rounding failure probabilities
to 3 digits makes the lower bounds and upper bounds identical, so presumably we could have
used less precision.

We find, e.g., failure probability 0.943 · 2−1 after 106 iterations, failure probability 0.855 ·
2−32 after 154 iterations, and failure probability 0.975 · 2−257 after 307 iterations. Compared to
the 207, 294, 468 single-isogeny iterations required in Section 9.7.3, the number of iterations has
decreased to 51.2%, 52.3%, 65.6% respectively.

9.8.4 – Analysis of the cost. We have fully implemented Algorithm 9.3 in our bit-operation
simulator. An iteration of Algorithm 9.3 uses 4969644344 ≈ 232 nonlinear bit operations, about
1.306 times more expensive than an iteration of Algorithm 9.2.

If the number of iterations were multiplied by exactly 0.5 then the total cost would be multi-
plied by 0.653. Given the actual number of iterations (see Section 9.8.3), the cost is actually mul-
tiplied by 0.669, 0.684, 0.857 respectively. In particular, we reach failure probability 0.855 · 2−32

with 154 · 4969644344 = 765325228976 ≈ 0.7 · 240 nonlinear bit operations. This justifies the
second (B, ε) claim in Section 9.1.

9.8.5 – Variants. The idea of pushing points through isogenies can be combined with the
idea of gradually reducing the maximum prime allowed in the Matryoshka-doll isogeny formu-
las. This is compatible with our techniques for analyzing failure probabilities.

A dual-isogeny iteration very late in the computation is likely to have a useless second iso-
geny. It should be slightly better to replace some of the last dual-isogeny iterations with single-
isogeny iterations. This is also compatible with our techniques for analyzing failure probabilit-
ies.

There are many different possible pairings of primes: one can take any two distinct positions
where the exponents have the same sign. Possibilities include reducing exponents from the bot-
tom rather than the top; reducing the top nonzero exponent and the bottom exponent with the
same sign; always pairing “high” positions with “low” positions; always reducing the largest ex-
ponents in absolute value; always reducing ei where |ei|`i/(`i − 1) is largest. For some of these
ideas it is not clear how to efficiently analyze failure probabilities.

This section has focused on reusing an Elligator computation and large scalar multiplication
for (in most cases) two isogeny computations, dividing the scalar-multiplication cost by (nearly)
2, in exchange for some overhead. We could push a point through more isogenies, although
each extra isogeny has further overhead with less and less benefit, and computing the failure
probability becomes more expensive. For comparison, [Cas+18] reuses one point for every `i
where ei has the same sign; the number of such `i is variable, and decreases as the computation
continues. For small primes it might also save time to push multiple points through one isogeny,
as in [DJP14].

9.9 — Computing `-isogenies using division polynomials

As the target failure probability decreases, the algorithms earlier in this chapter spend more
and more iterations handling the possibility of repeated failures for small primes `— especially
` = 3, where each generated point fails with probability 1/3.

2It is unsurprising that lower bounds are faster: many coefficients qh round down to 0. We could save time in the
upper bounds by checking for stretches of coefficients that round up to, e.g., 1/2512, and using additions to multiply by
those stretches.

164 QUANTUM CIRCUITS FOR CSIDH

Algorithm 9.4: `-isogeny using division polynomials.

Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1, and
` ∈ {`1, . . . , `n}.

Input: A ∈ Sp.
Output: L(A).

1 Compute the `-division polynomial ψ` ∈ Fp[X] ofEA.
2 Compute ψ′` = gcd(Xp −X,ψ`).
3 Let ρ = X3 +AX2 +X and compute χ` = gcd(ρ(p+1)/2 − ρ, ψ′`).
4 Use Lemma 9.1 on χ` to computeB such thatEB ∼= EA/EA(Fp)[`].
5 ReturnB.

This section presents and analyzes an alternative: a deterministic constant-time subroutine
that uses division polynomials to always compute `-isogenies. Using division polynomials is
more expensive than generating random points, and the cost gap grows rapidly as ` increases,
but division polynomials have the advantage that each iteration is guaranteed to compute an
`-isogeny. See also Section 9.10 for an alternative that uses modular polynomials rather than
division polynomials.

Division polynomials can be applied as a first step to any of our class-group evaluation al-
gorithms: compute the group action for some number of powers ofL±1

1 , . . . ,L±1
s (not necessar-

ilyC powers of each), and then handle the remaining isogenies as before. Our rough estimates in
this section suggest that the optimal choice of s is small: division polynomials are not of interest
for large primes `.

9.9.1 – Algorithm. The idea behind the following algorithm is to take the `-division poly-
nomial ψ` of EA, whose roots are the x-coordinates of nonzero `-torsion points; identify a di-
visorχ` ofψ` that defines the Fp-rational subgroup ofEA[`]; and finally use a variant of Kohel’s
formulas [Koh96, Section 2.4] to compute the codomain of the isogeny defined by χ` and thus
B = L(A).

Lemma 9.1. Let EA : y2 = x3 + Ax2 + x be a Montgomery curve defined over a field k with
char(k) 6= 2. Consider a finite subgroupG ≤ E of odd sizen ≥ 3 and letχ ∈ k[x] be a monic squarefree
polynomial of degree d = (n− 1)/2 whose roots are exactly the x-coordinates of all nonzero points inG.
Write

σ = −χ[d− 1] ; τ = (−1)d+1 · χ[1] ; π = (−1)d · χ[0] ,

where χ[i] ∈ k is the coefficient of xi in χ. Then there exists an isogenyEA → EB with kernelG, where

B = π(π(A− 6σ) + 6τ) .

Proof. This is obtained by decomposing the formulas from [Ren18] into elementary symmetric
polynomials, which happen to occur as the given coefficients of χ.

Lemma 9.2. Algorithm 9.4 is correct.

9.9. COMPUTING `-ISOGENIES USING DIVISION POLYNOMIALS 165

Proof. First, Xp − X =
∏
a∈Fp(X − a) implies that ψ′` is the part of ψ` that splits into linear

factors over Fp. Second, for any ρ ∈ Fp, choosing y ∈ Fp such that y2 = ρ gives

ρ(p+1)/2 − ρ = y(yp − y) = y
∏
α∈Fp

(y − α).

Therefore the roots ofχ` are exactly thex-coordinates of the nonzeroFp-rational `-torsion points
onE. Finally, the correctness of the output follows from Lemma 9.1.

9.9.2 – Cost. To analyze how this approach compares to Vélu’s formulas, we focus on rough
estimates of how cost scales with `, rather than an exact cost analysis. Finite field squarings S
are counted as M for simplicity. Let µ(d) denote the cost of multiplying two d-coefficient poly-
nomials. To establish a rough lower bound, we assume µ(d) = (d log2 d)M, which is a model of
the complexity of FFT-based fast multiplication techniques. For a rough upper bound, we use
d2M, which is a model of the cost of schoolbook multiplication.

Computing division polynomials. There are two obvious methods for obtaining division poly-
nomials: Either evaluate the recursive definition directly on a given A ∈ Fp, or precompute the
division polynomials as elements of Fp[A, x] in advance and evaluate them at a givenA ∈ Fp at
runtime. We estimate the number of operations required for both approaches.

Recursive definition. Ignoring multiplications by small fixed polynomials, the division poly-
nomials satisfy a recursive equation of the form

f` = fafbf
2
c − fa′fb′f2

c′ ,

where the indices a, b, c, a′, b′, c′ are integers within 2 of `/2 (so there are at most 5 distinct in-
dices). Continuing this recursion involves indices within 2/1 + 2 = 3 of `/4 (at most 7 distinct
indices), within 3.5 of `/8 (at most 8), within 3.75 of `/16 (at most 8), etc.

Each offa, fb, fc has approximately `2/8 coefficients, so computingfafbf2
c costs (2µ(`2/8)+

µ(`2/4))M. The rough lower bound is (`2 log2 `)M, and the rough upper bound is (3`4/32)M.
Computingf` involves computing bothfafbf2

c andfa′fb′f2
c′ . The recursion involves at most

5 computations for `/2, at most 7 computations for `/4, and at most 8 computations for each
subsequent level. The total is

(1 + 5/2 + 7/4 + 8/8 + 8/16 + · · ·)(2`2 log2 `)M = (29/2)(`2 log2 `)M

for the rough lower bound, and

(1 + 5/4 + 7/16 + 8/64 + 8/256 + · · ·)(3`4/16)M = (137/256)`4M

for the rough upper bound.

Evaluating precomputed polynomials. The degree of Ψ` ∈ Fp[A, x] is (`2 − 1)/2 in x and
upper bounded by `2/8 + 1 inA, so overall Ψ` has at most about `4/16 coefficients. Evaluating
a precomputed Ψ` ∈ Fp[x][A] atA ∈ Fp using Horner’s method takes at most about (`4/16)M.
This improves the rough upper bound.

Extracting the split part. As stated in Algorithm 9.4, extracting the part ψ′` of ψ` that splits
over Fp amounts to computing gcd(Xp −X,ψ`). The exponentiationXp mod ψ` is computed
using square-and-multiply with windows (similar to Section 9.13.5), which uses about log2 p

166 QUANTUM CIRCUITS FOR CSIDH

Table 9.4: Rough estimates for the number of Fp-multiplications to compute L(A) using division polynomials (Al-
gorithm 9.4).

` 3 5 7 11 13 17 19 23 29

rough upper bound 215.1 217.8 219.6 222.1 223.1 224.6 225.3 226.4 227.7

rough lower bound 214.5 216.4 217.6 219.1 219.7 220.6 220.9 221.6 222.3

squarings and about (log2 p)/(log2 log2 p) multiplications. For simplicity we count this as a total
of 1.2 log2 pmultiplications, which is a reasonable estimate for 512-bit p.

For the number of Fp-multiplications needed to computeXp mod ψ`, we obtain approxim-
ately 2.4 log2 p · `2 log ` for the lower bound on µ(d) and 0.6 log2 p · `4 for the upper. Here we
assume cost µ(d) for reducing a degree-(2d−2) polynomial modulo a degree-d polynomial.

The computation of gcd
(
(Xp mod ψ`)−X,ψ`

)
can be done using Stevin’s algorithm which

uses roughly d2M, where d is the degree of the larger of the input polynomials. In this case, since
deg(ψ`) ≈ `2/2, this amounts to about (`4/4)M.

Fast arithmetic improves gcd computation to O(d · (log2 d)2)M asymptotically; see, e.g.,
[Str83]. We are not aware of literature presenting concrete speeds for fast constant-time gcd
computation. For a rough lower bound we assume 2d(log2 d)2M, i.e., about 4`2(log2 `)

2M.

Extracting the kernel polynomial. Note that deg(ψ′`) = `−1: Each root in Fp ofψ` gives rise to
two points of order ` in the +1 or−1 Frobenius eigenspace, which contain `− 1 nonzero points
each. Hence, as before, the cost of obtaining χ` from ψ′` is roughly (2.4 log2 p · ` log2 `)M resp.
2.4 log2 p · `2M for the exponentiation, plus 2`(log2 `)

2M resp. `2M for the gcd computation.

Computing the isogeny. Lemma 9.1 is just a simple formula in terms of a few coefficients ofχ`
and can be realized using 2M and some additions, hence has negligible cost.

9.9.3 – Total cost. In summary, the cost of Algorithm 9.4 inFp-multiplications has a rough
lower bound of

min
{

(29/2)`2 log2 `, `
4/16

}
+ 2.4 log2 p · `

2 log2 `+ 4`2(log2 `)
2

+ 2.4 log2 p · ` log2 `+ 2`(log2 `)
2

and a rough upper bound of

`4/16 + 0.6 log2 p · `
4 + `4/4 + 2.4 log2 p · `

2 + `2.

Table 9.4 lists values of these formulas for log2 p ≈ 512 and small `.
The main bottleneck is the computation of Xp mod ψ`: for each bit of p there is a squaring

moduloψ`, a polynomial of degree (`2 − 1)/2. For comparison, the scalar multiplication in Sec-
tion 9.5 involves about 10M for each bit of p, no matter how large ` is, but is not guaranteed to
produce a point of order `.

9.10 — Computing `-isogenies using modular polynomials

One technique suggested by De Feo, Kieffer, and Smith [Kie17; DKS18] to compute the CRS group
action is to use the (classical) modular polynomials Φ`(X,Y), which vanish exactly on the pairs
of j-invariants that are connected by a cyclic `-isogeny. For prime `, the polynomial Φ`(X,Y) is

9.10. COMPUTING `-ISOGENIES USING MODULAR POLYNOMIALS 167

symmetric and has degree `+ 1 in the two variables, hence fixing one of the variables to some j-
invariant and finding the roots of the resulting univariate polynomial suffices to find neighbours
in the `-isogeny graph.

The advantage of modular polynomials over division polynomials is that the degree `+ 1 of
Φ`(j, Y) grows more slowly than the degree (`2 − 1)/2 of the `-division polynomial ψ` used in
Section 9.9: modular polynomials are smaller for all ` ≥ 5. However, using modular polynomi-
als requires solving two problems: disambiguating twists and disambiguating directions. We
address these problems in the rest of this section.

9.10.1 – Disambiguating twists. It may seem that computing `-isogenous curves by find-
ing roots of Φ`(X,Y) is not applicable to the CSIDH setting, since a single j-invariant almost
always defines two distinct nodes in the supersingular Fp-rational isogeny graph, namely EB
and E−B for some B ∈ Sp. Knowing j(EL(A)) is not enough information to distinguish L(A)

from−L(A).
This problem does not arise in CRS: Twists always have the same j-invariant but, in the or-

dinary case, are not isogenous. A random twist point has negligible chance of being annihilated
by the expected group order, so one can reliably recognize the twist at the expense of a scalar
multiplication.

For CSIDH, one way to distinguish the cases L(A) = B and L(A) = −B is to apply a dif-
ferent isogeny-computation method (from, e.g., Section 9.5 or Section 9.9) to compute L(B). If
L(B) = −A thenL(A) = −B; otherwiseL(A) = B.

This might seem to remove any possible advantage of having used modular polynomials to
compute±B in the first place, since one could simply have used the different method to compute
L(A). However, below we will generalize the same idea to Le(A), amortizing the costs of the
different method across the costs of e computations using modular polynomials.

An alternative is as follows. The Bostan–Morain–Salvy–Schost algorithm [BMSS08], given a
curveC (in short Weierstrass form, but the algorithm is easily adjusted to apply to Montgomery
curves) and an `-isogenous curveC′, finds a formula for the unique normalized `-isogeny from
C to C′. Part of this formula is the kernel polynomial of the isogeny: the monic degree-(` − 1)

polynomialD ∈ Fp[X] whose roots are the x-coordinates of the nonzero elements of the kernel
of the isogeny. The algorithm uses `1+o(1) field operations with fast multiplication techniques.
The output of the algorithm can be efficiently verified to be an `-isogeny from C to C′, so the
algorithm can also be used to test whether two curves are `-isogenous.

Use this algorithm to test whether there is an `-isogeny fromEA toEB , and, if so, to find the
kernel polynomialD. Check whetherD dividesXp−X , i.e., whether all of the nonzero elements
of the kernel have x-coordinates defined over Fp; this takes one exponentiation moduloD. Also
check whetherD divides (X3 + AX2 +X)(p+1)/2 − (X3 + AX2 +X), i.e., whether all of the
nonzero elements of the kernel have y-coordinates defined over Fp. These tests are all passed if
and only ifB = L(A).

Both of these approaches also incur the cost of computing B ∈ Fp given j(EB), which we
handle as follows. First note that there are at most two suchB: different Montgomery models of
the same curve arise from the choice of point of order 2 which is moved to (0, 0); in our setting,
there is only one rational order-2 point, henceB is unique up to sign. The j-invariant ofEB is an
even rational function of degree 6 inB, hence solving forB ∈ Fp given j(EB) amounts to finding
theFp-roots of a degree-6 polynomial g ∈ Fp[Y 2]. To do so, we first computeh = gcd(Y p−Y, g)

to extract the split part; by the above h is a quadratic polynomial. A solutionB ∈ Fp can then be
obtained by computing a square root.

168 QUANTUM CIRCUITS FOR CSIDH

We also mention a further possibility that appears to eliminate all of the costs above: replace
the classical modular polynomials for j with modular polynomials for the Montgomery coeffi-
cient A. Starting with standard techniques to compute classical modular polynomials, and re-
placing j withA, appears to produce, at the same speed, polynomials that vanish exactly on the
pairs (A,B) whereEA andEB are connected by a cyclic `-isogeny. The main cost here is in proof
complexity: to guarantee that this approach works, one must switch from the well-known the-
ory of classical modular polynomials to a suitable theory of Montgomery (or Edwards) modular
polynomials.

9.10.2 – Disambiguating directions. A further problem is that each curve has two neigh-
bors in the `-isogeny graph. The modular polynomial does not contain enough information
to distinguish between the two neighbours. Specifically, the roots of Φ`(j(EA), Y) in Fp are
j(EL(A)) and j(EL−1(A)), which are almost always different. Switching from j-invariants to
other geometric invariants does not solve this problem.

This is already a problem for CRS, and is already solved in [Kie17; DKS18] using the Bostan–
Morain–Salvy–Schost algorithm. The application of this algorithm in the CRS context is slightly
simpler than the application explained above, since there is no need for isogeny verification: one
knows thatEB is `-isogenous toEA, and the only question is whether the kernel is in the correct
Frobenius eigenspace. For CSIDH, the question is whether the y-coordinates in the kernel are
defined over Fp.

9.10.3 – Isogeny walks. We now consider the problem of computing Le(A). As before,
L−e(A) can be computed as−Le(−A), so we focus on the case e > 0.

After the first step L(A) has been computed (see above), identifying the correct direction
in each subsequent step is easy, as pointed out in [DKS18, Algorithm ElkiesWalk]. The point is
that (except for degenerate cases) another step in the same direction never leads back to the
previously visited curve; hence simply avoiding backward steps is enough. The cost of disam-
biguating directions is thus amortized across all e steps.

We also amortize the cost of disambiguating twists across all e steps as follows. We ascertain
the correct direction at the first step. We then compute the sequence of j-invariants for all e
steps. At the last step, we compute the corresponding Montgomery coefficient and ascertain the
correct twist.

Algorithm 9.5 combines these ideas. For simplicity, it avoids the Bostan–Morain–Salvy–
Schost algorithm and uses another isogeny-computation method instead, such as Algorithm 9.4,
to disambiguate the direction at the first step and to disambiguate the twist at the last step.

The correctness of Algorithm 9.5 is best explained through the graph picture: Recall that the
`-isogeny graph (labelled by A-coefficients) is a disjoint union of cycles which have a natural
orientation given by the mapL.

Since−L(−A) = L−1(A), negating all labels in a cycle C corresponds to inverting the ori-
entation of the cycle. For a cycle C as above, let C/± denote the quotient graph of C by negation.
This is the same thing as applying j-invariants to all nodes. If C contains 0, then C/± is a line
with inflection points at the ends; else C/± has the same structure as C. In both cases C/± is
unoriented.

For brevity, write ji = j(ELi(A)). Algorithm 9.5 starts out on a cycle C as above by com-
puting one stepLwith known-good orientation. It then reduces to C/± and continues walking
in the same direction simply by avoiding backwards steps when possible; there are only (up to)
two neighbours at all times. Therefore, the property jcur = ji holds at the end of each iter-

9.11. COST METRICS FOR QUANTUM COMPUTATION 169

Algorithm 9.5: Isogeny graph walking using modular polynomials.

Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1,
` ∈ {`1, . . . , `n}, and an integer e ≥ 1.

Input: A ∈ Sp.
Output: Le(A).

1 ComputeB = L(A) using another algorithm.
2 Set jprev = j(EA) and jcur = j(EB).
3 for i← 2 to e do
4 Compute f ← gcd(Y p − Y,Φ`(jcur , Y)).
5 Let c, d ∈ Fp be the coefficients of f , such that f = Y 2 + cY + d.
6 Set (jprev , jcur)← (jcur , c− jprev).

7 FindB ∈ Fp such that j(EB) = jcur .
8 ComputeC = L(B) using another algorithm.
9 SetB ← −B if j(EC) = jprev .

10 ReturnB.

ation of the loop; in particular, arbitrarily lifting je to a node with the right j-invariant yields
B ∈ {±Le(A)}. Finally, computing and comparing j(EL(B)) = j(EL(±Le(A))) = je±1 to the
value je−1 known from the previous iteration of the loop reveals the correct sign.

9.10.4 – Cost. Algorithm 9.5 requires two calls to a separate subroutine forL and some ex-
tra work (computing a pth power modulo a degree-6 polynomial), so it is never faster than re-
peated applications of the separate subroutine when e ≤ 2. On the other hand, replacing this
subroutine with the Bostan–Morain–Salvy–Schost algorithm, and/or replacing classical mod-
ular polynomials with modular polynomials for A, might make this approach competitive for
e = 2 and perhaps even e = 1.

No matter how large e is, Algorithm 9.5 requires computing the polynomials gcd(Y p−Y, g)

and gcd(Y p − Y,Φ`(jcur , Y)) for each isogeny. The degree of g is smaller than in Algorithm 9.4
for ` ≥ 5, but the gcd cost quickly becomes much more expensive than the “Vélu” method from
Section 9.5 as ` grows. However, this algorithm may nevertheless be of interest for small values
of `. If Algorithm 9.4 (rather than the Vélu method) is used as the separate L subroutine then
Algorithm 9.5 is deterministic and always works.

9.11 — Cost metrics for quantum computation

This section reviews several cost metrics relevant to this chapter.

9.11.1 – Bit operations. Computations on today’s non-quantum computers are ultimately
nothing more than sequences of bit operations. The hardware carries out a sequence of NOT
gates b 7→ 1 ⊕ b; AND gates (a, b) 7→ ab = min{a, b}; OR gates (a, b) 7→ max{a, b}; and XOR
gates (a, b) 7→ a⊕ b. Some of the results are displayed as outputs.

Formally, a computation is a finite directed acyclic graph where each node has 0, 1, or 2 in-
puts. Each 0-input node in the graph is labeled as constant 0, constant 1, or a specified input bit.
Each 1-input node in the graph is labeled NOT. Each 2-input node in the graph is labeled AND,

170 QUANTUM CIRCUITS FOR CSIDH

OR, or XOR. There is also a labeling of output bits as particular nodes in the graph.
The graph induces a function from sequences of input bits to sequences of output bits. Spe-

cifically, given values of the input bits, the graph assigns a value to each node as specified by the
label (e.g., the value at an AND node is the minimum of the values of its two input nodes), and
in particular computes values of the output bits.

