Cryptography on Isogeny Graphs

Lorenz Panny

Copyright © Lorenz Panny
Email: lorenz@yx7.cc
Website: https://yx7.cc

First edition January 2021

This research was supported by the Commission of the European Communities through the
Horizon 2020 program under project number 643161 (ECRYPT-NET).

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-5213-9

Printed by Gildeprint B.V., Enschede, Netherlands.

The cover shows the famous 19th-century woodblock print “The Great Wave off Kanagawa”
(A3 7FLEE) by Japanese artist Hokusai (1 filli -l &, c. 1760-1849). It symbolizes man-
kind’s everlasting struggle against the forces of nature, which bears similarity to the way the
laws of mathematics and physics govern cryptography: They mercilessly determine the things
we can or cannot do, and no matter how hard we try, there is no overcoming the rule of nature.

mailto:lorenz@yx7.cc
https://yx7.cc

Cryptography on Isogeny Graphs

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie
aangewezen door het College voor Promoties, in het openbaar te verdedigen
op donderdag 18 februari 2021 om 16:00 uur

door
Lorenz Stefan Panny

geboren te Eggenfelden, Duitsland

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien

1e promotor: prof.dr. T. Lange

2e promotor: prof.dr. D.J. Bernstein

leden: prof. D. Boneh, PhD (Stanford University)

prof.dr. D.R. Kohel (Université d’Aix-Marseille)
prof.dr. K.G. Paterson (ETH Zirich)

dr. F. Vercauteren (KU Leuven)

dr. B.M.M. de Weger

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in over-
eenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Thanks

I am beyond grateful to my supervisors Tanja and Dan, who are not only excellent scientists,
but (little did I know) also incredibly supportive and caring people. Thank you for all the advice
and encouragement during these past years.

Thanks to all of my colleagues and friends at TU/e, senior and junior alike, for the lovely
working environment and the terrific leisure activities. It’s been an absolute pleasure.

Thanks to my coauthors, without whom much of this research would presumably not exist.
I'm feeling honored that I got the chance to work together with all of you.

Thanks to Fré and Wouter for inviting me to Leuven, where besides working with them on
exciting research problems, I was also warmly welcomed by the other COSIC folks.

Thanks to the members of my doctoral committee, who were free to decline my request, but
instead fearlessly took on the daunting task of reading this entire thesis.

Thanks to my fellow ECRYPT-NET fellows for swiftly adopting me in their midst despite my
late arrival, and for the fond memories I have of our gatherings all around the world.

Thanks to all the friends I made at various events and conferences, for shallow and profound
discussions about anything ranging from isogenies to life in general, and for the fun and games.

Thanks to my CTF team hxp for still going strong after many years, for being co-responsible
that I ended up studying cryptography, and for all the awesome hacks.

Thanks to my friends and family everywhere for their continuing affection and support in
defiance of geographic distance, and for the good times whenever we do manage to meet up.

Finally, thanks to my parents for life, and everything.

Lorenz Panny
Eindhoven, January 2021

Contents

Introduction

1.1 Outlineofthethesis

Mathematical preliminaries

2.1 Cryptographic CONStruCtions ¢ . v v v v v v v v o v v e o
2.2 Ellipticcurves
2.3 Isogeniesofellipticcurves
2.4 Endomorphisms, quadratic fields, and quaternion algebras
2.5 Isogenygraphs
2.6 Quantumalgorithms L L

CSIDH: An efficient post-quantum group action

3.1 Introduction L
32 Isogenygraphs
3.3 Theclass-groupaction
3.4 Construction and designchoices
3.5 Representing and validating Fp,-isomorphism classes
3.6 Non-interactive keyexchange
377 SECUIILY . . v v v it i e e
3.8 Implementation

Faster SeaSign signatures through improved rejection sampling

41 Introduction
4.2 Preliminaries
4.3 Theimproved signaturescheme
4.4 Analysisandresults L L o

Rational isogenies from irrational endomorphisms

g1 Introduction
5.2 Preliminaries
5.3 Twistingendomorphisms L oo
5.4 Isogenies from known endomorphisms
5.5 Vectorizing CM CUIVES v v v v vt e et e e e e e e e e e

Quantum equivalence of DLP and CDH for group actions

6.1 Introduction
6.2 Thereduction
6.3 Implicationsfor CSIDH

10
14
19
27
32

41
41
45
47
50
51
53

54
60

65
66
68

71

7 Weak instances of SIDH variants from improved torsion-point attacks

7.1 Introduction
7.2 Preliminaries

7.3 Improved torsion-pointattacks L.
7.4 TrapdoOrinStances o v v vt e

7.5 Implementation

7.6 Additional examples of trapdoored primes L L.

8 How to not break SIDH

8.1 Introduction
8.2 Preliminaries

8.3 Failed attempts to attack the pure isogeny problem

8.4 Failed attack attempts that use the auxiliary points

9 Quantum circuits for CSIDH

9.1 Introduction

9.2 Overview of the computation

9.3 Scalar multiplication on anellipticcurve

9.4 Generating pointsonanellipticcurve L.

9.5 Computing an £-iSOGENOUS CUIVE o . v v v ettt et e e
9.6 Computing the action: basicalgorithms

9.7 Reducing the topnonzeroexponent

9.8 Pushing points throughisogenies.

9.9 Computing ¢-isogenies using division polynomials

9.10 Computing ¢-isogenies using modular polynomials
9.11 Costmetrics for quantum computation

9.12 Basicinteger arithmetic
9.13 Modulararithmetic e

10 CCA security of lattice-based encryption with error correction

10.1 Introduction

10.2 Dataflowintheattack

10.3 Preliminaries

10.4 Chosen-ciphertextattackon HILAg
10.5 HILAgsecurityclaims

11 Recent developments

1.1 CSIDHisnotanideal groupaction

1.2 CSI-FiSh: Canonical exponentvectorst

1.3 Slowisogeniesmaybeagoodthing
1.4 Quantumattackson CSIDH
1.5 The DDH problem for CM actions v v v v v v v i i e e oo e
1.6 Fasterisogenyevaluation:v/eélu
117 Hardened CSIDH implementations
1.8 Repeatedisogenies fromradicals oL L L

Summary
Curriculum Vitae

Bibliography

103
103
105
107
116
122
123

125
125
126
129
135

139
139
142
144
146

151
155
159
163
166

174

186
188
192
195
195
195
196
197
198
199
199
200
201
203

205

Chapter 1

Introduction

“We stand today on the brink of a revolution in cryptography.” [DH76]

These are the words Diffie and Hellman chose in 1976 to introduce public-key cryptography to
the world, correctly presaging the unrivaled impact this invention would have on the landscape
of information security throughout the following decades. Indeed, many of the technological
convenience features current generations take for granted, such as secure online payments and
private messaging applications, rely dramatically on tools provided by public-key cryptography.
To illustrate why, let us look at the two archetypical examples. The firstis public-key encryption:
a method of encryption in which anyone may encrypt data for a specific party, but only that
intended recipientis capable of deciphering the resulting encrypted text.' The second is a digital
signature: a tool to certify data in such a way that anyone knowing the signer’s identity can
verify that the signed message originated at the correct party and has not been tampered with in
transit.” Evidently, both of these features are indispensable to securing information transmitted
over an untrusted network such as the internet: We do not want anyone to spy on us, and we do
not want others to put words in our mouths.

Today, we may be facing a revolution of similar scale.

This time, however, the catalyst is a threat rather than an advance. Public-key cryptography
must inherently rely on computationally hard problems to give any security guarantees.> The
most important hard problems have received significant attention from cryptanalysts, and an
overnightbreakthroughin attacking systems like, for instance, the Diffie—Hellman scheme seems
quite unlikely. Instead, one of the biggest dangers comes from an unexpected angle: For the
longest time, computer science has been focusing mainly on deterministic machines manipulat-
ing strings of zeroes and ones, which we will call conventional computers,* all the while assuming
that this paradigm captures the intuitive notion of “general computation”, i.e., all kinds of data
processing permitted by the laws of physics, at least up to insignificant differences in efficiency.

“This may not be true when quantum mechanics is taken into consideration.” [Shog7a]

Indeed, there are reasons to believe (albeit no proof) that quantum computers— machines
implementing an alternate model of computation that exploits hidden physical properties of

'Intuitively, this may be understood as a technological version of the legal principle “secrecy of correspondence”.

2Somewhat amusingly, “analog” signatures — writing one’s name on paper — provide neither of these guarantees.

3 Attackers with unlimited resources can, for example, simply try random signatures until the verification algorithm
(which they have available) accepts one. More generally, the mathematical relationship between private and public data
suffices (information-theoretically) to deduce enough information about the former from the latter to break the scheme.
For a concrete example, see [Pan2o].

4Note that conventional computers do encompass modern microprocessors such as those used in laptops, phones,
and high-end supercomputers. As is customary in the field, we use the term “classical computers” interchangeably,
although it may be deemed a bit unfortunate due to its obsolescent vibe.

2 INTRODUCTION

quantum systems — drastically outperform classical computers at certain computational tasks.
Due to simplicity and efficiency considerations, it so happened that essentially all public-key
cryptosystems widely deployed today are based on problems for which this seems to make a
huge difference: They are vulnerable to (variants of) a quantum algorithm discovered in 1994 by
Shor [Shog4], which (among other things) breaks the Diffie-Hellman scheme and its descend-
ants very quickly. The only remaining hurdle is the extremely challenging engineering task of
building a sufficiently large and reliable quantum computing machine. However, contrary to a
relatively widespread misconception in the interested-but-not-expert public, there is hope for
cryptography even assuming the presence of large quantum computers.

“Thereisnojustification for theleap [...] to ‘quantum computers destroy cryptography’.” [Berogb]

Even though the systems most commonly used nowadays are endangered by the advent of
quantum computing, jumping to the conclusion that cryptography in general is doomed would
be a fatal mistake:® In fact, there are countless constructions known where the availability of a
quantum computer does not appear to benefit attackers significantly, or at all. Naturally, these
post-quantum cryptosystems are based on different, sometimes less versatile hardness assump-
tions, which often makes the resulting constructions slower, bigger, or harder to use in real sys-
tems. This is why determining the best quantum-resistant computational problems to found
cryptography on is an important research question, and this thesis contributes to that end by
analyzing isogeny-based cryptography, a particular class of candidate post-quantum algorithms.

“Amathematical problem, which is hypothetically strong against a quantum computer, [...] con-
sists in searching for an isogeny [...] between elliptic curves over a finite field.” [RSo6]

In 2006, Stolbunov and his supervisor Rostovtsev were the first to notice that a potentially
quantum-resistant key-exchange system could be built from a certain group action on sets of
elliptic curves. The action itself is defined in terms of isogenies, essentially just a natural notion
of morphism between elliptic curves: algebraic maps which are also group homomorphisms.
(It was subsequently revealed by Couveignes that he had had a very similar idea in 1997, but his
preprint [Couo6] did not appear online until after Rostovtsev—Stolbunov’s. Apparently, Cou-
veignes had not thought of the post-quantum properties of his construction, which explains in
part why it sunk into oblivion: the scheme simply offered no conceivable benefits at the time.)
Even though the bestknown attack against the Couveignes—Rostovtsev—Stolbunov (CRS) scheme
was exponential-time back then, the construction was rather inefficient and seemed unlikely to
be very useful. Some four years later, the situation got worse.

In 2010, the CRS scheme suffered a potentially devastating blow: Childs, Jao, and Soukharev
discovered that the kind of isogeny-finding problem underlying the CRS scheme can be solved
with a subexponential-time quantum algorithm invented as early as 2003 by Kuperberg [Kupos].
The attack is based on the same commutative group action that makes the scheme work in the
first place, which suggests that the problem is not fixable, and perhaps that “isogeny-based
cryptosystems may be uncompetitive [...]” [C]S14]. Luckily, though, this is not the end of the
history of isogeny-based post-quantum cryptography.

Having observed that the commutative structure used in CRS introduces weakness against
quantum computers, Jao and De Feo set out to build an isogeny-based cryptosystem that does
not feature the commutative aspects, and the perfect fit were supersingular elliptic curves. On

5Trusting insecure mechanisms is obviously problematic, but falsely distrusting secure mechanisms can be just as
harmful: It means that the perceived best solution for a particular problem may in fact be much worse than an unfairly
dismissed approach, leading to an inferior (or even catastrophic) outcome overall.

1.1. OUTLINE OF THE THESIS 3

the flip side, the absence of the commutative structure makes it harder to even obtain a work-
ing cryptosystem, which Jao and De Feo solved with a clever trick that involves sending certain
auxiliary information to allow Alice and Bob to complete a key exchange. This scheme became
known as Supersingular-Isogeny Diffie—Hellman, or SIDH for short.

Despiteits name, SIDH actually lacks some features that classical DH offers, the biggestissue
being public-key validation: By sending maliciously crafted key-exchange messages, SIDH users
can be tricked into revealing information about their secrets, and it is not known how to dis-
tinguish manipulated messages from valid messages without breaking the scheme at the same
time. This issue can be bypassed in many scenarios, but it greatly reduces the flexibility, and
hence usefulness, of the scheme. Thus, commutative group actions like CRS (which has public-
key validation) still seemed useful in principle, if only they could be faster.

To this end, De Feo, Kieffer, and Smith [DKS18] took on the quest of accelerating the CRS
scheme starting in 2017. Although they went to great lengths, it seems that finding parameters
which allow running the most efficient algorithms is simply too hard — hence the performance
numbers achieved in their projectended up being rather disappointing. Yet, theideasdeveloped
in their work turned out extremely useful!® In fact, in addition to De Feo—Kieffer—Smith’s res-
ults, it took only one more idea to make things fall into place very nicely: the observation that
supersingular elliptic curves defined over a prime field have all the right properties for the ground-
work laid by [DKS18] to work optimally. The resulting cryptosystem is called /'siz said/, spelled
CSIDH, which expands to Commutative Supersingular-Isogeny Diffie—Hellman.

Nowadays, SIDH and CSIDH are considered the two main paradigms underlying isogeny-
based cryptography, and constructions tend to fall cleanly into either one of the two groups.
This thesis discusses constructive and destructive? aspects of both families.

1.1— Outline of the thesis

Chapter 1is what you are reading right now. It introduces the big picture and guides you, the
reader, through the remainder of the thesis.

Chapter 2 surveys some of the mathematical background knowledge underlying the technical
contributions given in the following chapters. It covers elliptic curves, isogeny graphs and en-
domorphism rings of elliptic curves, as well as a brief introduction to quantum algorithms.

Chapter 3 introduces CSIDH, a cryptographic commutative group action which is relatively effi-
cient and appears to offer decent post-quantum security. The construction is based on complex-
multiplication theory for supersingular elliptic curves defined over a prime field.

Chapter 4 gives an improved version of a CSIDH-based signature scheme called SeaSign, a com-
bination of a low-soundness identification scheme and the Fiat-Shamir transform with aborts.
The key idea is to allow the prover to reject a few identification queries.

Chapter 5 investigates Fp-endomorphism rings of supersingular elliptic curves defined over Fy,
in particular establishing an explicit connection between properties of the endomorphism ring
and the location of a curve in the graph. One key implication is that the open problem of hashing
into the supersingular isogeny graph cannot be solved with reduction of CM curves.

6This is a perfect example why publishing “negative” results is important.

7Fundamentally, this common dichotomy is a misnomer, at least in many cases: As a rule of thumb, one cannot
build secure systems without understanding how insecure ones are broken; therefore, cryptographic work tends to be
inherently constructive, and “destructive” work is simply enhancing our understanding of how (in)secure systems are.

4 INTRODUCTION

Chapter 6 proves a quantum polynomial-time reduction from the problem of inverting a one-
way group action to the problem of breaking a Diffie-Hellman-style key exchange that uses said
group action, similar to famous classical equivalence results for the Diffie-Hellman problem.

Chapter 7 pushes the boundaries of torsion-point attacks, a flavour of isogeny cryptanalysis
specific to schemes which reveal restrictions of isogenies to subgroups. Besides improving the
method, it shows how to find intentionally weak parameters that may be usable as backdoors.

Chapter 8 gives a survey of some potential, seemingly promising attack avenues that aspiring
SIDH cryptanalysts might stumble upon, and explains why these ideas appear to not yield the
desired result, i.e., better attacks.

Chapter g constructs an efficient quantum circuit to evaluate the CSIDH group action in super-
position. The main application is as a subroutine in a subexponential quantum attack, whose
overall cost depends rather strongly on the cost of this step.

Chapter 10 demonstrates a reaction attack against HILAg, a lattice-based KEM submitted to
NIST’s post-quantum standardization project. The construction had failed to protect against
chosen-ciphertext attacks, making it vulnerable to an adaption of Fluhrer’s attack.

Chapter 11 surveys some of the insights discovered since the papers that form the basis of this
thesis were first published. The remarkably short timeframe of these developments underlines
how active and exciting isogeny-based cryptography is as an area of research.

Chapter 2

Mathematical preliminaries

This chapter surveys the most important background underlying the remainder of the thesis.

As is common in mathematics, there are several equivalent definitions (or viewpoints) for
most of the objects discussed in this chapter. Whenever in doubt, we chose the most concrete
and tangible perspective on the matter — thus sometimes sacrificing generality, abstraction, or
mathematical beauty in exchange for minimizing the required prior knowledge and hopefully
“making things less weird for everyone” [Smi2o0].

Also note that the reader should not assume that topics are presented in the order they are
usually proved in; we have taken the liberty to reorder some results to ease exposition.

2.1— Cryptographic constructions

As motivation for the mathematics to come, let us first introduce some cryptographic back-
ground based on number theory. The goal of all schemes discussed in this section is key exchange,
thatis, to establish a shared secret over an insecure communication channel between two parties Alice
and Bob. “Insecure” means that all communication between Alice and Bob may be intercepted
and (depending on the model) even modified in transit by a malicious party Eve, whose main
goal is to extract or influence (some or all properties of) the shared secret.

After the key exchange has been performed, Alice and Bob can use the established common
secret as a key to encrypt messages using secret-key encryption, which assumes that a secret key
has been shared between the communicating parties ahead of time. On the other hand, public-
key encryption is asymmetric in that a party can single-handedly generate a pair of mathemat-
ically related private and public keys, and anyone learning the public key through some means
may send encrypted messages to the recipient.

Assuming the availability of secure secret-key encryption, secure key exchange implies se-
cure public-key encryption: the forward direction uses a technique known as hybrid encryption,
which consists in establishing a shared secret to be used as a symmetric encryption key; see for
instance [CSo3].

2.1.1— Diffie-Hellman. One of the most fundamental tools in public-key cryptography is
the Diffie-Hellman key agreement scheme already mentioned in the introduction (Chapter 1).
Originally described in 1976 as a concrete instantiation [DH76] on multiplicative groups of prime
finite fields, it has since been adapted to other finite abelian groups, and more recently to group
actions. The group-based version works as follows:'

!One can impose many different requirements upon the group G; the given variant is one of the most restrictive,
streamlined choices.

6 ‘ MATHEMATICAL PRELIMINARIES

Definition 2.1. A group-based Diffie-Hellman scheme consists of a generator g of a finite cyclic
group G of known order g, such that computing multiplications in G is efficient® and elements of G have
efficient unique encodings as bit strings.

With these data, the Diffie—Hellman key agreement works as follows:
Key generation. Alice picks an integer a € {0, ..., q—1} at random; this is her private key. Her public
keyis A := g® € G. Bob proceeds analogously to generate his key pair (b, B) € {0, ...,q—1} x G.
Key agreement. Alice takes Bob’s public key B and her private key a and computes S = B®. Similarly,
Bob computes S = A®. Hence, S = g®° is shared among Alice and Bob.

Note thatefficient multiplication implies efficient exponentiation using square-and-multiply:
The main idea is to recursively replace ¢ by the equal expression (g2)l™/2 . g» ™42 which
reduces the problem to one or two multiplications plus an exponentiation with an integer that
is one bit shorter. Therefore, the total cost is ©(log n) multiplications in G.

This establishes that the scheme can be run in polynomial time, but thus far we have not
made any assumptions about the nature of the group G for the Diffie—Hellman key agreement
scheme to be secure; this will be discussed in the following section.

2.1.2—Hard problems for DH. The strongest conceivable attack against Diffie-Hellman
would fully recover the shared secret g%” after observing the public data (%, ¢°):

Definition 2.2. The computational Diffie-Hellman problem (CDH) in a cyclic group G = {g) isto
compute the map

dhg: G* = G, (g,9%¢") = ¢".

The CDH assumption is: Given uniformly random inputs in {g} x G2, no efficient algorithm can
solve CDH, i.e., compute dhg, with more than negligible probability.?

On the other hand, one can ask much less from an attacker, such as to learn just a particular
function (e.g. one bit of an encoding) of the shared secret g®°. The assumption that this is hard
for all “reasonable” properties can be overapproximated by the assumption that no attacker can
even tell whether a given element is likely to be g®° or not:

Definition 2.3 (DDH). The decisional Diffie-Hellman problem in a cyclic group G = {(g) is to
determine whether a given triplet t € G® is of the form (g%, ¢°, g®°).

The DDH assumption is: On input triplets sampled uniformly from (with probability 1/2 each)
either the graph of dhg or the entire set G, no efficient algorithm can solve DDH with probability non-
negligibly greater than 1/2.

The hardness of the decisional Diffie-Hellman problem is an extremely useful assumption for
cryptographic applications,* but the details would lead us too far astray during this overview.

The obvious way for an attacker Eve to solve CDH (or DDH, for that matter) is to try to recover
Alice’s or Bob’s private key from the public keys, which allows Eve to recompute the same shared
secret:

2Typically, “efficient” means polynomial in log ¢, but there may be cases where higher complexities make sense.
3We deliberately refrain from instantiating the words “efficient” and “negligible” with concrete semantics in this
section, since depending on context they may range from asymptotic statements, where one must consider families of
groups G, to explicit bounds on the number of arithmetic operations and success probabilities for a fixed group G.
4“The Decision Diffie-Hellman assumption (DDH) is a gold mine.” [Bong8]

2.1. CRYPTOGRAPHIC CONSTRUCTIONS ‘ 7

Definition 2.4 (DLP). The discrete-logarithm problem in a cyclic group G = (g) of order q is to
compute the inverse

log,: G —{0,...,q—1}

of the exponentiation map

expg: {0,...,q—1} = G,z — g°.

The best possible classical attacks on DLP in the generic-group model, i.e., using only the inter-
face provided by an abstract group without getting access to the implementation of the group
as bit strings and algorithms, are known to take time ©(,/q) when ¢ is prime [Shog7b]. This
complexity is achieved by meet-in-the-middle techniques, better known as baby-step giant-step
algorithm in this context following [Sha71]: Oninput h € G, set m = [,/g]; build a table of all g’
forj € {0,...,m—1}; look up each g="" - h fori € {0, ..., m—1}; when a match is found, the
value mi + j solves the DLP. For composite g, one can do better: The Pohlig—Hellman algorithm
projects the DLP to successive prime-order subgroups and lifts the individual solutions back
to Z/q using the Chinese remainder theorem and Hensel lifting for prime powers, which implies
that the complexity is (up to factors polynomial in log q) dominated by the largest prime factor
of ¢.5 Of course, sometimes all of these problems are easier than in the generic-group model; for
example, let G be the encoding® of Z/q as {0, ..., g—1}.

We stress that it is not generally known whether solving DLP is the best way to break CDH:
There could be shortcuts to compute (g%, g?) — ¢ that do not first recover a or b. For group-
based Diffie-Hellman, a line of work started by den Boer in 1988 for finite fields and generalized
by Maurer in 1994 yields equivalence results for DLP and CDH under assumptions that certain
“nice” algebraic groups exist; such groups have since been explicitly constructed for many Diffie—
Hellman parameters used in practice, thus the resulting bound on the hardness gap between
DLP and CDH for these groups mostly depends on the success probability of an assumed CDH
solver. This thesis contains a result on the analogous question for group actions; see Chapter 6.

2.1.3 — Group-action Diffie-Hellman. Asexplainedin Chapter1, the biggest problem with
DLP is that it can be solved efficiently using Shor’s algorithm (see Section 2.6.2) once a suffi-
ciently large quantum computer is available. This has prompted the search for a replacement
structure that shares enough of the traits of group exponentiation to be cryptographically use-
ful, while at the same time lacking the aspects that introduce weakness against quantum al-
gorithms. As we will see in Section 2.6.2, a core part of Shor’s algorithm to break DLP is the
algebraic composition operation (g%, g¥) ~ ¢**¥ on public keys, simply given by group mul-
tiplication. However, it seems that using a structure which still admits an exponentiation-like
function while not having an efficient, algebraically meaningful composition law on public keys
might improve the quantum security:

Definition 2.5. A group-action Diffie-Hellman scheme consists of a finite abelian group G acting
on a finite set X,7 together with a fixed element xo € X and an efficient sampling algorithm S returning

5In contrast, the complexity of the best generic DDH solver is dominated by the smallest prime factor p of q: Project
the given DDH triplet to the small subgroup and check there using a generic DDH algorithm. False positives are possible,
but the probability of mislabeling a random tuple as a DH tuple is only 1/p.

6As all cyclic groups of order g are isomorphic to Z/q, the difficulty of these problems must really lie in the specific
choice of representation for abstract (isomorphism classes of) groups as bit strings and multiplication algorithms.

7A group action of Gon X isamap *: G X X — X suchthatlxxz = zand (g - h)*x = g*(h*z) for all
g,h € Gandxz € X. (Modulo syntax, this can equivalently be viewed as a group homomorphism G — Sym(X).)

8 ‘ MATHEMATICAL PRELIMINARIES

elements of G.° We require that computing the action x: G x X — X is efficient for the elements
returned by S, and that elements of X have efficient unique encodings as bit strings.

With these data, the group-action Diffie—Hellman key agreement works as follows:
Key generation. Alice picks a group element a < S(); this is her private key. Her public key is the
element x4 := a x xg € X. Bob proceeds analogously to generate his key pair (b,xp) € G x X.
Key agreement. Alice takes Bob’s public key x g and her private key a and computes vg = a * zp.
Similarly, Bob computes S = b x x 4. Hence, S = ab x is shared among Alice and Bob.

The straightforward group-action generalizations of the discrete-logarithm and computa-
tional Diffie-Hellman problems (Definitions 2.4 and 2.2) are known as vectorizaton and parallel-
ization problems, the terminology being inspired by visualizing a group action as the special case
of a vector space acting on an affine space. See also Chapter 6, and [Smi18] for a much more in-
depth discussion of the similarities and differences between groups and group actions in (pre-
and post-quantum) cryptography.

Note that group-based Diffie-Hellman is very close to being a special case of Definition 2.5;
Letting X be the Diffie-Hellman group and z¢ its chosen generator, the multiplicative group
G = (Z/q)* acts on X by exponentiation; i.e., given (€,7) € G x X, pick any representative
e € Z of the residue class € and output 2°. Thus, if the private keys are restricted to integers
coprime to g, then Diffie-Hellman is indeed an instance of Definition 2.5. In the common case
that ¢ is prime, this means excluding only 0 as a private key.

However, this instantiation of course does not achieve the goal of improving the quantum
resistance, since the multiplication X x X — X still exists and can be used in Shor’s algorithm.
Chapter 3 of this thesis introduces CSIDH, a relatively efficient instance of group-action Diffie—
Hellman that appears to withstand Shor’s algorithm. Instead, the best known quantum attack is
a subexponential-time quantum algorithm for the abelian hidden shift problem (see Section 2.6.3).

2.1.4 — Groups vs. actions. Note that DLP-based systems seem to support different applic-
ations than group-action-based systems: For instance, verification of Schnorr signatures relies on
computing the expression g® - A™, which does not translate to group actions in any obvious way
since the operation - is lacking. On the other hand, anything relying on DLP is immediately
unsuitable for post-quantum applications due to Shor’s algorithm (Section 2.6.2). Note that it
is the very same operation (g%, g¥) — ¢*T¥ that makes the signature scheme as well as the
quantum attack work, which suggests that a straightforward adaption of Schnorr signatures
and many other applications to the post-quantum setting may be difficult. Hence, signature
schemes based on group actions are currently much slower than pre-quantum, DLP-based sig-
natures. Chapter 4 contributes to changing this by speeding up the SeaSign signature scheme
based on the CSIDH group action (Chapter 3).

While some features of isogeny-based cryptography remain unattractive compared to other
cryptosystems, mostimportantly speed, there are applications where isogenies are the best avail-
able option: One such case is non-interactive key exchange, a piece of functionality instantiated
pre-quantumly with Diffile-Hellman, but for which only few post-quantum candidates exist.

2.1.5— Non-interactive key exchange. The qualifier non-interactive refers to the property
that two parties can each compute their public key entirely on their own, and two public keys

8For the scheme to stand any chance at being secure, the distribution of group elements returned by S must have
sufficient min-entropy, the ideal case being that S returns uniformly random elements of G. As this is sometimes tricky
to do in instantiations (see for example Section 3.4), we allow a bit more flexibility in how the sampling is done.

2.1. CRYPTOGRAPHIC CONSTRUCTIONS 9

together determine a unique shared secret that the parties can compute separately, without any
need to exchange additional (often randomized) data in real time:

Definition 2.6. A non-interactive key exchange (NIKE) scheme consists of sets K, X, Y, an efficient
sampling algorithm S returning elements of K, and efficient (potentially randomized) algorithms

G:K—X and F:KxX =Y,

such that for all a,b <+ S() and A < G(a), B + G(b), we have F(a, B) = F(b, A).

For security, we require that recovering the secret a given A and oracle access to F(a, —) is
hard. One particular requirement for a NIKE to be secure is that participants can reuse public
keys many times without changing them; in particular, Alice and Bob must not reveal partial
information about their secrets when processing a key exchange.

The description of Diffie-Hellman schemes above does not consider the possibility that one
of the participants (or an attacker manipulating data on the wire) might deliberately try to trick
the other into revealing information about their long-term private key. In particular, itis silently
assumed that inputs to the group algorithms are in fact encodings of valid group elements; in
actual implementations, one must thus consider what happens when data outside the expected
set is received: Attackers may send malformed inputs to exploit potential faulty behaviour of
algorithms on these bad inputs, and thereby leak information about secrets.

For example, small-subgroup attacks pose a threat to most group-based DH instantiations:
they are based on sending fake public-key elements on which the group algorithms will “work”
even though they lie outside the actual DH group, and interpreting the reaction of the recipient
allows deducing information about their private key modulo the size of that subgroup. Com-
bining this kind of leakage from different subgroups can lead to recovery of the entire secret.
Another example is described in Chapter 10 of this thesis: Lattice-based Diffie-Hellman-like
schemes with noise may be vulnerable to tinkering with certain parts of the noise until the key
exchange fails, and the threshold where this occurs is correlated with the recipient’s private key.

If possible, the easiest way to avoid invalid inputs is to simply test each input for the de-
sired properties: For instance, checking that a group element has some prescribed large prime
order can be done using a single group exponentiation and two identity tests. Unfortunately,
testing validity of public keys is not always as easy: Key-exchange schemes with more complex
mathematical structure usually require some relationship between different components of the
public data, and tampering with some parts individually is often impossible to detect without
breaking the scheme in the first place.

On the bright side, the CSIDH scheme (and its predecessors) presented in Chapter 3 fits into
the framework of Definition 2.6 and offers very easy and cheap public-key validation (see Sec-
tion 3.5), which makes it a viable candidate NIKE, and the current best incarnations drastically
outperform what appears to be the only other post-quantum NIKE proposal [A]L17].

Most lattice-based key exchanges, on the other hand, are hardened against active attackers
using the Fujisaki—Okamoto transform (FO), which essentially consists of sending an encryption
of the sender’s own private key as the very first message post-key-exchange. The recipient then
recomputes the sender’s public key according to the alleged private key, and aborts if the result
doesnotmatch the key used in the actual key exchange. However, this procedure merely leads to
a key-encapsulation mechanism (KEM), in which one party uses an ephemeral (one-time) key pair,
and hence does not give a NIKE. See Chapter 10 for more details on the FO transform, as well as
a concrete attack on a scheme that lacks it.

10 MATHEMATICAL PRELIMINARIES

2.2 — Elliptic curves

This thesis is about the use of isogenies of elliptic curves in cryptography. As one literally cannot
spell isogenies of elliptic curves without elliptic curves, let us discuss those first.

Standard references for the contents of this section and much more in-depth background are:
Washington’s Elliptic Curves: Number Theory and Cryptography [Waso8], a gentle introduction
with focus on algorithms and applications; Silverman’s The Arithmetic of Elliptic Curves [Silog],
a comprehensive summary from a more mathematical perspective; and Hartshorne’s Algebraic
Geometry [Har77], which starts from scheme theory and treats elliptic curves as a special case.

Definition 2.7. Letk bea field. An elliptic curve over k is a pair (E, O), where E is a smooth projective
genus-one curve over k and O is a k-rational point on E, the base point.

Throughout this chapter, k refers to a field and E, E’ are elliptic curves over k unless noted
otherwise. The base point O is usually omitted. We write E/k for “F is defined over £”.

2.2.1— Weierstrafd curves. In practice, we can immediately replace this general, but rather
abstract definition by concrete equations, giving a more elementary and tangible perspective of
elliptic curves. Note that there are various choices for such equations (often referred to as curve
“models”), each having different computational benefits depending on context. Traditionally,
most of the theory is developed on WeierstrafS curves, but note that modern cryptographic ap-
plications typically work with Montgomery or Edwards curves (see Section 2.2.6).

Definition 2.8. A short Weierstraf curve over a field k is a projective curve defined by an equation
Y272 = X* +ax2® +b2° (+)

with a,b € k, such that the discriminant A := —16(4a® + 27b?) is non-zero.° The unique point
[0:1:0]with Z = 0 is called the point at infinity and denoted by co.

For brevity, Weierstrafs curves are instead often written as affine curves
v =a>+azr+0 (2.1)
with the implicit understanding that the projective closure (x) is meant. In particular, the point at infin-
ity oo is retained as a “point” on the curve even though it does not correspond to a solution of (2.1); see
Definition 2.10 below.

Proposition 2.9. Letchar(k) ¢ {2,3}andlet (E, O) be an elliptic curve over k. Then E is isomorphic
(as an algebraic curve) over k to a short Weierstraf$ curve defined over k, such that O corresponds to oo
under the isomorphism. In particular, if E is a short Weierstraf§ curve, then (E, 00) is an elliptic curve.

Note that short Weierstral curves do not exist in characteristic 2, and in characteristic 3 they
fail to cover all isomorphism classes of elliptic curves. In arbitrary characteristic, results similar
to Proposition 2.9 hold with slightly more complicated formulas — long Weierstraf equations.
We work mainly in large characteristic and will hence often omit the attribute “short” when
talking about short Weierstrafk curves. Inspired by Proposition 2.9, we write oo for the the base
point on any elliptic curve.

Definition 2.10. The set of points on a short Weierstraft curve E : y* = x> + ax + b is the set of pairs
(x,y) € k x k satisfying the Weierstrafl equation, together with a single extra point denoted co.

For any field extension K /k, we write E(K) for the subset of points on E defined over K, i.e., with
coordinates in K. The point at infinity oo is defined over k. Referring to E as a set is shorthand for E(k).

9For A = 0, the resulting curve is not smooth.

2.2. ELLIPTIC CURVES 11

2.2.2—The j-invariant. How many isomorphism classes of elliptic curves are there?

Proposition 2.11. Two elliptic curves areisomorphic over k ifand only if they have the same j-invariant,
which for a Weierstraf§ curve E: y? = x> + ax + bis given by the formula

J(E) = 1728 - 4a® /(4a® + 27b7).

Conversely, for any j-invariant in k, we can recover an explicit curve equation over the same field:
For char(k) ¢ {2, 3}, we may use the short Weierstrafs equation

E:y? =2% —3j(j — 1728)z — 2j(j — 1728)2.

We also often need the notion of a function on an (elliptic) curve: These are simply rational
expressions in some coordinates on the curve, modulo the defining equation(s):

Definition 2.12. Let E be an elliptic curve defined over k. The function field of E, denoted k(E), is
the set of rational functions E — k. In particular, if E is a Weierstraf curve y* = x3 + az + b, then

k(E) = k(w,y)/(y2 — 2% —ar — b).

Note that afunction on E'need notnecessarily be defined at all points of E; in fact, every non-
constant function on a projective curve has at least one pole. Thus, the evaluation of a function
at points of is sometimes better viewed as a map to P! (k), rather than A' (k) = k. The poles
are mapped to the point “at infinity”, i.e., the unique point in P* (k)\A! (k).

2.2.3 —The group structure. Perhaps the main reason elliptic curves have been studied in
depth for centuries is that they carry a geometric group structure, a fact that makes them stand
out among most other algebraic curves and certainly helps explain why the (a priori) relatively
arbitrary-looking equation (2.1) is interesting.

Proposition 2.13. Let (E, c0) be an elliptic curve. There is a unique abelian group structure on the set
of points of E such that the neutral element is oo and the composition law is given by rational mayps.*

On a Weierstraf} curve, the group operation admits a nice geometric interpretation: The sum
of three points on the curve equals oo if and only if there exists a straight line intersecting the
curve in these points with the correct multiplicities."

Definition 2.14. For any L€ Z, let [{]: E — E be the (scalar-)multiplication-by-{ homomorphism
on E, defined by adding together £ copies of a point. The kernel of [{] is denoted by E[{] and called the
£-torsion subgroup of E.

As is customary when finding a group somewhere, we immediately feel a burning desire to
learn about its structure, which in this case is quite easy to describe:

Proposition 2.15. Let E/k be an elliptic curve and £ a non-zero integer. If char(k) = p > 0, factor ¢
asm - p" withm ¢ pZ, otherwise, let m = (. Then as groups

E[f) 2 Z/m xZJ/L or E[{] 2 Z/mXxZ/m.

In particular, either E[p] = Z/p or E[p] = {0}, and if char(k) [¢then E[¢] 2 7/ x Z/¢.

°Thus, I is an abelian variety of dimension one — another common definition of elliptic curves.
"The point co lies on every vertical line. When the points in question are not distinct, the condition on multiplicities
implies that the straight line must be a tangent of the curve.

12 MATHEMATICAL PRELIMINARIES

Therefore, the £-torsion of an elliptic curve is almost always a (2-dimensional) torus over Z/ /.
This is not a coincidence: In fact, it is a classical result that elliptic curves defined over C are
analytically isomorphic to complex tori, which is one way to arrive at the above structure result.

The p-torsion has a large impact on further structural properties of an elliptic curve, hence
some terminology is in order:

Definition 2.16. An elliptic curve E /k is called supersingular if p = char(k) > 0 and E[p] = {0};
all other elliptic curves (in particular those in characteristic zero) are called ordinary."

For computations on elliptic curves, the field of definition of the points we are working with
is crucial, hence let us discuss the sizes of rational subgroups.

2.2.4 —Point counting. The firstfundamentalresultisthatan elliptic curve defined over Fy
has approximately as many rational points as a one-dimensional set “morally” ought to: aboutg.
In fact, this estimate is (almost) correct with a square-root error bound:

Hasse’s Theorem 2.17 [Has36]. Let E/Fq be an elliptic curve. Then
#E(Fq) =q+1-1
with
It < 2/3.
Determining the exact number of rational points is significantly more difficult, and all naive

strategies have exponential (in log g) cost. Fortunately, Schoof discovered a clever algorithm
that is much more efficient:

Theorem 2.18 [Sch85]. There is an explicit® algorithm which, given the coordinates of a (long) Wei-
erstrafl curve E over Fq, computes the number of F-rational points on E in time polynomial in log q.

Sometimes, it is easier to determine the number of points, such as when F is defined over a
subfield — it then suffices to compute the number of points over the smallest field of definition:

Proposition 2.19. Let E/F be an elliptic curve and #E(Fq) = ¢+ 1 — t. If o, 8 € C are the two
(not necessarily distinct) complex roots of the polynomial X? — tX + q € Z[X), then foranyn > 1,

#E(Fqn) — qn +1-— (Oc” + 6")-

Moreover, supersingular curves can only have a few possible group orders, and conversely
supersingularity may be detected by point counting:

Proposition 2.20. Let E/Fq be an elliptic curve, where ¢ = p". Then E is supersingular if and only
ifpdividest = q + 1 — #E(Fq). Furthermore, if ¢ = p > 5, this is equivalent to # E(Fp) = p + 1.

The upshot of Proposition 2.20 is that the group order of supersingular elliptic curves can
easily be controlled by choosing an appropriate base-field prime — one of the main motivations
for their use in isogeny-based cryptography. Another fact with useful implications is that all
supersingular elliptic curves can (up to isomorphism) be defined over a small extension of the
prime field, and moreover we have very explicit and tight bounds on the number of such curves:

>Note the potentially confusing terminology: Supersingular elliptic curves are not singular; rather, the word should
be interpreted to mean “very rare”, referring to the fact that supersingular curves are fairly sparse.

BThe (sometimes muddled) distinction between having an algorithm and merely knowing abstractly that it exists is
important even in practice: Ignoring arbitrarily costly precomputation to find the algorithm is formalized in the so-called
non-uniform model of computation, whose relevance to reality (and cryptography in particular) is debatable. See [BL13].

2.2. ELLIPTIC CURVES 13

Proposition 2.21. Let E be a supersingular elliptic curve defined over a field k of characteristic p > 0.
Then j(E) € F 2. In particular, E is isomorphic (over k) to a curve defined over F 2.
In characteristic p, there are exactly | p/12| + € supersingular j-invariants, wheree € {0,1,2}.

2.2.5— Elliptic-curve cryptography. With all the tools we have available now, it is trivial
to instantiate the Diffie-Hellman key agreement with an elliptic-curve group: Everyone simply
agrees on an elliptic curve F over a finite field F; and a point P € E(Fy) of large prime order
and then proceeds exactly as described in Section 2.1.1.™

2.2.6 — Alternate curve models. For computations, the Weierstraf$ form of elliptic curves
is often not the best choice, as evaluating the addition formulas involves inconvenient case dis-
tinctions (which in turn lead to side-channel risks in cryptographic implementations). The two
most commonly used alternatives are the Montgomery and Edwards forms, which are available
(over the same field) for sizeable subsets of all elliptic curves:

Definition 2.22. A Montgomery curve over a field k of characteristic # 2 is a projective curve defined
by the affine equation

By2:x3+Ax2+:c

with A, B € kand B(A? — 4) # 0. In some cases (such as in Chapter 3), one can always choose B = 1,
and we then refer to A as the Montgomery coefficient of the curve.

Montgomery curves do not solve the problem of exceptional cases in the addition law known
from Weierstraf} curves. However, they do offer extremely clean and efficient formulas for com-
putations on the z-line or Kummer line of a Montgomery curve, which as a variety simply equals
the quotient X = E/{+£1}. Note that while we do lose the addition law when quotienting by
[£1], the scalar-multiplication operation which lies at the heart of elliptic-curve Diffie-Hellman
commutes with [+1], hence is well-defined on X. It can be implemented very efficiently using
the ladder step

DBLADD: (P,Q,P — Q)+ ([2]P,P + Q)

which is well-defined on the Kummer line X and can be used as a building block inside scalar-
multiplication algorithms such as the Montgomery ladder. See [BL17] or [CS18] for more details
on Montgomery curves.