Our primary cost metric in this chapter is the number of nonlinear bit operations: i.e., we
count the number of ANDs and ORs, disregarding the number of NOTs and XORs (and 0s and
1s). The advantage of choosing this cost metric is comparability to the Toffoli cost metric used
in, e.g., [HRS17] and [RNSL17], which in turn is motivated by current estimates of the costs of
various quantum operations, as we explain below.

A potential disadvantage of choosing this cost metric is that the cost metric can hide arbit-
rarily large sequences of linear operations. For example, there are known algorithms to multiply
n-coefficient polynomials in F2[x] using Θ(n) nonlinear operations (see, e.g., [PR15]), but this
operation count hides Θ(n2) linear operations. Other algorithms using n(logn)1+o(1) total bit
operations (see, e.g., [Sch77] and [HHL17]) are much better when n is large, even though they
have many more nonlinear bit operations.

This seems to be less of an issue for integer arithmetic than for polynomial arithmetic. Adding
nonzero costs for NOT and XOR requires a reevaluation of, e.g., the quantitative cutoff between
schoolbook multiplication and Karatsuba multiplication, but does not seem to have broader
qualitative impacts on the speedups that we consider in this chapter. Similarly, our techniques
can easily be adapted to, e.g., a cost metric that allows NAND gates with lower cost than AND
gates, reflecting the reality of computer hardware.

9.11.2 – The importance of constant-time computations. One can object to the simple
model of computation explained above as not allowing variable-time computations. The graph
uses a constant number of bit operations to produce its outputs, whereas real users often wait
input-dependent amounts of time for the results of a computation. If a particular input is pro-
cessed faster than the worst case, then the time saved can be spent on other useful computations.

However, our primary goal in this chapter is to evaluate the cost of carrying out a CSIDH
group action on a huge number of inputs in quantum superposition. Operations are carried out
on all of the inputs simultaneously, and then a measurement retroactively selects a particular
input. The cost depends on the number of operations carried out on all inputs, not on the number
of operations that in retrospect could have been carried out for the selected input.

The same structure has an impact at every level of algorithm design. In conventional al-
gorithm design, if a function calls subroutine X for some inputs and subroutine Y for other
inputs, then the cost of the function is the maximum of the costs ofX and Y . However, a compu-
tation graph does not allow this branching. One must instead compute a suitable combination
such as

bX(inputs) + (1⊕ b)Y (inputs),

taking the total time forX and Y , or search for ways to overlap portions of the computations of
X and Y .

One can provide branches as a higher-level abstraction by building a computation graph
that manipulates an input-dependent pointer into an array of instructions, imitating the way
that CPU hardware is built. It is important to realize, however, that the number of bit operations
required to read an instruction from a variable location in an array grows with the size of the
array, so the total number of bit operations in this approach grows much more rapidly than the

9.11. COST METRICS FOR QUANTUM COMPUTATION 171

number of instructions. A closer look at what actually needs to be computed drastically reduces
the number of bit operations.

The speedup techniques considered in this chapter can also be used in constant-time non-
quantum software and hardware for CSIDH, reducing the cost of protecting CSIDH users against
timing attacks. However, our main focus is the quantum case.

9.11.3 – Reversible bit operations. Bits cannot be erased or copied inside a quantum com-
putation. For example, one cannot simply compute a XOR gate, replacing (a, b) with a⊕ b, or an
AND gate, replacing (a, b) with ab. However, one can compute a “CNOT” gate, replacing (a, b)

with (a, a⊕ b); or a “Toffoli” gate, replacing (a, b, c) with (a, b, c⊕ ab).
In general, ann-bit reversible computation begins with a list ofn input bits, and then applies a

sequence of NOT gates, CNOT gates, and Toffoli gates to specified positions in the list, eventually
producing n output bits. Each of these gates is its own inverse, so one can map output back to
input by applying the same gates in the reverse order.

Bennett’s conversion (see [Ben73], which handles the more complicated case of Turing
machines) is a generic transformation from computations, as defined in Section 9.11.1, to revers-
ible computations. Say the original computation maps x ∈ {0, 1}k to F (x) ∈ {0, 1}`. The
reversible computation then maps (x, y, 0) ∈ {0, 1}k+`+m to (x, y ⊕ F (x), 0) ∈ {0, 1}k+`+m,
for some choice ofm that will be clear in a moment; them auxiliary zero bits are called ancillas.
The effect of the reversible computation upon more general inputs (x, y, z) ∈ {0, 1}k+`+m is
more complicated, and usually irrelevant.

For each AND gate (a, b) 7→ ab in the original computation, the reversible computation al-
locates an ancilla c and performs (a, b, c) 7→ (a, b, c⊕ab) as a Toffoli gate. Note that if the ancilla
c begins as 0 then this Toffoli gate produces the desired bit ab. More generally, for each gate in
the original computation, the reversible computation allocates an ancilla c and operates revers-
ibly on this ancilla, in such a way that if the ancilla begins with 0 then it ends with the same bit
computed by the original gate. For example:

• For each constant-1 gate () 7→ 1, the reversible computation allocates an ancilla c and
performs a NOT gate c 7→ 1− c.

• For each NOT gate b 7→ 1 ⊕ b, the reversible computation allocates an ancilla c and per-
forms (b, c) 7→ (b, c⊕ 1⊕ b) as a NOT gate and a CNOT gate.

• For each XOR gate (a, b) 7→ a ⊕ b, the reversible computation allocates an ancilla c and
performs (a, b, c) 7→ (a, b, c⊕ a⊕ b) as two CNOT gates.

The reversible computation thus maps (x, y, 0) to (x, y, z) wherez is the entire sequence of bits in
the original computation, including all intermediate results. In particular, z includes the bits of
F (x), and `additional CNOT gates produce (x, y⊕F (x), z). Finally, re-running the computation
of z in reverse order has the effect of “uncomputing” z, producing (x, y ⊕ F (x), 0) as claimed.

The number of Toffoli gates here is exactly twice the number of nonlinear bit operations in
the original computation: once in computing z and once in uncomputing z. There is a larger
expansion in the number of NOT and CNOT gates compared to the original number of linear bit
operations, but, as mentioned earlier, we focus on nonlinear bit operations.

Sometimes these overheads can be reduced. For example, if the original computation is
simply an AND (a, b) 7→ ab, then the reversible computation stated above uses two Toffoli gates
and one ancilla —

• (a, b, y, 0) 7→ (a, b, y, ab) with a Toffoli gate,
• (a, b, y, ab) 7→ (a, b, y ⊕ ab, ab) with a CNOT gate,

172 QUANTUM CIRCUITS FOR CSIDH

• (a, b, y ⊕ ab, ab) 7→ (a, b, y ⊕ ab, 0) with another Toffoli gate,
— but it is better to simply compute (a, b, y) 7→ (a, b, y⊕ab) with one Toffoli gate and no ancillas.
We do not claim that the optimal number of bit operations is a perfect predictor of the optimal
number of Toffoli gates; we simply use the fact that the ratio is between 1 and 2.

Note that Bennett’s reversible computation operates on an n-bit state where n = k + `+m

is essentially the number of bit operations in the original computation. Perhaps the original com-
putation can fit into a much smaller state (depending on the order of operations, something
not expressed by the computation graph), but this often relies on erasing intermediate results,
which a reversible computation cannot do. Even in a world where arbitrarily large quantum
computers can be built, this number n has an important impact on the cost of the correspond-
ing quantum computation, so it becomes important to consider ways to reduce n, as explained
in Section 9.11.5.

9.11.4 – T -gates. The state of n qubits is, by definition, a nonzero element (v0, v1, . . .) of
the vector space C2n . Measuring these n qubits produces an n-bit index i ∈ {0, 1, . . . , 2n − 1},
while modifying the vector to have 1 at position i and 0 elsewhere. The chance of obtaining i is
proportional to |vi|2. One can, if desired, normalize the vectors so that

∑
i |vi|

2 = 1.
Ann-qubit quantum computation applies a sequence of NOT (often written “X”), CNOT,

Hadamard (“H”), T , and T−1 gates to specified positions within n qubits. There is a standard
representation of these gates as the matrices

(
0 1

1 0

)
,


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

(
1 1

1 −1

)
,

(
1 0

0 exp(iπ/4)

)
,

(
1 0

0 exp(−iπ/4)

)

respectively; if vectors are normalized then the Hadamard matrix is divided by
√

2. There is also
a standard way to interpret these matrices as acting upon vectors in C2n . For example, applying
the NOT gate to qubit 0 of (v0, v1, v2, v3, . . .) produces (v1, v0, v3, v2, . . .); measuring after the
NOT has the same effect as measuring before the NOT and then complementing bit 0 of the
result. Applying the NOT gate to qubit 1 of (v0, v1, v2, v3, . . .) produces (v2, v3, v0, v1, . . .).

The consensus of quantum-computer engineers appears to be that “Clifford operations”
such as NOT, CNOT, H , T 2, and T−2 are at least two orders of magnitude less expensive than
T and T−1. It is thus common practice to allow T 2 (“S” or “P ”) and T−2 as further gates, and
to count the number of T and T−1, while disregarding the number of NOT, CNOT, H , T 2, and
T−2. The total number of T and T−1 is, by definition, the number of T -gates.

There is a standard conversion from ann-bit reversible computation to ann-qubit quantum
computation. NOT is converted to NOT; CNOT is converted to CNOT; Toffoli is converted to a
sequence of 7 T -gates and some Clifford gates. Multiplying 7 by an upper bound on the number
of Toffoli gates thus produces an upper bound on the number of T -gates.

As in Section 9.11.3, these overheads can sometimes be reduced. For example:
• All of the quantum gates mentioned here operate on one or two qubits at a time. The

intermediate results in a Toffoli computation can often be reused for other computations.
• In a more sophisticated model of quantum computation that allows internal measure-

ments, Jones [Jon12] showed how to implement a Toffoli gate as 4 T -gates, some Clifford
gates, and a measurement. We follow [GLRS16] in mentioning but disregarding this al-
ternative.

9.11. COST METRICS FOR QUANTUM COMPUTATION 173

• In the same model, a recent paper by Gidney [Gid17] showed how to implement n-bit in-
teger addition using about 4n T -gates (and a similar number of Clifford gates and meas-
urements). For comparison, a standard “ripple carry” adder uses about 2n nonlinear bit
operations.

As before, we do not claim that the optimal number of Toffoli gates is a perfect predictor of the
number of T -gates; we simply use the fact that the ratio is between 1 and 7.

9.11.5 – Error-correction steps; the importance of parallelism. To recap: Our primary
focus is producing an upper bound on the number of nonlinear bit operations. Multiplying by 2
gives an upper bound on the number of Toffoli gates for a reversible computation, and multiply-
ing this second upper bound by 7 gives an upper bound on the number ofT -gates for a quantum
computation. Linear bit operations (and the corresponding reversible and quantum gates) do
not seem to be a bottleneck for the types of computations considered in this chapter.

There is, however, a much more important bottleneck that is ignored in these cost metrics:
namely, fault-tolerance seems to require continual error correction of every stored qubit.

Surface codes [FMMC12] are the leading candidates for fault-tolerant quantum computa-
tion. A logical qubit is encoded in a particular way as many entangled physical qubits spread
over a surface. Some of the physical qubits are continually measured, and operations are carried
out on the physical qubits to correct any errors revealed by the measurements. The consensus
of the literature appears to be that performing a computation on a logical qubit will be only a
small constant factor more expensive than storing an idle logical qubit.

One consequence of this structure is that all fault-tolerant quantum computations involve
entanglement throughout the entire computation, contrary to the claim in [BS18] that a partic-
ular quantum algorithm “does not need to have a highly entangled memory for a long time”.

Another consequence of this structure is that the cost of a quantum computation can grow
quadratically with the number of bit operations. Consider, for example, an n-bit ripple-carry
adder, or the adder from [Gid17]. This computation involves Θ(n) sequential bit operations and
finishes in time Θ(n). Each of the Θ(n) qubits needs active error correction at each time step, for
a total of Θ(n2) error-correction steps.

The product of computer size and time is typically called “area-time product” or “AT ” in the
literature on non-quantum computation; “volume” in the literature on quantum computation;
and “price-performance ratio” in the literature on economics. The cost of quantum error correc-
tion is not the only argument for viewing this product as the true cost of computation: there is a
more fundamental argument stating that the total cost assigned to two separate computations
should not depend on whether the computations are carried out in serial (using hardware for
twice as much time) or in parallel (using twice as much hardware).

From this perspective, it is much better to use parallel algorithms for integer addition that
finish in time Θ(logn). This still means Θ(n logn) error-correction steps, so the cost is larger by
a factor Θ(logn) than the number of bit operations.

At a higher level, the CSIDH computation involves various layers for which highly paral-
lel algorithms are not known. For example, modular exponentiation is notoriously difficult to
parallelize. A conventional computation of x mod n, x2 mod n, x4 mod n, x8 mod n, etc. can
store each intermediate result on top of the previous result, but Bennett’s conversion produces a
reversible computation that uses much more storage, and the resulting quantum computation
requires continual error correction for all of the stored qubits. Shor’s algorithm avoids this issue
because it computes a superposition of powers of a constant x; this is not helpful in the CSIDH
context.

174 QUANTUM CIRCUITS FOR CSIDH

Bennett suggested reducing the number of intermediate results in a reversible computation
by checkpointing the computation halfway through:

• Compute the middle as a function of the beginning.

• Uncompute intermediate results, leaving the beginning and the middle.

• Compute the end as a function of the middle.

• Uncompute intermediate results, leaving the beginning, middle, and end.

• Recompute the middle from the beginning.

• Uncompute intermediate results, leaving the beginning and end.

This multiplies the number of qubits by about 0.5 but multiplies the number of gates by about
1.5. See [Ben89] and [Kni95] for analyses of further tradeoffs along these lines.

This chapter focuses on bit operations, as noted above. Beyond this, Section 9.13.6 makes
some remarks on the number of qubits required for our computations. We have not attempted
to analyze the time required for a parallel computation using a specified number of qubits.

9.11.6 – Error-correction steps on a two-dimensional mesh. There is a further problem
with counting bit operations: in many computations, the main bottleneck is communication.

For example, FFT-based techniques multiplyn-bit integers usingn1+o(1) bit operations, and
can be parallelized to use time just no(1) with area n1+o(1). However, Brent and Kung [BK81]
showed that integer multiplication on a two-dimensional mesh of area n1+o(1) requires time
n0.5+o(1), even in a model where information travels instantaneously through arbitrarily long
wires.

Plausible architectures for fault-tolerant quantum computation, such as [FMMC12], are built
from near-neighbor interactions on a two-dimensional mesh. Presumably, as in [BK81],n1+o(1)

qubits computing an n-bit product require time n0.5+o(1), and thus n1.5+o(1) error-correction
steps. One might hope for quantum teleportation to avoid some of the bottlenecks, but spread-
ing an entangled pair of qubits across distancen0.5+o(1) takes timen0.5+o(1) in the same archi-
tectures.

We have not attempted to analyze the impact of these effects for concrete sizes of n. We
have also not analyzed communication costs at higher levels of the CSIDH computation. For
comparison, attacks against AES [GLRS16] use fewer qubits, and perform much longer stretches
of computation on nearby qubits.

9.12 — Basic integer arithmetic

We use b bits n0, n1, n2, . . . , nb−1 to represent the nonnegative integer n0 + 2n1 + 4n2 + · · ·+
2b−1nb−1. Each element of

{
0, 1, . . . , 2b − 1

}
has a unique representation as b bits. This section

analyzes the cost of additions, subtractions, multiplications, and squarings in this representa-
tion.

9.12.1 – Addition. We use a standard sequential ripple-carry adder. If b ≥ 1 then the sum
of the b-bit integers represented byn0, n1, n2, . . . , nb−1 andm0,m1,m2, . . . ,mb−1 is the (b+1)-

9.12. BASIC INTEGER ARITHMETIC 175

bit integer represented by s0, s1, s2, . . . , sb computed as follows:

x0 = n0 ⊕m0; s0 = x0; c0 = n0m0;

x1 = n1 ⊕m1; s1 = x1 ⊕ c0; c1 = n1m1 ⊕ x1c0;

x2 = n2 ⊕m2; s2 = x2 ⊕ c1; c2 = n2m2 ⊕ x2c1;

...
xb−1 = nb−1 ⊕mb−1; sb−1 = xb−1 ⊕ cb−2; cb−1 = nb−1mb−1 ⊕ xb−1cb−2;

sb = cb−1.

There are 5b− 3 bit operations here, including 2b− 1 nonlinear bit operations. Our primary cost
metric is the number of nonlinear bit operations.

More generally, to add a b-bit integer to an a-bit integer with a ≤ b, we use the formulas
above to obtain a (b+ 1)-bit sum, skipping computations that refer toma,ma+1, . . . ,mb−1.

Minor speedups: Ifa = 0 then we instead produce a b-bit sum. More generally, we could (but
currently do not) track ranges of integers more precisely, and decide based on the output range
whether a sum needs b bits or b + 1 bits. This is compatible with constant-time computation:
the sequence of bit operations being carried out is independent of the values of the bits being
processed.

9.12.2 – Subtraction. We use a standard ripple-borrow subtractor to subtract two b-bit in-
tegers modulo 2b, obtaining a b-bit integer. The formulas are similar to the ripple-carry adder.
The total number of operations grows from 5 to 7 for each bit but the number of nonlinear oper-
ations is still 2 per bit.

9.12.3 – Multiplication. Write Q(b) for the minimum number of nonlinear bit operations
for b-bit integer multiplication. We combine Karatsuba multiplication [KO63] and schoolbook
multiplication, as explained below, to obtain concrete upper bounds onQ(b) for various values
of b. See Table 9.5.

We are not aware of previous analyses ofQ(b). It is easy to find literature stating the number
of bit operations for schoolbook multiplication, but we do better starting at 14 bits. For b = 512

we obtain Q(512) ≤ 241908 (using an algorithm with a total of 536184 bit operations), while
schoolbook multiplication uses 784896 nonlinear bit operations (and a total of 1568768 bit op-
erations).

It is also easy to find literature on the number of bit operations for polynomial multiplic-
ation mod 2, but carries make the integer case much more expensive and qualitatively change
the analysis. For example, [KS15] uses Karatsuba’s method for polynomials all the way down to
single-bit multiplication, exploiting the fact that polynomial addition costs 0 nonlinear bit op-
erations; for integer multiplication, Karatsuba’s method has much more overhead. Concretely,
Karatsuba’s method uses just 39 = 19683 nonlinear bit operations to multiply 512-bit polyno-
mials; we use 12 times as many nonlinear bit operations to multiply 512-bit integers.

Schoolbook multiplication. Schoolbook multiplication of two b-bit integers has two stages.
The first stage is b2 parallel multiplications of individual bits. This produces 1 product at position
0; 2 products at position 1; 3 products at position 2; . . . ; bproducts at position b−1; b−1 products
at position b; . . . ; 1 product at position 2b− 2. The second stage repeatedly

• adds two bits at position i, obtaining one bit at position i and a carry bit at position i+ 1,
or, more efficiently,

176 QUANTUM CIRCUITS FOR CSIDH

1 1 65 8313 129 25912 193 50221 257 79732 321 114068 385 153686 449 197391
2 6 66 8497 130 26224 194 50631 258 80237 322 114669 386 154350 450 198131
3 18 67 8813 131 26733 195 51310 259 81067 323 115655 387 155448 451 199341
4 36 68 8940 132 26925 196 51563 260 81387 324 116035 388 155866 452 199802
5 60 69 9201 133 27377 197 52161 261 82097 325 116877 389 156807 453 200845
6 90 70 9397 134 27701 198 52594 262 82614 326 117490 390 157494 454 201601
7 126 71 9664 135 28098 199 53124 263 83267 327 118263 391 158354 455 202540
8 168 72 9736 136 28233 200 53296 264 83467 328 118499 392 158615 456 202834
9 216 73 10070 137 28699 201 53930 265 84252 329 119428 393 159655 457 203956

10 270 74 10272 138 28968 202 54295 266 84712 330 119972 394 160261 458 204608
11 330 75 10618 139 29440 203 54924 267 85442 331 120834 395 161233 459 205675
12 396 76 10757 140 29644 204 55200 268 85774 332 121226 396 161674 460 206152
13 468 77 11042 141 29992 205 55657 269 86315 333 121863 397 162385 461 206932
14 535 78 11256 142 30267 206 56017 270 86720 334 122340 398 162923 462 207529
15 630 79 11547 143 30682 207 56565 271 87330 335 123058 399 163738 463 208429
16 684 80 11625 144 30762 208 56669 272 87473 336 123225 400 163918 464 208619
17 795 81 11989 145 31307 209 57384 273 88217 337 124101 401 164926 465 209751
18 851 82 12209 146 31649 210 57835 274 88691 338 124659 402 165568 466 210468
19 974 83 12585 147 32206 211 58537 275 89441 339 125541 403 166571 467 211559
20 1036 84 12736 148 32416 212 58808 276 89718 340 125866 404 166944 468 211981
21 1171 85 13045 149 32910 213 59434 277 90403 341 126671 405 167858 469 212960
22 1239 86 13277 150 33264 214 59872 278 90883 342 127235 406 168495 470 213636
23 1386 87 13592 151 33697 215 60402 279 91444 343 127892 407 169237 471 214440
24 1460 88 13676 152 33844 216 60597 280 91656 344 128140 408 169521 472 214750
25 1608 89 14070 153 34352 217 61190 281 92288 345 128880 409 170347 473 215625
26 1688 90 14308 154 34645 218 61532 282 92644 346 129296 410 170812 474 216126
27 1859 91 14703 155 35159 219 62153 283 93343 347 130115 411 171729 475 217072
28 1934 92 14866 156 35381 220 62411 284 93626 348 130446 412 172097 476 217453
29 2092 93 15188 157 35759 221 62873 285 94130 349 131034 413 172758 477 218153
30 2195 94 15427 158 36058 222 63243 286 94553 350 131529 414 173314 478 218725
31 2369 95 15755 159 36509 223 63788 287 95187 351 132271 415 174142 479 219559
32 2431 96 15845 160 36595 224 63887 288 95275 352 132371 416 174254 480 219694
33 2607 97 16247 161 37188 225 64619 289 96171 353 133423 417 175429 481 220845
34 2726 98 16492 162 37560 226 65072 290 96724 354 134072 418 176152 482 221551
35 2914 99 16917 163 38165 227 65820 291 97632 355 135125 419 177314 483 222704
36 2978 100 17081 164 38393 228 66106 292 97982 356 135535 420 177773 484 223156
37 3172 101 17438 165 38929 229 66750 293 98758 357 136432 421 178755 485 224126
38 3303 102 17706 166 39313 230 67219 294 99323 358 137082 422 179465 486 224834
39 3509 103 18058 167 39782 231 67808 295 100036 359 137904 423 180371 487 225741
40 3579 104 18154 168 39941 232 67990 296 100254 360 138158 424 180650 488 226010
41 3791 105 18597 169 40491 233 68699 297 101111 361 139137 425 181723 489 227102
42 3934 106 18860 170 40808 234 69113 298 101613 362 139712 426 182357 490 227747
43 4158 107 19290 171 41364 235 69781 299 102409 363 140618 427 183334 491 228727
44 4234 108 19477 172 41604 236 70083 300 102771 364 141029 428 183780 492 229181
45 4464 109 19811 173 42012 237 70576 301 103360 365 141703 429 184514 493 229913
46 4619 110 20061 174 42335 238 70949 302 103801 366 142205 430 185052 494 230446
47 4850 111 20423 175 42822 239 71513 303 104465 367 142955 431 185849 495 231243
48 4932 112 20514 176 42914 240 71640 304 104620 368 143134 432 186052 496 231449
49 5169 113 20959 177 43555 241 72338 305 105430 369 144043 433 186996 497 232382
50 5325 114 21237 178 43957 242 72782 306 105946 370 144621 434 187597 498 232980
51 5585 115 21698 179 44599 243 73482 307 106762 371 145536 435 188569 499 233970
52 5673 116 21872 180 44845 244 73743 308 107063 372 145874 436 188919 500 234312
53 5928 117 22278 181 45412 245 74380 309 107808 373 146706 437 189807 501 235231
54 6107 118 22572 182 45815 246 74826 310 108330 374 147290 438 190436 502 235886
55 6349 119 22937 183 46309 247 75351 311 108939 375 147973 439 191165 503 236628
56 6432 120 23056 184 46480 248 75549 312 109169 376 148228 440 191431 504 236899
57 6702 121 23492 185 47050 249 76139 313 109855 377 149000 441 192272 505 237769
58 6868 122 23745 186 47380 250 76473 314 110241 378 149435 442 192742 506 238247
59 7154 123 24183 187 47956 251 77120 315 111000 379 150281 443 193666 507 239231
60 7265 124 24373 188 48203 252 77383 316 111307 380 150625 444 194044 508 239630
61 7510 125 24699 189 48630 253 77853 317 111853 381 151233 445 194697 509 240309
62 7692 126 24954 190 48966 254 78244 318 112312 382 151742 446 195250 510 240901
63 7939 127 25337 191 49467 255 78828 319 113000 383 152505 447 196090 511 241814
64 8009 128 25415 192 49565 256 78914 320 113094 384 152611 448 196197 512 241908

Table 9.5: Upper bounds on Q(b) for b ≤ 512: e.g., Q(3) ≤ 18. Q(b) is the minimum number of nonlinear bit
operations for b-bit integer multiplication.