Definition 2.23. A (twisted) Edwards curve over a field k of characteristic # 2 is an affine curve
defined by the equation

az® + y2 =1+ daczy2
witha,d € kand ad(a — d) # 0.

Edwards curves, just like Montgomery curves, offer very efficient arithmetic on the Kummer
line, but in addition they admit complete addition formulas: That is, any two points can be ad-
ded by evaluating the very same rational functions, with no exceptional points and no case dis-
tinction. Hence, they are very useful to build efficient side-channel resistant implementations
of elliptic-curve cryptosystems that require individual point additions, rather than just scalar
multiplications. For more details about Edwards curves, see [BL17] or [BLo7].

4Note that elliptic curves are usually written additively, whereas Section 2.1.1 uses multiplicative notation.

14 MATHEMATICAL PRELIMINARIES

2.3 — Isogenies of elliptic curves

Having shown the basics of elliptic curves — an eminent building block in cryptography in its
own right — in the previous section, it is now time to introduce the central object in this thesis:

Definition 2.24. Anisogeny between two elliptic curves E, E’ /k is a non-zero rational map
p: E— F'

which is also a group homomorphism. An isogeny is defined over k if it can be written using rational
functions in k(E), i.e., as fractions of polynomials with coefficients in k. Two curves E, E' are called
isogenous whenever there exists an isogeny £ — E'.'S

Let Homy,(E, E') denote the set of all isogenies E — E' defined over k, together with the constant
morphism 0: E — E', P — oo. For brevity, write Hom(E, E) := Homg(E, E"). These sets carry
an abelian group structure given by point-wise addition (¢ + 1) (P) = ¢(P) + ¥ (P).

It is worth mentioning that Definition 2.24 is not what some algebraic geometers prefer, as
it generalizes relatively poorly to abelian varieties of higher dimension. However, it appears that
this definition is the most natural for the purposes of this thesis, as we will be working exclus-
ively with elliptic curves in any case — and the fact that isogenies are group homomorphisms
(often derived as a theorem in other literature) is crucial from an applied perspective.

For concreteness, we specialize the definition to short Weierstrafl curves:

Proposition 2.25. Let E, E’ be short Weierstrafl curves over k and ¢: E — E’ an isogeny defined
over k. Then there exist polynomials f, g, h € k[x] such that forall P = (zp,yp) € E,

p(P) = (%(fﬂp)y yp - %(mp))
where defined, and o(P) = oo if P is a pole of f /h? or g/h®.
To measure the algebraic (and, as we shall see, computational) complexity of an isogeny, we

introduce its degree: essentially the lowest possible degree of a polynomial expression (as shown
in Proposition 2.25) to write down the isogeny.

Fact2.26. Letp: E — E' be an isogeny of elliptic curves over k. The pullback
@™ k(E") = k(E), fr fop

embeds the function field k(E') as a subfield of the function field k(E).'® The degree of the isogeny ¢ is
defined to be the degree [k(E) : k(E")] of this extension. Note that degrees are multiplicative since degrees

of field extensions are: deg(p o 1)) = deg(y) - deg(w)).

Definition 2.27. Anisomorphism of elliptic curves is an isogeny of degree one. An automorphism is
an isomorphism from a curve to itself.

A core fact aboutisogenies (often used as a defining property) is that their kernels are finite:
only finitely many points are mapped to co. Isogenies are classified according to the relationship
between the degree and the cardinality of the kernel:

Definition 2.28. An isogeny ¢ is called separable if #ker(p) = deg(yp), else it is inseparable.
Moreover, ¢ is purely inseparable if ker(ip) is trivial.'’

'5See Proposition 2.34 as to why being isogenous is an equivalence relation.

16The connection from isogenies to function field extensions goes much further; in fact, the pullback construction is
a functor inducing an contravariant equivalence of categories to its image.

7Fun fact: Isomorphisms — isogenies of degree 1 — are both separable and purely inseparable, but notinseparable.

2.3. ISOGENIES OF ELLIPTIC CURVES 15

Inseparable isogenies are the exception rather than the norm: In a sense, there is really only
one source of inseparability, and “most” isogenies are separable.

Proposition 2.29. In characteristic zero, all isogenies are separable. In positive characteristic p > 0,
every isogeny ¢ admits a unique decomposition

(p:’(/)Oﬂ';

with 1 separable and wp: (z,y) — (xP,yP) the (p-power) Frobenius isogeny. Thus, powers of mp
are (up to composition with isomorphisms) the only purely inseparable isogenies.

As mentioned above, every isogeny has a finite kernel subgroup. It is therefore a natural
question how much the correspondence works in the other direction: Is every finite subgroup of
an elliptic curve the kernel of a (unique) isogeny?*® Existence will follow from Proposition 2.31,
but inseparable isogenies immediately show that we cannot hope for uniqueness. Fortunately,
thisis the only failure, and so we get a one-to-one correspondence between finite subgroups and
separable isogenies (up to isomorphism):

Proposition 2.30. Let E be an elliptic curve over a perfect field k and H < FE a finite subgroup defined
over k.9 Then there exists an elliptic curve E' and a separableisogeny ppr: E — E', both defined over k,
such that ker(¢g) = H. The pair (E',) is unique up to k-isomorphism of E'.

By analogy with the homomorphism theorem for groups, the curve E' is denoted by E / H.

Note that ¢ is often referred to as “the isogeny with kernel H”, since the technically correct
phrasing “a separable isogeny with kernel H, up to post-composition with k-isomorphisms” is
quite a mouthful.

2.3.1— Computing isogenies. We have seen that abstractly, isogenies are (more or less)
determined by their kernels, but of course this implies nothing about computing an isogeny from
its kernel. This is known, too: By now, there is a variety of algorithms to compute isogenies, each
with its own constraints and applications. All of them are based in one way or another on the
following result from the seventies:

Proposition 2.31 (Vélu’s formulas [Vél71]). Let E: y* = 22 + ax + b be a Weierstrafl curve over a
field k and H < E a finite subgroup. For any function n € k(E) and point P € E, define

fa(P):=m(P)+ Y (m(P+ Q) — 7(Q)).
QeH
Q# 00

Let z,y € k(F) be the Weierstraf§ coordinate functions on E. Then the map
¢: E— E/H, P (fz(P), fy(P)),

where poles of fz, fy get mapped to the point at infinity, is a separable isogeny with kernel H. The codo-
main is a Weierstraf§ curve, whose equation can easily be recovered as well using a few more operations.

Conceptually, these formulas first represent the quotient group F/H simply as cosets P+ H
with P € E, then exploit the coordinate projections x, y of the domain curve E to construct

8This is an analogue in the isogeny setting of the classical homomorphism theorem G /ker(f) 2 im(f) for groups.
9That is, field automorphisms o of k which fix k map H to itself. Note that not necessarily H C FE/(k); rather,
every o acts as a permutation on H.

16 ‘ MATHEMATICAL PRELIMINARIES

functionsin k(E) invariantunder translations by the desired kernel subgroup H. In other words,
this yields well-defined functions fz, fy € k(E/H), which are subsequently used as coordinate
functions on the codomain F/H to set up an embedding into the plane.

2.3.2—Smooth degrees. Itis not hard to see from Proposition 2.31 that naively evaluating
Vélu’s formulas takes ©(|H|) operations, i.e., the cost is exponential in log(deg(y)). Can we do
better? In many cases, the answer is yes. Observe that we can immediately reduce the problem
to prime-degree isogenies:

Lemma 2.32. Let H < E be a finite subgroup of an elliptic curve E. For any subgroup H' < H, the
isogeny ¢: E — E/H with kernel H can be decomposed as

v: E-YE/H Y E/H

whereker(y') = H' and ker() = ¢/ (H) < E/H'.

Corollary 2.33. Let k be a field and suppose that an isogeny of prime degree £ can be computed in T (£)
arithmetic operations in k. Let E /k be an elliptic curve and H < E(k) a finite subgroup, and suppose
the prime factorization |H| = [[i_, £5* is given. Then the isogeny ¢: E — E/H can be computed in

i=1"%
0 3oei-1(6)) - povion| 1)
=1

arithmetic operations in k.

Note that naively evaluating Proposition 2.31 shows the upper bound T'(¢) € O(¥¢). Using
elliptic resultants, the “y/élu” algorithm [BDLS20] achieves a (very close to) square-root speedup
over this naive strategy, yielding the best known result T'(£) € O(/¥). See also Section 11.6.

2.3.3 — Defined kernels. Since cryptosystems rely on the hardness of finding isogenies, we
have to computeisogenies of extremely large degrees. To do so efficiently, we exploit the shortcut
provided by Corollary 2.33: In practice, all isogenies we compute from their kernel have smooth
degree.*®

However, there is another problem: The complexities above are given in terms of operations
in k, but in general, a subgroup of E/k of large size £ is only defined over an extension field of
exponential (in log ¢) degree over k. Thus, for isogenies of sufficiently large (smooth or not) de-
gree, even writing down the kernel is impossible in practice! Two tricks are employed to avoid this
issue. First, one may use special curves whose group orders over a small enough field are amen-
able to nice, smooth-degree isogenies: In (current) practice, this usually means supersingular
curves defined over (at most) F,» with a prime of the form p = s — 1 where s is smooth. The
second technique in principle applies to any base field and curve, but is much less efficient in
practice: Using isogenies of powersmooth degree [];_; ¢;* allows decomposing the kernel H as
an internal direct product Hy x --- X Hy C H, where each |H;| = ¢ is small, hence each sub-
group H; is defined over only a small extension. Therefore, the isogeny can be computed as a
chain E — E/H, — (E/H1)/Hy — --- — E/H, where the kernel of the i step is computed
by pushing H; through all previous isogeny steps. What this gains is that all computations can
now be performed in fields big enough to contain each pair of subgroups H; x H; C H, rather
than (previously, without decomposing) the entire group H at once.

°An integer is B-smooth if it has no prime factor larger than B. Similarly, an integer is B-powersmooth if it is not
divisible by a prime power larger than B.

2.3. ISOGENIES OF ELLIPTIC CURVES ‘ 17

2.3.4 —Isogeny graphs. An extremely useful (and mathematically pleasing) property of
isogenies is that every isogeny comes with a natural complementary isogeny in the opposite
direction, the dual isogeny. The dual behaves somewhat like an inverse, modulo a scalar multi-
plication by the degree:

Proposition 2.34. Every isogeny ¢ has a unique dual isogeny @: E' — E with the property that
Po=[deg(p)]: E— Eandpo 3 = [deg(p)]: E' — E'. The dual isogeny abides by the rules

I
©

’

+9 (forp £ —);

>)

0+
pot

°p
The kernel of the dual § equals o(E[deg(¢)]) < E.

<
|

@
¥

Among (many) other things, the existence of the dual isogeny implies that being isogenous
is an equivalence relation. How hard it is to decide whether two curves are isogenous?

Tate’s Isogeny Theorem 2.35 [Tat66]. Two elliptic curves E, E' defined over a finite field F 4 are
isogenous over Fy if and only if # E(Fq) = #E'(Fq).

While Tate’s theorem equips us with a neat, easily checkable criterion to determine whether
two curves are isogenous, it reveals no information at all about the isogeny whose existence is
established. Tolearn more about the nature of the connecting isogenies between different curves
known to be isogenous, the structure of isogeny graphs is studied:

Definition 2.36. Let k be a field and S a set of positive integers (often a single prime) not divisible
by char (k). Define the S-isogeny graph G, s over k as follows:

e Nodes: Elliptic curves defined over k, up to k-isomorphism.
e Edges: Isogenies of degree ¢ € S defined over k, up to post-composition with k-isomorphisms.

When S = {{}, wewrite G}, ¢ for the {-isogeny graph.

Note that definitions of isogeny graphs vary wildly between different authors with regard
to the set of curves considered (sometimes only a single connected component) and the class of
isomorphisms under which identifications are made. We prefer the version above as it seems to
be one of the most versatile choices. Typically, we will restrict our attention to subgraphs of G}, 4
comprised of all curves with a given number of k-rational points, since (by Tate’s theorem) such
subgraphs are always disconnected from the rest of the graph anyway.

The existence of the dual isogeny implies that isogeny graphs can be viewed as undirected
graphs almost everywhere: Exceptions can only occur at nodes with j-invariant 1728 or 0, due
to their potential for having extra automorphisms, which may collapse the duals of multiple
outgoing isogenies into just one incoming edge. Note that this affects only the multiplicities of
directed edges, but not the existence of edges between two nodes.

Away from these special nodes, connected components of ¢-isogeny graphs admit only two
possible shapes: On one hand, very regular structures known as volcanoes, and on the other hand
the much more random-looking Pizer graphs.** See Figure 2.1 for representative examples. An

*'Pizer graphs are frequently referred to as supersingular isogeny graphs — a slight misnomer, as isogeny graphs of su-
persingular curves can be volcanoes (cf. Chapter 3). However, we will occasionally refer to “the” supersingular S-isogeny
graph in characteristic p, which means the unique supersingular component of Gg— g, though see Proposition 2.74.

P>

18 MATHEMATICAL PRELIMINARIES

Figure 2.2: An S-isogeny graph for the set S = {3, 5, 7} in the volcanic case. Here, each £-isogeny volcano (£ € S) has
depth zero (see Definition 2.67).

£-isogeny volcano consists of a single cycle, the crater, and each node on the cycle is the root
of a complete tree which is £-ary below the root, occasionally referred to as lava, which however
almost always has depth zero, i.e., is empty — so most volcanoes (in a certain sense) are actually
made up of just a crater. In the volcano setting, the regular structure of a single ¢-isogeny graph
is highly compatible with other ¢'-isogeny graphs, and thus a beautiful picture unfolds when
considering the S-isogeny graph for a set S of more than one prime; see Figure 2.2 for an example.
Pizer graphs by contrast have much less easily comprehensible structure and look quite random.

To decide which kind of graph to create, the laws of mathematics simply sneak a peek at the
structure of the endomorphism ring of the curves in question: The isogeny graph is a Pizer graph
if and only if the ring of k-rational endomorphisms is non-commutative. Thus, we shall now
digress to analyze endomorphism rings of elliptic curves. Section 2.5 will continue the discussion
of isogeny graphs including the new tools developed in the following.

*?In some cases, the “cycle” is degenerate and consists of just one or two nodes.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS ‘ 19

2.4 — Endomorphisms, quadratic fields, and quaternion algebras

As hinted in the previous section, the structure of isogeny graphs is intimately connected to the
study of endomorphism rings.

Definition 2.37. Let E/k be an elliptic curve. An endomorphism of E is an isogeny or the zero map
from E to itself; in other words, it is an element of

End(E) := Hom(E, E).

With the point-wise addition inherited from Hom(E, E) and multiplication given by composition of
endomorphisms, this set forms the endomorphism ring of E.

Similarly, the k-rational endomorphism ring (or k-endomorphism ring for short) of E is the
subring Endy (F) := Homy,(E, E). When k = Fq, we sometimes write Endg instead of Endp, .

Due to the existence of scalar-multiplication morphisms, we can clearly always embed Z as
a subring of End(F), and in fact the typical case in characteristic zero is End(E) = Z. This is
far from true over finite fields, where elliptic curves always have non-scalar endomorphisms. To
analyze the endomorphism ring further, it is helpful to adopt a more algebraic stance:

Fact 2.38. Taking the dual isogeny of a non-zero endomorphism and mapping zero to itself defines an
involution on End(E), usually referred to as conjugation and written — in this context.”

The existence of the involution ¥ + 9 is critical in that it determines many other important
properties of the endomorphism ring. Recalling that 99 = deg(«}) € Z and using the fact that
deg(9+1) — deg(¥) — 1 = ¥ + I is an integer, we can immediately make the crucial observation
thatevery ¥ € End(F) satisfies a quadratic equation with coefficients in Z:

92 = (9 +0)9 — 9.

Prompted by this, the usual definitions for algebraic numbers carry over:

Definition 2.39. Let¥ € End(E). Its norm is N(¢9) = 99, and its trace is tr(9) = ¢ + 9.
Notice that the norm is the same as the degree of an endomorphism.

Proposition 2.40. Every endomorphism ¢ € End(FE) is an algebraic integer of degree at most two.
In particular, the norm N(9) and trace tr(9) are integers, and ¥ satisfies the characteristic equation

% —tr(9) -9 + N(¥) = 0.

2.4.1—Frobenius. Probably the most well-known example of Proposition 2.40 comes from
elliptic curves over a finite field F4: There, one can immediately exhibit an endomorphism that
is typically (but not always) non-scalar, namely the (g-power) Frobenius endomorphism

7 E— B, (z,y) — (29,y9).

When #E(F,) = g+ 1 — t, the characteristic equation of 7 is 72 — t7 + ¢ = 0.>4 Suppose 7 ¢ Z.
Thus, the Frobenius order Z|w] C Endy (E)isisomorphicto thering Z[\/t? — 4q]. Sometimes, this
is already the whole story and we have Endy (E) = Z[r]. However, the endomorphism ring can

»3Some sources use and ~ interchangeably.
*4Hence, the key to point counting lies in computing the trace of Frobenius, which is indeed the core idea underlying
Schoof’s algorithm 2.18.

20 MATHEMATICAL PRELIMINARIES

be bigger in several ways. First, some of the endomorphisms 7 — a € Z[r] may be divisible by an
integer d,*> which implies Z[r] C Z[*5%] C Endj(E). Second — and much more severely —
the set {1, 7} may fail to span the entirety of the endomorphism ring even when denominators
are allowed.

2.4.2—Endomorphism algebras. To separate the issues concerning denominators from
more fundamental questions about the general structure of Endj, (£') — such as the rank —itis
convenient to introduce a coarser object:

Definition 2.41. The endomorphism algebra of an elliptic curve E is the Q-algebra
End}(E) := Endg(E) ®z Q.
In simpler terms, Endy, (E) consists of elements of the form o./d with & € Endy,(E) and d € Z\{0}.

An explicit embedding shows that the isomorphism class of the endomorphism algebra is
an isogeny invariant:

Proposition 2.42. Let p: E — E’ be an isogeny defined over k. The map
Endy(E) — Endi(E"), a — pad

is a homomorphism of additive groups with image deg () - Endy, (E"). Correcting the failure to preserve
the ring structure by dividing out the degree, the map

tp: Endj(E) — EndR(E'), a— pap/deg(p)
is an isomorphism of Q-algebras. (The image v, (Endy (E)) is generally not contained in Endy, (E").)

Notice that the choice of isogeny ¢: E — E’ enters the definition of the isomorphism ¢,
between the endomorphism algebras. Indeed, this choice does not cancel out: In some cases,
the embedding of End (F) into an ambient algebra is highly non-unique, in which case it is
common to fix one by choosing a particular curve Ey as a point of reference, fixing isogenies
¢: E — Ep from all curves under investigation, and using the corresponding embeddings ¢,
of Endy (E) into the ambient algebra Endy,(Ep). See [Wat69] for details. In practice, the em-
beddings of different endomorphism rings into a common ambient algebra are often omitted,
implicitly assuming compatibility with respect to certain (classes of) isogenies.>® For example,
in Chapter 3, we will assume embeddings into an ambient algebra which all map Frobenius to
the same element.

Another natural way to acquire the fractions 1/deg() required to turn the map o — pap
into a ring homomorphism is localization at the degree:

Proposition 2.43. Letp: E — E’ be an isogeny defined over k and write d = deg(yp). Then the map
Endy(E)[1/d] — Endy(E)[1/d], a — pad/d
is an isomorphism of Z[1/d)-algebras.

This result has the very useful implication that isogenies can only change the endomorphism ring
locally at the degree, which Section 2.5.1 relies on crucially.

25More formally, this “divisibility” means that m — a kills the d-torsion, hence (using Lemma 2.32) there exists a
(unique) endomorphism 7 € Endy(E) such that 7 o [d] = 7 — a. This 7 is (deservedly) denoted by T=2.
*6This can be very confusing.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 21

2.4.3 —Kernels and ideals. Before we move on to the classification of endomorphism rings,
we introduce an extremely important connection between isogenous curves and ideal classes of
the endomorphism ring. Proofs (also covering the case of abelian varieties of higher dimension)
can be found in [Wat69].

Throughout this section, let £ be an elliptic curve defined over k and write O := Endy (F).

Proposition 2.44. Any non-zero left*” ideal T C O of O defines a finite subgroup of E by
E[T] := ﬂ ker(a).
acT

Note that iterating over generators o of L suffices to compute the subgroup E[Z] without enumerating all
(infinitely many) elements of Z. (When T = O - 0, then simply E|Z] = E[J)] := ker(9).)

Factor T as J - 7" with J ¢ Om andr > 0. Then the cardinality of E|I| equals the norm of 7, i.e.,
the greatest common divisor of all norms of elements in J.

In particular, since F[Z] is a finite subgroup, Z defines an isogeny:

Definition 2.45. For a non-zero left ideal T C O, let w1 denote the isogeny with kernel E[Z], thus
$1 = $pp|z) in our earlier notation. Write E /T for the codomain E | E[Z] of 1.

A word of warning: There may exist subgroups which are not of the form F[Z] for any Z.

From the definition of E[Z], it is not very hard to see that multiplying Z from the right by
an elementy € O\{0} will not change the codomain (up to k-isomorphism): By construction,
E[Z~] = v~ 1 (E[Z]) contains ker (), hence (using Lemma 2.32) we get a decomposition

E ki E/~y = E L2 BT
I
Py
E/I~.

Proposition 2.46. LetZ be a non-zero left ideal of O and v € O\{0}. Then
In particular, the isogeny codomain defined by a (left) ideal depends only on the class of the ideal.

The significance of this observation can hardly be overstated: It establishes a very strong
relationship between the ideal theory of the endomorphism ring and the structure of the isogeny
graph, a correspondence which equips us with essential tools to analyze the latter.

2.4.4 — Classification of endomorphism algebras. Let us now delve into the properties
of endomorphism rings in various situations. The most important split happens between three
major cases, which we distinguish in terms of the endomorphism algebras:

Proposition 2.47. Let k be a field and E / k an elliptic curve.
e Ifchar(k) =0, then either Endy,(E) = Z or End},(E) is an imaginary quadratic field.*®

*7Since conjugation — swaps left and right multiplication, we could just as well speak of right ideals; however, left
ideals appear to be a bit more popular. When O is commutative, all sides are of course the same.

281f Endy, (E) is larger than Z, then E is said to have complex multiplication (or CM for short) over k. When the base
field is unspecified, the term refers to CM over the closure k.

22 ‘ MATHEMATICAL PRELIMINARIES

o Ifk =y, then Endj (E) is either an imaginary quadratic field or a quaternion algebra.

To characterize the possible endomorphism rings inside the endomorphism algebra Endy, (E)
in more detail, we require the following definitions:

Definition 2.48. Let A be a finite-dimensional Q-algebra. Alattice in A is a finitely generated sub-
group that spans A over Q. An order in A is a lattice that is also a subring. The orders in A are partially
ordered by inclusion; a maximal order of A is one that is not properly contained in any other order in A.

The next two sections elaborate on specifics of the two “interesting” cases of Proposition 2.47:
Quadratic fields and quaternion algebras.

2.4.5—Quadratic endomorphism rings. For “most” elliptic curves over finite fields, the
situation is comparably simple: Scalar multiplications and the Frobenius endomorphism are
already “the whole story”, at least up to denominators:

Proposition 2.49. Let E/Fq with#E(Fy) = q+ 1 — t points, hence the Frobenius endomorphism 7
satisfies the equation m* — tm + q = 0.
Ifm & Z, then
End(E) = Q(7) = Q(/t2 - 4q) .

In particular, Endy, (E) is an order in Q(\/t2 — 4q) containing Z[r| = Z[\/t2 — 4q].

The condition 7 ¢ Zis crucial: If 7 € Z, the endomorphism ring is non-commutative, which
will be discussed in Section 2.4.6. Moreover, note in particular that Proposition 2.49 applies to
all ordinary elliptic curves over a finite field, as well as supersingular elliptic curves defined over
prime fields Fj, with p > 5, since the condition 7w ¢ Z is automatically satisfied in these cases.

Recall the following definitions and consequences from algebraic number theory:

Fact2.50. Consider the imaginary quadraticfield K = Q(/—d) where d > 0 is a square-free*® integer.
The discriminant A i of K is defined to be —d when —d = 1 (mod 4) and —4d otherwise.
There exists a unique maximal order O in K consisting of all algebraic integers in K it is given by

O = Z[iAK Zm] .

Every (other) order O in K is of the form
O=Z+f-Ok

where f is called the conductor of © and equals the index [O : ©). The discriminant Ay is f2A .
The conjugation automorphism —: a+ bv/—d + a — by/—d of K is an automorphism of every
order O, and it extends to ideals of O via element-wise application. The product aa is a principal ideal
generated by a non-negative integer N(a) called the norm of a; we have N(a) = gcd {N(«) | « € a}.
A prime number p € Z is inert in O if pO is a prime ideal, split if pO = pp with a prime ideal
p C O such thatp # p, and ramified if pO = p>. Only finitely many primes in 7 are ramified; the
density of split and inert primes in the set of all primes in Z is 1/2 each.

As seen in Proposition 2.46, multiplying left ideals from the right by base ring elements
leaves the corresponding isogeny codomain unchanged. To symmetrize the treatment of scaling
ideals, it is convenient to allow “ideals with denominators”:

29This is not a restriction: Clearly Q(c?+v/—d) = Q(/—d) forallc € Q*.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS ‘ 23

Definition 2.51. Let A be a Q-algebra and O C A an order. A fractional leftideal Z of O is a lattice
in A that is closed under left-multiplication by O; similarly on the right. Integral (left or right) ideals are
ideals in the conventional sense, i.e., fractional ideals of O contained in O.

For a non-zero fractional left ideal Z of Endy, (F), we abuse notation and still write E/Z for
the codomain E/dZ, where d is an appropriate scaling factor in Z\ {0} such that dZ is integral;
this is well-defined by Proposition 2.46.

In quadratic fields in particular, the notion of fractional ideals lends itself to extending the
multiplication of ideals to a group structure:

Fact 2.52. Let O be an imaginary quadratic order. A fractional ideal a of O is invertible if there exists
another fractional ideal b of O such that ab = O; if an ideal is invertible, the inverse equals a/N(a).
Non-zero ideals of norm coprime to the conductor are always invertible; in particular, this includes all
non-zero ideals of the maximal order. The set of invertible fractional ideals forms a group under ideal
multiplication. The ideal-class group cl(O) of O is the quotient of this group of invertible fractional
ideals modulo the subgroup of principal fractional ideals: two fractional ideals a, b of O are equivalent
if there exists an element c € K* suchthat a = b - c. The cardinality of c1(O) is called the class number
of O and denoted by h(O).

Writing d = |Ap), it is known that h(O) € O(/d - In(d)), and moreover that h(O) € ©(/d) on
average. Assuming GRH, a lower bound is given by Q(/d/log log d).

For more background on orders in imaginary quadratic fields, we refer to Cox’ book [Cox13].
We have seen that whenever © ¢ Z, the endomorphism ring of an elliptic curve over Fy is
an order in Q(,/t2 — 4q) containing m, where ¢ is the trace of the Frobenius endomorphism 7.
Conversely, it turns out that most of the quadratic orders that are not “obviously” impossible on
the grounds of lacking a Frobenius element occur as endomorphism rings [Sch87, Theorem 4.3]:

Proposition 2.53. Consider a finite field Fq where q=p", and an integer t such that t> —4q < 0.
Let O be an order in K = Q(/t2 — 4q) containing Z[\/t2 — 4q|.

Suppose that p { t, or alternatively that t =0, r is odd, and p { [Ok : O). Then O occurs as an
endomorphism ring of an elliptic curve over Fq. (Some more special cases were omitted for simplicity.)

We may arrange the elliptic curves in an isogeny class in a layer structure depending solely
on the integer f = [Ok : O], which (as we shall see in Section 2.5.1) corresponds to the level
in £-isogeny volcanoes for £ | f. Also note that the previous result includes some instances of
supersingular elliptic curves in particular, which will be used in Chapter 3 in the situation g = p
owing to their beneficial properties from a computational perspective.

As explained in Section 2.4.3, ideals define isogenies, and the codomain only depends on
the class of an ideal. In addition, one can show that the action of invertible ideals does not
change the endomorphism ring, which means we can repeatedly act with more ideals on the
codomain — thus defining an extremely important group action on sets of curves with the same
(quadratic) endomorphism ring:

Definition 2.54. For a field k and an quadratic order O, we let
y(0) ={E/k | Endg(E) = O} / =5,

where each curve in &, (O) implicitly comes equipped with a fixed isomorphism vz : Endy(E) = O
that respects k-isogenies.

24 MATHEMATICAL PRELIMINARIES

The condition of “respecting k-isogenies” means: For any k-isogeny ¢: E — E’ between
any two curves E, E in &, (0), we have

LE = LE'© (L¢|Endk,(E)) ,

with ¢, being the map from Proposition 2.42.
If k is finite, this simply means that Frobenius is mapped to the same element of O by all 1 .

Theorem 2.55 (The CM torsor). Let k be a field of characteristic p > 0, and let O be an order in an
imaginary quadratic field K such that &8y, (O) is non-empty. The map

w1 cl(O) x &y(O) — Py, (O)
([a], E) —> E/a,

where a C O is chosen as an integral representative of its class [a], is a well-defined group action.

This group action is free (no two ideal classes act the same on any curve). Whenever p =0 or p is inert
in O, it is transitive (every pair of curves is connected); otherwise, there are two orbits. In particular, the
cardinality |8, (O)| equals either h(O) or 2 - L(O).

Note that the case of two orbits is extremely rare: At the very least, it requires supersingular
elliptic curves defined over k = Fy with p? | t? — 4g; see [Sch87, Theorem 4.5].

Since we will make computational use of the group action from Theorem 2.55 in Chapter 3,
let us unfold the definition into something more explicit:

Proposition 2.56. Let FE/k and suppose O := Endy (F) equals Z[t] where T = (7 —m)/ f with
integersm, f. Then any ideal a C O of norm N > 0 is either of the form (/' N) or of the form (N, T — \),
where \ € ZZ/N is an eigenvalue of 7 on E[N].

In the latter case, the subgroup E|a] is precisely the eigenspace of T on E[N] with eigenvalue)\, i.e.,
the subgroup of N -torsion points on which T acts as multiplication by \.

We refer to [DKS18] for more details, and to Chapter 3 for the specialization 72 = —p.

2.4.6 — Quaternionic endomorphism rings. For supersingular elliptic curves, the picture
is quite a bit more complicated: They have “extra” endomorphisms which do not all commute
with each other:

Example 2.57. Consider the elliptic curve E : y*> = x3 + x over Fp withp = 3 (mod 4). Clearly, we
have the Fp,-Frobenius endomorphism w: E — E, (z,y) — (2P, y?). In addition, when viewed as a
curve over IF,2, the curve admits the automorphism

1: E— E, (z,y) = (—z,vV/—1-y)

of order four, which anticommutes with since (/—1)" = —+/=1. Thus, the endomorphism algebra

End® (E) is generated by . and w1, which are subject to the relations 1> = —1, 7> = —p, and 7. = —u.
Similarly, letting p = 2 (mod 3) and fixing a primitive third root of unity { € T2, the curve

E': y? = 23 + 1 defined over F), acquires the automorphism
w: E/ — Ela (CC,y) = (vay)

when the base field is extended to F,>. Note that again mw = —wm where 7 is the F-Frobenius of E'.

2.4. ENDOMORPHISMS, QUADRATIC FIELDS, AND QUATERNION ALGEBRAS 25

These examples may seem somewhat pathological since in both cases the “extra” endo-
morphisms are actually automorphisms, but the phenomenon extends to many more curves:
At the very least, Proposition 2.42 shows that every curve isogenous to these curves will exhibit
non-commuting endomorphisms, and with some more work one can show that this happens
for all supersingular elliptic curves.

2.4.7— Quaternion algebras. Example 2.57 shows special cases of quaternion algebras:

Definition 2.58. Let p be a prime number and let a, b denote positive integers specified below. The
quaternion algebra ramified at p and oo, denoted by By, o, is a four-dimensional Q- algebra spanned
by basis elements 1,1, j, ij with multiplication law

i“=a, j°=0b, and ij= —ji.

Whenp = 3 (mod 4), let (a,b) = (—1,—p). Whenp = 1 (mod 4), pick a prime ¢ = 3 (mod 4)
that is non-square modulo p and let (a,b) = (—q, —p).>° Whenp = 2, let (a,b) = (=1, —1). All pairs
(a, b) adhering to these conditions yield isomorphic algebras, and By oo is unique up to isomorphism.

Note that p =2 yields the quaternions as discovered by Hamilton in 1843, often written H
in his honour, and all other B) ~ arein a sense “just” distorted versions of H with the axes scaled
by real quadratic integers. (Algebraically speaking, this change is of course quite significant.)

The most comprehensive reference on quaternion algebras is Voight’s book [V0i18]. For now,
recall Definitions 2.48 and 2.51.

2.4.8 —Deuring’s correspondence. As hinted above, (full) endomorphism rings of super-
singular elliptic curves are subrings of a quaternion algebra:

Proposition 2.59. Let E be a supersingular elliptic curve defined over a field k of characteristicp > 0.
Then End® (E) & By oo, and End(E) is a maximal order in By oc.

While supersingular endomorphism rings are quaternionic over the closure, generally notall
endomorphisms are defined over the base field (see Example 2.57). How large a field extension
is needed to acquire all endomorphisms? From Proposition 2.49, we know that 7 ¢ Z implies
that the k-endomorphism ring is an imaginary quadratic order. The converse is also true:

Proposition 2.60. Let k =F be a finite field of characteristic p and E an elliptic curve over k with
Frobenius w. Then Endy, (E) is non-commutative, i.e., a maximal order in Bp o, if and only if w € Z..3'

In stark contrast to the commutative case, maximal orders in quaternion algebras are far
from unique. Thus, while in the commutative case the endomorphism rings of many curves may
be exactly the same (by Theorem 2.55), one may wonder to what extent a supersingular curve
can be recovered from its endomorphism ring, a question that was answered by Deuring in an
influential 1941 paper [Deu41]:

Theorem 2.61 (The Deuring correspondence). Let p be a prime and o: a +— P the nontrivial
automorphism of Fp». Taking endomorphism rings induces a bijection

{§(E) | E/Fp supersingular} / (¢) +~— {maximal orders O of Bpco} /2.

3°The existence of such a q is guaranteed by Dirichlet’s theorem on primes in arithmetic progressions.
3'Strangely, even though the property 7 € Z suggests that the curve “should” end up having fewer endomorphisms
than “normal’, the exact opposite is the case: These curves are precisely the odd ones out with more endomorphisms!

26 MATHEMATICAL PRELIMINARIES

In particular, for every maximal order O of Bp, o, there exist either one or two isomorphism classes of
supersingular elliptic curves over T, with endomorphism ring (isomorphic to) O. There is only one such
curve E if and only if j(E) € Fp. Otherwise, the two curves have conjugate j-invariants in 2 \Fp, so
in particular the two curves are connected by the Frobenius isogeny mp: (x,y) — (2, yP).

Even more pleasantly, there is an analogue of the free and transitive group action from The-
orem 2.55, except that one-sided ideals do of course not form a group:

Definition 2.62. Theright order of a lattice I in By oo is
Or(I)={a € Bpoo | Ia CI};

the left order is defined analogously. In other words, the right (resp. left) order is the largest subring of
Bp, o for which I is a right (resp. left) fractional ideal.

Two fractional left ideals T, J of a maximal order O C Bp o are (left) equivalent if there exists
v € Bpioo such that J = Iy. As usual, we write [I) for the class of Z, i.e., the set of all left fractional
ideals equivalent to T. The left (ideal-)class set Clsy, (O) is the set of all non-zero ideal classes [Z].3

Proposition 2.63. Let Fq be a supersingular elliptic curve over Fp, and write Oy := End(Ey). For
every supersingular elliptic curve E /Ty, there is a unique left ideal class [Z] of Og such that Eo /T = E.33
The endomorphism ring of the isogeny codomain Eq /L is isomorphic to the right order3* of Z:

End(Ey/Z) = Or(Z) C End’(Ep) = Bp,oc-
(The embedding End(Eo/Z) — End®(Ejp) is the restriction of the map 1 from Proposition 2.42.)

Proposition 2.64. Let Ey, E1 be supersingular elliptic curves over Fp, and write O; := End(E;) for
short. Fix isomorphisms End® (E;) — Bp.oo and identify O; with their images.
Then, the fractional Oq-left and Oy -right ideal T := Oy - O1 satisfies Ey/Z = FE;.

The choice of isomorphisms End(F;) = Bp,co in Proposition 2.64 is important: It resolves
the apparent contradiction that Z is defined only in terms of endomorphism rings, yet allows to
recover the curve exactly, whereas by Theorem 2.61 there are often two curves with isomorphic
endomorphism rings.

2.4.9 — Representatives of ideal classes. Recall from Section 2.3.1 that we typically need a
separable isogeny to have smooth (or, in general, powersmooth) degree to be able to efficiently
compute it from its kernel. This observation carries over to computing an isogeny from a de-
fining ideal, as this (usually) consists of first recovering generators of the kernel subgroup and
then applying Vélu-style algorithms. Recalling Proposition 2.44, the complexity of these steps is
determined by the prime factorization of the norm of the ideal.

Since the codomain of an isogeny only depends on the ideal class (Proposition 2.46), we may
try to find a more suitable representative of an ideal class when the norm is not smooth enough.
To this end, it is known abstractly that for all primes £ # p, every class of non-zero quaternion
left ideals has a representative of £-power norm [Voi18, Main Theorem 28.5.3]:

Proposition 2.65. Let O be a maximal order in Bp o and Z C O a non-zero left ideal. For any prime
£ # p, there exists a left ideal J € [Z] whose norm is a power of £.

3>Similarly to the quadratic case, defining this for general orders requires an invertibility condition, but we restrict
to maximal orders as the general case will not be needed in the following.

33The choice of Z in its class does not matter, though it does generally yield different isogenies o7 : Eg — E.

34#Mnemonic: “When left with an ideal, the right order is the right order.”

2.5. ISOGENY GRAPHS 27

Combining this result with Proposition 2.64 yields the important fact that the supersingular
L-isogeny graph is connected for all primes £ # p; see also Section 2.5.3.

Itis not known unconditionally how to make Proposition 2.65 effective. However, there is a
clever heuristic algorithm [KLPT14] to solve this problem (and related problems with other kinds
of target norms) in polynomial time for special maximal orders, under the assumption that cer-
tain integers appearing in the algorithm have “random” factorization properties. Concretely,
special orders are those containing Z + Zi + Zj + Zij, where g in Definition 2.58 is as small as
possible.

Theorem 2.66 (The KLPT algorithm). There is a heuristic algorithm which, given as input a basis
of a special maximal order in By, o, a basis of a non-zero left ideal T C O, and a prime £ # p, returns
a basis of an ideal J € [I] such that N(J) = £" for some integer n > 0. If the size of the input is
polynomial in log p, the runtime is heuristically polynomial in log p.

Under some more heuristic assumptions on sizes of integers, the norm of J can be estimated as /2.

As the KLPT algorithm is quite technical, we refer to [KLPT14; GPS17; DeF+20] for details and
only give a short overview: Note thatif § € Z has norm N(Z) - m, then Z§/N(Z) is an equivalent
ideal of norm m. (We refer to this fact as the fact during this paragraph.) KLPT first reduces to the
case of ideals of prime norm: pick random § € Z until N(6) = N(Z) - N with N prime; hence,
by the fact we may assume that Z has prime norm N. Then Z can be written as Z = O(N, «) for
some a € O; such an « is again easily found randomly. The next step (which in turn consists
of a few rather technical substeps) is to factor the element « as 3y modulo N, where 8 € O'is
of norm N¢° for some b >0 and v € Zj + Zij. Finally, the core of the algorithm is an effective
version of the strong approximation theorem, which allows lifting the element v € Zi + Zij to a
pair (\,7') € Z x O such thaty’ = Ay (mod N) and N(y') = £° for some ¢ > 0. Finally, note
that O(N, 87') = O(N, «) = Z, hence 3+’ € Z, so we can apply the fact with § = B+’ to obtain
an ideal of norm N¢%¢¢/N = (¢ equivalent to T as desired.

The steps that compute 8 and ' are largely agnostic to the kind of target norms they are
requested to output; in particular, itis very easy to adapt the algorithm to powersmooth norms.

Notice that the KLPT algorithm can be used to efficiently compute the ring-to-curve direc-
tion of the Deuring correspondence (Theorem 2.61): Given any maximal order O in Bp, o, pick
an arbitrary supersingular curve with a known “special” maximal order as endomorphism ring,
and apply KLPT to a connecting ideal (which can be computed as shown in Proposition 2.64) to
obtain a powersmooth representative. Then, simply compute (a prime-power decomposition
of) the subgroup defined by the ideal (see Proposition 2.44), and proceed as explained in Sec-
tion 2.3.3 to obtain the equation of a curve with endomorphism ring O. The other direction of
the Deuring correspondence appears to be much harder: The best known algorithm to compute
endomorphism rings of supersingular elliptic curves essentially consists of searching cycles in
an isogeny graph (cf. Section 2.5.4) until enough endomorphisms to span the entire ring have
been found. See [Kohg6, Section 7] and [Eis+20].

2.5 —Isogeny graphs

Armed with the tools from Section 2.4, we can now discuss isogeny graphs in more detail. Recall
the notation from Definition 2.36: Let k be a field, S a set of positive integers, and G, s the graph

35A priori, itis not obvious that a basis with representation size polynomial in log p exists for every maximal order
in Bp, co; this follows from a geometry-of-numbers argument [Eis+18, Theorem 2]. Similarly, an ideal whose norm is
polynomial in p can be represented with size polynomial in log p.

28 MATHEMATICAL PRELIMINARIES

consisting of elliptic curves and isogenies of degree in S, all up to k-isomorphism.

We consider three situations: The ¢-isogeny graphs and S-isogeny graphs in the “volcanic”
case (left side of Figure 2.1 and Figure 2.2), and the ¢-isogeny graph in the Pizer case (right side
of Figure 2.1).

2.5.1—Volcanoes. The first case are isogeny volcanoes: The kind of connected components
one gets by restricting one’s attention to a single prime degree in the commutative case. A good
overview of the contents of this section is given in Sutherland’s Isogeny Volcanoes [Suti2b]; see
Kohel’s PhD thesis [Kohg6] for a more in-depth discussion.

Throughout this section, let £ denote a prime number not equal to the characteristic of k. Let
us first make the informal description of isogeny volcanoes given in Section 2.3 precise:

Definition 2.67. An {-volcano of depth d > 0is an undirected graph V' consisting of a single cycle C
(which may be just one node), such that each node of C'is the root of a complete tree of depth d, and such
that every node has degree 0, 1, 2, or {+1.

The subgraph C is called surface or crater. The level of a node v is the distance from the surface.
The floor consists of nodes at level d. Isogenies between curves at the same level are called horizontal,
isogenies from level i to level i+1 are descending, and isogenies from level i to i—1 are ascending.

Components of isogeny graphs of elliptic curves with imaginary quadratic endomorphism
rings (recall from Proposition 2.42 that this property is invariant under k-isogenies) are almost
always volcanoes:

Proposition 2.68. Let k be finite and let V' be a connected component of Gy, ¢ containing a curve £
with Endy (E) commutative. Suppose V does not contain a curve with j-invariant 0 or 1728.