9.12. BASIC INTEGER ARITHMETIC 177

• adds three bits at position i, obtaining one bit at position i and a carry bit at position i+1,
until there is only one bit at each position.

There are several standard ways to organize the second stage for parallel computation: for
example, Wallace trees [Wal64] and Dadda trees [Dad65]. Dadda trees use fewer bit operations
since they make sure to add three bits whenever possible rather than two bits. Since parallelism
is not visible in our primary cost metric, we simply add sequentially from the bottom bit. Overall
we use 6b2 − 8b bit operations for b-bit schoolbook multiplication (if b ≥ 2), including 3b2 − 3b

nonlinear bit operations.

Karatsuba multiplication. When b is not very small, we do better using Karatsuba’s method:
the product ofX0 + 2bX1 and Y0 + 2bY1 isZ0 + 2bZ1 + 22bZ2 whereZ0 = X0Y0,Z2 = X1Y1,
andZ1 = (X0 +X1)(Y0 + Y1)− (Z0 + Z2).

Karatsuba’s method reduces a 2b-bit multiplication to two b-bit multiplications for Z0 and
Z2, two b-bit additions forX0+X1 andY0+Y1, one (b+1)-bit multiplication, one 2b-bit addition
forZ0 +Z2, one subtraction modulo 22b+1 forZ1, and a 4b-bit addition for (Z0 +22bZ2)+2bZ1.
Some operations in the 4b-bit addition can be eliminated, and counting carefully shows that

Q(2b− 1) ≤ Q(b− 1) +Q(b) +Q(b+ 1) + 17b− 12,

Q(2b) ≤ 2Q(b) +Q(b+ 1) + 17b− 4.

These formulas do better than schoolbook multiplication forQ(14) and forQ(16), Q(17),
For comparison, similar formulas apply to M(b), the total number of bit operations (linear

and nonlinear) for b-bit polynomial multiplication mod 2. The cost of schoolbook multiplication
then scales as 2b2 rather than 3b2. The overhead of “refined Karatsuba” multiplication scales as
7b rather than 17b, already giving improved bounds onM(6), and giving, e.g.,M(512) ≤ 109048.

Other techniques. We have skipped some small speedups. For example, the top bit of (X0 +

X1)(Y0 + Y1) does not need to be computed. As another example, one can use “refined Karat-
suba” multiplication for integers; see [HS15] for one way to organize the carry chains. Presumably
we have missed some other small speedups.

Toom multiplication [Too63] implies Q(b) ∈ b1+o(1). FFT-based improvements in the o(1)

appear in, e.g., [Pol71], [Nic71, page 532], [SS71], [Für07], [HHL16], and [HH18]. Our Karatsuba-
based bounds on Q(b) can thus be improved for sufficiently large values of b, and perhaps for
values of b relevant to CSIDH. For comparison, Bernstein [Ber09a] obtained M(512) ≤ 98018

using Toom multiplication, not a large improvement upon the M(512) ≤ 109048 bound men-
tioned above from refined Karatsuba multiplication.

9.12.4 – Squaring. Schoolbook squaring saves about half the work of schoolbook multiplic-
ation. Specifically, for each pair (i, j) with i < j, schoolbook multiplication adds bothnimj and
njmi to position i+j, while schoolbook squaring addsninj to position i+j+1; also, schoolbook
multiplication adds nimi to position 2i, while schoolbook squaring adds ni (which is the same
as n2

i) to position 2i. Overall we use 3b2 − 6b + 3 bit operations for b-bit schoolbook squaring,
including 1.5b2 − 2.5b+ 1 nonlinear bit operations.

Karatsuba squaring also has less overhead than Karatsuba multiplication, but the ratio over-
head/schoolbook is somewhat larger for squaring than for multiplication, making Karatsuba
squaring somewhat less effective. We obtain squaring speedups from Karatsuba squaring —
in our primary cost metric, nonlinear bit operations — starting at 22 bits. For 512 bits we use
143587 nonlinear bit operations, about 60% of the nonlinear bit operations that we use for mul-
tiplication.

178 QUANTUM CIRCUITS FOR CSIDH

9.12.5 – Multiplication by a constant. We save even more in the multiplications that arise
in reduction modulo p (see Section 9.13.1), namely multiplications by large constants. The exact
savings depend on the constant; for example, for seven different 512-bit constants, we use

107338, 110088, 109574, 111760, 107925, 107711, 108234

nonlinear bit operations, about 45% of the multiplication cost. Here the schoolbook method is
as follows: ifmj is the constant 1 then add ni to position i+ j. We use Karatsuba multiplication
starting at 30 bits.

Other techniques. There is some literature studying addition chains (and addition-subtraction
chains) with free doublings. For example, [DIZ07] shows that multiplication by a b-bit constant
usesO(b/log b) additions (and [Lef03] shows that most constants require Θ(b/log b) additions),
for a total ofO(b2/log b) bit operations. This is asymptotically beaten by Karatsuba multiplica-
tion, but could be useful as an intermediate step between schoolbook multiplication and Karat-
suba multiplication.

9.13 — Modular arithmetic

CSIDH uses elliptic curves defined over Fp, where p is a standard prime number. For example,
in CSIDH-512, p is the prime number 4 · 3 · 5 · 7 · 11 · · · 373 · 587− 1, between 2510 and 2511; all
primes between 3 and 373 appear in the product.

Almost all of the bit operations in our computation are consumed by a long series of multi-
plications modulo p, organized into various higher-level operations such as exponentiation and
elliptic-curve scalar multiplication. This section analyzes the performance of modular multi-
plication, exponentiation, and inversion.

9.13.1 – Reduction. We completely reduce a nonnegative integer zmodulo p as follows. As-
sume that z has c bits (so 0 ≤ z < 2c), and assume 2b−1 < p < 2b with b ≥ 2.

If c < b then there is nothing to do: 0 ≤ z < 2b−1 < p. Assume from now on that c ≥ b.
Compute an approximation q to z/p precise enough to guarantee that 0 ≤ z−qp < 2p. Here

we use the standard idea of multiplying by a precomputed reciprocal:

• Precompute R =
⌊
2c+2/p

⌋
. Formally, this costs 0 in our primary cost metric, since pre-

computation is part of constructing our algorithm rather than running our algorithm. More
importantly, our entire algorithm uses only a few small values of c, so this precomputation
has negligible cost.

• Compute q =
⌊⌊
z/2b−2

⌋
R/2c−b+4

⌋
. The cost of computing q is the cost of multiplying

the (c− b+ 2)-bit integer
⌊
z/2b−2

⌋
by the constant (c− b+ 3)-bit integerR. Computing⌊

z/2b−2
⌋

means simply taking the top c− b+ 2 bits of z.

By constructionR ≤ 2c+2/p and q ≤ zR/2c+2 so q ≤ z/p. Checking that z/p < q + 2 involves
more inequalities:

• 2c+2/p < R + 1 so z/p < z(R + 1)/2c+2 < zR/2c+2 + 1/4. This uses the fact that
0 ≤ z < 2c.

• z/2b−2 <
⌊
z/2b−2

⌋
+ 1, so (z/2b−2)R/2c−b+4 <

⌊
z/2b−2

⌋
R/2c−b+4 + 1/2. This uses

the fact that 0 ≤ R < 2c−b+3.
•
⌊
z/2b−2

⌋
R/2c−b+4 < q + 1.

9.13. MODULAR ARITHMETIC 179

• Hence z/p < q + 1 + 1/2 + 1/4 = q + 7/4.
Next replace z with z − qp. This involves a multiplication of the (c− b+ 1)-bit integer q by

the constant b-bit integer p, and a subtraction. We save some time here by computing only the
bottom b+ 1 bits of qp and z − qp, using the fact that 0 ≤ z − qp < 2b+1.

At this point (the new) z is between 0 and 2p − 1, so all that remains is to subtract p from z

if z ≥ p.
Compute y = z−p mod 2b+1. Use yb, the bit at position b of y, to select between the bottom

b bits of z and the bottom b bits of y: specifically, compute y0 ⊕ yb(y0 ⊕ z0), y1 ⊕ yb(y1 ⊕ z1),
and so on through yb−1 ⊕ yb(yb−1 ⊕ zb−1). If z ≥ p then 0 ≤ z − p < p < 2b so y = z − p and
yp = 0, so these output bits are y0, y1, . . . , yb−1 as desired; if z < p then−2b < −p ≤ z − p < 0

so y = z − p+ 2b+1 and yp = 1, so these output bits are z0, z1, . . . , zb−1 as desired.

Other techniques. We could save time in the multiplication byR by skipping most of the com-
putations involved in bottom bits of the product. It is important for the total of the bits thrown
away to be at most 2c−b+2, so that q is reduced by at most 1/4, the gap between q + 2 and the
q + 7/4 mentioned above.

We could vary the number of bits inR, the allowed range of z− qp, etc. The literature some-
times recommends repeatedly subtracting p once z is known to be small, but if the range is (e.g.)
0 through 4p− 1 then it is slightly better to first subtract 2p and then subtract p.

Historical notes. Multiplying by a precomputed reciprocal, to compute a quotient and then a
remainder, is often called “Barrett reduction”, in reference to a 1986 paper [Bar86]. However,
Knuth [Knu81, page 264] had already commented in 1981 that Newton’s method “for evaluating
the reciprocal of a number was extensively used in early computers” and that, for “extremely
large numbers”, Newton’s method and “subsequent multiplication” using fast multiplication
techniques can be “considerably faster” than a simple quadratic-time division method.

9.13.2 – Multiplication. To multiply b-bit integers x, y modulo p, we follow the conven-
tional approach of first multiplying x by y, and then reducing the 2b-bit product xy modulo p as
explained in Section 9.13.1.

For example, for CSIDH-512, we use 241814 nonlinear bit operations for 511-bit multiplica-
tion, and 206088 nonlinear bit operations for reduction modulo p, for a total of 447902 nonlin-
ear bit operations for multiplication modulo p.

Generic conversion to a quantum algorithm (see Section 9.11.4) produces 14 · 447902 =

6270628T -gates. ThisT -gate count is approximately 48 times larger than the cost “217” claimed
in [BS18, Table 6]. The ratio is actually closer to 100, since [BS18] claims to count “Clifford+T”
gates while we count only T -gates. We do not claim that the generic conversion is optimal, but
there is no justification for [BS18] using an estimate for the costs of multiplication in a binary
field as an estimate for the costs of multiplication in Fp.

Squaring. For CSIDH-512, we use 143508 nonlinear bit operations for 511-bit squaring, and again
206088 nonlinear bit operations for reduction modulo p, for a total of 349596 nonlinear bit op-
erations for squaring modulo p. This is about 78% of the cost of a general multiplication, close
to the traditional 80% estimate.

Other techniques. Montgomery multiplication [Mon85] computes xy/2b modulo p, using a
multiple of p to clear the bottom bits of xy. This has the same asymptotic performance as clear-
ing the top bits; it sometimes requires extra multiplications and divisions by 2b modulo p but
might be slightly faster overall.

180 QUANTUM CIRCUITS FOR CSIDH

9.13.3 – Addition. A standard speedup for many software platforms is to avoid reductions
after additions. For example, to compute (x+ y)z modulo a 511-bit p, one computes the 512-bit
sum x+ y, computes the 1023-bit product (x+ y)z, and then reduces modulo p.

However, bit operations are not the same as CPU cycles. An intermediate reduction of x+ y

modulop (using the last step of the reduction procedure explained in Section 9.13.1, a conditional
subtraction of p) involves relatively few bit operations, and saves more bit operations because
the multiplication and reduction are working with slightly smaller inputs.

9.13.4 – Exponentiation with small variable exponents. Our isogeny algorithms involve
various computations xe mod p where e is a variable having only a few bits, typically under 10

bits.
To compute xe mod p where e = e0 + 2e1 + 4e2 + · · · + 2b−1eb−1, we start with xeb−1 ,

square modulo p, multiply byxeb−2 , square modulo p, and so on through multiplying byxe0 . We
compute each xei by using the bit ei to select between 1 and x; this takes a few bit operations
per bit of x, as in Section 9.13.1.

Starting at b = 4, we instead use “width-2 windows”. This means that we perform a se-
quence of square-square-multiply operations, using two bits of e at a time to select from a pre-
computed table of 1, x, x2 mod p, x3 mod p. For example, for 10-bit exponents, we use 9 squar-
ings and 5 general multiplications.

None of the CSIDH parameters that we tested involved variable exponents e large enough to
justify window width 3 or larger.

9.13.5 – Inversion. We compute the inverse ofx inFp asxp−2 mod p. This is different from
the situation in Section 9.13.4, in part because the exponent here is a constant and in part because
the exponent here has many more bits.

We use fractional sliding windows to compute xp−2 mod p. This means that we begin by
computing x2, x3, x5, x7, x9, . . . , xW modulo p, where W is a parameter; “fractional” means
that W + 1 is not required to be a power of 2. We then recursively compute xe as (xe/2)2 if e
is even, and as xr times xe−r if e is odd, where r ∈ {1, 3, 5, 7, 9, . . . ,W} is chosen to maximize
the number of 0 bits at the bottom of e − r. For small e we use some minor optimizations lis-
ted in [BL08, Section 3]: for example, we compute xe as xe/2−1xe/2+1 if e is a multiple of 4 and
e ≤ 2W − 2.

We chooseW as follows. Given a b-bit target exponent e, we automatically evaluate the cost
of the computation described above for each oddW ≤ 2b+ 3. For this evaluation we model the
cost of a squaring as 0.8 times the cost of a general multiplication, without regard to p. We could
instead substitute the exact costs for arithmetic modulo p.

For CSIDH-512, we use 537503414 bit operations for inversion, including 220691666 nonlin-
ear bit operations. HereW is chosen as 33. There are 507 squarings, accounting for 507·349596 =

177245172 nonlinear bit operations, and 97 general multiplications, accounting for the remain-
ing 97 · 447902 = 43446494 nonlinear bit operations.

Batching inversions. We use Montgomery’s trick [Mon87] of computing 1/y and 1/z by first
computing 1/yz and then multiplying by z and y respectively. This reduces a batch of two in-
versions to one inversion and three multiplications; a batch of three inversions to one inversion
and six multiplications; etc.

Inversion by exponentiation allows input 0 and produces output 0. This extension of the
inversion semantics is often convenient for higher-level computations: for example, some of
our computations sometimes generate input 0 in settings where the output will later be thrown

9.13. MODULAR ARITHMETIC 181

away. However, Montgomery’s trick does not preserve these semantics: for example, if y = 0

and z 6= 0 then Montgomery’s trick will produce 0 for both outputs.
We therefore tweak Montgomery’s trick by replacing each input 0 with input 1 (and repla-

cing the corresponding output with 0; we have not checked whether any of our computations
need this). To do this with a constant sequence of bit operations, we compare the input to 0 by
ORing all the bits together, and we then XOR the complement of the result into the bottom bit
of the input.

Eliminating inversions. Sometimes, instead of dividing x by z, we maintain x/z as a fraction.
This skips the inversion of z, but usually costs some extra multiplications. We quantify the
effects of this choice in describing various higher-level computations: for example, this is the
choice between “affine” and “projective” coordinates for elliptic-curve points in Section 9.3.2.

The Legendre symbol. The Legendre symbol of xmodulo p is, by definition, 1 if x is a nonzero
square modulo p; −1 if x is a non-square modulo p; and 0 if x is divisible by p. The Legendre
symbol is congruent modulo p to x(p−1)/2, and we compute it this way.

The cost of the Legendre symbol is marginally smaller than the cost of inversion. For ex-
ample, for CSIDH-512, there are 506 squarings and 96 general multiplications, in total using
535577602 bit operations, including 218988158 nonlinear bit operations.

Other techniques. It is well known that inversion in Fp via an extended version of Euclid’s al-
gorithm is asymptotically much faster than inversion via exponentiation. Similar comments
apply to Legendre-symbol computation.

However, Euclid’s algorithm is a variable-time loop, where each iteration contains a variable-
time division. This becomes very slow when it is converted in a straightforward way into a
constant-time sequence of bit operations. Faster constant-time variants of Euclid’s algorithm
are relatively complicated and still have considerable overhead; see, e.g., [Bos14] and [RNSL17,
Section 3.4].

We encourage further research into these constant-time algorithms. Sufficiently fast inver-
sion and Jacobi-symbol computation could save more than 10% of our overall computation time.

9.13.6 – Fewer qubits. In this subsection we look beyond our primary cost metric and con-
sider some of the other costs incurred by integer arithmetic.

Consider, e.g., the sequence of bit operations described in Section 9.13.5 for inversion in the
CSIDH-512 prime field: 537503414 bit operations, including 220691666 nonlinear bit operations.
A generic conversion (see Section 9.11.3) produces a reversible computation using 2·220691666 =

441383332 Toffoli gates.
It is important to realize that this reversible computation also uses 537503414 bits of in-

termediate storage, and the corresponding quantum computation (see Section 9.11.4) requires
537503414 qubits. The factor 2 mentioned in the previous paragraph accounts for the cost of
“uncomputation” to recompute these intermediate results in reverse order; all of the results are
stored in the meantime. Presumably many of the linear operations can be carried out in place,
reducing the intermediate storage, but this improvement is limited: about 40% of the bit oper-
ations that we use are nonlinear. The number of qubits is even larger for higher-level computa-
tions, such as our algorithms for the CSIDH group action.

In traditional non-reversible computation, the bits used to store intermediate results in one
multiplication can be erased and reused to store intermediate results for the next multiplica-
tion. Something similar is possible for reversible computation (and quantum computation), but
one does not simply erase the intermediate results; instead one immediately uncomputes each

182 QUANTUM CIRCUITS FOR CSIDH

multiplication, doubling the cost of each multiplication. The inversion operation uses many of
these double-cost multiplications and accumulates its own sequence of intermediate results,
which also need to be uncomputed, again using the double-cost multiplications. To summar-
ize, this reuse of bits doubles the number of Toffoli gates used for inversion from 441383332 to
882766664. Similar comments apply to qubits and T -gates.

The intermediate space used for multiplication outputs in inversion, in scalar multiplication,
etc. can similarly be reused, but this produces another doubling of costs. Even after these two
doublings, our higher-level computations still require something on the scale of a million qubits.

Quantum algorithms are normally designed to fit into far fewer qubits, even when this means
sacrificing many more qubit operations. For example — in the context of applying Shor’s attack
to an elliptic curve defined over a prime field — Roetteler, Naehrig, Svore, and Lauter [RNSL17,
Table 1] squeeze b-bit reversible modular multiplication into

• 5b+ 4 bits using approximately (16 log2 b− 26.3)b2 Toffoli gates, or
• 3b+ 2 bits using approximately (32 log2 b− 59.4)b2 Toffoli gates.

These are about 224.87 or 225.83 Toffoli gates for b = 511, far more than the number of Toffoli
gates we use.

We focus on the challenge of minimizing the number of nonlinear bit operations for the
CSIDH class-group action. Understanding the entire tradeoff curve between operations and
qubits — never mind more advanced issues such as parallelism (Section 9.11.5) and communic-
ation costs (Section 9.11.6) — goes far beyond the scope of this chapter. See [PRM17] for some re-
cent work on improving these tradeoffs for reversible Karatsuba multiplication; see also [Che16],
which fits Karatsuba multiplication into fewer bits but does not analyze reversibility.

Chapter 10

CCA security of lattice-based encryption
with error correction

This chapter is for all practical purposes identical to the paper HILA5 Pindakaas: On the CCA se-
curity of lattice-based encryption with error correction [BGLP18] authored jointly with Daniel J. Bern-
stein, Leon Groot Bruinderink, and Tanja Lange, which was published at Africacrypt 2018.