Since all curvesin'V are k-isogenous, their Frobenius orders Z[] and endomorphism algebras K are
the same. Let f denote the conductor of Z[r], i.e., its index in the ring of integers O. Define d = vy (f),
i.e., the multiplicity of £ in the prime factorization of f.

Then V is an £-volcano of depth d. All curves at level i € {0, ..., d} have k-rational endomorphism
ring O; := Z + (f [t)Ok-. If splits in Oy, then the size of the crater of V equals the order of [1] in
the ideal-class group cl(Oy), where Uis an Og-ideal of norm ¢; otherwise, the crater has size 1.

The proof relies on Proposition 2.43 and Theorem 2.55. The two special cases j € {0, 1728}
are not much different, but must be excluded for the technical reason that they may have addi-
tional automorphisms which collapse more isogenies into one edge than “usual”. In these cases,
however, the graph is still very volcano-esque, with a crater of size one, and the only failure is
that the crater node has more outgoing than incoming edges; all other structural properties of
the graph remain the same. See Figure 2.3 for examples. As the differences are minor, localized at
no more than two exceptional nodes, and usually do not impact applications, we will generally
largely ignore this issue.

Based on the following theorem of Lenstra, we can moreover see that the structure of the
subgroup of k-rational points is the same for all curves on the same level.

Theorem 2.69 [Leng6, Theorem 1]. Consider an elliptic curve E over k = Fq with Frobenius endo-
morphism m and write O = Endy, (E). Let Fyn be a finite extension of k = Fy.

o Ifm¢Z, then E(Fqn) 2 O/(x"™ — 1) as O-modules.

o Ifm€Z, then E(Fgn) = Z/(7"™ — 1) x Z/(x"™ — 1) as abelian groups. Furthermore, as left
O-modules, we have E(Fqn) & E(Fgqn) 2 O/(x™ — 1).

2.5. ISOGENY GRAPHS | 29

"""-., > (=3 o A e 0=3

/N /N ANVA

/'\ /\ /\ /\ ANANA

o-ooooooo-o-o--o

11
>.
>'

Figure 2.3: Almost-volcanoes with extra automorphisms on the crater: Components of £-isogeny graphs over F1753.
Observe that special behaviour occurs only at the crater, whereas all lower levels look like “normal” volcanoes.

Moreover, when the curves have some k-rational ¢-power torsion, the distance of a curve
from the floor often expresses itself in the structure of that subgroup [1J13, § 2.3]:

Proposition 2.70. Letk =Fq and E [k an elliptic curve with Frobenius w ¢ 7, so that O = Endy (FE)
is commutative. Let [denote the conductor of Z[rw] and m the index of Z[r] in O. Furthermore, let a € Z
with 2a = tr(r) (mod f). Then O = Z[~=%] and

E(k) = Z/N xZ/M,

where N = ged(a — 1, m) and NM = #E(k). Moreover, N | M and N | g—1.
In particular, writingv = vp(N), p = vg(M), and letting § = vy (m) be the distance of E from the
floor, we have § > v. Moreover, equality 6 = v holds if v < p.

We refer to [1]13] for more details about the structural relationship between volcanoes and
rational subgroups. Note that there are examples where £ t # E(k) in an £-volcano of depth > 1,
hence the rational group structure is strictly weaker information than the conductor of Endy, (E).

Algorithms to compute endomorphism rings of ordinary elliptic curves over finite fields rely
on walking in isogeny volcanoes to determine their structure, which (as we have seen) relates
the location of a curve in the volcano to its endomorphism ring. See [Kohg6] and [Bis12]; the
latter also makes use of some facts discussed the following section.

2.5.2— Schreier graphs. Isogeny volcanoes do not look like very promising candidates for
building cryptography: Assuming £-isogenies can be computed efficiently, walking up to the
surface is easy (this is in fact done in Kohel’s algorithm), and walking on a large cycle does not
feature any asymmetry in the complexities of doing the walk vs. recovering a path from start and
end nodes: Both take time O(#steps).

Thus, we consider graphs arising as the union of various £-isogeny volcanoes on the same
set of (isogenous) curves, such as the small example depicted in Figure 2.2. The intuition is that
combining edges from various isogeny graphs introduces “shortcuts” allowing short walks to
any node, in a sense that will be made precise below.

Definition 2.71. Let x: G X X — X a free action of an abelian group G on a set X, and consider
a subset T C G\{0} closed under inversion. The Schreier graph of T" on X has vertex set X, and two
nodes z,x’ € X are connected by an edge if and only if v’ = g * x for some g € T.

30 MATHEMATICAL PRELIMINARIES

Note that for comparison with traditional group-based Diffie-Hellman, we can reinterpret
the well-known square-and-multiply algorithm (see Section 2.1.1) for fast exponentiation in a
finite cyclic group G = (g) as a particular kind of short walk in the Schreier graph of G acting on
itself via multiplication,3® with the set of generators T" = {gil7 gt2, 9Tt gt8, L gT2 Hos2lGL }.

In particular, we can apply the Schreier graph construction to the class-group group action
from Theorem 2.55, which yields graphs such as the small example shown in Figure 2.2. However,
it is a priori not at all clear that combining isogeny cycles yields better connectivity properties:
It might happen that two curves are £’ -isogenous if and only if they are £-isogenous, and in this
case we would only change the multiplicity of edges. Fortunately, one can prove (assuming the
generalized Riemann hypothesis) that combining sufficiently many isogeny volcanoes suffices
to guarantee the existence of logarithmically short paths between all nodes, based on the fol-
lowing observation [JMVog, Lemma 2.1]:

Proposition 2.72 (Rapid mixing). Consider a connected d-regular undirected multigraph T with n
vertices. Let A denote its adjacency matrix and let \1 > - -+ > Ay, be the eigenvalues of A. (There aren
real eigenvalues as A is symmetric.) Define X := max{|Aa|, ..., [An|}.

Suppose A < d, and let K C T" be a subset of size k > 1. Then, a random walk in " of length at least

2n
logg/ N
ends in K with probability between %k/n and %k/n

Thus, bounding the eigenvalues of the adjacency matrix of an isogeny graph will allow us to
determine its mixing properties. We say that a graph is an expander if Proposition 2.72 applies
with A\/d < k for some constant k < 1. Indeed, we may then conclude that random walks of
logarithmic length mix well, and in particular that any two nodes are connected by a logarith-
mically short path.

As advertised above, the crux is that components with commutative endomorphism rings of
S-isogeny graphs for sufficiently large sets of primes S satisfy the conditions of Proposition 2.72:

Theorem 2.73 [[MVog]. Let q be a prime power and O an imaginary quadratic order such that Elq(O)
is non-empty. Pick a constant B > 2 and define

S={teZprime| < (logdq)”}.
Then, assuming GRH, the subgraph I induced by Gy, s on &q(O) is an expander as ¢ — oo.

2.5.3 —Pizer graphs. We shall now discuss supersingular isogeny graphs over Fp,. Since
there are only p/12 4 O(1) supersingular j-invariants over Fp, the examples for very small p
are relatively uneventful and easily analyzed individually, and we will generally assume in this
section that pis a “large” prime (certainly p > 5). First, note that the supersingular component
of the isogeny graph over F, can equivalently be viewed as a supersingular component over F2:

Proposition 2.74. Let p: By — FEs be an isogeny of supersingular elliptic curves defined over Fp.
Then there exist elliptic curves E1, E5 /F 2 and isomorphisms a;: E; — Ej such that

/ —1
Y = a20poa;

. , . / /
is an IF,> -rational isogeny £y — Es.

36The Schreier graph of a group acting on itself by multiplication is much more well-known as its Cayley graph.

2.5. ISOGENY GRAPHS | 31

Hence we may restrict our attention to a supersingular component (say, curves with (p+1)?
points) of isogeny graphs over IF,2, which is computationally much easier to grasp than Fy,.

The name Pizer graphs for supersingular isogeny graphs over F,, stems from the following
theorem, which shows that Pizer graphs have mixing properties as good as it gets: They are
Ramanujan graphs.

Theorem 2.75 [Pizgo]. Let p and £ be distinct primes with £ < p/4. Then, the supersingular {-isogeny
graph over Ty, is an expander. In particular, in the notation of Proposition 2.72, we have A < 2+/{, which
is asymptotically optimal.

Is there anything else to say about Pizer graphs? Contrary to the volcanic case, there appears
to be very little regular structure in Pizer graphs besides the natural subgraph of curves defined
over . However, there are actually many more “hidden” volcanic subgraphs in any supersingu-
lar ¢-isogeny graph over Fp: itjust seems computationally hard to determine if a given curve lies
on one of them or not. The underlying raison d’étre for the hidden volcanoes is a functorial cor-
respondence between pairs (E, o) where E/Fp and a € End(E), and pairs (£, A) with £/C and
A € End(€), such that reduction modulo a prime ideal of (€, A) yields (E, «). This connection
is given by Deuring’s lifting and reduction theorems (Theorem 5.26 and 5.30).

Computationally, the trouble is that it seems difficult to “see” the structure induced by a
particular quadratic subring of a maximal order in By oo, without first going through the ef-
fort of computing endomorphisms — a problem that appears (and is often assumed) to be hard.
However, Cold and Kohel [CK19] have made constructive use of quadratic subrings embedded
in quaternionic endomorphism rings to construct a key-exchange algorithm named Oriented
Supersingular-Isogeny Diffie—Hellman (OSIDH); see also [Onu20] for a more detailed explanation
of the underlying group action including proofs.

2.5.4 —The isogeny problem. Letus briefly summarize the state of the art of isogeny com-
putation. In cryptographic applications, there are many slightly or substantially different vari-
ations of isogeny-finding problems. Probably the most general variant is what we refer to as the
“pure” isogeny problem:

Definition 2.76. The (pure) isogeny problem is to compute an isogeny between two given elliptic
curves E, E' known to be isogenous over a field k. (Usually, it is implicitly assumed that the inputs are
given as a list of Weierstraf§ coefficients, and that the output is to be represented “efficiently”: for instance,
as a polynomially-sized description that can be evaluated at points efficiently.)

Variants of the isogeny problem commonly used in cryptography can be both easier and
harder: For instance, it may be required that the isogeny be defined over a specific field, have
(power)smooth or small degree, induce a prescribed group homomorphism on some subgroup,
or any combination of such constraints. Interestingly, even though prescribed action on a sub-
group is an additional demand, it can actually help an attacker: Knowing the restriction of an
isogeny of known degree to a sufficiently large torsion subgroup opens the door to torsion-point
attacks; see Chapter 7 in this thesis. In contemporary isogeny-based cryptography, it is often the
case that solving the pure isogeny problem suffices to break the scheme, but it is typically not
known whether breaking the cryptosystem always solves the isogeny problem; indeed, known
attacks suggest that this may be false in some cases.

To briefly survey the existing algorithms for the isogeny problem over finite fields, let k =F4
of characteristic p.

32 MATHEMATICAL PRELIMINARIES

Commutative endomorphism rings. For curves with commutative endomorphism rings, the
best known algorithms are refinements of an algorithm due to Galbraith [Galgg]. In a nutshell,
given two elliptic curves E1, Fo with the same number of points over a finite field, the algorithm
consists of “walking up” to the crater of every £-volcano, yielding two curves Ef, B with the
maximal order as endomorphism rings, hence by Theorem 2.55 they must must be connected
by a horizontal isogeny.3” Such an isogeny is then found either by generic meet-in-the-middle
(grow trees from both target nodes using random isogenies of varying degrees until they meet),
or quantumly [C]S14] by reducing to a hidden-shift problem as in Example 2.82. The classical al-
gorithm takes exponential time O(q"/*), whereas the quantum algorithmis (under GRH) subex-
ponential with complexity Lq[1/2, v/3/2] C exp((log p)z o).

Quaternionicendomorphism rings. Inthe non-commutative case (i.e., supersingular overF 2),
every (-isogeny graph is connected (Theorem 2.75), so running a generic path-finding algorithm
on just one ¢-isogeny graph is sufficient and takes time O(p'/?) with a simple meet-in-the-
middle approach.3® Delfs and Galbraith [DG16] achieve the same time complexity using signi-
ficantly less memory by splitting the computation into two stages: Approximately a square-root
fraction (see Fact 2.50) of all supersingular elliptic curves are in fact already defined over Fp;
thus, we first search for a path to that (easily recognizable) subgraph and then solve an easier
isogeny problem over F, using any of the methods for the commutative case. The asymptotic
time complexity is roughly the same as that of the naive algorithm since the complexity of find-
ing the Fp-subgraph by brute-force random walks remains 5(;01/2), but Delfs—Galbraith is es-
sentially memoryless and hence much more efficient than naive meet-in-the-middle on realistic
computer architectures.

Using quantum computers, one can do better: Biasse, Jao, and Sankar [B]S14] noticed that
applying Grover’s algorithm (Section 2.6.4) to the first stage (finding the Fj,-subgraph) reduces
the overall complexity of finding an isogeny to O (pl/ 4). Moreover, a quantum claw-finding al-
gorithm due to Tani [Tano7] has been claimed to recover an isogeny of known smooth degree d
using O(d'/? - polylog(p)) operations, but Jaques and Schanck [JS19] argue that the complexity
is actually O(d?/® - polylog(p)) when accessing data structures is properly costed.

2.6 — Quantum algorithms

This section gives a brief account of the basics of quantum computing. However, quantum al-
gorithms (and quantum physics even more so) are broad topics and we cannot possibly hope
to contain all of it in this short overview. For deeper insights, we refer to Chuang and Nielsen’s
Quantum Computation and Quantum Information [NC11].

2.6.1— Computational model. We summarize the mathematical formulation of quantum
computing. Note that there are multiple proposals for physical realizations of this model, each
with different advantages and drawbacks, but the fundamental view of quantum computing
does not change — very much like conventional general-purpose computing architectures differ
in aspects such as instruction sets and efficiency, but not in their fundamental capabilities.

Qubits. The fundamental unit of data in quantum computing is the qubit.3® Mathematically,
itisrepresented as a two-dimensional complex vector space H. Alluding to conventional digital

37Except for the pathological special cases with two orbits, but those can be avoided by twisting the input curves.
38Recall that there are p/12 + O(1) supersingular j-invariants.
39Not to be confused with the cubit, an entirely classical (even ancient) unit of length.

2.6. QUANTUM ALGORITHMS | 33

computers, two arbitrary orthogonal vectors are labeled |0) and |1) and called the computational
basis or standard basis.*° The states of a qubit are unit vectors a|0) + §|1) € H. When «, 8 # 0,
such a state is referred to as a superposition of |0) and |1). The complex coefficients «, 3 are called
amplitudes of the corresponding basis states |0), |1).

Note that generally, multiplying a quantum state by a complex constant of norm 1 yields a
physically indistinguishable state: “Global phase does not matter.” Hence, the state space of a
qubit is actually more correctly viewed as a complex projective line CP'. In this spirit, we will
often abuse notation and omit global scaling factors in C when writing down quantum states.

Measurements. Qubits can be measured with respect to arbitrary orthogonal bases: Mathem-
atically, this simply means sampling a basis state at random with the probability of each basis
state given by the square of the norm of its amplitude. Hence, when measuring «|0) 4+ §]1) in
the computational basis, the outcome is |0) with probability || and |1) with probability |3]2.
During the measurement, the state collapses, i.e., the qubit remains in the observed basis state.

Entanglement. The crucial physical property that distinguishes quantum computing from
classical computing is entanglement: Qubits can be combined in such a way that their state spaces
become dependent, which most importantly means that the state of one qubit is influenced by
measuring the other. Mathematically, this is formalized by viewing the joint state of multiple
qubits as a tensor product of the individual state spaces.*' For example, a two-qubit system is
a four-dimensional complex vector space spanned by the elementary tensors |0) ® |0), |0) ® |1),
|1) ®|0), |1) ® |1). For ease of notation, we will usually write the state |a) ® |b) simply as |ab).
A state in a joint state space H; ® Ha is called entangled if it is not an elementary tensor, i.e.,
cannot be written as 11 ® ¥ with ¢; € H;. An example: In the two-qubit case above, the state
|00) + |11) is entangled, but the state [00) + [01) equals [0) ® (|0) + |1)) and is therefore not
entangled.** Separable states are non-entangled states.

Quantum algorithms are commonly formulated using notation like |z) with x some math-
ematical object (often an integer): This is shorthand for fixing some encoding enc(z) € {0,1}*
as a bit string and referring to the state |enc(z)).

Measuring entangled states. When measurements are applied only to a subset of the qubitsin
an entangled state, the joint state collapses into something compatible with the measurement.
For example, measure the first qubit of the state [00) + [10) + |11) in the computational basis:
With probability 1/3, the outcome is |0), leaving the system in the state |00). Otherwise, the
outcome is |1), which leaves the system in the (separable) state [10) + [11) = |1) ® (|0) + [1)).

Unitaries. Besides measurements, the only other operations one can apply on a quantum
computer are unitary operators (or unitaries for short): For n-qubit systems, they are described
by complex 2" x 2" matrices U such that UZ U = 1. (Equivalently, U is an isometry for || ||2.)
Applying a unitary to a n-qubit state then simply consists of a matrix-vector multiplication.®3

4°The integers 0 and 1 in the bra-ket notation |) do not have any inherent meaning; the basis states could just as
well be called v and w or even |pineapple) and |pizza). However, |0) and |1) are common because the representation of
data on qubits resembles classical digital encoding.

4'When qubit states are formalized as points in CP! instead, this tensor product is replaced by the Segre embedding
CP™ x CP™ « CPrmtntm,

42These vectors clearly do not have norm 1: Recall that we omit global scaling factors.

431n the projectivized view of an n-qubit state as a pointin CP2"~1 we may also quotient unitaries by the subgroup
of scalar matrices; hence unitary operators may be viewed as elements of the projective unitary group PU(2™).

34 MATHEMATICAL PRELIMINARIES

Real quantum computers are expected to implement only a very small subset of all possible
unitaries — these building blocks are called (quantum) gates analogous to classical computing —
and more complex unitaries** have to be constructed by composing potentially very many of
these gates. All quantum gates are invertible by definition, which turns out to pose a challenge
for algorithms design; see the discussion of “uncomputation” in Section 9.11.3.

Quantum gates. We list some of the most important quantum gates:

o The Hadamard gate H maps |0) to |0) + |1) and |1) to |0) — |1). Applied to an array of n
qubits simultaneously, the operator H®" is frequently used as a first step in quantum
algorithms to set up a uniform superposition of all bit strings of length n.

o The Pauli X gate swaps |0) and |1), so it corresponds to the classical NOT gate.

o The phase-shift gate R leaves |0) unchanged and scales |1) by ¢!?. Notably, applying Ry
does not immediately influence measurements, but the hidden phase information can
subsequently be processed further to be made useful. In fact, phase estimation is the core
of Shor’s and Kuperberg’s algorithms (Sections 2.6.2 and 2.6.3).

e For any unitary U operating on n qubits, controlled-U is the unitary on 1 + n qubits leaving
all states |0) ® ¢ unchanged and mapping |1) ® ¢ to |1) ® Ut. Thus, it may be interpreted
as applying U in superposition conditioned on the controlling qubit.

A quantum algorithm consists of applying a sequence of quantum gates to an array of qubits,
possibly intertwined with measurements. (Intermediate measurement outcomes may influence
the choice of gates to apply in the future; see [JS19] for an in-depth discussion of the interplay
between classical control hardware and quantum experiment.)

Quantum algorithms are often expressed and rendered graphically as circuits, but note that
the picture represents a temporal sequence of unitaries applied one after another by control
hardware, rather than a spatial arrangement of physical gates (such as when drawing classical
electronic circuits).

Quantum > classical. Itis notimmediately clear that quantum computers are no less power-
ful than classical computers. The first hurdle is gate completeness: Can we express enough
Boolean operations in terms of unitaries to build arbitrary circuits? Itis not hard to see that clas-
sical XOR is simply controlled Pauli X, also known as CNOT, which maps (|a), |b)) — (|a), |a @& b)).

Unfortunately, for nonlinear operations such as AND, implementing (|a), |b)) — (|a), |a & b))
in place is impossible as the pair (a, b) is not uniquely determined by (a,a & b), hence such
a transformation cannot be unitary. Instead, we add an auxiliary ancilla qubit and compute
(la),]b),|c)) — (la),|b),|c ® (a & b))). This unitary is known as a Toffoli gate and consists of
simply swapping |110) and |111) while leaving all other basis states unchanged. Applying this
operation with ¢ = 0 clearly leaves us with a & b in the third qubit, and since {NOT, XOR, AND} is a
complete set of gates we may conclude that any classical circuit can equivalently be expressed
as a quantum computation in principle.

Note there are quite a few more devils in the details of computational models for quantum
algorithms, as well as various conversions of classical computation to quantum computation.
See Section 9.11 for some extended discussion on this matter.

2.6.2—Shor’s algorithm. After this shortintroduction to quantum computing, let us have
alook at a particular — and perhaps the most famous — quantum algorithm: Shor’s algorithm.

44No pun intended.

2.6. QUANTUM ALGORITHMS 35

There are several variants of the algorithm: It was originally [Shog4] described for integer
factorization and discrete logarithms in (Z/n)*, but both of these applications can be recast in
the more general framework of recovering the period lattice of an efficiently computable periodic
function [BLg5; Kitg6]; see Theorem 2.79 below.

The core technical ingredient in all these results is the quantum Fourier transform (QFT):

Definition 2.77. For a positive integer N, the quantum Fourier transform QFT y takes |a) to the state
;N ,
aj-27i/N | .
— e 7).
X

Itwas Shor’s observation that the QFT can be computed efficiently when N is smooth: Then, one
may mimic classical fast Fourier transform algorithms (e.g. Cooley—Tukey) to quickly compute
the QFT. For N = 2" the resulting quantum circuit consists of O(n?) Hadamard and controlled
phase-shift gates. Note that it is not known how to efficiently compute the QFT for arbitrary V;
however, in applications it is usually sufficient to approximate QFT 5, by another QFT ./ for
smooth N’ > N. Bounds on the error introduced by this substitution can be obtained using
Fourier analysis.