10.1 — Introduction

HILA5 [Saa17b] is a public-key scheme designed by Saarinen and published at SAC 2017. It was
submitted as a “Key Encapsulation Mechanism and Public Key Encryption Algorithm” [Saa17a]
to NIST’s call [NIST16] for post-quantum proposals. HILA5’s design is based on Ring Learn-
ing With Errors (RLWE) over NTRU NTT rings. HILA5 takes the same ring parameters as New
Hope [ADPS16] and changes the reconciliation method by which Alice and Bob achieve the same
key to get a much lower chance of decryption failures.

The HILA5 submission [Saa17a] states

This design also provides IND-CCA secure KEM-DEM [CS03] public key encryption if used
in conjunction with an appropriate AEAD [Rog02] such as NIST approved AES256-GCM
[FIP01, Dwo07].

In this chapter we show that HILA5 is not CCA secure: We compute Alice’s secret key by sending
her multiple encapsulation messages and using her answers to determine whether her decapsu-
lated shared secret matches a certain guess or not. Our attack works independently of whether
an AEAD is used or not and despite the error correcting code introduced in HILA5.

We have fully implemented our attack and experimentally verified that it works with high
probability. We use the HILA5 reference implementation for Alice’s part and also to verify that
the retrieved secret key works for decryption. We use a slightly modified version of the same
software for computations on the attacker’s side; of course the attacker need not follow the com-
putations an honest party would.

Acknowledgement. We thank Christine van Vredendaal for helpful discussions.

10.1.1 – Related work. Ajtai–Dwork [AD97] and NTRU [HPS98] are the oldest lattice-based
encryption systems. In 1999 Hall, Goldberg, and Schneier [HGS99] developed a reaction attack
which recovers the Ajtai–Dwork private key by observing decryption failures for suitably crafted
encryptions to the public key. They wrote “We feel that the existance of these attacks effect-
ively limits these ciphers to theoretical considerations only. That is, any implementation of the
ciphers will be subject to the attacks we present and hence not safe.”

184 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Hoffstein and Silverman [HS00] adapted the attack to NTRU. As a defense, they suggested
modifying NTRU to use the Fujisaki–Okamoto transform [FO99]. For a system without decryp-
tion failures, this transform turns a CPA-secure system into a CCA-secure one. At the same
time this complicates and slows down the cryptosystem. For NTRU, the transform turns out
to still allow attacks that exploit occasional decryption failures induced by valid ciphertexts; see
[How+03].

New Hope [ADPS16] is a key-encapsulation mechanism (KEM), presented as a key-exchange
protocol. It allows occasional decryption failures for valid ciphertexts, and explicitly avoids the
“changes” that would be required for the Fujisaki–Okamoto transform. To prevent reaction at-
tacks and other chosen-ciphertext attacks by a malicious Bob, New Hope requires using ephem-
eral keys, meaning keys that change with every execution of the protocol. The New Hope paper
warns that reusing a public key in multiple protocol runs (“key caching”) would be “disastrous
for security”, although it does not describe an attack.

Fluhrer [Flu16] showed the details of how to attack key reuse in a similar key-exchange pro-
tocol. Followup work [Din+17] extended the attack to more key-exchange protocols.

HILA5 is similar to New Hope, and still does not use the Fujisaki–Okamoto transform. HILA5
includes an error-correction step that practically eliminates decryption failures for valid cipher-
texts. HILA5 does not warn against key caching: on the contrary, the most natural interpretation
of the HILA5 security claims is that HILA5 is secure against chosen-ciphertext attacks. See Sec-
tion 10.5. We published our results in December 2017; as of February 2018, the designer of HILA5
has not proposed an alternative interpretation of the security claims.

10.2 — Data flow in the attack

A KEM is defined by three algorithms. Key generation produces a secret key and a public key.
Encapsulation produces a ciphertext and a session key, given a public key. Decapsulation pro-
duces a session key or failure, given a ciphertext and a secret key. The HILA5 submission docu-
ment [Saa17a] gives details and reference code for a particular KEM, the “HILA5 KEM”.

Our attack is a key-recovery attack against the HILA5 KEM: the attacker, evil Bob, ends up
computing the secret key of a target Alice. This secret key gives the attacker the ability to run the
decapsulation algorithm using Alice’s secret key, and thus the ability to immediately decrypt
legitimate ciphertexts sent by other users to Alice.

Our attack is a chosen-ciphertext attack: evil Bob chooses ciphertexts to provide to Alice
(different from the legitimate ciphertexts), and learns something from observing the outputs of
Alice decapsulating those ciphertexts. Formally, the attack shows that the HILA5 KEM does not
provide IND-CCA2 security.

There are two important ways that the attack does not need the full power of a CCA2 de-
capsulation oracle. First, the attack is what is called a “reaction attack” in [HGS99] or a “sloppy
Alice attack” in [VDT02]: evil Bob has a guess for the output of each decapsulation, and learns
whether Alice’s actual decapsulation output matches this guess. Evil Bob does not need any
further information.

Second, evil Bob chooses all of his ciphertexts, and learns the secret key from Alice’s reac-
tions, before seeing the legitimate ciphertexts to decrypt. Formally, the attack shows not only
that the HILA5 KEM does not provide IND-CCA2 security, but also that it does not provide IND-
CCA1 security.

10.2.1 – Hashing the secret key does not stop the attack. One can easily stop key-recovery
attacks by defining HILA5Hash as follows. HILA5Hash key generation picks a uniform random

10.2. DATA FLOW IN THE ATTACK 185

32-byte string s, and then runs HILA5 key generation to obtain a public key, hashing s to gen-
erate all randomness used in HILA5 key generation. The HILA5Hash secret key is s. HILA5Hash
encapsulation is the same as HILA5 encapsulation. HILA5Hash decapsulation reconstructs the
HILA5 secret key from s (again running the HILA5 key-generation algorithm; alternatively, the
HILA5 secret key can be cached), and then runs the HILA5 decapsulation algorithm.

Unless the hash function is easy to invert, a key-recovery attack against HILA5 does not pro-
duce a key-recovery attack against HILA5Hash. However, this hashing does not prevent the at-
tacker from decrypting legitimate ciphertexts sent by other users to Alice.

10.2.2 – AEAD does not stop the attack. A PKE is defined by three algorithms. Key genera-
tion produces a secret key and a public key, as in a KEM. Encryption produces a ciphertext, given
a plaintext and a public key. Decryption produces a plaintext or failure, given a ciphertext and a
secret key.

The subtitle of the HILA5 submission is “Key Encapsulation Mechanism (KEM) and Public
Key Encryption Algorithm”. The submission document does not include a definition of a PKE, but
NIST had already stated before submission that it would automatically convert each submitted
KEM to a PKE using the following “standard conversion technique”: “appending to the KEM
ciphertext, an AES-GCM ciphertext of the plaintext message” where the AES-GCM key is “the
symmetric key output by the encapsulate function”. This is the standard Cramer–Shoup “KEM-
DEM” construction, using AES-GCM as the DEM. We write “HILA5 PKE” for the PKE that NIST
will automatically produce in this way from the HILA5 KEM.1

Breaking the IND-CCA2 security of a KEM does not necessarily imply breaking the IND-CCA2
security of a PKE obtained in this way. IND-CCA2 attacks against the KEM can see session keys
produced by decapsulation, whereas IND-CCA2 attacks against the PKE are merely able to see
the result of AES-GCM decryption using those keys.

However, our attack against the HILA5 KEM is also a key-recovery attack against the HILA5
PKE. It is important here that the attack is a reaction attack: what evil Bob needs to know is
merely whether a guessed session key is correct. Starting from this guessed session key, evil Bob
produces a valid AES-GCM ciphertext using this guess as an AES key. If decapsulation in fact pro-
duces this session key then AES-GCM decryption succeeds and produces the plaintext that evil
Bob started with. If decapsulation produces a different session key then AES-GCM decryption is
practically guaranteed to fail (anything else would be a surprising security flaw in AES-GCM),
so evil Bob sees a decryption failure from the PKE.

To summarize, evil Bob sees decryption failures from the PKE, and learns from this which
guesses were correct, which is the same information that evil Bob obtains from the KEM. Evil
Bob then computes the secret key from this information. Consequently, the HILA5 PKE does not
provide IND-CCA2 security, and does not even provide IND-CCA1 security.

10.2.3 – Black holes would stop the attack. Like other chosen-ciphertext attacks, our at-
tack is inapplicable to scenarios where the results of decapsulation and decryption are hidden
from the attacker. For example, if ciphertexts are sent to NSA’s public key, and if NSA hides the
results of applying its secret key to those ciphertexts, then an attacker outside NSA cannot use
our attack to compute NSA’s secret key. However, if NSA reacts to those results in a way that

1NIST actually deviates slightly from the KEM-DEM construction: it specifies a “randomly generated IV” for AES-
GCM, while Cramer and Shoup use a deterministic DEM. For consistency with the ciphertext sizes mentioned in
[Saa17a], we actually define “HILA5 PKE” to be the Cramer–Shoup construction using AES-GCM with an all-zero IV.
Switching to NIST’s construction would expand ciphertext sizes by 12 bytes using the default IV sizes for AES-GCM, and
would not affect our attack.

186 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

leaks to the attacker which ciphertexts were valid, then the attacker can compute NSA’s secret
key.

10.2.4 – The Fujisaki–Okamoto transform would stop the attack. We briefly outline a
more radical change to HILA5, which we call “HILA5FO”. HILA5FO ciphertexts are slightly larger
than HILA5 ciphertexts, decapsulation is more complicated, and decapsulation is extrapolated
(from reported HILA5 benchmarks) to be several times slower, but HILA5FO would stop our at-
tack.

The idea of the HILA5FO KEM is to reapply the encapsulation algorithm as part of decapsu-
lation, and check whether the resulting ciphertext is identical to the received ciphertext. This is
not a new idea: it is used in many other submissions to NIST (with various differences in details),
typically with credit to Fujisaki and Okamoto [FO99].

HILA5 does not provide any easy way to reconstruct the randomness used in encapsulation
(most importantly Bob’s b), so the HILA5FO KEM computes this randomness as a hash of a plain-
text recovered as part of decapsulation. The HILA5 KEM does not transmit a plaintext, so the
HILA5FO KEM is instead built from the HILA5 PKE.

Encapsulation in the HILA5FO KEM thus chooses a random plaintext, and encrypts this plain-
text using the HILA5 PKE (the HILA5 KEM producing a session key for AES-GCM) using a hash
of the plaintext to compute all randomness used inside the PKE. Decapsulation applies HILA5
PKE decryption (HILA5 KEM decapsulation producing a session key for AES-GCM decryption),
and checks that the resulting plaintext produces the same ciphertext.

Deriving a PKE from the HILA5FO KEM would involve two layers of AES-GCM, which can
be compressed to one layer as follows: place 32 bytes of randomness at the beginning of the
user-supplied plaintext, and then encrypt this plaintext using the HILA5 PKE, again using a hash
of the plaintext to compute all randomness used inside the PKE. The overall ciphertext size is
the original plaintext size, plus 32 bytes (the randomness), plus the HILA5 KEM ciphertext size,
plus 16 bytes (the AES-GCM authenticator), i.e., 32 bytes more than the HILA5 PKE. The main
cost in HILA5FO decryption (for short messages) is reapplying HILA5 KEM encapsulation, which
according to [Saa17a, Table 1] is five times slower than HILA5 KEM decapsulation.

10.3 — Preliminaries

This section describes the HILA5 scheme and Fluhrer’s attack on RLWE schemes.

10.3.1 – The HILA5 scheme. We describe the scheme as given in [Saa17a, Section 4.9] but
leave out formatting and NTT conversions. These are used in the attack implementation to in-
terface with the reference implementation but do not contribute to the security and hamper
readability.

The major computations take place in the ring R = Zq[x]/(xn + 1), where n = 1024 and
q = 12289. Alice’s secret key is a small, random polynomial a ∈ R, where small (here and in
the following) means that the coefficients are chosen from a narrow distribution around zero,
more precisely the discrete binomial distribution Ψ16 which has integer values in [−16, 16]. To
compute the public key she picks another small random polynomial e ∈ R and a random g ∈ R
and computesA = ga+ e. She publishes (g,A) and keeps a as her secret.

An honest Bob picks two random small polynomials b, e′ ∈ R and computes B = gb + e′

and y = Ab. Bob sendsB to Alice. The second value

y = Ab = (ga+ e)b = gab+ eb ≈ gab

10.3. PRELIMINARIES 187

is very close to what Alice can compute using her secret:

x = aB = a(gb+ e′) = gab+ e′a ≈ gab,

because a, b, e, e′ are all small.
A simple rounding operation to achieve a shared secret, such as taking the top bits of each

coefficient, will induce differences between Alice’s and Bob’s version with too high probability.
For example, Bob could take k[i] = b2 y[i]/qc and Alice could take k′[i] = b2x[i]/qc, where we
use t[i] to denote the ith coefficient of polynomial or vector t, but for indices with (gab)[i] ≈ 0

(or q/2) the error-terms can cause the values to flip to a different bit, i.e., k[i] 6= k′[i]. For this
rounding operation, we call elements of {0, q/2} the “edges”, as these are the values for which it
is probable that errors occur.

This is why Bob sends a second vector, a binary reconciliation vector c, to help Alice recover
the same k as Bob. Basically, this means that the scheme uses two pairs of edges. If y[i] was close
to one edge of a certain pair, Bob will choose the other pair of edges, so that Alice can still suc-
cessfully recover the shared secret. In previous work [Pei14], the reconciliation vector achieves a
successful shared secret with high probability, as long as |x[i]− y[i]| < q/8.

HILA5 differs in how these reconciliation bits are computed. For each coefficient y[i] of y Bob
computes k[i] = b2 y[i]/qc, c[i] ≡ b4 y[i]/qc mod 2, and

d[i] =

{
1 if |(y[i] mod bq/4e)− bq/8c| ≤ β
0 otherwise,

where β = 799. He then selects the first 496 positions i for which d[i] = 1 and restarts with fresh
b and e′ if there are fewer. Positions withd[i] = 1 are those for which it is likely that Alice and Bob
recover the same value. In other words, for these indices the value (gab)[i] is likely to be far away
from an edge, thus further reducing the probability of errors in the shared secret. (Note that the
description suggests to discard some positions if there are more than 496 such positions while
the code deterministically discards the later ones by setting d[j] = 0 for them.)

The encapsulation consists ofB, d, c, and an extra part r described below; here d covers the
full n positions while c can be compressed to those positions iwhere d[i] = 1.

Alice recovers the k[i] at the selected 496 positions by computing

k′[i] =
⌊
2 (x[i]− c[i] · bq/4e+ bq/8e mod q)/q

⌋
.

The HILA5 submission shows that k′[i] = k[i] with probability 1 − 2−36. Let k (resp. k′) be the
496-bit string given by the concatenation of the k[i] (resp. k′[i]).

The role of r is not well described but the HILA5 design overview says that is an encrypted
encoding of a part of k. It is computed by splitting k as k = m‖z, where m gets the first 256

bits and z the remaining 240 bits. HILA5 uses a custom-designed error-correcting code XE5 that
corrects at least 5 errors to compute a 240-bit checksum s of m and then computes r = s ⊕ z,
where⊕ denotes bitwise addition (XOR).

Alice computes k′ = m′‖z′, the checksum s′ on m′, and applies the XE5 error correction to
m′, s′, z′ and r to correctm′ tom.

10.3.2 – Fluhrer’s attack. The chosen-ciphertext attack on HILA5 that we present is a vari-
ant of the following attack against key reuse in RLWE-based key exchange protocols presented
by Fluhrer in 2016 [Flu16]. This section assumes that Bob computes the c[i] and k[i] in a way
similar to the previous section. The d[i] were added in HILA5 and will be considered in the next
section.

188 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Recall that Alice’s version of the shared secret key is

gab+ e′a,

where g is some large public generator element, a and b are Alice’s and Bob’s small private keys,
and e′ is a small noise vector chosen by Bob. This version of the shared secret differs from Bob’s
by some small error, hence they need to employ a reconciliation mechanism to arrive at the same
secret bit string.

The general strategy of an evil Bob is to artificially force one (say, the first) coefficient of gab
to be close to the edge M between the intervals that are mapped to bits 0 and 1 during recon-
ciliation. An honest user would set the reconciliation bit c[0] in that case, so Alice would use
another mapping that is less likely to produce an error; but evil Bob does not. Since evil Bob
proceeds honestly except for the first bit, he knows two possibilities for Alice’s key, hence he can
query Alice with one of these guesses and distinguish between 0 and 1 based on her reaction. If
we assume for the moment that evil Bob can choose, hence knows, (gab)[0], this tells him that
(e′a)[0] lies in a certain interval.

After a few queries using binary search with varying values for (gab)[0], evil Bob knows the
exact distance of (e′a)[0] from the edge, and if he sets e′ = 1, this distance is nothing but the
first coefficient of Alice’s secret key a. Note that in Fluhrer’s setting the edge M is at zero and
he uses bwith (gab)[0] = 1, hence evil Bob can just multiply that b by small distances to obtain
a prescribed (gab)[0] when searching for (e′a)[0]. In our adaptation of the attack to HILA5, this
step is more involved; see Section 10.4.2.

One could apply this method individually to each coefficient to extract Alice’s full secret key.
However, being able to recover the coefficient at one position is enough: due to the structure of
the underlying ring, evil Bob can shift the ith coefficient of a into the constant term of e′a by
setting e′ to−xn−i, i.e., a vector with one entry of−1 and 0 elsewhere.

We now come back to the assumption made above. Notice that evil Bob does not a priori
know a vector b ∈ R such that (gab)[0] = 1, but he can still reasonably guess one: Alice’s public
key is ga+ e for small vectors a and e, hence if b is a small low-weight vector such that (b · (ga+

e))[0] is close to 1, there is a good chance that in fact (gab)[0] = 1. Thus, while evil Bob does not
have a deterministic method to find an “evil” b, he can still just make educated guesses based on
Alice’s public key until he finds one that works. Finding b ∈ R with (b · (ga+ e))[0] close to 1 is
an offline computation using only Alice’s public key; testing for (gab)[0] = 1 requires interaction
with Alice.

There are several follow-ups to Fluhrer’s paper, e. g. the recently posted [Din+17], but a small
and new generalization of Fluhrer’s attack is sufficient to attack HILA5.

10.4 — Chosen-ciphertext attack on HILA5

In this section, we describe how we circumvent the error-correction code and how to adapt
Fluhrer’s attack to the HILA5 case.

10.4.1 – Working around error correction. The HILA5 construction includes XE5 as an
error-correcting code that is applied to the shared secret after decapsulation. Both Alice and
Bob compute their version of a redundancy check, which will help Alice to correct up to 5 errors
in the shared secret. The redundancy part r is divided into ten subcodewords r = r0, . . . , r9 of
variable sizes. For the purpose of the attack, these sizes do not matter, but we use the same nota-
tionLi for the size, as in the HILA5 paper. This means we can index each ri = r(i,0) . . . r(i,Li−1)

for i ∈ {0, . . . , 9}.

10.4. CHOSEN-CIPHERTEXT ATTACK ON HILA5 189

Bob first computes his part of the HILA5 encapsulation, i.e., he computes his version of the
shared secret, selects the indices that are safe to use by Alice and computes the reconciliation
vector. The last 240 bits of Bob’s shared secret are used in XE5 error-correction. From these bits,
Bob constructs his redundancy check r′, and sends this as part of the ciphertext.

Upon receiving Bob’s ciphertext, Alice first computes her part of the HILA5 decapsulation,
i.e., she computes her version of the shared secret. Then she computes her own redundancy
check r and computes the distance r∆ with Bob’s r′ from the ciphertext:

r∆ = r′ ⊕ r

To determine which bits in the shared secret are erroneous, Alice determines a weight value
w∆
k ∈ [0, 10] for each of the 256 bits by the following formula:

w∆
k = r∆

0,bk/16c +

9∑
j=1

r∆
j,k mod Lj

Now, if a single bit k of Alice’s shared secret is flipped, it means w∆
k = 10 [Saa17a, Lemma 2],

and it is therefore detectable and correctable by Alice. Moreover, it is shown that XE5 corrects
bit k as long as w∆

k ≥ 6 [Saa17a, Theorem 1], which means XE5 can correct at least 5 bits in the
shared secret. This means that applying Fluhrer’s original attack directly to HILA5 will not work,
as Fluhrer’s original attack depends crucially on the attacker’s ability to detect single-bit errors
in Alice’s version of the shared secret. Thus, to apply Fluhrer’s attack, we have to work around
these error-correction abilities.

In the attack described in the next section, we focus on inducing errors only in the first bit
k = 0 of the shared secret. This means the attacker evil Bob needs to force w∆

0 to be less than
6, as this means XE5 is no longer capable of correcting the first bit. However, evil Bob needs to
leave the remaining error-correction in place, otherwise he still does not know if the first bit was
the only flipped bit. In order to do that, evil Bob needs to change his redundancy check r′ to do
exactly that. As w∆

0 is obtained by summing up the first bits of the subcodeword distances r∆
i ,

he can flip any 5 of the bits labeled r′(0,0) through r′(9,0) to force w∆
0 < 6. Our attack flips the

first 5 of these bits. This means in the following section we consider the issue of error-correction
solved and can directly apply a modification of Fluhrer’s attack.

10.4.2 – Details of the attack. This section elaborates evil Bob’s approach to recover Alice’s
secret key. As mentioned before, the general procedure mimics Fluhrer’s attack (Section 10.3.2).
The major steps are:

1. Guess a small low-weight secret b0 such that (gab0)[0] is at the edgeM .

2. For each δ ∈ {−16, . . . , 16}, compute bδ such that (gabδ)[0] = M + δ.

3. For each target coefficient of Alice’s secret:

a) Choose e′ such that (e′a)[0] is the target coefficient.

b) Perform a binary search using the bδ to recover the target coefficient.
(Alice’s coefficient (gabδ + e′a)[0] maps to a 1 bit iff (−e′a)[0] > δ.)

4. If the results look “bad” after recovering a few coefficients in this way, the guess for b0 was
probably wrong and evil Bob should start over at step 1.

190 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Note that for each oracle query, i.e., for every interaction with Alice, Bob proceeds honestly except
for using specially crafted bδ and e′, setting d0 = c0 = 1, and flipping a few bits in the error
correction as described in Section 10.4.1. We now explain and analyze the steps above in more
detail.

Forcing coefficients near the edge. In HILA5’s reconciliation mechanism, there is no edge at zero
for any choice of reconciliation bit, hence Fluhrer’s attack does not apply without modifications.
We chose to set the reconciliation bit c0 to 1 and attack the edge at

M = bq/8e = 1536.