Given that the QFT is a Fourier transform, it should not come as a huge surprise that we can
use it to detect periods in functions:

Example 2.78 [Shog7a]. Let f: Z — S be an efficiently computable function to some set S with an
unknown period \ € Z that is no more, but also not much less, than ¢ bits long. Then we may recover
as follows:

_ 2

o Letm . Perform the quantum operations

H®©2¢

S S S L S e if@)
B SN ey @),
z oy

where all sums range from 0 to m—1 and the QFT is applied to the first register.
o Measure the first register. The probability of getting a particular outcome |Y') is proportional to

‘ j : atY<27'ri/m‘2
e
=Y

where the sum ranges over all x between 0 and m—1 withxz =Y (mod \). Write each such x
as ke \ + Y, substituting this into the expression xY - 2wi/m from above yields

aY - 2mi/m = (ke AY + Y2) - 27i/m =: e,

When'Y is a multiple of)\, then ey will be close to an integer multiple of 2xi regardless of x —
hence the amplitudes pile up. If on the other hand 'Y is not close to a multiple of \, then thevalues e
are well-spread modulo 271 and significant cancellation occurs in the amplitude of |Y').

Making this argument precise shows that the measurement of |Y') exhibits strong probability peaks
centered at multiples of \. Recovering X precisely from the observed outcome(s) requires some more
work, but is usually feasible; for example, Shor solves this problem using continued fractions.

Famously, we can combine this technique with the well-known fact that factoring reduces
to order-finding in multiplicative groups modulo integers to obtain:

36 ‘ MATHEMATICAL PRELIMINARIES

Shor’s factoring algorithm. Let n be an odd composite positive integer, and suppose we wish
to find a proper divisor d of n. Using Example 2.78, we can easily do so:

e Pickarandoma € {1,...,n—1}. Assume gcd(a,n) = 1; otherwise we are done.

e Define _
f:Z—(Z/n)*, i~ a' modn

and note this function can be evaluated efficiently using square-and-multiply.

o Apply the period-finding routine from Example 2.78 to f and call the output .

o With high probability, v is close to a multiple of the multiplicative order k of a modulo n;
say v = pk. Since k is likely to be about the size of n, we get v/m ~ uk/k* = p/k. Thus,
k may be recovered using a continued-fraction expansion, which approximates v/m as
fractions involving smaller integers.

o If kis even, compute d := ged(a®/?

oddord € {1,n}, start over.

—1,n) and return d if it is a proper divisor of n. If k is

One can show using some elementary number theory that the probability of success in the last
stepis 1 — 27", where r is the number of distinct prime factors of n.
Developing the ideas from Shor’s factoring algorithm further leads to the following result:

Theorem 2.79 [BL95]. There is a quantum algorithm which, given an efficiently computable function
f: Z" — S that factors through a “hidden” lattice A C Z" as

f: 72" — 7" /A — S,
recovers a basis of A in time polynomial in log |det A|.
As an immediate application, we can compute discrete logarithms in any group:

Example 2.80. Let G = (g) be a finite group of order q (with efficiently computable operations) and
suppose given h € G. Let a € {0, ..., q—1} be the (unknown) discrete logarithm of h, hence h = g°.
To recover a, we define the group homomorphism

7%= G, (z,y) — g°hY.
Clearly, the kernel of f is contained in qZ2, and moreover it contains the vector (a, —1). Thus

ker(f) = {(4,0),(a,~1)),

which we may recover using Theorem 2.79. Simple classical post-processing then suffices to find a vector
of the form (T, —1) in the lattice ker(f), which solves the DLP.

2.6.3 — The hidden-shift problem. Evidently, for a general group action G x X — X,
we simply cannot define the period map f from Example 2.80 due to the lack of an efficient
meaningful multiplication map X x X — X. This small observation supports the idea that
polynomial-time techniques a la Shor cannot break the vectorization problem for group actions.
Instead, the most straightforward formulation as a problem suitable for quantum algorithms
seems to be the following:

Definition 2.81. Let (G, +) be an abelian group with efficiently computable operations. The (abelian)
hidden-shift problem in G is: Given (efficient descriptions of) two functions fo, f1: G — Y such that
there exists o € G with f1(x) = fo(x + o) forallx € G, recover such a hidden shift o of (fo, f1).

2.6. QUANTUM ALGORITHMS ‘ 37

Clearly, not all pairs (fg, f1) determine o uniquely: For example, if fo and f; are constant,
any o € G is a correct answer to the problem. Similarly, if fj is a group homomorphism, then o
is only defined up to the kernel. When f is injective, the solution to the hidden-shift problem is
always unique.

As promised, we can express the vectorization problem as an abelian hidden-shift problem:

Example 2.82. Let*: G x X — X be a group action of a finite abelian group G on a set X.
Suppose given an instance (g, x1) of the vectorization problem; hence, we wish to computeana € G
such that x1 = a * xg. This problem can be reduced to an abelian hidden-shift problem by defining

firG—=X,g—g*z;.

By construction, f1(g) = fo(g - a), hence the sought-after secret a is a shift of (fo, f1)-

Note that in this case, the shift is only defined by the pair (fo, f1) up to the stabilizer subgroup G,;
however, any element of the set a + Gz, of possible shifts is a valid solution to the vectorization problem
and forms an equivalent (correct) key for the group-action Diffie—Hellman scheme.

Remark 2.83. In a sense, vectorization is really the archetypical example of a hidden-shift problem:
The group G acts in a natural way on the set of functions G — Y by defining

(g f): G=Y, o flg+a).

forg € Gand f: G — Y. Recovering a hidden shift between fo and f1 simply means finding an element
that vectorizes the pair (fo, f1) with respect to this action.

Kuperberg’s theorem. The best known algorithm to solve the abelian hidden-shift problem is
a subexponential quantum algorithm due to Kuperberg [Kupog; Kup13]:

Theorem 2.84 (Kuperberg’s algorithm). On a quantum computer, the abelian hidden-shift problem
in a group of size n can be solved in time and space 201087,

Simplifications. We content ourselves with a rough overview of the algorithm, as the details
are a bitintricate and there are numerous configurable parameters to optimize the algorithm for
different metrics [BS20; Pei20]. For the sake of simplicity, assume that fy is injective (this is true
without loss of generality in the group-action application).

First, we restrict our attention to the cyclic group G = Z/n — the general case works very
similarly by decomposing G into an internal direct product C' x H with C cyclic, always clearing
the H component in the sieving step below until the C' component has been fully determined,
and reducing the problem to a hidden shift in H. (The structure of G, as well as isomorphisms
to quotients of Z", can be computed in quantum polynomial time using Theorem 2.79.)

Moreover, we can replace the group G = Z/n by Z/2" for a sufficiently large “bit length” ¢.
(This can be interpreted as representing the group R /Z, which contains %Z /Z = Z/n, through a
finite binary approximation.) Hence, we apply modulus switching to the hiding functions (fo, f1):

Fi: /2" = S, X fi(In/2" - X).

Note that unless n is itself a power of two, the functions (Fy, F1) are not strictly shifts of one
another, but for big ¢ this is the case almost everywhere: Indeed, defining & := [2¢/n - o], we
have 0 < n/2°- ¥ — o < n/2°, hence

Fi(X) = fi(In/2° - X)) = fo(ln/2" - X] +0) = fo(In/2" - X + o))

38 MATHEMATICAL PRELIMINARIES

and
Fo(X +3) = fo(ln/2" - X + n/2" - 5])
——
<o+n/2¢t

are guaranteed to be equal whenever
[n/2° - X +n/2°| = [n/2" - X|,

or equivalently
nX mod 2° < 2° —n.

Over allinputs X € {0, ..., 2°—1}, this property is violated exactly n times, which constitutes an
exponentially small fraction as ¢ grows. Thus, by picking a sufficiently large ¢, we can assume
that the input pairs sampled in the algorithm below are indeed shifted by 3 exactly: Counter-
examples are so sparse that they should not ever appear in practice.

The algorithm. Finally, the main steps of Kuperberg’s algorithm [Kup13] for the important
special case G = Z/n, where n is a power of two, are as follows:

e Perform the following quantum computation “many” times:

— Let] = {0,1} x G and set up the superposition
> b [z} Ifi(@))-
(bx)el
Measure and discard the third “output” register, resulting in a state
0) o) + 1) Ja-+) .
— Apply QFT,, to the second register; this results in the state

n—1
Z (e2ﬂ'i/7l'l'j ‘O) + eQTri/n~(x+U)j ‘1)) |]> .

j=0
Measure the second register; this yields a label k € {0, ...,n—1} and the state

(2mi/neak gy 4 2mi/n-(@to)k gy
Writing ¢ := €2™/™ and ignoring the global phase yields a so-called phase vector
v = 10) + ¢,
Note that k is known to the algorithm, but cannot a priori be influenced.

The resultis a “large” set V' of phase vectors v.

o The second stage of the algorithm consists of sieving the phase vectors in order to obtain
a combination suitable for extracting useful information about o. The goal is to get our
hands on 1,, /5; we will see below how this helps in finding o.

At any given layer of the sieve, we have a set of labeled phase vectors available, and we
combine them in such a way that new phase vectors emerge with fewer label bits set.

An easy method, as used in Kuperberg’s first algorithm [Kupos], is to take two phase vec-
tors 1 and 1)y, apply a controlled NOT operation of 15, on ¢y, and measure the result. This
leaves the other qubitin the state |0) + ¢“*¥|1) if |0) is measured and |0) + ¢¥ | 1) if |1) is

2.6. QUANTUM ALGORITHMS 39

measured. Combining v and 1, thus yields either 15 o or ¢;_y, and the measurement
tells us which one it s.

Applying this step to states 15, and 1, whose labels k, £ have r trailing bits in common has
a 1/2 probability of yielding a new state with r trailing zero bits. We may thus zero out
the labels in our pool of phase vectors from the bottom by arranging suitable combination
steps between them in a tree structure, until we reach the desired phase vector ¢, /.

A more efficient way of combining phase vectors is collimation, which is the core of Kuper-
berg’s second algorithm [Kup13]: The concept of phase vectors is generalized to more than
just two basis states, and the combination step involves “filtering” a large product state
for phase vectors with fewer label bits set by performing a well-chosen measurement.

o The sieving stage yields the phase vector ¢,, /5, which equals either |0) +[1) or [0) — [1)
depending on the parity of o. These two states can be distinguished reliably by a single
measurement, and thus we learn the least significant bit 8 of the hidden shift o.

e Finally, to recover the remaining bits, we replace f; by the function
fl: G= S,z filz—p),

such that the pair (fo, f1) is shifted by o — 8 € 2G. Hence, replace the group G by the
subgroup 2G = Z/(n/2) and proceed recursively until all bits of o have been recovered.

Analyzing the number of bits “cancelled” in each layer of the sieve shows that we should
start off with 200/1°87) states in the first layer and cancel O(y/log n) bits in each layer to end up
with the complexity claimed in Theorem 2.84 and a good chance of finding v, /5.

Note that the algorithm evaluates the oracle functions a superpolynomial number of times
in superposition. The cost of these computations can be very significant, and Chapter g in this
thesis analyzes the cost of the oracle calls when attacking a particular parameterization of CSIDH
(Chapter 3) using Kuperberg’s algorithm.

2.6.4 — Grover’s algorithm. Another fundamental quantum algorithm thatimpacts cryp-
tography is due to Grover [Grog6]. It can solve unstructured search problems with a square-root
speedup; to be precise, given a quantum circuit that computes a function

f: S—1{0,1}

on a set S of size NV, with the property that f(z) = 0 almost everywhere, the algorithm finds an
inputz € S such that f(z) = 1 within O(/N) evaluations of f and a few additional quantum
operations.

“Groverizing” classical search algorithms is a common technique in cryptanalysis: In many
cases, it can accelerate attacks or substeps of attacks by an asymptotic square-root speedup, but
note that this asymptotic speedup does not always materialize in terms of concrete (in)security
due to the potentially high cost of implementing the oracle function f as a quantum circuit.
Another practical problem is that the algorithm performs many sequential operations, hence
requires the qubits in the quantum computer to remain coherent for a long time.

The internals of Grover’s algorithm are rather straightforward, but we will skip the details
here since they will not be of much interest in the sequel. See Chapter 7 for examples where
Groverization of some steps yields a faster quantum version of an a priori classical attack.

Chapter 3

CSIDH:
An efficient post-quantum group action

This chapter is for all practical purposes identical to the paper CSIDH: an efficient post-quantum
commutative group action [Cas+18] authored jointly with Wouter Castryck, Tanja Lange, Chloe
Martindale, and Joost Renes, which was published at Asiacrypt 2018.

3.1— Introduction

During the past five to ten years, elliptic-curve cryptography (ECC) has taken over public-key
cryptography on the internet and in security applications. Many protocols such as Signal or
TLS 1.3 rely on the small key sizes and efficient computations to achieve forward secrecy, often
meaning that keys are used only once. However, it is also important to notice that security does
not break down if keys are reused. Indeed, some implementations of TLS, such as Microsoft’s
SChannel, reuse keys for some fixed amount of time rather than for one connection [Ber+14].
Google’s QUIC protocol relies on servers keeping their keys fixed for a while to achieve quick
session resumption. Several more examples are given by Freire, Hotheinz, Kiltz, and Paterson in
their paper [FHKP13] formalizing non-interactive key exchange. Some applications require this
functionality and for many it provides significant savings in terms of roundtrips or implement-
ation complexity. Finding a post-quantum system that permits non-interactive key exchange
while still offering decent performance is considered an open problem. This chapter presents a
solution to this problem using isogenies of elliptic curves.

The first proposal of an isogeny-based cryptosystem, made by Couveignes in 1997 [Couo6],
described a non-interactive key exchange protocol where the space of public keys equals the
set of Fy-isomorphism classes of ordinary elliptic curves over Fq whose endomorphism ring is
a given order O in an imaginary quadratic field and whose trace of Frobenius has a prescribed
value. It is well-known that the ideal-class group cl(O) acts freely and transitively on this set
through the application of isogenies. Couveignes’ central observation was that the commutativ-
ity of c1(O) naturally allows for a key-exchange protocolin the style of Diffie and Hellman [DH76].
His work was only circulated privately and thus not picked up by the community; the corres-
ponding paper [Couo6] was never formally published and posted on ePrint only in 2006. The
method was eventually independently rediscovered by Rostovtsev and Stolbunov in 2004 (in
Stolbunov’s master’s thesis [Stoo4] and published on ePrint as [RSo6] in 2006). In 2010, Childs,
Jao and Soukharev [C]S14] showed thatbreaking the Couveignes—Rostovtsev—Stolbunov scheme
amounts to solving an instance of the abelian hidden-shift problem, for which quantum al-
gorithms with a time complexity of Lq4[1/2] are known to exist; see [Kupos; Rego4]. While this
may be tolerable (e.g., classical subexponential factorization methods have not ended the wide-
spread use of RSA), a much bigger concern is that the scheme is unacceptably slow: despite

42 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

recent clever speed-ups due to De Feo, Kieffer, and Smith [DKS18; Kie17], several minutes are
needed for a single key exchange at a presumed classical security level of 128 bits. Nevertheless,
in view of its conceptual simplicity, compactness, and flexibility, it seems a shame to discard the
Couveignes—Rostovtsev—Stolbunov scheme.

The attack due to Childs—Jao—Soukharev strongly relies on the fact that cI(O) is commutat-
ive, hence indirectly on the fact that O is commutative. This led Jao and De Feo [JD11] to consider
the use of supersingular elliptic curves, whose full ring of endomorphisms is an order in a qua-
ternion algebra; in particular itis non-commutative. Their resulting (interactive) key-agreement
scheme, which nowadays goes under the name “Supersingular Isogeny Diffie-Hellman” (SIDH),
has attracted almost the entire focus of isogeny-based cryptography over the past six years. The
current state-of-the-art implementation is SIKE [Jao+17], which was recently submitted to the
NIST competition on post-quantum cryptography [NIST16].

Itshould be stressed that SIDH is not the Couveignes—Rostovtsev—Stolbunov scheme in which
one substitutes supersingular elliptic curves for ordinary elliptic curves; in fact SIDH is much
more reminiscent of an isogeny-based cryptographic hash function from 2006 due to Charles,
Goren, and Lauter [CLGog]. SIDH’s public keys consist of the codomain of a secret isogeny and
the image points of certain public points under that isogeny. Galbraith, Petit, Shani, and Ti
showed in [GPST16] that SIDH keys succumb to active attacks and thus should not be reused,
unless combined with a CCA transform such as the Fujisaki-Okamoto transform [FOg9].

In this chapter we show that adapting the Couveignes—Rostovtsev—Stolbunov scheme to su-
persingular elliptic curves is possible, provided that one restricts to supersingular elliptic curves
defined over a prime field F;,. Instead of the full ring of endomorphisms over Fp, which is non-
commutative, one should consider the subring of F,-rational endomorphisms, which is again
an order O in an imaginary quadratic field. As before cl(O) acts via isogenies on the set of
Fp-isomorphism classes of elliptic curves whose Fp,-rational endomorphism ring is isomorphic
to O and whose trace of Frobenius has a prescribed value; in factif p > 5 then there is only one
option for this value, namely 0, in contrast with the ordinary case. See e.g. [Wat69, Theorem 4.5],
with further details to be found in [Br608; DG16] and in Section 3.3. Starting from these observa-
tions, the desired adaptation of the Couveignes—Rostovtsev—Stolbunov scheme almost unrolls
itself; the details can be found in Section 3.4. We call the resulting scheme CSIDH, where the C
stands for “commutative”.'

While this fails to address Jao and De Feo’s initial motivation for using supersingular el-
liptic curves, which was to avoid the Lq4[1/2] quantum attack due to Childs—Jao—Soukharev,
we show that CSIDH eliminates the main problem of the Couveignes—Rostovtsev—Stolbunov
scheme, namely its inefficiency. Indeed, in Section 3.8 we will report on a proof-of-concept im-
plementation which carries out a non-interactive key exchange at a presumed classical secur-
ity level of 128 bits and a conjectured post-quantum security level of 64 bits in about 80 milli-
seconds, while using key sizes of only 64 bytes. This is over 2000 times faster® than the current
state-of-the-artinstantiation of the Couveignes—Rostovtsev—Stolbunov scheme by De Feo, Kief-
fer and Smith [DKS18; Kie17], which itself presents many new ideas and speedups to even achieve
that speed.

For comparison, we remark that SIDH, which is the NIST submission with the smallest com-
bined key and ciphertext length, uses public keys and ciphertexts of over 300 bytes each. More

'Since this work was started while being very close to a well-known large body of salt water, we pronounce CSIDH
as ['siz,;sard] rather than spelling out all the letters.

2This speed-up is explained in part by comparing our own Cimplementation to the Sage implementation of De Feo,
Kieffer, and Smith.

3.1. INTRODUCTION | 43

precisely SIKE’s version p503 uses uncompressed keys of 378 bytes long [Jao+17] for achieving
CCA security. The optimized SIKE implementation is about ten times faster than our proof-of-
concept C implementation, but even at 80 ms, CSIDH is practical.

Another major advantage of CSIDH is that we can efficiently validate public keys, making it
possible to reuse a key without the need for transformations to confirm that the other party’s
key was honestly generated.

Finally we note thatjustlike the original Couveignes—Rostovtsev—Stolbunov scheme, CSIDH
relies purely on theisogeny-finding problem; no extra points are sent that could potentially harm
security, as argued in [Pet17]; see also Chapter 7.

To summarize, CSIDH is a new cryptographic primitive that can serve as a drop-in replace-
ment for the (EC)DH key-exchange protocol while maintaining security against quantum com-
puters. It provides a non-interactive (static—static) key exchange with full public-key validation.
The speed is practical while the public-key size is the smallest for key exchange or KEM in the
portfolio of post-quantum cryptography. This makes CSIDH particularly attractive in the com-
mon scenario of prioritizing bandwidth over computational effort. In addition, CSIDH is com-
patible with o-RTT protocols such as QUIC.

Why supersingular? To understand where the bulk of the speed-up comes from, it suffices to
record that De Feo—Kieffer—Smith had the idea of choosing a field of characteristic p, where p
is congruent to —1 modulo all small odd primes ¢ up to a given bound. They then look for an
ordinary elliptic curve E/F;, such that #E(F;) is congruent to 0 modulo as many of these £’s
as possible, i.e., such that points of order £ exist over Fj,. These properties ensure that £O de-
composes as a product of two prime ideals [= (¢,7 — 1) and [= (¢, 7 + 1), where 7w denotes
the Frobenius endomorphism. For such primes the action of the corresponding ideal classes [[]
and [I] = [I] 7! can be computed efficiently through an application of Vélu-type formulae to E
(resp. its quadratic twist £), the reason being that only Fp,-rational points are involved. If this
works for enough primes ¢, we can expect that a generic element of cl(O) can be written as a
product of small integral powers of such [l], so that the class-group action can be computed ef-
ficiently. However, finding an ordinary elliptic curve E//F, such that #F(F)) is congruent to 0
modulo many small primes £ is hard, and the main focus of De Feo—Kieffer—Smith is on speeding
up this search. In the end it is only practical to enforce this for 7 primes, thus they cannot take
full advantage of the idea.