To perform the binary search for Alice’s secret coefficients in the attack, we need to find small
low-weight vectors bδ such that

(gabδ)[0] = M + δ

for all δwith |δ| ≤ 16. (As mentioned in Section 10.3.2, Fluhrer’s evil Bob attackedM = 0, thus he
could guess b1 based on Alice’s public key and set bδ = δ · b1.) One could of course try to guess
each bδ individually based on Alice’s public key, but as we want to get all bδ right at the same
time, this has exponentially low success probability. Instead, we make use of a special property
of theM used in HILA5: The inverse

M−1 mod q = −8

is small.2 Hence, as soon as evil Bob successfully guessed b0, he may simply set

bδ = (1 + δM−1 mod q) · b0.

In our case, we choose b0 with only two non-zero coefficients from {±1}, thus bδ will have only
two non-zero coefficients bounded by 1+8δ. This property is necessary to make sure evil Bob can
actually know what Alice’s version of the shared secret will be (except for the target bit that leaks
information): If the coefficients of bδ are too large, the error eb − e′a between Alice’s and Bob’s
shared secrets becomes too large to recover from and their secrets will mismatch no matter what
the value of the attacked bit is. In theory, with these parameters we still expect a tiny possibility
of unintended errors, but this happens so rarely that it is not an issue in practice. If it ever does
occur, Bob can detect that his recovered secret key is wrong and simply start over with a new b0.

When evil Bob chooses a random b0 with two non-zero coefficients in {±1} and such that
(Ab0)[0] = M , the probability that in fact (gab0)[0] = M holds is just the probability that two
Ψ16-distributed values sum to zero:

32∑
i=0

(
32

i

)
2
/264 ≈ 9.9%,

hence he can expect to find a good b0 after about 10 tries. Since A can be approximated by a
uniformly distributed sequence over Zq , the expected number of±1-combinations of two coef-
ficients ofAwhich equalM is (

1024

2

)
· 4/q ≈ 170.

Hence, the probability that evil Bob exhausts this pool of choices without finding a good b0 is
roughly 2−25.

2Note that this also holds for some other “natural” choices ofM as rounded fractions ofq, but it is not automatically
true for any conceivableM .

10.4. CHOSEN-CIPHERTEXT ATTACK ON HILA5 191

(If this ever happens, then evil Bob can still retry the attack with a larger interval, i.e., search
for b0 with |(Ab0)[0]−M | ≤ K for some smallK . This would in theory work for a wider range
of keys, but the expected number of wrong guesses grows slightly. One could also choose three
non-zero coefficients in b0, although this increases the chance of unintended errors in Alice’s
shared secret. We have not had any problems withK = 0 in practice.)

Detecting bad guesses. After choosing b0 based on Alice’s public key as described above, evil
Bob may just go ahead and try to recover Alice’s secret key using that b0. If it is correct, he will of
course find a sequence that looks like it was sampled from the Ψ16 distribution. If b0 is bad, say,
(gab0)[0] = M + γ for some small γ 6= 0, then

(gabδ)[0] = M + δ + γ − 8δγ,

hence typically (gabδ)[0] is considerably smaller thanM if δ > 0 and considerably larger if δ < 0;
in both cases Alice’s secret (e′a)[0] is dominated by δ + γ − 8δγ, which means the oracle out-
put does not depend on the secret. This implies the binary search will always converge to 0 or
−1 when b0 is bad. (For δ = 0, the behavior does depend on (e′a)[0] since γ is small, so both
cases really occur.) Evil Bob can detect this failure mode by determining a few coefficients and
checking whether all of them are in {0,−1}. If this is the case, evil Bob simply starts over with
a new b0. The probability that an actual secret key starts with a sequence of k coefficients from
{0,−1} is about 0.27k , hence setting k = 8 reduces the probability of a false negative to roughly
2−15. There is a small probability of false positives if evil Bob uses only this heuristic (e. g., when
|γ| = 1), but this can easily can be detected using statistical methods (the recovered sequence
will not be Ψ16-distributed) or by simply testing the obtained secret key in the end and running
the attack again if it failed. In practice the heuristic works fine.

The number of queries. Assuming we already have a good b0, the binary search needs an ex-
pected 5 + ε queries to the oracle to recover one coefficient.3 Since evil Bob decides whether he
has a good b0 based on the first few coefficients that he obtains using that b0, he usually wastes
a few hundred queries on guesses for b0 that turn out to be useless: If he looks at the first 8 coef-
ficients obtained from each b0 as suggested above, this adds expected≈ 400 queries to the 5120

needed to recover all the coefficients. In summary, evil Bob will with overwhelming probability
recover Alice’s secret key in less than 6000 queries.

Evil Bob can trade computation for a smaller number of queries: retrieve some coefficients,
and reduce the original lattice problem to low enough dimension to solve by computation.

10.4.3 – Implementation. We implemented a proof of concept of the attack in Python, re-
using portions of the HILA5 reference implementation via the ctypes library. The only modific-
ations we made to the reference implementation were making some functions non-static to be
able to call them from within Python, and adding extra parameters to the encapsulation func-
tion (not used by Alice) such that evil Bob can override his private values b and e′. The complete
attack script can be found at https://helaas.org/hila5-20171218.tar.gz. As expected, we
have never observed the attack script failing to recover Alice’s key. The empirical number of
queries matches the theoretical prediction made above.

3The ε arises from the fact that Ψ16 samples from 33 > 25 distinct values, but the extremal values occur so rarely
that ε ≈ 2−27.

https://helaas.org/hila5-20171218.tar.gz

192 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

10.5 — HILA5 security claims

In this section, we discuss our interpretation of security claims made by both the paper and NIST
submission of HILA5, which motivated this chapter.

NIST does not require IND-CCA2 security for KEM and PKE submissions. Instead it requires
submissions to say whether they are aiming for IND-CCA2 security or merely for IND-CPA se-
curity.

IND-CPA security is adequate in the context of key exchange in TLS, if a new public key is
generated for each TLS session. For example, New Hope [ADPS16] appears to be safe for use
in TLS. New Hope does not aim for IND-CCA2 security, and specifically warns against using a
key more than once: “No key caching . . . it is crucial that both parties use fresh secrets for each
instantiation”.

We emphasize that our attack does not break the IND-CPA security of HILA5. If HILA5 were
clearly labeled as aiming merely for IND-CPA security then our attack would merely be a cau-
tionary note, showing the importance of not reusing keys.

However, HILA5 went beyond claiming IND-CPA security. There are some undefined words
in the HILA5 security claims, but the most natural interpretation of the security claims is that
the HILA5 PKE provides IND-CCA2 security. There is certainly a high risk of the claims being
interpreted in this way by potential users. Our attack shows that the HILA5 PKE does not provide
IND-CCA2 security.

There is even a risk of users thinking that the HILA5 KEM is being claimed to provide IND-
CCA2 security.4 The HILA5 submission document does not say that the HILA5 KEM security
target is merely IND-CPA. Our attack shows that the HILA5 KEM does not provide IND-CCA2
security.

We give four quotes from [Saa17a] to explain why the HILA5 security claims are most natur-
ally interpreted as claiming IND-CCA2 security for the HILA5 PKE. We have not found anything
in [Saa17a] or [Saa17b] indicating a different interpretation.

[Saa17a, Section 1]: The HILA5 KEM can be adopted for public key encryption in straight-
forward fashion. We recommend using the AES-256-GCM AEAD [FIP01, Dwo07] in con-
junction with the KEM when public key encryption functionality is desired.

The details of this “conjunction” are not formally defined. The most natural interpretation is
that this is the HILA5 PKE, using the session key produced by the HILA5 KEM as the AES-GCM
key.

[Saa17a, Section 4.1]: NIST requires at least IND-CPA [BDPR98] security from a KEM
scheme (Section 1.6). . . . The design also provides IND-CCA secure KEM-DEM [CS03]
public key encryption if used in conjunction with an appropriate AEAD [Rog02] such as
NIST approved AES256-GCM [FIP01, Dwo07]. These properties are derived from [Pei14].

This is a claim of IND-CCA security for a PKE. “IND-CCA” in the literature usually means IND-
CCA2, although sometimes it means merely IND-CCA1. The PKE is not formally defined, but
again the most natural interpretation is simply that the session key produced by the HILA5 KEM

4Adam Langley posted an online table of speeds for announced KEMs submitted to NIST. He wrote “I only want to
list CCA-secure KEMs here”. He listed HILA5, and accepted a correction from the HILA5 author regarding the speed of
HILA5. After the correction, HILA5 had the fastest decapsulation in the entire table.

10.5. HILA5 SECURITY CLAIMS 193

is the AES-GCM key used to encrypt a user-supplied plaintext. Our attack shows that this PKE
does not even provide IND-CCA1 security, let alone IND-CCA2 security.

Our attack does not work against what we call the HILA5FO PKE (see Section 10.2.4), a more
complicated PKE using the Fujisaki–Okamoto transformation. This transformation is also men-
tioned in “[Pei14]” as a way to achieve IND-CCA security. It is conceivable that the HILA5 sub-
mission was alluding to a PKE of this type. However, this interpretation does not appear to be
compatible with the statement “Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC”
in [Saa17a, Section 6]; the HILA5FO ciphertext size is 32 bytes larger than this.

[Saa17a, Section 4.9]: For active security we suggest that K is used as keying material
for an AEAD (Authenticated Encryption with Associated Data) [Rog02] scheme such as
AES256-GCM [Dwo07, FIP01] or Keyak [BDP+16] in order to protect message integrity.

Here “K” is defined as the session key produced by the HILA5 KEM. In the context of KEMs and
PKEs, “active security” is normally interpreted as IND-CCA2 security, although it might have
other interpretations. The authentication in AES-GCM prevents modifications to the message
encrypted by AES-GCM, but this is not enough to stop active attacks, since it does not protect
the underlying KEM.

[Saa17a, Section 6.1]: HILA5 is essentially drop-in compatible with current public key
encryption applications. There are no practical usage restrictions.

Security against chosen-ciphertext attacks is essential for a wide range of current PKE applica-
tions, so this would appear to include a claim of CCA security for the HILA5 PKE. However, our
attack retrieves the secret key from the HILA5 PKE.

Chapter 11

Recent developments

In this short chapter, we account for some developments that occurred after the works this thesis
is based upon were first written, and hence may not have received sufficient appreciation in the
earlier chapters.

11.1 — CSIDH is not an ideal group action

Chapter 3 focused on the application of CSIDH to Diffie–Hellman style (non-interactive) key
exchange, which actually requires less than a full-fledged group action. More concretely, the
protocol does not involve composing group elements; it merely acts by elements sampled from a
convenient distribution. However, more advanced protocols based on group actions do require
the full functionality of a group, including efficient composition of arbitrary elements. It may
seem at first that this is trivial in CSIDH: The ideals in CSIDH are of the form

∏
leii with exponent

vectors e∈Zn, thus (cf. Chapter 4) the CSIDH group action can be viewed as an action of (Zn,+)

which happens to factor through cl(O), and composition in Zn is simply addition. However,
even for short vectors such as those sampled according to Section 3.4, composing just a few of
these vector additions can make the size of the coefficients grow very quickly, and unfortunately,
the cost of Algorithm 3.2 has a strong (at least linear) dependency on the 1-norm of the exponent
vector. Thus, while it is obviously true that addition of group elements is efficient, the resulting
exponent vector may no longer admit efficiently computing its action on the isogeny graph.

This issue can be solved at the cost of an exponential precomputation phase as suggested by
Couveignes [Cou06]. Another, more recent take on the problem is based on ideas from [Bis12]:
CSI-FiSh (see [BKV19] and below) performs only subexponential precomputation, leading to
subexponential complexity for evaluating the action of ideals. While still inefficient in an asymp-
totic sense, this appears to be reasonably fast in practice [BKV19]. However, there are still no
known techniques for evaluating the action of arbitrary ideals in overall polynomial time.

11.2 — CSI-FiSh: Canonical exponent vectors

In Remark 3.9, we stated as an open problem to find an algorithm for representing the product of
two class-group elements given as CSIDH exponent vectors (cf. Section 11.1) in such a way that
the product does not reveal information about the factors. For instance, if the exponents are all
sampled independently from {−m, ...,+m} as suggested in Section 3.4, then any coefficient of
the sum greater than +m reveals that both summands must have a positive entry at that index.
Generalizing this simple example leads to much more statistically detectable leakage.

One way to thwart this issue is to truncate the probability space to a subset where everything
behaves uniformly; this is done using rejection sampling in SeaSign [DG19]. Unfortunately, des-
pite our improvements in Chapter 4, this approach is not very efficient, and may not satisfy the
requirements of many practical applications.

196 RECENT DEVELOPMENTS

Another avenue is taken by the signature scheme CSI-FiSh: It simply accepts the idea of
naïvely adding vectors together with no rejections, but rewrites the result into a canonical rep-
resentative using the relation lattice of the class group with respect to the chosen generators li.
Concretely, the relation lattice is the kernel Λ of the group homomorphism

Zn −→ cl(O), (e1, ..., en) 7−→
n∏
i=1

leii ,

and it is clear that the action of two CSIDH exponent vectors e, e′ ∈ Zn on the isogeny graph
is the same if and only if e′ ∈ e + Λ. To compute a canonical representative of the coset e + Λ

for some input vector e ∈ Zn, CSI-FiSh solves a closest-vector problem to find a vector k ∈ Λ

close to e, and the result of the rewriting step is a short vector e− k ∈ e+ Λ, which is used as a
canonical representative of e+ Λ.

Note that besides “canonicalizing” sums of exponent vectors, this approach also enables us
to sample uniformly at random in cl(O): For simplicity (but by no means necessarily), assume
that cl(O) is cyclic of order N with generator lj ; then we can sample from cl(O) uniformly at
random by picking a uniform u ∈ {0, ..., N−1}, letting e ∈ Zn be the exponent vector with all
zeroes except for coefficient u at index j, and applying the rewriting algorithm to e.

The (perhaps only) downside is that some of these steps are computationally expensive:
Computing the relation lattice means computing the class-group structure, which can be done in
subexponential time using an algorithm of Hafner–McCurley [HM89], and solving the closest-
vector problem during the rewriting step requires to precompute a short lattice basis which takes
time exponential in the dimension n. CSI-FiSh has managed to solve all these problems in prac-
tice for the smallest CSIDH parameter set (CSIDH-512; see Section 11.4 for security considera-
tions) and produced a proof-of-concept implementation taking less than 400 milliseconds to
sign and verify with this instantiation [BKV19].

11.3 — Slow isogenies may be a good thing

Interestingly, the problems described in Sections 11.1 and 11.2 are not just an obstacle: They can
also be used constructively as a hardness assumption for a cryptographic primitive known as
verifiable delay function (VDF), which has blockchain1 applications. Intuitively, it consists of a
function which is slow to evaluate (even using arbitrary parallelism), but once the output is
known, its correctness can be verified efficiently (potentially given a witness that is also gen-
erated by the evaluation algorithm). See [BBBF18] for a more detailed and formal description.

In the isogeny setting, such a construction can be obtained as follows [DMPS19]: Publish
an isogeny ϕ : E → E′ of large smooth degree, say `T for a small prime `, and also publish a
point P ∈ E of large prime order N together with its image ϕ(P) ∈ E′ under the isogeny. The
input to the VDF is a point Q ∈ E′ of order N , and evaluating the VDF means simply com-
puting the image ϕ̂(Q) of the input point Q under the dual isogeny ϕ̂. Doing so naïvely using
repeated `-isogeny steps clearly takes time Θ(T). To verify the output, anyone can compute the
two pairings eN (P, ϕ̂(Q)) and eN (ϕ(P), Q) and accept if and only if they match. Since taking
duals is the adjoint with respect to the Weil pairing, this procedure works if ϕ̂(Q) is correct. An
attacker would like to obtain ϕ̂(Q) without really going through the effort of evaluating ϕ̂ step
by step: One way of doing this is to precompute ϕ̂ on a basis of theN-torsion, then solve a two-
dimensional DLP on input Q, and simply return the appropriate linear combination of the pre-
computed images. Another attack avenue is to try and “shorten” the isogeny ϕ into an isogeny

1I said it!

11.4. QUANTUM ATTACKS ON CSIDH 197

with the same action onN-torsion that can be evaluated more efficiently. When using a CSIDH-
style instantiation (which is advantageous since it allows for very compact representations ofϕ),
finding such a shortcut essentially means going through the expensive computation decribed in
Section 11.2, which is infeasible for sufficiently large parameters. (Note that this primitive is not
post-quantum secure due to relying on the hardness of two-dimensional discrete logarithms,
which can be computed in polynomial time using Shor’s algorithm; see Section 2.6.2.)

11.4 — Quantum attacks on CSIDH

Starting with our publication of a preprint of the article [Cas+18] underlying Chapter 3, the
quantum security level of CSIDH has been the subject of some controversy. At that time, all
available sources stated only asymptotic security levels, which the first draft of [Cas+18] used
in a naïve way to come up with preliminary parameter-size estimates. The Asiacrypt version of
the paper (which Chapter 3 is based on) added an overview table covering the various estimates
existing in the literature at that point. Moreover, the decision to focus on a 512-bit instantiation
for the proof-of-concept implementation was in part made to ease comparison with earlier and
parallel work [Kie17; DKS18], which had used the same field size.2 The contemporary responses
to these initial estimates are summarized in Remark 3.13.

In February 2019, Kuperberg gave a presentation at the AIM workshop Quantum algorithms
for analysis of public-key crypto about his second — generalized and optimized — algorithm for
the abelian hidden-shift problem (see Section 2.6.3). The second algorithm does not improve
upon the complexity 2O(

√
logn) of the first algorithm (see Theorem 2.84), but the hidden con-

stants are smaller and the algorithm is much more configurable. While the article [Kup13] fo-
cuses primarily on asymptotic complexity, Kuperberg outlined several directions in which the
algorithm could be optimized in terms of concrete cost, including in particular ways to trade off
quantum for (presumably much cheaper) classical computation.

Peikert [Pei20] concretized these ideas and suggested example parametrizations of Kuper-
berg’s algorithm together with detailed cost estimates in a particular model of quantum compu-
tation. His conclusion is that the number of queries to the CSIDH oracle for breaking CSIDH-512
is only about 216, and that the dominating cost factor for breaking this parameter set is incurred
by the implementation of the group action in superposition, i.e., the component analyzed in
Chapter 9. This leads to a total CSIDH-512 attack cost estimate of 258 T-gate operations on ap-
proximately 240 qubits,3 while also using 248 bits of quantum-accessible classical storage.

Bonnetain and Schrottenloher [BS20] considerably updated their original preprint [BS18] to
rectify some of the shortcomings pointed out in [BLMP19], and the resulting conclusions are
similar to those of [Pei20], albeit focusing on different tradeoffs that allow for much more ex-
pensive classical computation on the quantum computer’s control hardware. Concretely, they
claim an attack on CSIDH-512 that performs 219 oracle queries using 271.6 T-gate operations on
215.3 qubits, and in addition requires 286 classical operations.

In December 2020, Chávez-Saab, Chi-Domínguez, Jaques, and Rodríguez-Henríquez pub-
lished a preprint [CCJR20] revisiting these cost estimates, including a more detailed analysis in
the depth × width (DW) cost metric. For CSIDH-512, they state a sieving cost of 221 oracle calls,

2Stolbunov’s PhD thesis [Sto12] discusses sizes up to 428 bits.
3The number of qubits used by the oracle is not mentioned in [Pei20], but to achieve the number of T-gates cited

from [BLMP19] in [Pei20], about the same number of qubits is required. Applying Bennett’s depth–width tradeoff (halv-
ing the number of qubits multiplies the time by 1.5; cf. Section 9.11) yields, for instance, an estimate of≈ 273.8 T-gates
on presumably much more realistic≈ 213 qubits.

https://aimath.org/workshops/upcoming/quantumalg/
https://aimath.org/workshops/upcoming/quantumalg/

198 RECENT DEVELOPMENTS

using 224 classical processors and 213 qubits, resulting in a total cost of 263 in the DW metric.
Note that this does not include the cost of oracle calls in superposition, which (cf. Chapter 9)
appear to be very significant.

Do these analyses imply that CSIDH-512 does not reach the attack costs required for the
“level 1” security category used by NIST for its post-quantum cryptography standardization pro-
ject [NIST16]? The cited sources affirm the answer is “yes”. However, coming up with a fair com-
parison remains difficult as NIST’s categories are phrased in terms of attacking AES-128 using
generic attacks. The relevant algorithms for AES are very different in nature from the Kuperberg
sieve, and (for lack of sufficiently advanced quantum hardware to run experiments on) it is at
present unclear how to accurately model the costs of accessing different kinds of memory, and
in particular the relative costs of quantum versus classical computation. (For example, [CCJR20]
states that classical processors and qubits are given “equal weight” in the cost metric, which can
only hold true in reality assuming colossal future improvements in quantum-computing tech-
nology in terms of both energy consumption and monetary investment.) In conclusion, while
it is clearly possible to compare the costs of breaking CSIDH-512 and AES-128 in some choice of
cost model, today’s evidence is perfectly consistent with both the scenario that even a single
CSIDH-512 oracle call in superposition incurs a higher real-world cost than breaking AES-128
using classical processors, as well as the scenario that CSIDH-512 will be broken within a minute
on a pocket quantum calculator.

11.5 — The DDH problem for CM actions

We have established in Chapter 6 that being able to reliably break the group-action analogue of
the computational Diffie–Hellman problem is sufficient to construct a quantum attack against
the group-action analogue of the discrete logarithm problem with only polynomial overhead.
(See Section 2.1.3 for some background.) However, this implies nothing about the hardness of the
decisional Diffie–Hellman problem. This knowledge gap was partially filled in 2020 by [CSV20],
which exhibits families of CM-action-based cryptosystems where one can efficiently solve DDH,
with no indication that this affects the security of CDH or DLP in any way. Luckily, CSIDH is not
a member of these (big) families where DDH is weak, and there are no known attacks against
DDH or CDH short of simply recovering the secret key first.

The DDH attack is based on the centuries-old mathematical framework of genus theory, which
relates to the two-torsion of ideal-class groups of imaginary quadratic number rings. It turns out
that some of this two-torsion structure remains accessible even after passing from ideals to el-
liptic curves by applying the CM action: Concretely, [CSV20] shows how to evaluate the maps
induced on È `k(O) by quadratic characters χ of cl(O) via the isomorphism from Theorem 2.55;
that is, given nothing but the curve [a]E0 it recovers the value of χ([a]).4 The computation re-
quires polynomial time and breaks DDH with significant advantage, very similar to the classical
example of computing Legendre symbols to solve DDH in F∗p.

The simple reason why the attack does not apply to CSIDH is that the class groups used in
CSIDH always have odd order, hence there simply are no non-trivial quadratic characters. For
systems where the attack does apply, a simple (but perhaps not computationally advantageous)
fix is to restrict private keys to a subgroup where all quadratic characters are constant, much like
DDH remains (pre-quantumly) unbroken in subgroups of F∗p of large prime order.

4In the situation depicted in Figure 5.1, the unique nontrivial quadratic character essentially reveals whether we
have jumped to the “opposite side” of the isogeny graph via [t] or not.

11.6. FASTER ISOGENY EVALUATION:
√

ÉLU 199

11.6 — Faster isogeny evaluation:
√

élu

It seems that until recently, many isogeny researchers took the assumption for granted that
Vélu’s formulas (Proposition 2.31) are optimal in the sense that computing a (separable) iso-
geny from its kernel must inherently take time linear in the degree. This belief may be motivated
in part by the fact that the object that is apparently being computed also has size linear in the
degree: Explicit defining polynomials for the isogeny require linear space, hence writing them
down will surely take at least linear time as well.

However, in most (if not all) known isogeny-based cryptographic protocols, the explicit de-
fining polynomials are of little interest, and the core operations used in cryptography seem to be
computing the image of a point under the isogeny and computing the coefficients of the codo-
main curve. Notice that the second task can be reduced to the first: Given a handful of points on
an elliptic curve known to be of a specific form (e.g. a Weierstraß curve) easily permits interpol-
ating the curve equation. Hence, the fundamental task is to compute the map

(E,P, `,Q) 7→ ϕP (Q) ,

where P,Q ∈ E are points, P has finite order `, and ϕP is a fixed isogeny with kernel 〈P 〉, and
there is no obvious lower bound for the complexity of this problem (except for the time it takes
to read the input).

Vélu’s original formulas [Vél71] and more modern and optimized versions following the same
idea [Ren18; MS16] use Θ(`) base-field operations to compute an `-isogeny. In 2020, the

√
élu

algorithm [BDLS20] has finally improved the complexity to Õ(
√
`) base-field operations, and

the method is founded on an adaptation of known techniques to quickly evaluate polynomials
whose roots are powers to the elliptic-curve setting. This is not just an asymptotic improve-
ment: The speedup begins to kick in at isogeny degrees relevant for CSIDH, and the proof-of-
concept implementation of [BDLS20] achieves a 1% speedup for CSIDH-512 with growing spee-
dup factors the larger the parameter sizes become, already reaching an 8% speedup for CSIDH-
1024. This is improved further in follow-up work [ACR20].

We remark that in principle, there is again no apparent reason for the complexity Õ(
√
`) to be

optimal. It does however seem that fundamental breakthroughs are needed to achieve isogeny
evaluation in (for instance) a logarithmic or even constant number of base-field operations.

11.7 — Hardened CSIDH implementations

Section 3.8 described a simple proof-of-concept implementation of CSIDH without any attempt
being made to resist side-channel attacks. Since then, several works on constant-time and/or
optimized implementations of CSIDH have appeared. We note that turning Algorithm 3.2 into
a constant-time algorithm in an efficient manner is non-trivial due to possible failures when
sampling rational points of small order `, and due to a potentially large (secret-dependent) search
space of evaluation strategies for chained isogenies.

We briefly survey some works on constant-time CSIDH. All numbers given are for CSIDH-512,
but note that the more recent works on the topic include bigger sizes in light of Section 11.4. In
2018, [MCR19] gave the first complete constant-time implementation of CSIDH by altering the
proof-of-concept implementation of Chapter 3. Constant-timeness caused an almost threefold
increase in runtime, and was achieved using generic branch-elimination techniques together
with some optimizations specific to CSIDH: Restricting private keys to non-negative exponents
to avoid case distinctions; “dummy isogenies”, which exploit the fact that Vélu’s formulas can be
repurposed to (almost) compute a scalar multiplication; and “SIMBA”, which reduces the time

200 RECENT DEVELOPMENTS

spent on scalar multiplications by processing isogenies in smaller batches when running (a vari-
ant of) Algorithm 3.2. (The latter optimization is also relevant for variable-time CSIDH imple-
mentations.) These ideas found continued use in [OAYT19], which however reintroduced neg-
ative exponents, yielding a speedup of close to 30%. Both of these algorithms were revisited
in [Cer+19], which improved the side-channel protections at the expense of some performance.
All the works mentioned so far rely on seemingly rather ad-hoc optimizations. The underlying
parameter spaces were formalized (in different ways) in [HLKA20] and [CR20], which phrase
finding good strategies formally as an optimization problem and give improved solutions with
speedups between 3% and 12%. Finally, the currently fastest constant-time CSIDH implementa-
tion was obtained in [ACR20] based on the

√
élu isogeny-evaluation algorithm (see Section 11.6).

It saves between 3% and 5% for CSIDH-512, but as mentioned in Section 11.6, the speedup grows
for bigger parameters (reaching around 25% for CSIDH-1792).

Given that the main disadvantage of CSIDH is its relatively bad performance, more work on
optimized and side-channel resistant implementations is definitely necessary and important.

11.8 — Repeated isogenies from radicals

All the algorithms mentioned in Section 11.7 still follow the general layout of Algorithm 3.2, in
the sense that they repeatedly sample points in the +1 or −1 eigenspace of Frobenius, project
them to `i-torsion subgroups, and push points through isogenies to compute several different
`i-isogenies using only one random point. Castryck, Decru, and Vercauteren [CDV20] propose
a radically different approach, which (specialized to the CSIDH setting) allows computing the
action of [l]e faster than computing the action of [l] independently e times when ` is small. They
achieve this by giving explicit formulas (involving polynomials and an `th root) for a rational
point of order ` on the curveE/〈P 〉whenP ∈ E is itself a rational point of order `, which allows
immediately applying [l] again using Vélu’s or the

√
élu formulas, without going through the

effort of random sampling and cofactor multiplication (with a failure chance) again.
The net gain of this approach is a speedup of 19% over the plain variable-time

√
élu-based

implementation of CSURF-512.5

5CSURF [CD20] is a slight variant of CSIDH that can use 2-isogenies in addition to odd `i by working with super-
singular elliptic curves on the surface of the 2-isogeny volcano.

Summary

Cryptography on Isogeny Graphs

This thesis contains a variety of results on isogeny-based cryptography.
Conventional algorithms for asymmetric operations like public-key encryption or digital

signatures rely on the (presumed) hardness of certain mathematical problems such as the fac-
torization of integers into primes or the discrete-logarithm problem (DLP). However, once suffi-
ciently powerful quantum computers become reality, some of the most commonly used under-
lying problems will be solvable in polynomial time using variants of a 1994 quantum algorithm
by Shor, which in turn breaks a large fraction of the cryptography used on the internet today.

One particular, relatively new approach to replace quantum-vulnerable algorithms is based
on isogenies between elliptic curves over finite fields. Isogenies are non-constant rational maps
which are also group homomorphisms. Their very rich mathematical structure gives rise to new
cryptosystems suitable as replacements for endangered algorithms, while (to the best of our
knowledge) offering post-quantum security.

This work spans both facets of cryptologic research, focusing on isogeny-based cryptography
in particular: It covers constructive contributions — building completely new functionality or
making cryptosystems more efficient to use in practice — as well as cryptanalysis, which helps
us understand the (in)security of these systems against powerful adversaries.

On the constructive side, we show how to construct an efficient one-way group action using
isogeny graphs of supersingular elliptic curves defined overFp, now known as CSIDH /"si:­saId/.
We also describe an improved, more efficient version of SeaSign, a signature scheme using such
group actions as a building block. Moreover, we give an algorithm to locate a supersingular curve
in the Fp-isogeny graph when given additional information about its ring of endomorphisms,
which can be seen as an Fp-analogue of an existing, very important algorithm for the Fp2 case
and may have both constructive and destructive applications. Lastly, we give a short proof that
the natural group-action analogues of the Diffie–Hellman and discrete-logarithm problems are
polynomial-time equivalent under quantum reductions.

On the cryptanalysis side, we extend and improve so-called torsion-point attacks that apply
to certain families of SIDH-like cryptosystems. We also give a summary of several other natural
ideas to attack SIDH and explain why each of them appears to fail. Finally, we analyze the cost of
evaluating the CSIDH group action on a quantum computer, an essential subroutine in a known
subexponential-time attack whose cost has a significant impact on the total attack complexity.

Curriculum Vitae

Lorenz Panny (or, in other words: I) was born in 1994 in Eggenfelden, Bavaria, Germany.
After graduating from König-Karlmann-Gymnasium Altötting in 2011 with a programming

project, he found himself struggling with the decision whether to study mathematics or com-
puter science, therefore he opted for the natural choice — both, at TU München. His computer
science studies ended in 2014 with a B.Sc. thesis on automated theorem proving at the Chair for
Logic and Verification. In mathematics, his focus converged towards (algorithmic) algebra, cul-
minating in a B.Sc. thesis on `-adic point counting for elliptic curves in 2015, and a M.Sc. thesis
on p-adic point counting for hyperelliptic curves in 2017. Just a few weeks later, he started his
PhD studies in cryptology as an ECRYPT-NET fellow at TU Eindhoven, which have since led to
the existence of this very thesis. During his PhD, he undertook research visits to the COSIC group
at KU Leuven (yielding some of the work contained in this thesis), as well as to Simons Institute
programs on lattices and quantum computing in Berkeley.

Outside academia, Lorenz frequently participates in and co-organizes hacking competitions
known as “CTF” together with his team hxp, achieving fairly decent success in international
championships. In a non-empty subset of the remaining time, he likes to play the drums.

https://hxp.io

Bibliography

[ACR20] Gora Adj, Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. On new
Vélu’s formulae and their applications to CSIDH and B-SIDH constant-time implement-
ations. IACR Cryptology ePrint Archive 2020/1109. 2020.
url: https://ia.cr/2020/1109.

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryptosystem with Worst-Case/
Average-Case Equivalence”. In: STOC. ACM, 1997, pp. 284–293.

[Adj+18] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Me-
nezes and Francisco Rodríguez-Henríquez. “On the Cost of Computing Isogenies
Between Supersingular Elliptic Curves”. In: Selected Areas in Cryptography – SAC
2018. Vol. 11349. Lecture Notes in Computer Science. Springer, 2018, pp. 322–343.
url: https://ia.cr/2018/313.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe. “Post-quantum
Key Exchange — A New Hope”. In: USENIX Security Symposium. USENIX Associ-
ation, 2016, pp. 327–343. url: https://ia.cr/2016/758.

[AJJS19] Reza Azarderakhsh, Amir Jalali, David Jao and Vladimir Soukharev. Practical Su-
persingular Isogeny Group Key Agreement. IACR Cryptology ePrint Archive 2019/330.
2019. url: https://ia.cr/2019/330.

[AJL17] Reza Azarderakhsh, David Jao and Christopher Leonardi. “Post-Quantum Static-
Static Key Agreement Using Multiple Protocol Instances”. In: Selected Areas in Cryp-
tography – SAC 2017. Vol. 10719. Lecture Notes in Computer Science. Springer, 2017,
pp. 45–63.

[Arp+19] Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nel-
son, Travis Scholl and Jana Sotáková. Adventures in Supersingularland. IACR Crypto-
logy ePrint Archive 2019/1056. 2019. url: https://ia.cr/2019/1056.

[Aza+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel and Christopher
Leonardi. “Key Compression for Isogeny-Based Cryptosystems”. In: AsiaPKC@
AsiaCCS. ACM, 2016, pp. 1–10. url: https://ia.cr/2016/229.

[Bac90] Eric Bach. “Explicit bounds for primality testing and related problems”. In: Math-
ematics of Computation 55.191 (1990), pp. 355–380.

[Bar86] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor”. In: CRYPTO. Vol. 263. Lecture
Notes in Computer Science. Springer, 1986, pp. 311–323.

https://ia.cr/2020/1109
https://ia.cr/2018/313
https://ia.cr/2016/758
https://ia.cr/2019/330
https://ia.cr/2019/1056
https://ia.cr/2016/229

206 BIBLIOGRAPHY

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz and Ben Fisch. “Verifiable Delay Func-
tions”. In: CRYPTO (1). Vol. 10991. Lecture Notes in Computer Science. Springer,
2018, pp. 757–788. url: https://ia.cr/2018/601.

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux and Benjamin Smith. “Faster com-
putation of isogenies of large prime degree”. In: ANTS XIV: Proceedings of the four-
teenth algorithmic number theory symposium. Ed. by Steven Galbraith. Auckland, 2020.
url: https://iac.r/2020/341.

[Ben73] Charles H. Bennett. “Logical Reversibility of Computation”. In: IBM Journal of Re-
search and Development 17 (1973), pp. 525–532.

[Ben89] Charles H. Bennett. “Time/Space Trade-Offs for Reversible Computation”. In: SIAM
Journal on Computing 18.4 (1989), pp. 766–776.

[Ber+14] Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange, Peter
Schwabe and Sjaak Smetsers. “TweetNaCl: A Crypto Library in 100 Tweets”.
In: LATINCRYPT. Vol. 8895. Lecture Notes in Computer Science. Springer, 2014,
pp. 64–83. url: https://tweetnacl.cr.yp.to/.

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie–Hellman Speed Records”. In: Public
Key Cryptography. Vol. 3958. Lecture Notes in Computer Science. Springer, 2006,
pp. 207–228. url: https://cr.yp.to/papers.html#curve25519.

[Ber09a] Daniel J. Bernstein. “Batch Binary Edwards”. In: CRYPTO. Vol. 5677. Lecture Notes
in Computer Science. Springer, 2009, pp. 317–336.
url: https://cr.yp.to/papers.html#bbe.

[Ber09b] Daniel J. Bernstein. “Introduction to post-quantum cryptography”. In: Post-
Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes Buchmann and Erik
Dahmen. 1st ed. Springer, 2009. isbn: 978-3-540-88702-7.

[BGLP18] Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange and Lorenz Panny. “HILA5
Pindakaas: On the CCA Security of Lattice-Based Encryption with Error Correc-
tion”. In: AFRICACRYPT. Vol. 10831. Lecture Notes in Computer Science. Springer,
2018, pp. 203–216. url: https://ia.cr/2017/1214.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova and Tanja Lange. “Elligator:
elliptic-curve points indistinguishable from uniform random strings”. In: ACM
Conference on Computer and Communications Security. ACM, 2013, pp. 967–980. url:
https://ia.cr/2013/325.

[BIJ18] Jean-François Biasse, Annamaria Iezzi and Michael J. Jacobson, Jr. “A note on the
security of CSIDH”. In: INDOCRYPT. Vol. 11356. Lecture Notes in Computer Science.
Springer, 2018, pp. 153–168. url: https://arxiv.org/abs/1806.03656.

[Bis12] Gaetan Bisson. “Computing endomorphism rings of elliptic curves under the GRH”.
In: Journal of Mathematical Cryptology 5.2 (2012), pp. 101–114.
url: https://ia.cr/2011/042.

[BJS14] Jean-François Biasse, David Jao and Anirudh Sankar. “A Quantum Algorithm for
Computing Isogenies between Supersingular Elliptic Curves”. In: INDOCRYPT.
Vol. 8885. Lecture Notes in Computer Science. Springer, 2014, pp. 428–442.

https://ia.cr/2018/601
https://iac.r/2020/341
https://tweetnacl.cr.yp.to/
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#bbe
https://ia.cr/2017/1214
https://ia.cr/2013/325
https://arxiv.org/abs/1806.03656
https://ia.cr/2011/042

BIBLIOGRAPHY 207

[BK81] Richard P. Brent and Hsiang-Tsung Kung. “The Area-Time Complexity of Binary
Multiplication”. In: Journal of the ACM 28.3 (1981), pp. 521–534.
url: https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf.

[BKV19] Ward Beullens, Thorsten Kleinjung and Frederik Vercauteren. “CSI-FiSh: Efficient
Isogeny based Signatures through Class Group Computations”. In: ASIACRYPT (1).
Vol. 11921. Lecture Notes in Computer Science. Springer, 2019, pp. 227–247. url:
https://ia.cr/2019/498.

[BL07] Daniel J. Bernstein and Tanja Lange. “Faster Addition and Doubling on Elliptic
Curves”. In: ASIACRYPT. Vol. 4833. Lecture Notes in Computer Science. Springer,
2007, pp. 29–50. url: https://ia.cr/2007/286.

[BL08] Daniel J. Bernstein and Tanja Lange. “Analysis and optimization of elliptic-curve
single-scalar multiplication”. In: Finite fields and applications 2007. American Math-
ematical Society, 2008, pp. 1–19. isbn: 978-0-8218-4309-3/pbk.
url: https://ia.cr/2007/455.

[BL13] Daniel J. Bernstein and Tanja Lange. “Non-uniform Cracks in the Concrete: The
Power of Free Precomputation”. In: ASIACRYPT (2). Vol. 8270. Lecture Notes in
Computer Science. Springer, 2013, pp. 321–340. url: https://ia.cr/2012/318.

[BL17] Daniel J. Bernstein and Tanja Lange. “Montgomery curves and the Montgomery
ladder”. In: Topics in computational number theory inspired by Peter L. Montgomery. Ed.
by Joppe W. Bos and Arjen K. Lenstra. Cambridge University Press, 2017, pp. 82–115.
url: https://ia.cr/2017/293.

[BL95] Dan Boneh and Richard J. Lipton. “Quantum Cryptanalysis of Hidden Linear Func-
tions (Extended Abstract)”. In: CRYPTO. Vol. 963. Lecture Notes in Computer Sci-
ence. Springer, 1995, pp. 424–437.
url: https://crypto.stanford.edu/~dabo/pubs/papers/quantum.pdf.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale and Lorenz Panny. “Quantum
Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies”. In: EURO-
CRYPT (2). Vol. 11477. Lecture Notes in Computer Science. Springer, 2019, pp. 409–
441. url: https://ia.cr/2018/1059.

[BMSS08] Alin Bostan, François Morain, Bruno Salvy and Éric Schost. “Fast algorithms for
computing isogenies between elliptic curves”. In: Mathematics of Computation
77.263 (2008), pp. 1755–1778. url: https://www.ams.org/journals/mcom/2008-
77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf.

[BN18] Xavier Bonnetain and María Naya-Plasencia. “Hidden Shift Quantum Cryptana-
lysis and Implications”. In: ASIACRYPT. Vol. 11274. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 560–592. url: https://ia.cr/2018/432.

[Bon98] Dan Boneh. “The Decision Diffie–Hellman Problem”. In: ANTS. Vol. 1423. Lecture
Notes in Computer Science. Springer, 1998, pp. 48–63.
url: https://crypto.stanford.edu/~dabo/abstracts/DDH.html.

[Bos14] Joppe W. Bos. “Constant time modular inversion”. In: Journal of Cryptographic En-
gineering 4.4 (2014), pp. 275–281.
url: http://joppebos.com/files/CTInversion.pdf.

https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://ia.cr/2019/498
https://ia.cr/2007/286
https://ia.cr/2007/455
https://ia.cr/2012/318
https://ia.cr/2017/293
https://crypto.stanford.edu/~dabo/pubs/papers/quantum.pdf
https://ia.cr/2018/1059
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf
https://ia.cr/2018/432
https://crypto.stanford.edu/~dabo/abstracts/DDH.html
http://joppebos.com/files/CTInversion.pdf

208 BIBLIOGRAPHY

[Bot+19] Paul Bottinelli, Victoria de Quehen, Chris Leonardi, Anton Mosunov, Filip Pawlega
and Milap Sheth. The Dark SIDH of Isogenies. IACR Cryptology ePrint Archive
2019/1333. 2019. url: https://ia.cr/2019/1333.

[Brö08] Reinier Bröker. “A p-adic algorithm to compute the Hilbert class polynomial”. In:
Mathematics of Computation 77.264 (2008), pp. 2417–2435.

[Brö09] Reinier Bröker. “Constructing supersingular elliptic curves”. In: Journal of Combin-
atorics and Number Theory 1.3 (2009), pp. 469–273.

[BS07] Reinier Bröker and Peter Stevenhagen. “Efficient CM-constructions of elliptic
curves over finite fields”. In: Mathematics of Computation 76.260 (2007), pp. 2161–
2179.

[BS18] Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis of CSIDH
and Ordinary Isogeny-based Schemes. IACR Cryptology ePrint Archive 2018/537; ver-
sion 20180621:135910. Newer version: [BS20]. 2018.
url: https://eprint.iacr.org/2018/537/20180621:135910.

[BS20] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of
CSIDH”. In: EUROCRYPT (2). Vol. 12106. Lecture Notes in Computer Science.
Springer, 2020, pp. 493–522. url: https://ia.cr/2018/537.

[BS96] Wieb Bosma and Peter Stevenhagen. “On the computation of quadratic 2-class
groups”. In: Journal de Théorie des Nombres de Bordeaux 8.2 (1996), pp. 283–313.

[BV07] Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms: an algorithmic ap-
proach. Vol. 20. Algorithms and Computation in Mathematics. Springer, 2007. isbn:
978-3-540-46367-2.

[BY90] Gilles Brassard and Moti Yung. “One-Way Group Actions”. In: CRYPTO. Vol. 537.
Lecture Notes in Computer Science. Springer, 1990, pp. 94–107.

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: ASIA-
CRYPT (3). Vol. 11274. Lecture Notes in Computer Science. Springer, 2018, pp. 395–
427. url: https://ia.cr/2018/383.

[CCJR20] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques and Francisco
Rodríguez-Henríquez. The SQALE of CSIDH: Square-root vélu Quantum-resistant
isogeny Action with Low Exponents. IACR Cryptology ePrint Archive 2020/1520. 2020.
url: https://ia.cr/2020/1520.

[CD20] Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: PQCrypto.
Vol. 12100. Lecture Notes in Computer Science. Springer, 2020, pp. 111–129. url:
https://ia.cr/2019/1404.

[CDV20] Wouter Castryck, Thomas Decru and Frederik Vercauteren. “Radical Isogenies”.
In: ASIACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer, 2020,
pp. 493–519. url: https://ia.cr/2020/1108.