However, in the supersingular case the property #E(F,) = p + 1 implies that #E(Fp)
is congruent to 0 modulo all primes £ | p + 1 that we started from in building p! Concretely,
our proof-of-concept implementation uses 74 small odd primes, corresponding to prime ideals
I1, 12, ..., I74 for which we heuristically expect that almost all elements of our 256-bit size class
group can be written as [I1]% [I2]®? - - - [I74]¢7*, where the exponents e; are taken from the range
{—5,...,5}; indeed, one verifies that log (2 - 5 + 1)"* ~ 255.9979. The action of such an ele-
ment can be computed as the composition of at most 5 - 74 = 370 easy isogeny evaluations. This
should be compared to using 7 small primes, where the same approach would require exponents
in a range of length about 22°%/7 ~ 236 in view of which De Feo—Kieffer—Smith also resort to
other primes with less beneficial properties, requiring to work in extensions of F,.

The use of supersingular elliptic curves over F, has various other advantages. For instance,
their trace of Frobenius ¢ is 0, so that the absolute value of the discriminant [t* — 4p| = 4p is
as large as possible. As a consequence, generically the size of the class group cl(O) is close to
its maximal possible value for a fixed choice of p. Conversely, this implies that for a fixed secur-
ity level we can make a close-to-minimal choice for p, which directly affects the key size. Note

44 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

that this contrasts with the CM construction from [BSo7], which could in principle be used to
construct ordinary elliptic curves having many points of small order, but whose endomorphism
rings have very small class groups, ruling them out for the Couveignes—Rostovtsev—Stolbunov
key exchange.

To explain why key validation works, note that we work over Fy, with p = 3 (mod 8) and
start from the curve Eg: y? = 2% 4 z with Fp-rational endomorphism ring © = Z[x]. As it
turns out, all Montgomery curves E 4 : y? = 2> + Az? 4 x over F), that are supersingular appear
in the cl(O)-orbit of Ey. Moreover their Fy-isomorphism class is uniquely determined by A.
So all one needs to do upon receiving a candidate public key 4> = z3 + Az? + is check for
supersingularity, which is an easy task; see Section 3.5. The combination of large size of c1(O)
and representation by a single I, -element A explains the small key size of 64 bytes.

3.1.1— One-way group actions. Although non-interactive key exchangeis the main applic-
ation of our primitive, itis actually more general: Itis (conjecturally) an instance of Couveignes’
hard homogeneous spaces [Couo6], ultimately nothing but a finite commutative group action for
which some operations are easy to compute while others are hard. Such group actions were first
formalized and studied by Brassard and Yung [BY9o]. We summarize Couveignes’ definition:

Definition 3.1. A hard homogeneous space consists of a finite commutative group G acting freely
and transitively on some set X.
The following tasks are required to be easy (e.g., polynomial-time):

o Compute the group operations in G.
o Sample randomly from G with (close to) uniform distribution.
e Decide validity and equality of a representation of elements of X.
o Compute the action of a group element g € G onsomez € X.
The following problems are required to be hard (e.g., not polynomial-time):
e Givenz,z' € X,findg € Gsuchthatg*x = z'.
e Givenz,z',y € X suchthats' = g+, findy = gx*y.

Any such primitive immediately yields a natural Diffie-Hellman protocol: Alice and Bob’s private
keys are random elements a, b of G, their public keys are a * ¢ resp. b * xg, where zg € X isa
public fixed element, and the shared secretis b x (a * z9) = a * (b * xg). The private keys are
protected by the difficulty of the first hard problem above, while the shared secret is protected
by the second problem. Note that traditional Diffile-Hellman on a cyclic group C is an instance
of this, where X is the set of generators of C and G is the multiplicative group (Z/#C)* acting
by exponentiation.

3.1.2—Notation and terminology. We stress that throughout this chapter, we consider
two elliptic curves defined over the same field identical whenever they are isomorphic over that
field. Note that we do not identify curves that are only isomorphic over some extension field, as
opposed to what is done in SIDH, for instance. In the same vein, for an elliptic curve F defined
over a finite field IF,, we let Endp,(FE) be the subring of the endomorphism ring End(E) con-
sisting of endomorphisms defined over Fp.3 This subring is always isomorphic to an order in
an imaginary quadratic number field. Conversely, for a given order O in an imaginary quadratic

3This constraint only makes a difference for supersingular curves: in the ordinary case, all endomorphisms are
defined over the base field.

3.2. ISOGENY GRAPHS 45

NS

; NS \:\“"\
4‘.1(’“‘..'2:23\1""3.‘"
v‘r/ r“g.”:’,,, .‘s\\“!.' \.

7 AN
7 N

]

o
’00
"

S
)OS

..l‘-\“
)
B 4'
Rl

\ AR\ 41
N7 71
"; \ ..-l\\‘\‘;.;vi""“

W

Vs
N/
&

Figure 3.1: Union of the supersingular ¢-isogeny graphs for £ € {3,5,7} over F419. CSIDH makes use of the larger
component, corresponding to curves whose ring of F419-rational endomorphisms is isomorphic to Z[v/—419].

field and an element 7 € O, we let &, (O, 7) denote the set of elliptic curves E defined over
Fp, with Endp(E) = O such that 7 corresponds to the Fp-Frobenius endomorphism of E. In
particular, this implies that g o 8 = 3o ¢ for all Fj,-isogenies ¢ between two curves in &, (O,)
and all 8 € O interpreted as endomorphisms.

Ideals are always assumed to be non-zero.

The notation “log” refers to the base-2 logarithm.

Acknowledgements. This project started during a research retreat on post-quantum crypto-
graphy, organized by the European PQCRYPTO and ECRYPT-CSA projects in Tenerife from 29
January until 1 February 2018. We would like to thank Jeffrey Burdges, whose quest for a flexible
post-quantum key exchange protocol made us look for speed-ups of the Couveignes—Rostovtsev—
Stolbunov scheme. We are grateful to Luca De Feo, Jean Kieffer, and Ben Smith for sharing a
draft of their paper [DKS18], and to Daniel J. Bernstein, Luca De Feo, Jeroen Demeyer, Léo Ducas,
Steven Galbraith, David Jao, and Fré Vercauteren for helpful feedback.

3.2— Isogeny graphs

Good mixing properties of the underlying isogeny graph are relevant for the security of isogeny-
based cryptosystems. Just as in the original Couveignes—Rostovtsev—Stolbunov cryptosystem,
in our case this graph is obtained by taking the union of several large subgraphs (each being a
union of large isomorphic cycle graphs) on the same vertex set, one for each prime £ under con-
sideration; see Figure 3.1 for a (small) example. Such a graph is the Schreier graph associated with
our class-group action and the chosen generators. We refer to the lecture notes of De Feo [DeF17,
§14.1] for more background and to [JMVog] for a discussion of its rapid mixing properties. One
point of view on this is that one can quickly move between distant nodes in the subgraph cor-
responding to one generator by switching to the subgraph corresponding to another generator.
This thereby replaces the square-and-multiply algorithm in exponentiation-based cryptosys-
tems (such as classical Diffie-Hellman).

The goal of this section is to analyze the structure of the individual cycles.

46 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Definition 3.2. Forafield k and a prime { { char(k), the k-rational £-isogeny graph G, is defined
as having all the elliptic curves defined over k as its vertices, and having a directed edge (E1, E2) for each
k-rational £-isogeny from E to Eo.*

Remark 3.3. A priori Gy, o is a directed graph, but given two elliptic curves E1 and Ez whose j-
invariants arenotin {0, 1728}, there are exactly as many edges (E2, E1) as (E1, E2), obtained by taking
dual isogenies. Annoyingly, the nodes with j-invariants 0 and 1728 are more complicated, since these are
exactly the curves with extra automorphisms: an elliptic curve E in G, ¢ has fewer incoming than outgo-
ing edges if and only if either j(E) = 0 and /=3 € k, orif j(E) = 1728 and \/—1 € k. Throughout
this chapter, we will assume for simplicity that \/—3,+/—1 & k, so that neither of these automorphisms
are defined over k and we may view G\, ¢ as an undirected graph. In the case of a finite prime field k = Fp,
it suffices to restrict top = 11 (mod 12), which will be satisfied in the class of instantiations we suggest.
See also Section 2.5.1.

If £ = Fy is a finite field, then G}, ¢ is a finite graph that is the disjoint union of ordinary
connected components and supersingular connected components. The ordinary components
were studied in Kohel’s PhD thesis [Kohg6]. Due to their regular structure, these components
later became known as isogeny volcanoes.

In general (e.g. over non-prime fields), the supersingular components may bear no similarity
at all to the volcanoes of the ordinary case. Traditionally, following Pizer [Pizgo], one instead
studies the unique supersingular component of Gy, ; where k = Fy, which turns out to be a
finite (¢41)-regular Ramanujan graph and forms the basis for the SIDH protocol.

However, Delfs and Galbraith [DG16] showed thatif k& = Fy is a finite prime field, then all
connected components are volcanoes, even in the supersingular case (where the depth is at most
1 atf = 2 and 0 otherwise). We present a special case of a unified statement, restricting our at-
tention to the cases in which G, ¢ is a cycle. Recall that End(E) is an order O in the imaginary
quadratic field

Endy(E) @7 Q = QW/# — 4p) = K,

where [¢| < 2,/p denotes the (absolute value of the) trace of the Frobenius endomorphism, and
that two curves are isogenous over Fy, if and only if their traces of Frobenius are equal [Tat66,
Theorem 1].

Theorem 3.4 (Kohel, Delfs—Galbraith). Let p > 5 be a prime number and let V' be a connected
component of G, ¢. Assume that p = 11 (mod 12) or that V' contains no curve with j-invariant 0
or 1728. Let t be the trace of Frobenius common to all vertices in V, and let K be as above. Assume that
0112 — 4p.

Then all elliptic curves in V have the same Fp,-rational endomorphism ring O C K, and O is locally
maximal at £. Moreover if t*> — 4p is a (non-zero) square modulo £, then V is a cycle whose length equals
the order of [1] in c1(O), where Uis a prime ideal dividing £O. If not, then V' consists of a single vertex and
no edges.

Proof. In the case of an ordinary component this is just a special case of [Suti2b, Theorem 7]. In
the case of a supersingular component this follows from the proof of [DG16, Theorem 2.7]. (In
both cases, we could alternatively (re)prove this theorem by proving that an £-isogeny can only
change the conductor of the endomorphism ring of an elliptic curve locally at £ and applying
Theorem 3.7.) O

4Due to our convention of identifying k-isomorphic curves, we also identify isogenies if they are k-isomorphic, i.e.,
equal up to post-composition with a k-isomorphism.

3.3. THE CLASS-GROUP ACTION 47

In the ordinary case a curve and its quadratic twist can never appear in the same component
because they have a different trace of Frobenius. This is the main difference with the supersingu-
lar case, where this possibility is not excluded. To avoid confusion, we clarify that by the quad-
ratic twist of a given elliptic curve E: y? = f(z) over F), we mean the curve E': dy? = f(z),
where d € F}, is any non-square. If p = 3 (mod 4) and j(F) = 1728 then this may deviate from
what some readers are used to, because in this case E* and E are Fj,-isomorphic. Note that such
a curve is necessarily supersingular.

=2z

— ™~

YP=at 4132 -z —y? =2 — 1322 — ¢
2 3
=z +x
y2:x3—|—11x2+m y2:x3—11x2+x
v =a®+1222 4+ =2 —1222 + 2
=246+ yv=a>—6z2 4=
L e

y? =2 — 1322 4+« =23+ 1322 4+

Figure 3.2: The two supersingular components of Gy, 3. The curves in the top component have [F,-rational endo-
morphism ring Z[(1 + +/—83) /2], while those in the lower component correspond to Z[v/—83]. Running clockwise
through these components corresponds to the repeated action of [(3, 7 — 1)].

Remark3.5. Infact, if p = 3 mod 4 then there are two non-isomorphic curves over Fy, with j-invariant
1728, namely y* = z® — x and y*> = > + x, whose endomorphism rings are the full ring of integers
Z[(1 + \/—p)/2] and the order Z[/—p] of conductor 2 respectively. The connected component of each
curve is “symmetric”: if £ is n steps along Gy, ¢ in one direction from a curve of j-invariant 1728 then
the curve that is n steps in the other direction is the quadratic twist of E. In the case of G, 3 we can see
this in Figure 3.2, which is taken from [DG16, Figure 8].

It is also interesting to observe that the symmetry around j = 1728 confirms the known fact that
the class numbers of Z[(1 + \/—p)/2] and Z[/—p] are odd, at least in the case thatp = 3 (mod 4);
see [Mor61].

3.3 — The class-group action

Itis well-known that the ideal-class group of an imaginary quadratic order O acts freely via iso-
genies on the set of elliptic curves with F;,-rational endomorphism ring O. Using this group
action on a set of ordinary elliptic curves for cryptographic purposes was first put forward by
Couveignes [Couo6] and independently rediscovered later by Rostovtsev and Stolbunov [Stoo4;
RSo6]. Our suggestion is to use the equivalent of their construction in the supersingular setting,
thus the following discussion covers both cases at once. For concreteness, we focus on prime
fields with p > 5 and point out that the ordinary (but not the supersingular) case generalizes

48 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

to all finite fields. We recall the following standard lemma, which is a special case of Proposi-
tion 2.30:

Lemma 3.6. Let E/F), be an elliptic curve and G a finite Fpp-rational (i.e., stable under the action
of the Fp,-Frobenius) subgroup of E. Then there exists an elliptic curve E' /Fp, and a separable isogeny
p: E — E’ defined over Fp with kernel G. The codomain E’ and isogeny ¢ are unique up to Fp-
isomorphism.>

Proof. [Silog, Proposition III.4.12, Remark III.4.13.2, and Exercise 111.3.13€]. O

The ideal-class group. We recall the definitions and basic properties of class groups of quad-
ratic orders that will be needed in the following. This section is based on [Cox13, §7]. Let K be a
quadratic number field and O C K an order (that s, a subring which is a free Z-module of rank
2). The norm of an O-ideal a C O is defined as N(a) = |O/a|; itis equal to gcd({N(a) | @ € a}).
Norms are multiplicative: N(ab) = N(a)N(b).

A fractional ideal of O is an O-submodule of K of the form «a, where & € K* and a is an
O-ideal.® Fractional ideals can be multiplied and conjugated in the evident way, and the norm
extends multiplicatively to fractional ideals. A fractional O-ideal a is invertible if there exists a
fractional O-ideal b such that ab = O. If such a b exists, we define a~! = b. Clearly all principal
fractional ideals O, where o € K*, are invertible.

By construction, the set of invertible fractional ideals I(O) forms an abelian group under
ideal multiplication. This group contains the principal fractional ideals P(O) as a (clearly nor-
mal) subgroup, hence we may define the ideal-class group of O as the quotient

c(0) = 1(0)/P(0).

Every ideal class [a] € cl(O) has an integral representative, and for any non-zero M € Z there
even exists an integral representative of norm coprime to M.

There is a unique maximal order of K with respect to inclusion called the ring of integers and
denoted Of. The conductor of O (in O) is the index f = [Ok : O]. Away from the conductor,
ideals are well-behaved; every O-ideal of norm coprime to the conductor is invertible and factors
uniquely into prime ideals.

The class-group action. Fix a prime p > 5 and an (ordinary or supersingular) elliptic curve E
defined over Fy,. The Frobenius endomorphism 7 of E satisfies a characteristic equation

772—t7r+p:0

in Endp(E), where ¢t € Z is the trace of Frobenius. The curve E is supersingular if and only if
t = 0. The Fp-rational endomorphism ring End, (F) is an order O in the imaginary quadratic
field K = O ®7Q = QWA), where A = t? — 4p. We note that O always contains the Frobenius
endomorphism 7, and hence the order Z[x].

Any invertible ideal a of O splits into a product of O-ideals as (7O)"as, where as ¢ wO. This
defines an elliptic curve E/a and an isogeny

va: E— E/a

5This statement remains true in vast generality, but we only need this special case.

®Note that the use of the word “ideal” is inconsistent in the literature. We make the convention that “ideal” without
qualification refers to an integral O-ideal (i.e., an ideal in the sense of ring theory), while fractional ideals are clearly
named as such.

3.3. THE CLASS-GROUPACTION | 49

of degree N(a) as follows [Wat69]: the separable part of q has kernel (¢, ker(a), and the
purely inseparable part consists of r iterations of Frobenius. The isogeny ¢q and codomain E/a
are both defined over Fj, and are unique up to Fp-isomorphism (by Lemma 3.6), justifying the
notation E/a. Multiplication of ideals corresponds to the composition of isogenies. Since prin-
cipal ideals correspond to endomorphisms, two ideals lead to the same codomain if and only if
they are equal up to multiplication by a principal fractional ideal. Moreover, every F,-isogeny v
between curves in &, (O, 7) comes from an invertible O-ideal in this way, and the ideal as can
be recovered from ¢ as as = {& € O | ker(a) D ker(¢) }. In other words:

Theorem 3.7. Let O be an order in an imaginary quadratic field and = € O such that 8y(O,) is
non-empty. Then the ideal-class group c1(O) acts freely and transitively on the set &, (O,) via the
map
cl(O) x 8p(O, 1) — EU(O,m)
(o], E) — E/a,

in which a is chosen as an integral representative.
Proof. See [Wat6g, Theorem 4.5]. Erratum: [Sch87, Theorem 4.5]. O

To emphasize the fact that we are dealing with a group action, we will from now on write [a] * E
or simply [a] E for the curve E/a defined above.

The structure of the class group. The class group cl(O) is a finite abelian group whose cardin-
ality is asymptotically [Sie3s]

#cl(0) = /A

The exact structure of cl(O) can be computed in subexponential time L5 |[1/2; v2+0(1)] using
an algorithm of Hafner and McCurley [HM89]. Unfortunately, this requires too much compu-
tation for the sizes of A we are working with, but there are convincing heuristics concerning
the properties of the class group we need. See Section 3.7.1 for these arguments. If the absolute
value |t of the trace of Frobenius is “not too big”, the discriminant A is about the size of p, hence
by the above approximation we may assume #cl(O) = ,/p. This holds in particular when E is
supersingular, where ¢ = 0, hence |A| = 4p.

We are interested in primes ¢ that splitin O, i.e., such that there exist (necessarily conjugate)
distinct primeideals [, [of O with £O = [I. Such £ are known as Elkies primes in the point-counting
literature. The ideal [is generated as [= (¢,m — \), where A € Z/{ is an eigenvalue of the
Frobenius endomorphism 7 on the ¢-torsion, and its conjugate is [= (¢,7 — p/)), where by
abuse of notation p/\ denotes any integral representative of that quotient modulo ¢. Note that
¢ splits in O if and only if A is a non-zero square modulo 4.

Computing the group action. Any element of the class group can be represented as a product
of small prime ideals [BVo7, Propositions 9.5.2 and 9.5.3], hence we describe how to compute
[|E for a prime ideal [= (¢, — \). There are (at least) the following ways to proceed, which
vary in efficiency depending on the circumstances [DKS18; Kie17]:

o Find Fj-rational roots of the modular polynomial ®,(j(E),Y) to determine the two j-
invariants of possible codomains (i.e., up to four non-isomorphic curves, though in the or-
dinary case wrong twists can easily be ruled out); compute the kernel polynomials [Kohg6]
X € Fplx] for the corresponding isogenies (if they exist); if (z, y?) = [A](z, y) modulo x
and the curve equation, then the codomain was correct, else another choice is correct.

5o CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

e Factor the /" division polynomial ¢ (E) over Fp; collect irreducible factors with the right
Frobenius eigenvalues (as above); use Kohel’s formulas [Kohg6, Section 2.4] to compute
the codomain.

e Find abasis of the ¢-torsion — possibly over an extension field — and compute the eigen-
spaces of Frobenius; apply Vélu’s formulas [Vél71] to a basis point of the correct eigenspace
to compute the codomain.

As observed in [DKS18; Kie17], the last method is the fastest if the necessary extension fields are
small. The optimal caseis A = 1;in that case, the curve has arational point defined over the base
field Fp,. If in addition p/\ = —1, the other eigenspace of Frobenius modulo ¢ is defined over
F)2, so both codomains can easily be computed using Vélu’s formulas over an at most quadratic
extension (butin fact, a good choice of curve model allows for pure prime field computations, see
Section 3.8; alternatively one could switch to the quadratic twist). Note thatifp = —1 (mod #),
then A = 1 automatically implies p/\ = —1.

Much of De Feo—Kieffer—Smith’s work [DKS18; Kie17] is devoted to finding an ordinary el-
liptic curve E with many small Elkies primes ¢ such that both E and its quadratic twist E* have
an IF,-rational ¢-torsion point. Despite considerable effort leading to various improvements, the
results are discouraging. With the best parameters found within 17 000 hours of CPU time, eval-
uating one class-group action still requires several minutes of computation to complete. This
suggests that without new ideas, the original Couveignes—Rostovtsev—Stolbunov scheme will
not become anything close to practical in the foreseeable future.

3.4 — Construction and design choices

In this section, we discuss the construction of our proposed group action and justify our design
decisions. For algorithmic details, see Section 3.8. Notice that the main obstacle to performance
in the Couveignes—Rostovtsev—Stolbunov scheme — constructing a curve with highly compos-
ite order — becomes trivial when using supersingular curves instead of ordinary curves, since
for p > 5 any supersingular elliptic curve over F, has exactly p + 1 rational points.

The cryptographic group action described below is a straightforward implementation of this
construction. Note that we require p = 3 (mod 4) so that we can easily write down a supersin-
gular elliptic curve over I, and so that an implementation may use curves in Montgomery form.
It turns out that this choice is also beneficial for other reasons. In principle, this constraint is not
necessary for the theory to work, although the structure of the isogeny graph changes slightly
(see [DG16] and Remark 3.3 for details).

Parameters. Fix alarge prime p of the form 4-¢; - - - £, — 1, where the ¢; are small distinct odd
primes. Fix the elliptic curve Eg: y? = z3 + x over Fp; it is supersingular since p = 3 (mod 4).
The Frobenius endomorphism 7 satisfies 7> = —p, so its Fp-rational endomorphism ring is an
order in the imaginary quadratic field Q(/—p). More precisely, Proposition 3.8 (below) shows
Endp(Ep) = Z[n], which has conductor 2.