[Cer+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca
De Feo, Francisco Rodríguez-Henríquez and Benjamin Smith. “Stronger and Faster
Side-Channel Protections for CSIDH”. In: LATINCRYPT. Vol. 11774. Lecture Notes
in Computer Science. Springer, 2019, pp. 173–193. url: https://ia.cr/2019/837.

https://ia.cr/2019/1333
https://eprint.iacr.org/2018/537/20180621:135910
https://ia.cr/2018/537
https://ia.cr/2018/383
https://ia.cr/2020/1520
https://ia.cr/2019/1404
https://ia.cr/2020/1108
https://ia.cr/2019/837

BIBLIOGRAPHY 209

[CH17] Craig Costello and Hüseyin Hişil. “A Simple and Compact Algorithm for SIDH with
Arbitrary Degree Isogenies”. In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 303–329. url: https://ia.cr/2017/504.

[Che16] Yiping Cheng. Space-Efficient Karatsuba Multiplication for Multi-Precision Integers.
2016. arXiv: 1605.06760. url: https://arxiv.org/abs/1605.06760.

[CJS14] Andrew M. Childs, David Jao and Vladimir Soukharev. “Constructing elliptic curve
isogenies in quantum subexponential time”. In: Journal of Mathematical Cryptology
8.1 (2014), pp. 1–29. url: https://arxiv.org/abs/1012.4019.

[CK19] Leonardo Colò and David Kohel. “Orienting supersingular isogeny graphs”. In: Nut-
MiC 2019. 2019. url: https://ia.cr/2020/985.

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr. “Heuristics on class groups of number
fields”. In: Number Theory Noordwijkerhout 1983. Ed. by Hendrik Jager. Springer,
1984, pp. 33–62. isbn: 978-3-540-38906-4.

[CLG09] Denis X. Charles, Kristin E. Lauter and Eyal Z. Goren. “Cryptographic Hash Func-
tions from Expander Graphs”. In: Journal of Cryptology 22.1 (2009), pp. 93–113. url:
https://ia.cr/2006/021.

[CLN16] Craig Costello, Patrick Longa and Michael Naehrig. “Efficient Algorithms for Su-
persingular Isogeny Diffie–Hellman”. In: CRYPTO (1). Vol. 9814. Lecture Notes in
Computer Science. Springer, 2016, pp. 572–601. url: https://ia.cr/2016/413.

[Con] Keith Conrad. The conductor ideal. Expository paper.
url: https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf.

[Cos+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes and
David Urbanik. “Efficient Compression of SIDH Public Keys”. In: EUROCRYPT (1).
Vol. 10210. Lecture Notes in Computer Science. 2017, pp. 679–706.

[Cos+20] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes and Fernando Virdia.
“Improved Classical Cryptanalysis of SIKE in Practice”. In: Public Key Crypto-
graphy (2). Vol. 12111. Lecture Notes in Computer Science. Springer, 2020, pp. 505–
534. url: https://ia.cr/2019/298.

[Cos18] Craig Costello. “Computing Supersingular Isogenies on Kummer Surfaces”. In:
ASIACRYPT (3). Vol. 11274. Lecture Notes in Computer Science. Springer, 2018,
pp. 428–456. url: https://ia.cr/2018/850.

[Cos20] Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Tor-
sion”. In: ASIACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer,
2020, pp. 440–463. url: https://ia.cr/2019/1145.

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. IACR Cryptology ePrint Archive
2006/291. 2006. url: https://ia.cr/2006/291.

[Cox13] David A. Cox. Primes of the form x2 + ny2: Fermat, class field theory, and complex mul-
tiplication. 2nd ed. Pure and Applied Mathematics. Wiley, 2013, pp. xviii+356. isbn:
978-1-118-39018-4.

[CPV20] Wouter Castryck, Lorenz Panny and Frederik Vercauteren. “Rational Isogenies from
Irrational Endomorphisms”. In: EUROCRYPT (2). Vol. 12106. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 523–548. url: https://ia.cr/2019/1202.

https://ia.cr/2017/504
https://arxiv.org/abs/1605.06760
https://arxiv.org/abs/1605.06760
https://arxiv.org/abs/1012.4019
https://ia.cr/2020/985
https://ia.cr/2006/021
https://ia.cr/2016/413
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://ia.cr/2019/298
https://ia.cr/2018/850
https://ia.cr/2019/1145
https://ia.cr/2006/291
https://ia.cr/2019/1202

210 BIBLIOGRAPHY

[CR03] John Cremona and David Rusin. “Efficient solution of rational conics”. In: Mathem-
atics of Computation 72.243 (2003), pp. 1417–1441.

[CR15] Romain Cosset and Damien Robert. “Computing (`, `)-isogenies in polynomial
time on Jacobians of genus 2 curves”. In: Mathematics of Computation 84.294 (2015),
pp. 1953–1975.

[CR20] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Optimal strategies
for CSIDH. IACR Cryptology ePrint Archive 2020/417. 2020.
url: https://ia.cr/2020/417.

[CS03] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-Key
Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack”. In: SIAM
Journal on Computing 33.1 (2003), pp. 167–226. url: https://ia.cr/2001/108.

[CS18] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic: The
case of large characteristic fields”. In: Journal of Cryptographic Engineering 8.3 (2018),
pp. 227–240. url: https://ia.cr/2017/212.

[CSV20] Wouter Castryck, Jana Sotáková and Frederik Vercauteren. “Breaking the De-
cisional Diffie–Hellman Problem for Class Group Actions Using Genus Theory”.
In: CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science. Springer, 2020,
pp. 92–120. url: https://ia.cr/2020/151.

[Dad65] Luigi Dadda. “Some schemes for parallel multipliers”. In: Alta frequenza 34.5 (1965),
pp. 349–356.

[dB88] Bert den Boer. “Diffie–Hellman is as Strong as Discrete Log for Certain Primes”. In:
CRYPTO. Vol. 403. Lecture Notes in Computer Science. Springer, 1988, pp. 530–539.

[DeF+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit and Benjamin Weso-
lowski. “SQISign: Compact Post-quantum Signatures from Quaternions and Iso-
genies”. In: ASIACRYPT (1). Vol. 12491. Lecture Notes in Computer Science. Springer,
2020, pp. 64–93. url: https://ia.cr/2020/1240.

[DeF17] Luca De Feo. Mathematics of Isogeny Based Cryptography. Lecture notes for a summer
school on mathematics for post-quantum cryptography. Thiès, Senegal, 2017. url:
https://defeo.lu/ema2017/poly.pdf.

[Deu41] Max Deuring. “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”.
In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14 (1941),
pp. 197–272.

[DG16] Christina Delfs and Steven D. Galbraith. “Computing isogenies between super-
singular elliptic curves over Fp”. In: Designs, Codes and Cryptography 78.2 (2016),
pp. 425–440. url: https://arxiv.org/abs/1310.7789.

[DG19] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from
Class Group Actions”. In: EUROCRYPT (3). Vol. 11478. Lecture Notes in Computer
Science. Springer, 2019, pp. 759–789. url: https://ia.cr/2018/824.

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE
Trans. Information Theory 22.6 (Nov. 1976), pp. 644–654.

[Din+17] Jintai Ding, Saed Alsayigh, R. V. Saraswathy, Scott R. Fluhrer and Xiaodong Lin.
“Leakage of signal function with reused keys in RLWE key exchange”. In: ICC. IEEE,
2017, pp. 1–6.

https://ia.cr/2020/417
https://ia.cr/2001/108
https://ia.cr/2017/212
https://ia.cr/2020/151
https://ia.cr/2020/1240
https://defeo.lu/ema2017/poly.pdf
https://arxiv.org/abs/1310.7789
https://ia.cr/2018/824

BIBLIOGRAPHY 211

[DIZ07] Vassil S. Dimitrov, Laurent Imbert and Andrew Zakaluzny. “Multiplication by a
Constant is Sublinear”. In: ARITH-18 2007. 2007, pp. 261–268.
url: http://www.lirmm.fr/~imbert/pdfs/constmult_arith18.pdf.

[DJP14] Luca De Feo, David Jao and Jérôme Plût. “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies”. In: Journal of Mathematical
Cryptology 8.3 (2014), pp. 209–247. url: https://ia.cr/2011/506.

[DKS18] Luca De Feo, Jean Kieffer and Benjamin Smith. “Towards Practical Key Exchange
from Ordinary Isogeny Graphs”. In: ASIACRYPT (3). Vol. 11274. Lecture Notes in
Computer Science. Springer, 2018, pp. 365–394. url: https://ia.cr/2018/485.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit and Antonio Sanso. “Verifiable Delay
Functions from Supersingular Isogenies and Pairings”. In: ASIACRYPT (1). Vol. 11921.
Lecture Notes in Computer Science. Springer, 2019, pp. 248–277.
url: https://ia.cr/2019/166.

[DN03] Claus Diem and Niko Naumann. “On the structure of Weil restrictions of abelian
varieties”. In: Journal of the Ramanujan Mathematical Society 18.2 (2003), pp. 153–174.
url: https://arxiv.org/abs/math/0504359.

[DPV19] Thomas Decru, Lorenz Panny and Frederik Vercauteren. “Faster SeaSign Signatures
Through Improved Rejection Sampling”. In: PQCrypto. Vol. 11505. Lecture Notes in
Computer Science. Springer, 2019, pp. 271–285.
url: https://ia.cr/2018/1109.

[Eic38] Martin Eichler. “Über die Idealklassenzahl total definiter Quaternionenalgebren”.
In: Mathematische Zeitschrift 43.1 (Dec. 1938), pp. 102–109.

[Eis+18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison and Chris-
tophe Petit. “Supersingular Isogeny Graphs and Endomorphism Rings: Reductions
and Solutions”. In: EUROCRYPT (3). Vol. 10822. Lecture Notes in Computer Science.
Springer, 2018, pp. 329–368. url: https://ia.cr/2018/371.

[Eis+20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison and Jennifer
Park. Computing endomorphism rings of supersingular elliptic curves and connections to
pathfinding in isogeny graphs. 2020. arXiv: 2004.11495.
url: https://arxiv.org/abs/2004.11495.

[EvM07] Bas Edixhoven, Gerard van der Geer and Ben Moonen. Abelian varieties. Book in pre-
paration. 2007.
url: https://www.math.ru.nl/personal/bmoonen/research.html#bookabvar.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz and Kenneth G. Paterson. “Non-
Interactive Key Exchange”. In: Public Key Cryptography. Vol. 7778. Lecture Notes in
Computer Science. Springer, 2013, pp. 254–271. url: https://ia.cr/2012/732.

[Flu16] Scott R. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive 2016/085. 2016. url: https://ia.cr/2016/085.

[FMMC12] Austin G. Fowler, Matteo Mariantoni, John M. Martinis and Andrew N. Cleland.
“Surface codes: Towards practical large-scale quantum computation”. In: Physical
Review A 86.032324 (2012). url: https://arxiv.org/abs/1208.0928.

http://www.lirmm.fr/~imbert/pdfs/constmult_arith18.pdf
https://ia.cr/2011/506
https://ia.cr/2018/485
https://ia.cr/2019/166
https://arxiv.org/abs/math/0504359
https://ia.cr/2018/1109
https://ia.cr/2018/371
https://arxiv.org/abs/2004.11495
https://arxiv.org/abs/2004.11495
https://www.math.ru.nl/personal/bmoonen/research.html#bookabvar
https://ia.cr/2012/732
https://ia.cr/2016/085
https://arxiv.org/abs/1208.0928

212 BIBLIOGRAPHY

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: CRYPTO. Vol. 1666. Lecture Notes in Com-
puter Science. Springer, 1999, pp. 537–554.

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identific-
ation and Signature Problems”. In: CRYPTO. Vol. 263. Lecture Notes in Computer
Science. Springer, 1986, pp. 186–194.

[Für07] Martin Fürer. “Faster integer multiplication”. In: STOC. ACM, 2007, pp. 57–66.

[Gal12] Steven D. Galbraith. Mathematics of Public-Key Cryptography. Cambridge University
Press, 2012. isbn: 978-1-107-01392-6.

[Gal99] Steven D. Galbraith. “Constructing Isogenies between Elliptic Curves Over Finite
Fields”. In: LMS Journal of Computation and Mathematics 2 (1999), pp. 118–138.

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. 3rd ed.
Cambridge University Press, 2013. isbn: 978-1-139-85606-5.

[Gid17] Craig Gidney. “Halving the cost of quantum addition”. In: Quantum 2.74 (2017). url:
https://quantum-journal.org/papers/q-2018-06-18-74/.

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler and Rainer Steinwandt.
“Applying Grover’s Algorithm to AES: Quantum Resource Estimates”. In: PQCrypto.
Vol. 9606. Lecture Notes in Computer Science. Springer, 2016, pp. 29–43. url:
https://arxiv.org/abs/1512.04965.

[GPS17] Steven D. Galbraith, Christophe Petit and Javier Silva. “Identification Protocols and
Signature Schemes Based on Supersingular Isogeny Problems”. In: ASIACRYPT (1).
Vol. 10624. Lecture Notes in Computer Science. Springer, 2017, pp. 3–33.
url: https://ia.cr/2016/1154.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani and Yan Bo Ti. “On the Security of
Supersingular Isogeny Cryptosystems”. In: ASIACRYPT (1). Vol. 10031. Lecture Notes
in Computer Science. Springer, 2016, pp. 63–91. url: https://ia.cr/2016/859.

[GPSV18] Steven D. Galbraith, Lorenz Panny, Benjamin Smith and Frederik Vercauteren.
Quantum Equivalence of the DLP and CDHP for Group Actions. IACR Cryptology ePrint
Archive 2018/1199. 2018. url: https://ia.cr/2018/1199.

[GR04] Steven Galbraith and Victor Rotger. “Easy decision Diffie–Hellman groups”. In: LMS
Journal of Computation and Mathematics 7 (2004), pp. 201–218.
url: https://ia.cr/2004/070.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
STOC. ACM, 1996, pp. 212–219. url: https://arxiv.org/abs/quant-ph/9605043.

[GV18] Steven D. Galbraith and Frederik Vercauteren. “Computational problems in super-
singular elliptic curve isogenies”. In: Quantum Information Processing 17 (2018). url:
https://ia.cr/2017/774.

[GZ85] Benedict H. Gross and Don B. Zagier. “On singular moduli”. In: Journal für die Reine
und Angewandte Mathematik. 355 (1985), pp. 191–220.

[Hal05] Sean Hallgren. “Fast quantum algorithms for computing the unit group and class
group of a number field”. In: STOC. ACM, 2005, pp. 468–474.
url: http://cse.psu.edu/~sjh26/unitgroup.pdf.

https://quantum-journal.org/papers/q-2018-06-18-74/
https://arxiv.org/abs/1512.04965
https://ia.cr/2016/1154
https://ia.cr/2016/859
https://ia.cr/2018/1199
https://ia.cr/2004/070
https://arxiv.org/abs/quant-ph/9605043
https://ia.cr/2017/774
http://cse.psu.edu/~sjh26/unitgroup.pdf

BIBLIOGRAPHY 213

[Har77] Robin Hartshorne. Algebraic Geometry. 1st ed. Graduate Texts in Mathematics 52.
Springer, 1977. isbn: 978-1-4419-2807-8.

[Has36] Helmut Hasse. “Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die
Struktur des Meromorphismenrings. Die Riemannsche Vermutung.” In: Journal für
die reine und angewandte Mathematik 175 (1936), pp. 193–208.

[HGS99] Chris Hall, Ian Goldberg and Bruce Schneier. “Reaction Attacks against several
Public-Key Cryptosystems”. In: ICICS. Vol. 1726. Lecture Notes in Computer Sci-
ence. Springer, 1999, pp. 2–12.

[HH18] David Harvey and Joris van der Hoeven. Faster integer multiplication using short lattice
vectors. 2018. arXiv: 1802.07932. url: https://arxiv.org/abs/1802.07932.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. “A Modular Analysis of the
Fujisaki–Okamoto Transformation”. In: TCC (1). Vol. 10677. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 341–371. url: https://ia.cr/2017/604.

[HHL16] David Harvey, Joris van der Hoeven and Grégoire Lecerf. “Even faster integer mul-
tiplication”. In: Journal of Complexity 36 (2016), pp. 1–30.
url: https://arxiv.org/abs/1407.3360.

[HHL17] David Harvey, Joris van der Hoeven and Grégoire Lecerf. “Faster Polynomial Mul-
tiplication over Finite Fields”. In: Journal of the ACM 63.6 (2017), 52:1–52:23. url:
https://arxiv.org/abs/1407.3361.

[Hiş10] Hüseyin Hişil. “Elliptic curves, group law, and efficient computation”. PhD thesis.
Queensland University of Technology, 2010.
url: https://eprints.qut.edu.au/33233/.

[HLKA20] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel and Reza Azarderakhsh. “Further
Optimizations of CSIDH: A Systematic Approach to Efficient Strategies, Permuta-
tions, and Bound Vectors”. In: ACNS (1). Vol. 12146. Lecture Notes in Computer Sci-
ence. Springer, 2020, pp. 481–501. url: https://ia.cr/2019/1121.

[HM89] James L. Hafner and Kevin S. McCurley. “A rigorous subexponential algorithm for
computation of class groups”. In: Journal of the American Mathematical Society 2.4
(1989), pp. 837–850. issn: 0894–0347.

[How+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph
H. Silverman, Ari Singer and William Whyte. “The Impact of Decryption Failures
on the Security of NTRU Encryption”. In: CRYPTO. Vol. 2729. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 226–246.

[HPS98] Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman. “NTRU: A Ring-Based Pub-
lic Key Cryptosystem”. In: ANTS. Vol. 1423. Lecture Notes in Computer Science.
Springer, 1998, pp. 267–288.

[HRS17] Thomas Häner, Martin Roetteler and Krysta M. Svore. “Factoring using 2n+2 qubits
with Toffoli based modular multiplication”. In: Quantum Information & Computation
17.7&8 (2017), pp. 673–684. url: https://arxiv.org/abs/1611.07995.

[HS00] Jeffrey Hoffstein and Joseph H. Silverman. Reaction Attacks Against the NTRU Public
Key Cryptosystem. NTRU Cryptosystems Technical Report 015, version 2. 2000. url:
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/

NTRUTech015.pdf.

https://arxiv.org/abs/1802.07932
https://arxiv.org/abs/1802.07932
https://ia.cr/2017/604
https://arxiv.org/abs/1407.3360
https://arxiv.org/abs/1407.3361
https://eprints.qut.edu.au/33233/
https://ia.cr/2019/1121
https://arxiv.org/abs/1611.07995
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/NTRUTech015.pdf
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/NTRUTech015.pdf

214 BIBLIOGRAPHY

[HS15] Michael Hutter and Peter Schwabe. “Multiprecision multiplication on AVR revis-
ited”. In: Journal of Cryptographic Engineering 5.3 (2015), pp. 201–214.
url: https://ia.cr/2014/592.

[IJ13] Sorina Ionica and Antoine Joux. “Pairing the volcano”. In: Mathematics of Computa-
tion 82.281 (2013), pp. 581–603.

[IR93] Gábor Ivanyos and Lajos Rónyai. “Finding maximal orders in semisimple algebras
over Q”. In: Computational Complexity 3.3 (1993), pp. 245–261.

[Jao+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev and David Urbanik. Supersingular Isogeny
Key Encapsulation. Submission to [NIST16]. 2017. url: https://sike.org.

[Jao+19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Mi-
chael Naehrig, Joost Renes, Vladimir Soukharev and David Urbanik. Supersingular
Isogeny Key Encapsulation. Update of [Jao+17] for round 2 of [NIST16]. 2019. url:
https://sike.org.

[JD11] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems from Su-
persingular Elliptic Curve Isogenies”. In: PQCrypto. Vol. 7071. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 19–34. url: https://ia.cr/2011/506.

[JLLR18] David Jao, Jason LeGrow, Christopher Leonardi and Luis Ruiz-Lopez. “A subexpo-
nential-time, polynomial quantum space algorithm for inverting the CM group ac-
tion”. In: MathCrypt 2018 (2018). To appear.

[JMV09] David Jao, Stephen D. Miller and Ramarathnam Venkatesan. “Expander graphs
based on GRH with an application to elliptic curve cryptography”. In: Journal of
Number Theory 129.6 (2009), pp. 1491–1504.
url: https://arxiv.org/abs/0811.0647.

[Jon12] Cody Jones. “Low-overhead constructions for the fault-tolerant Toffoli gate”. In:
Physical Review A 87.022328 (2012).

[JS19] Samuel Jaques and John M. Schanck. “Quantum Cryptanalysis in the RAM Model:
Claw-Finding Attacks on SIKE”. In: CRYPTO 2019. Ed. by Alexandra Boldyreva and
Daniele Micciancio. Vol. 11692. Lecture Notes in Computer Science. Springer, 2019,
pp. 32–61. url: https://ia.cr/2019/103.

[JS20] Samuel Jaques and André Schrottenloher. “Low-gate Quantum Golden Collision
Finding”. In: Selected Areas in Cryptography – SAC 2020. 2020.
url: https://ia.cr/2020/424.

[Kan89] Masanobu Kaneko. “Supersingular j-invariants as singular moduli mod p”. In:
Osaka Journal of Mathematics 26.4 (Jan. 1989), pp. 849–855. issn: 0030-6126.

[Kie17] Jean Kieffer. “Étude et accélération du protocole d’échange de clés de Couveignes–
Rostovtsev–Stolbunov”. Mémoire du Master 2. Université Paris VI, 2017.
url: https://arxiv.org/abs/1804.10128.

[Kit96] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem”. In:
Electronic Colloquium on Computational Complexity (ECCC) 3.3 (1996).
url: https://eccc.hpi-web.de/eccc-reports/1996/TR96-003.

https://ia.cr/2014/592
https://sike.org
https://sike.org
https://ia.cr/2011/506
https://arxiv.org/abs/0811.0647
https://ia.cr/2019/103
https://ia.cr/2020/424
https://arxiv.org/abs/1804.10128
https://eccc.hpi-web.de/eccc-reports/1996/TR96-003

BIBLIOGRAPHY 215

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit and Jean-Pierre Tignol. “On the qua-
ternion `-isogeny path problem”. In: LMS Journal of Computation and Mathematics
17 (2014), pp. 418–432. url: https://ia.cr/2014/505.

[Kni95] Emanuel Knill. An analysis of Bennett’s pebble game. 1995. arXiv: math/9508218. url:
https://arxiv.org/abs/math/9508218.

[Knu81] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms. 2nd ed. Addison-Wesley, 1981. isbn: 0-201-03822-6.

[KO63] Anatoly A. Karatsuba and Y. Ofman. “Multiplication of multidigit numbers on auto-
mata”. In: Soviet Physics Doklady 7 (1963), pp. 595–596.

[Koh96] David Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis.
University of California at Berkeley, 1996.
url: http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf.

[KS15] Shane Kepley and Rainer Steinwandt. “Quantum circuits for F2n-multiplication
with subquadratic gate count”. In: Quantum Information Processing 14.7 (2015),
pp. 2373–2386.

[Kup05] Greg Kuperberg. “A Subexponential-Time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem”. In: SIAM Journal on Computing 35.1 (2005), pp. 170–188.
url: https://arxiv.org/abs/quant-ph/0302112.

[Kup13] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for the Di-
hedral Hidden Subgroup Problem”. In: TQC. Vol. 22. LIPIcs. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2013, pp. 20–34.
url: https://arxiv.org/abs/1112.3333.

[Kut+20] Péter Kutas, Chloe Martindale, Lorenz Panny, Christophe Petit and Katherine E.
Stange. Weak instances of SIDH variants under improved torsion-point attacks. IACR
Cryptology ePrint Archive 2020/633. 2020. url: https://ia.cr/2020/633.

[Lan87] Serge Lang. Elliptic functions. 2nd ed. Vol. 112. Graduate Texts in Mathematics. With
an appendix by John Tate. Springer, 1987, pp. xii+326.

[LB20] Jonathan Love and Dan Boneh. “Supersingular Curves With Small Non-integer En-
domorphisms”. In: ANTS XIV: Proceedings of the fourteenth algorithmic number theory
symposium. Ed. by Steven Galbraith. Auckland, 2020.
url: https://arxiv.org/abs/1910.03180.

[Lef03] Vincent Lefèvre. “Multiplication by an Integer Constant: Lower Bounds on the
Code Length”. In: 5th Conference on Real Numbers and Computers 2003 – RNC5. Lyon,
France, 2003, pp. 131–146. url: https://hal.inria.fr/inria-00099684.

[Len96] Hendrik W. Lenstra, Jr. “Complex Multiplication Structure of Elliptic Curves”. In:
Journal of Number Theory 56.2 (1996), pp. 227–241. issn: 0022-314X.

[LLL82] Hendrik W. Lenstra, Jr., Arjen K. Lenstra and Lászlo Lovász. “Factoring Polynomials
with Rational Coefficients.” In: Mathematische Annalen 261 (1982), pp. 515–534. url:
http://eudml.org/doc/182903.

[LST64] Jonathan Lubin, Jean-Pierre Serre and John Tate. Elliptic Curves and Formal Groups.
Lecture notes. 1964. url: https://ma.utexas.edu/users/voloch/lst.html.

https://ia.cr/2014/505
https://arxiv.org/abs/math/9508218
https://arxiv.org/abs/math/9508218
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/1112.3333
https://ia.cr/2020/633
https://arxiv.org/abs/1910.03180
https://hal.inria.fr/inria-00099684
http://eudml.org/doc/182903
https://ma.utexas.edu/users/voloch/lst.html

216 BIBLIOGRAPHY

[Lyu09] Vadim Lyubashevsky. “Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures”. In: International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer. 2009, pp. 598–616.

[Magma] Wieb Bosma, John Cannon and Catherine Playoust. “The Magma algebra system I:
The user language”. In: Journal of Symbolic Computation 24.3-4 (1997), pp. 235–265.

[Mar18a] Daniel A. Marcus. Number fields. 2nd ed. Universitext. With a foreword by Barry
Mazur. Springer, 2018, pp. xviii+203.

[Mar18b] Chloe Martindale. “Isogeny graphs, modular polynomials, and applications”. PhD
thesis. Universiteit Leiden and Université de Bordeaux, 2018.
url: https://martindale.info/research/Thesis.pdf.

[Mau94] Ueli M. Maurer. “Towards the Equivalence of Breaking the Diffie–Hellman Protocol
and Computing Discrete Logarithms”. In: CRYPTO. Vol. 839. Lecture Notes in Com-
puter Science. Springer, 1994, pp. 271–281.

[McM14] Ken McMurdy. Explicit representation of the endomorphism rings of supersingular elliptic
curves. Preprint. 2014. url: https://phobos.ramapo.edu/~kmcmurdy/research/
McMurdy-ssEndoRings.pdf.

[MCR19] Michael Meyer, Fabio Campos and Steffen Reith. “On Lions and Elligators: An Effi-
cient Constant-Time Implementation of CSIDH”. In: PQCrypto. Vol. 11505. Lecture
Notes in Computer Science. Springer, 2019, pp. 307–325.
url: https://ia.cr/2018/1198.

[Mes72] William Messing. The crystals associated to Barsotti–Tate groups: with applications to
abelian schemes. Vol. 264. Lecture Notes in Mathematics. Springer, 1972, pp. iii+190.

[Mic01] Daniele Micciancio. “Improving Lattice Based Cryptosystems Using the Hermite
Normal Form”. In: CaLC. Vol. 2146. Lecture Notes in Computer Science. Springer,
2001, pp. 126–145.
url: https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html.

[Mil85] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: CRYPTO. Vol. 218. Lec-
ture Notes in Computer Science. Springer, 1985, pp. 417–426.

[Mon85] Peter L. Montgomery. “Modular multiplication without trial division”. In: Mathem-
atics of Computation 44 (1985), pp. 519–521. url: http://www.ams.org/journals/
mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html.

[Mon87] Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods of factoriz-
ation”. In: Mathematics of Computation 48.177 (1987), pp. 243–264.

[Mor61] Louis J. Mordell. “The congruence (p − 1/2)! ≡ ±1 mod p”. In: American Mathem-
atical Monthly 68.2 (1961), pp. 145–146.

[MP19] Chloe Martindale and Lorenz Panny. “How to not break SIDH”. In: CFAIL 2019. New
York, 2019. url: https://ia.cr/2019/558.

[MR18] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: INDOCRYPT.
Vol. 11356. Lecture Notes in Computer Science. Springer, 2018, pp. 137–152. url:
https://ia.cr/2018/782.

[MS16] Dustin Moody and Daniel Shumow. “Analogues of Vélu’s formulas for isogenies on
alternate models of elliptic curves”. In: Mathematics of Computation 85.300 (2016),
pp. 1929–1951. url: https://ia.cr/2011/430.

https://martindale.info/research/Thesis.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://ia.cr/2018/1198
https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
https://ia.cr/2019/558
https://ia.cr/2018/782
https://ia.cr/2011/430

BIBLIOGRAPHY 217

[MW96] Ueli M. Maurer and Stefan Wolf. “Diffie–Hellman Oracles”. In: CRYPTO. Vol. 1109.
Lecture Notes in Computer Science. Springer, 1996, pp. 268–282.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. 10th ed. USA: Cambridge University Press, 2011. isbn: 1107002176.

[Nic71] Peter J. Nicholson. “Algebraic Theory of Finite Fourier Transforms”. In: Journal of
Computer and System Sciences 5.5 (1971), pp. 524–547.

[NIST16] National Institute of Standards and Technology. Post-Quantum Cryptography Stand-
ardization. Dec. 2016. url: https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization.

[NV10] Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm. Survey and Applications.
Springer, 2010. isbn: 978-3-642-02295-1.

[OAYT19] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki and Tsuyoshi Takagi. “(Short
Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points”. In:
IWSEC. Vol. 11689. Lecture Notes in Computer Science. Springer, 2019, pp. 23–33.
url: https://ia.cr/2019/353.

[Onu20] Hiroshi Onuki. On oriented supersingular elliptic curves. 2020. arXiv: 2002.09894. url:
https://arxiv.org/abs/2002.09894.

[Oor74] Frans Oort. “Subvarieties of moduli spaces”. In: Inventiones Mathematicae 24 (1974),
pp. 95–119.

[OT20] Hiroshi Onuki and Tsuyoshi Takagi. On Collisions Related to an Ideal Class of Order 3
in CSIDH. 2020. url: https://ia.cr/2019/1209.

[Pan20] Lorenz Panny. “Guess what?! On the impossibility of unconditionally secure
public-key encryption”. In: Mathematical Cryptology 1 (2020), pp. 1–7.
url: https://ia.cr/2019/1228.

[Pari] Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen and Michel
Olivier. User’s Guide to PARI-GP. Université de Bordeaux I.

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: PQCrypto. Vol. 8772. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 197–219.

[Pei20] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT (2). Vol. 12106.
Lecture Notes in Computer Science. Springer, 2020, pp. 463–492.
url: https://ia.cr/2019/725.

[Pet17] Christophe Petit. “Faster Algorithms for Isogeny Problems Using Torsion Point Im-
ages”. In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Computer Science. Springer,
2017, pp. 330–353. url: https://ia.cr/2017/571.

[Piz90] Arnold K. Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin of the Amer-
ican Mathematical Society 23.1 (1990), pp. 127–137.
url: https://projecteuclid.org/euclid.bams/1183555725.

[PL17] Christophe Petit and Kristin E. Lauter. Hard and Easy Problems for Supersingular Iso-
geny Graphs. IACR Cryptology ePrint Archive 2017/962. 2017.
url: https://ia.cr/2017/962.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://ia.cr/2019/353
https://arxiv.org/abs/2002.09894
https://arxiv.org/abs/2002.09894
https://ia.cr/2019/1209
https://ia.cr/2019/1228
https://ia.cr/2019/725
https://ia.cr/2017/571
https://projecteuclid.org/euclid.bams/1183555725
https://ia.cr/2017/962

218 BIBLIOGRAPHY

[Pol71] John M. Pollard. “The fast Fourier transform in a finite field”. In: Mathematics of Com-
putation 25 (1971), pp. 365–374. url:https://www.ams.org/journals/mcom/1971-
25-114/S0025-5718-1971-0301966-0/.

[PR15] Julia Pieltant and Hugues Randriam. “New uniform and asymptotic upper bounds
on the tensor rank of multiplication in extensions of finite fields”. In: Mathematics
of Computation 84.294 (2015), pp. 2023–2045.
url: https://arxiv.org/abs/1305.5166.

[PRM17] Alex Parent, Martin Roetteler and Michele Mosca. “Improved reversible and
quantum circuits for Karatsuba-based integer multiplication”. In: TQC. Vol. 73.
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017, 7:1–7:15. url:
https://arxiv.org/abs/1706.03419.

[Reg04] Oded Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Prob-
lem with Polynomial Space. 2004. arXiv: quant-ph/0406151.
url: https://arxiv.org/abs/quant-ph/0406151.

[Ren18] Joost Renes. “Computing Isogenies Between Montgomery Curves Using the Action
of (0, 0)”. In: PQCrypto. Vol. 10786. Lecture Notes in Computer Science. Springer,
2018, pp. 229–247. url: https://ia.cr/2017/1198.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M. Svore and Kristin E. Lauter.
“Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms”.
In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Computer Science. Springer, 2017,
pp. 241–270. url: https://ia.cr/2017/598.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based on Iso-
genies. IACR Cryptology ePrint Archive 2006/145. 2006.
url: https://ia.cr/2006/145.

[Saa17a] Markku-Juhani O. Saarinen. HILA5: Key Encapsulation Mechanism (KEM) and Public
Key Encryption Algorithm. Submission to [NIST16]. 2017.
url: https://github.com/mjosaarinen/hila5/blob/master/Supporting_
Documentation/hila5spec.pdf.

[Saa17b] Markku-Juhani O. Saarinen. “HILA5: On Reliability, Reconciliation, and Error Cor-
rection for Ring-LWE Encryption”. In: Selected Areas in Cryptography – SAC 2017. Ed.
by Carlisle Adams and Jan Camenisch. Vol. 10719. Lecture Notes in Computer Sci-
ence. Ottawa: Springer, 2017, pp. 192–212. isbn: 978-3-319-72564-2.

[Sage] The Sage Developers. SageMath, the Sage Mathematics Software System.
url: https://sagemath.org.

[Sat00] Takakazu Satoh. “The canonical lift of an ordinary elliptic curve over a finite field
and its point counting”. In: Journal of the Ramanujan Mathematical Society 15.4
(2000), pp. 247–270.

[Sch77] Arnold Schönhage. “Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2”. In: Acta Informatica 7 (1977), pp. 395–398.

[Sch85] René Schoof. “Elliptic curves over finite fields and the computation of square roots
mod p”. In: Mathematics of Computation 44.170 (May 1985), pp. 483–483.

[Sch87] René Schoof. “Nonsingular plane cubic curves over finite fields”. In: Journal of Com-
binatorial Theory, Series A 46.2 (1987), pp. 183–211.

https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://arxiv.org/abs/1305.5166
https://arxiv.org/abs/1706.03419
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://ia.cr/2017/1198
https://ia.cr/2017/598
https://ia.cr/2006/145
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://sagemath.org

BIBLIOGRAPHY 219

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Mathematical Programming 66
(1994), pp. 181–199.

[SGP19] Rajeev Anand Sahu, Agnese Gini and Ankan Pal. Supersingular Isogeny-Based Desig-
nated Verifier Blind Signature. IACR Cryptology ePrint Archive 2019/1498. 2019. url:
https://ia.cr/2019/1498.

[Sha71] Daniel Shanks. “Class number, a theory of factorization, and genera”. In: Proceedings
of Symposia in Pure Mathematics. Vol. 20. 1971, pp. 415–440.

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science. SFCS ’94. USA: IEEE Computer Society, 1994, pp. 124–134. isbn: 0818665807.

[Sho97a] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (1997),
pp. 1484–1509. url: https://arxiv.org/abs/quant-ph/9508027.

[Sho97b] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In:
EUROCRYPT. Vol. 1233. Lecture Notes in Computer Science. Springer, 1997, pp. 256–
266.

[Sie35] Carl Siegel. “Über die Classenzahl quadratischer Zahlkörper”. In: Acta Arithmetica
1.1 (1935), pp. 83–86.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. 2nd ed. Graduate Texts in Math-
ematics 106. Errata: [Sil15]. Springer, 2009. isbn: 978-0-387-09493-9.

[Sil15] Joseph H. Silverman. Errata and Corrections to The Arithmetic of Elliptic Curves, 2nd
Edition. Apr. 2015. url: https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf.

[Sim05] Denis Simon. Quadratic equations in dimensions 4, 5 and more. Preprint. 2005.
[SKPS19] Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit and Javier Silva.

SÉTA: Supersingular Encryption from Torsion Attacks. IACR Cryptology ePrint Archive
2019/1291. 2019. url: https://ia.cr/2019/1291.

[Smi18] Benjamin Smith. “Pre- and Post-quantum Diffie–Hellman from Groups, Actions,
and Isogenies”. In: WAIFI. Vol. 11321. Lecture Notes in Computer Science. Springer,
2018, pp. 3–40. url: https://ia.cr/2018/882.

[Smi20] Benjamin Smith. Isogenies: what now, and what next? Invited talk at PQCrypto 2020.
Sept. 2020. url: https://youtu.be/HfmvNenGyok?t=3190.

[SS71] Arnold Schönhage and Volker Strassen. “Schnelle Multiplikation großer Zahlen”.
In: Computing 7.3-4 (1971), pp. 281–292.

[Sto04] Anton Stolbunov. “Public-key encryption based on cycles of isogenous elliptic
curves”. In Russian. MA thesis. Saint-Petersburg State Polytechnical University,
2004.

[Sto10] Anton Stolbunov. “Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves”. In: Advances in Mathematics of
Communications 4.2 (2010), pp. 215–235.

[Sto12] Anton Stolbunov. “Cryptographic Schemes Based on Isogenies”. PhD thesis. Nor-
wegian University of Science and Technology, 2012.

https://ia.cr/2019/1498
https://arxiv.org/abs/quant-ph/9508027
https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf
https://ia.cr/2019/1291
https://ia.cr/2018/882
https://youtu.be/HfmvNenGyok?t=3190

220 BIBLIOGRAPHY

[Str83] Volker Strassen. “The computational complexity of continued fractions”. In: SIAM
Journal on Computing 12 (1983), pp. 1–27.

[Sut07] Andrew V. Sutherland. “Order computations in generic groups”. PhD thesis. Mas-
sachusetts Institute of Technology, 2007.

[Sut12a] Andrew V. Sutherland. “Identifying supersingular elliptic curves”. In: LMS Journal
of Computation and Mathematics 15 (2012), pp. 317–325.
url: https://arxiv.org/abs/1107.1140.

[Sut12b] Andrew V. Sutherland. “Isogeny volcanoes”. In: ANTS X. Vol. 1. The Open Book
Series. Mathematical Sciences Publishers, 2012, pp. 507–530.
url: https://arxiv.org/abs/1208.5370.

[Tan07] Seiichiro Tani. “An Improved Claw Finding Algorithm Using Quantum Walk”. In:
MFCS. Vol. 4708. Lecture Notes in Computer Science. Springer, 2007, pp. 536–547.
url: https://arxiv.org/abs/0708.2584.

[Tat66] John Tate. “Endomorphisms of abelian varieties over finite fields”. In: Inventiones
mathematicae 2.2 (1966), pp. 134–144.

[Tib14] Mehdi Tibouchi. “Elligator Squared: Uniform Points on Elliptic Curves of Prime
Order as Uniform Random Strings”. In: Financial Cryptography. Vol. 8437. Lecture
Notes in Computer Science. Springer, 2014, pp. 139–156.
url: https://ia.cr/2014/043.

[Too63] Andrei L. Toom. “The complexity of a scheme of functional elements realizing the
multiplication of integers”. In: Soviet Mathematics Doklady 3 (1963), pp. 714–716. url:
http://toomandre.com/my-articles/engmat/MULT-E.PDF.

[Unr12] Dominique Unruh. “Quantum Proofs of Knowledge”. In: EUROCRYPT. Vol. 7237.
Lecture Notes in Computer Science. Springer, 2012, pp. 135–152.
url: https://ia.cr/2010/212.

[VDT02] Eric R. Verheul, Jeroen M. Doumen and Henk C. A. van Tilborg. “Sloppy Alice at-
tacks! Adaptive chosen ciphertext attacks on the McEliece public-key cryptosys-
tem”. In: Information, Coding and Mathematics: Proceedings of Workshop honoring Prof.
Bob McEliece on his 60th birthday. Springer, 2002, pp. 99–119.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de l’Académie
des Sciences de Paris 273 (1971), pp. 238–241.

[Voi13] John Voight. “Identifying the matrix ring: algorithms for quaternion algebras and
quadratic forms”. In: Quadratic and higher degree forms. Springer, 2013, pp. 255–298.

[Voi18] John Voight. Quaternion algebras. Book in preparation; version v0.9.14. July 2018. url:
https://math.dartmouth.edu/~jvoight/quat-book.pdf.

[Wal64] Christopher S. Wallace. “A suggestion for a fast multiplier”. In: IEEE Transactions on
electronic Computers 1 (1964), pp. 14–17.

[Was08] Lawrence C. Washington. Elliptic curves: Number theory and cryptography. 2nd ed.
Discrete Mathematics and its Applications. Chapman & Hall/CRC, 2008. isbn: 978-
1-4200-7146-7.

[Wat69] William C. Waterhouse. “Abelian varieties over finite fields”. In: Annales scientifiques
de l’École Normale Supérieure 2 (4 1969), pp. 521–560.

https://arxiv.org/abs/1107.1140
https://arxiv.org/abs/1208.5370
https://arxiv.org/abs/0708.2584
https://ia.cr/2014/043
http://toomandre.com/my-articles/engmat/MULT-E.PDF
https://ia.cr/2010/212
https://math.dartmouth.edu/~jvoight/quat-book.pdf

BIBLIOGRAPHY 221

[Wil94] Herbert S. Wilf. generatingfunctionology. Academic Press, 1994.
url: https://www.math.upenn.edu/~wilf/DownldGF.html.

[Yoo+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao and Vladimir Soukharev.
“A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies”. In:
Financial Cryptography and Data Security. Vol. 10322. Lecture Notes in Computer Sci-
ence. Springer, 2017, pp. 163–181. url: https://ia.cr/2017/186.

[Zan+18] Gustavo Zanon, Marcos A. Simplício Jr., Geovandro C. C. F. Pereira, Javad Doliskani
and Paulo S. L. M. Barreto. “Faster Isogeny-Based Compressed Key Agreement”. In:
PQCrypto. Vol. 10786. Lecture Notes in Computer Science. Springer, 2018, pp. 248–
268. url: https://ia.cr/2017/1143.

https://www.math.upenn.edu/~wilf/DownldGF.html
https://ia.cr/2017/186
https://ia.cr/2017/1143

	Official title page
	Thanks
	Contents
	Introduction
	Outline of the thesis

	Mathematical preliminaries
	Cryptographic constructions
	Elliptic curves
	Isogenies of elliptic curves
	Endomorphisms, quadratic fields, and quaternion algebras
	Isogeny graphs
	Quantum algorithms

	CSIDH: An efficient post-quantum group action
	Introduction
	Isogeny graphs
	The class-group action
	Construction and design choices
	Representing and validating Fp-isomorphism classes
	Non-interactive key exchange
	Security
	Implementation

	Faster SeaSign signatures through improved rejection sampling
	Introduction
	Preliminaries
	The improved signature scheme
	Analysis and results

	Rational isogenies from irrational endomorphisms
	Introduction
	Preliminaries
	Twisting endomorphisms
	Isogenies from known endomorphisms
	Vectorizing CM curves

	Quantum equivalence of DLP and CDH for group actions
	Introduction
	The reduction
	Implications for CSIDH

	Weak instances of SIDH variants from improved torsion-point attacks
	Introduction
	Preliminaries
	Improved torsion-point attacks
	Trapdoor instances
	Implementation
	Additional examples of trapdoored primes

	How to not break SIDH
	Introduction
	Preliminaries
	Failed attempts to attack the pure isogeny problem
	Failed attack attempts that use the auxiliary points

	Quantum circuits for CSIDH
	Introduction
	Overview of the computation
	Scalar multiplication on an elliptic curve
	Generating points on an elliptic curve
	Computing an -isogenous curve
	Computing the action: basic algorithms
	Reducing the top nonzero exponent
	Pushing points through isogenies
	Computing -isogenies using division polynomials
	Computing -isogenies using modular polynomials
	Cost metrics for quantum computation
	Basic integer arithmetic
	Modular arithmetic

	CCA security of lattice-based encryption with error correction
	Introduction
	Data flow in the attack
	Preliminaries
	Chosen-ciphertext attack on HILA5
	HILA5 security claims

	Recent developments
	CSIDH is not an ideal group action
	CSI-FiSh: Canonical exponent vectors
	Slow isogenies may be a good thing
	Quantum attacks on CSIDH
	The DDH problem for CM actions
	Faster isogeny evaluation: élu
	Hardened CSIDH implementations
	Repeated isogenies from radicals

	Summary
	Curriculum Vitae
	Bibliography