Rational Elkies primes. By Theorem 3.4, the choices made above imply that the ¢;-isogeny
graph is a disjoint union of cycles. Moreover, since 72 — 1 = 0 (mod ¢;) the ideals £;O split as
£;0 = 1;1;, where l; = (£;, 7 — 1) and [; = ({;, 7 + 1). In other words, all the ¢; are Elkies primes.
In particular, we can use any one of the three algorithms described at the end of Section 3.3 to
walk along the cycles.

Furthermore, the kernel of ¢y, is the intersection of the kernels of the scalar multiplication
[¢;] and the endomorphism 7 — 1. That s, it is the subgroup generated by a point P of order ¢;

3.5. REPRESENTING AND VALIDATING F,-ISOMORPHISM CLASSES ‘ 51

which lies in the kernel of m — 1 or, in other words, is defined over F;,. Similarly, the kernel of ¢
is generated by a point Q of order ¢; that is defined over IF,,> such that 7(Q) = —Q. This greatly
simplifies and accelerates the implementation, since it allows performing all computations over
the base field (see Section 3.8 for details).

Sampling from the class group. 1deally,” we would like to know the exact structure of the ideal-
class group cl(O) to be able to sample elements uniformly at random. However, such a compu-
tation is currently not feasible for the size of discriminant we need, hence we resort to heuristic
arguments. Assuming that the [; do not have very small order and are “evenly distributed” in the
class group, we can expectideals of the form [{* (52 - - - [, for small e; to lie in the same class only
very occasionally. For efficiency reasons, it is desirable to sample the exponents e; from a short
range centered around zero, say {—m, ..., m} for some integer m. We will argue in Section 3.7.1
that choosing m such that 2m + 1 > {/#cl(O) is sufficient. Since the prime ideals [; are fixed
global parameters, the ideal [, [may simply be represented as a vector (e, .. ., €n).

Evaluating the class-group action. Computing the action of anideal class represented by [, (7
on an elliptic curve E proceeds as outlined in Section 3.3. Since 72 = —p = 1 (mod ¢;), we are
now in the favourable situation that the eigenvalues of Frobenius on all £; -torsion subgroups are
+1 and —1. Hence we can efficiently compute the action of I; (resp. [;) by finding an [Fp,-rational
point (resp. IF 2 -rational with Frobenius eigenvalue —1) of order ¢; and applying Vélu-type for-
mulas. This step could simply be repeated for each ideal 7 *1 whose action is to be evaluated, but

see Section 3.8 for a more efficient method.

3.5— Representing and validating [, -isomorphism classes

A major unsolved problem of SIDH is its lack of public-key validation, i.e., the inability to verify
that a public key was honestly generated. This shortcoming leads to polynomial-time active at-
tacks [GPST16] on static variants for which countermeasures are expensive. For example, the act-
ively secure variant SIKE [Jao+17] applies a transformation proposed by Hotheinz, Hévelmanns,
and Kiltz [HHK17] which is similar to the Fujisaki~-Okamoto transform [FOg9g], essentially doub-
ling the running time on the recipient’s side compared to an ephemeral key exchange.

The following proposition tackles this problem for the family of CSIDH instantiations we are
proposing. Moreover, it shows that the Montgomery coefficient forms a unique representative
for the [F-isomorphism class resulting from the group action, hence may serve as a shared secret
without taking j-invariants.

Proposition 3.8. Letp > 5 be a prime such that p = 3 (mod 8), and let E /Iy, be a supersingular
elliptic curve. Then Endp (E) = Z[r] if and only if there exists A € Fy such that E is Fp,-isomorphic to
the curve E 5 : y* = 2 + Ax® + 2. Moreover, if such an A exists then it is unique.

Proof. First suppose that F is Fp-isomorphic to E 4 for some A € Fp,. If E 4 has full Fj,-rational
2-torsion, then Table 1 of [CS18] shows that either E 4 or its quadratic twist must have order
divisible by 8. However, both have cardinality p + 1 = 4 (mod 8). Hence E 4 can only have one
[Fp-rational point of order 2. With Theorem 2.7 of [DG16], we can conclude Endy (E) = Z[nx].
Now assume that Endy,(E) = Z[r]. By Theorem 3.7, the class group cl(Z[r]) acts transit-
ively on &¢p(Z[n],), so in particular there exists [a] € cl(Z[r]) such that [a]Eg = E, where

7No pun intended.

52 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Eo: y*> = x3 + x. Choosing a representative a that has norm coprime to 2p yields a separ-
able Fp-isogeny ¢a: Fg — F of odd degree. Thus, by [Ren18, Proposition 1] there exists an
A € Fp and a separable isogeny ¢: Eg — E4: y? = 2® + Az® + x defined over F,, such
that ker(¢) = ker(pa). As isogenies defined over [F,, with given kernel are unique up to post-
composition with Fp-isomorphisms (Lemma 3.6), we conclude that E is Fp-isomorphic to E 4.

Finally, let B € Fp suchthat B4 = Eg: Y2 = X 4+ BX? + X. Then by [Silog, Proposi-
tion I11.3.1(b)] there exist u € Fy, andr, s,¢ € Fj such that

x:u2X—|—r, y:u3Y—i—su2X—|—t.

Substituting this into the curve equation of E 4 and subtracting u° times the equation of Ep
equals zero in the function field and thus leads to a linear relation over F, between the functions
1, X,X?Y,and XY. Writing oo for the point at infinity of E'g, it follows from Riemann—Roch
[Silog, Thm. 5.4] that £(5(c0)) is a 5-dimensional F,-vector space with basis {1, X, Y, X2, XY}
Hence the obtained linear relation must be trivial, and a straightforward computation yields

s=t=0, 3r2+2Ar+1:u4,
37’—|—A:Bu2, At +r=0.

But since F 4 only has a single [F,-rational point of order 2, the only r € F}, such that 73 + Ar% +
r = 0is simply r = 0. Inthat case u* = 1, and hence u = +1 since p = 3 (mod 8). In particular,
u? = 1and thus A = B. O

Therefore, using a Montgomery coefficient A €), torepresent publickeys, Proposition 3.8 guar-
antees that A represents a curve in the correct isogeny class &y (O, 7), where 7 = /—p and
O = Z[r], under the assumption thatitis smooth (i.e. A ¢ {£2}) and supersingular.

Verifying supersingularity. Asp > 5, an elliptic curve E defined over), is supersingular if and
only if #F(F,) = p + 1 [Silog, Exercise 5.10]. In general, proving that an elliptic curve has a
given order N is easy if the factorization of N is known; exhibiting a subgroup (or in particular,
a single point) whose order d is a divisor of IV greater than 4,/p implies the order must be cor-
rect. Indeed, the condition d > 4,/p implies that only one multiple of d lies in the Hasse interval
[p+1—2yp;p+ 1+ 2,/p| [Has36]. This multiple is the group order by Lagrange’s theorem.

Now note that a random point generally has very large order d. For our curves we have
E(Fp) & Z/4 x [1i1 Z/¢;, so that ¢; | d with probability (¢; — 1)/¢;. Ignoring the even part,
this shows that the expected order is lower bounded by

- 1
izl_[l (41 -1+ Z) .
This product is about the same size as p, and it is easily seen that a random point will with over-
whelming probability have order (much) greater than 4,/p. This observation leads to a straight-
forward verification method, see Algorithm 3.1.%
If the condition d > 4,/p does not hold at the end of Algorithm 3.1, the point P had too small
order to prove #F(F,) = p+ 1. In this case one may retry with a new random point P (although
this outcome has negligible probability and could just be ignored). There is no possibility of
wrongly classifying an ordinary curve as supersingular.

8The same idea gives rise to a simpler Monte Carlo algorithm which does not require the factorization of p 4 1 but
has a chance of false positives [Suti2a, Section 2.3].

3.6. NON-INTERACTIVE KEY EXCHANGE 53

Algorithm 3.1: Verifying supersingularity.

1

2

3
4

5
6

Input: An elliptic curve E/Fp, wherep =4 - 01 --- £, — 1.
Output: supersingular or ordinary.

Randomly pick a point P € E(Fp) and setd « 1.

for each /; do
SetQi « [(p+1)/ti] P
If [¢;]Q; # oo then return ordinary. // since #E(Fp)tp+1
If Q; # cothensetd < ¢; - d. // since ¢; | ord P

If d > 4,/p then return supersingular.

Note moreover thatif z-only Montgomery arithmeticis used (as we suggest) and the point P

is obtained by choosing a random z-coordinate in), there is no need to differentiate between
points defined over F, and FF2; any z-coordinate in F,, works. Indeed, any point that has an
z-coordinate in Fp, butis only defined over IF > corresponds to an IFp-rational point on the quad-
ratic twist, which is supersingular if and only if the original curve is supersingular.

There are more optimized variants of this algorithm; the bulk of the work are the scalar mul-

tiplications required to compute the points Q; = [(p + 1)/¢;]P. Since they are all multiples of
P with shared factors, one may more efficiently compute all ; at the same time using a divide-

and-conquer strategy (at the expense of higher memory usage). See Section 10, and in particular
Algorithm 3.3, for details.

3.6 — Non-interactive key exchange

Starting from the class-group action on supersingular elliptic curves and the parameter choices
outlined in Sections 3.3 and 3.4, one obtains the following non-interactive key-exchange pro-
tocol.

Setup. Global parameters of the scheme are a large primep = 4 - ¢ - - - £, — 1, where the ¢;
are small distinct odd primes, and the supersingular elliptic curve Eg: y? = 2> + x over F),
with endomorphism ring O = Z[n].

Key generation. The private key is an n-tuple (eq,...,en) of integers, each sampled ran-
domly from arange {—m, ..., m}. Theseintegersrepresent theideal class [a] = [I]* - - - [;"] €
cl(O), where [; = (¢;, # — 1). The public key is the Montgomery coefficient A € F), of the el-
liptic curve [a]Eg: y? = 2® + Ax? + obtained by applying the action of [a] to the curve
Eyp.

Key exchange. Suppose Alice and Bob have key pairs ([a], A) and ([b], B). Upon receiving
Bob’s publickey B € F,\{+£2}, Alice verifies that the elliptic curve Eg: y? = 23 + Bz? + z
isindeed in &, (O,) using Algorithm 3.1. She then applies the action of her secret key [a] to
Ep to compute the curve [a]Ep = [a][b]Ep. Bob proceeds analogously with his own secret
[6] and Alice’s public key A to compute the curve [6]E4 = [b][a] Ep. The shared secret is the
Montgomery coefficient S of the common secret curve [a][b] Ey = [b][a] Ep written in the form
y? = 2% + Sz? + x, which is the same for Alice and Bob due to the commutativity of cl(©)

and Proposition 3.8.

54 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Jop— 7

A R 1

~
N -
~ -

N e

El

Figure 3.3: A 1-bit identification protocol.

Remark 3.9. Besides key exchange, we expect that our cryptographic group action will have several
other applications, given the resemblance with traditional Diffie—Hellman and the ease of verifying the
correctness of public keys. We refer to previous papers on group actions for a number of suggestions in this
direction, in particular Brassard—Yung [BY9o], Couveignes [Couo6, $4], and Stolbunov [Stoio]. We
highlight the following 1-bit identification scheme, which in our case uses a key pair ([a], A) as above. One
randomly samples an element [b] € cl(O) and commitstoa curve E' = [b] Eq. Depending on a challenge
bit b, one then releases either [b] or [¢] := [b][a] ™%, as depicted in Figure 3.3. As already pointed out in
Stolbunov’s PhD thesis [Sto12, $2.B], this can be turned into a signature scheme by repeated application of
the 1-bit protocol and by applying the Fiat—Shamir [FS86] or Unruh [Unri2] transformation. However,
we point out that it is not immediately clear how to represent [c] in a way that is efficiently computable
and leaks no information about the secret key [a]. We leave a resolution of this issue for future research, but
mention that a related problem was recently tackled by Galbraith, Petit and Silva [GPS17] who studied a
similar triangular identification protocol in the context of SIDH.?

3.7 — Security

The central problem of our new primitive is the following analogue to the classical discrete-
logarithm problem.

Problem 3.10 (Key recovery). Given two supersingular elliptic curves E, E’ defined over F'p with the
same Fp-rational endomorphism ring O, find an ideal a of O such that [a|E = E'. This ideal must be
represented in such a way that the action of [a] on a curve can be evaluated efficiently, for instance a could
be given as a product of ideals of small norm.

Justlike in the classical group-based scenario, security notions of Diffie-Hellman schemes built
from our primitive rely on slightly different hardness assumptions (cf. Section 3.1.1) that are
straightforward translations of the computational and decisional Diffie-Hellman problems; see
Section 2.1.3. However, continuing the analogy with the classical case, and since we are not aware
of any ideas to attack the key exchange without recovering one of the keys, we will assume in
the following analysis that the best approach to breaking the key-exchange protocol is to solve
Problem 3.10.

We point out that the “inverse Diffie-Hellman problem” is easy in the context of CSIDH:
given [a] Ep we can compute [a] ~ E by mere quadratic twisting; see Remark 3.5. This contrasts
with the classical group-based setting [Gali2, §21.1]. Note that just like identifying a point (z, y)
with its inverse (z, —y) in an ECDLP setting, this may imply a security loss of one bit under some
attacks: An attacker may consider the curves [a] E and [a] ~! Eidentical, which reduces the search
space by half.

9The “square” SIDH counterparts of this protocol, as considered in [D]P14; GPS17; Yoo+17], are not meaningful in
the case of a commutative group action.

3.7. SECURITY 55

No torsion-point images. One of the most worrying properties of SIDH seems to be that Alice
and Bob publish the images of known points under their secret isogenies along with the codo-
main curve, i.e., a publickey s of the form (E’, ¢(P), »(Q)) where p: E — E'is asecretisogeny
and P, @ € E are publicly known points. Although thus far nobody has succeeded in making
use of this extra information to break the original scheme, Petit presented an attack using these
points when overstretched, asymmetric parameters are used; see [Pet17] and Chapter 7. The
Couveignes—Rostovtsev—Stolbunov scheme, and consequently our new scheme CSIDH, does not
transmit such additional points — a public key consists of only an elliptic curve. Thus we are con-
fident that a potential future attack against SIDH based on these torsion points would not apply
to CSIDH.

Chosen-ciphertext attacks. As explained in Section 3.5, the CSIDH group action features ef-
ficient public-key validation. This implies it can be used without applying a CCA transform
such as the Fujisaki-Okamoto transform [FOgg9], thus enabling efficient non-interactive key ex-
change (see Section 2.1.5) and other applications in a post-quantum world.

3.7.1—Classical security. We begin by considering classical attacks.

Exhaustive key search. The most obvious approach to attack any cryptosystem is to simply
search through all possible keys. In the following, we will argue that our construction provides
sufficient protection against key search attacks, including dumb brute force and (less naively) a
meet-in-the-middle approach.

As explained in Section 3.4, a private key of our scheme is an exponent vector (e1, ..., en)
where each e; is in the range {—m, ..., m}, representing the ideal class [[{* (52 - - - [["] € cl(O).
There may (and typically will) be multiple such vectors that represent the same ideal class and
thus form equivalent private keys. However, we argue (heuristically) that the number of short
representations per ideal class is small. Here and in the following, “short” means that all e; are
in the range {—m, ..., m}. The maximum number of such short representations immediately
yields the min-entropy'® of our sampling method, which measures the amount of work a brute-
force attacker has to do while conducting an exhaustive search for the key.

We assume in the following discussion that cl(O) is “almost cyclic” in the sense thatithas a
very large cyclic component, say of order N not much smaller than #cl(O). According to a heur-
istic of Cohen and Lenstra, this is true with high probability for a “random” imaginary quadratic
field [CL84, §9.1], and this conjecture is in line with our own experimental evidence. So suppose

p: cl(O) - (Z/N,+)

is a surjective group homomorphism (which may be thought of as a projection to the large cyclic
subgroup followed by an isomorphism) and define a; = p([l;]). We may assume thata; = 1;
this can be done without loss of generality whenever at least one of the [I;] has order N in the
class group. For some fixed [a] € cl(O), any short representation [[7*[5? - - - ["] = [q] yields a
short solution to the linear congruence

e1 +esas+ - +enan =p([a]) (mod N),

so counting solutions to this congruence gives an upper bound on the number of short repres-
entations of [a]. These solutions are exactly the points in some shifted version (i.e., a coset) of

°The min-entropy of a random variable is the negative logarithm of the probability of the most likely outcome.

56 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

the integer lattice spanned by the rows of the matrix

N 0 0 --- 0
—as 1 0 -+ 0
Le|-as 01 - 0
—ap o o0 --- 1

so by applying the Gaussian heuristic [NVio, Chapter 2, Definition 8] one expects
vol [-m;m]"™ /det(L) = (2m + 1)"/N

short solutions. Since we assumed cl(O) to be almost cyclic, this ratio is not much bigger than
(2m + 1)" /#cl(O), which is not very large when m is minimal with (2m + 1) > #cl(O).

As aresult, we expect the complexity of a brute-force search to be around 2'°8 VP~¢ for some
positive € that is small relative to log |/p. To verify our claims, we performed computer experi-
ments with many choices of p of up to 40 bits (essentially brute-forcing the number of represent-
ations for all elements) and found no counterexamples to the heuristic result that our sampling
method loses only a few bits of brute-force security compared to uniform sampling from the
class group. For our sizes of p, the min-entropy was no more than 4 bits less than that of a per-
fectly uniform distribution on the class group (i.e. ¢ < 4). Of course this loss factor may grow in
some way with bigger choices of p (a plot of the data points for small sizes suggests an entropy
loss proportional to log log p), but we see no indication for it to explode beyond a few handfuls
of bits, as long as we find m and n so that (2m + 1)™ is not much larger than #cl(O).

Meet-in-the-middle key search. Since a private key trivially decomposes into a product of two

smooth ideals drawn from smaller sets (e.g. splitting [[{*[52 - - - ["] as [[{* - - - [7] - [[i‘:’f e |
for some v € {1,...,n}), the usual time-memory trade-offs & la baby-step giant-step [Sha71]

with an optimal time complexity of O (y/#cl(0)) ~ O({/p) apply.”" Another interpretation of
this algorithm is finding a path between two nodes in the underlying isogeny graph by con-
structing a breadth-first tree starting from each of them, each using a certain subset of the edges,
and looking for a collision. Details, including a memoryless variation of this concept, can be
found in Delfs and Galbraith’s paper [DG16], and for the ordinary case in [Galgg].

Remark 3.11. The algorithms mentioned thus far scale exponentially in the size of the key space, hence
they are asymptotically more expensive than the quantum attacks outlined below which is subexponential
in the class-group size. This implies one could possibly balance the costs of the different attacks and use
a key space smaller than #cl(O) without any loss of security (unless the key space is chosen particularly
badly, e.g., as a subgroup), which leads to improved performance. We leave a more thorough analysis of
this idea for future work.

Pohlig—Hellman-style attacks. Notice that the set &, (O, 7) we are acting on does not form
a group with efficiently computable operations (that are compatible with the action of cl1(0)).
Thus there seems to be no way to apply Pohlig—Hellman-style algorithms making use of the de-
composition of finite abelian groups. In fact, the Pohlig—Hellman algorithm relies on efficiently
computable homomorphisms to proper subgroups, which in the setting at hand would corres-
pond to an efficient algorithm that “projects” a given curve to the orbit of Ey under a subgroup

"Strictly speaking, the complexity depends on the size of the subset one samples private keys from, rather than the
size of the class group, but as was argued before, these are approximately equal for our choice of m and n.

37. SECURITY | g7

action. Therefore, we believe the structure of the class group to be largely irrelevant (assuming
itis big enough); in particular, we do not require it to have a large prime-order subgroup.

3.7.2— Quantum security. We now discuss the state of quantum algorithms to solve Prob-
lem 3.10.

Grover’s algorithm and claw finding. Applying Grover search [Grog6] via claw finding as de-
scribed in [JD11] is fully applicable to CSIDH as well, leading to an attack on Problem 3.10 in
O({/p) calls to a quantum oracle that computes our group action. The ideais to split the collision
search space into a classical O({/p) target part and a O({/p) search part on which a quantum
search is applied. Our choices of p that lead to classical security are also immediately large
enough to imply quantum security against this attack (cf. [NIST16, 84.A.5 in Call for Proposals]).
That is, the number of queries to our quantum oracle necessary to solve Problem 3.10 is larger
than the number of quantum queries to an AES oracle needed to retrieve the key of the corres-
ponding AES instantiation via Grover’s algorithm. For example, an AES-128 key can be recovered
with approximately 264 (quantum) oracle queries, which requires us to set p > 2°%4. However, p
is much larger than that (see Table 3.1) due to the existence of subexponential quantum attacks.

The abelian hidden-shift problem. A crucial result by Kuperberg [Kupos] is an algorithm to
solve the hidden-shift problem with time, query and space complexity 2°%1°8 N) in an abelian
group H of order N. He also showed that any abelian hidden-shift problem reduces to a dihed-
ral hidden-subgroup problem on a different but closely related oracle. A subsequent alternative
algorithm by Regev [Rego4] achieves polynomial quantum space complexity with an asymp-
totically worse time and query complexity of 20108 N1oglog N) s follow-up algorithm by Ku-
perberg [Kup13] uses 20W108 N) time, queries and classical space, but only O(log N) quantum
space. All these algorithms have subexponential time and space complexity.

Attacking the isogeny problem. The relevance of these quantum algorithms to Problem 3.10
has been observed by Childs—Jao—Soukharev [C]S14] in the ordinary case and by Biasse—Jao—
Sankar [B]S14] in the supersingular setting. By defining functions fo, f1: cl(O) — &p(O,)
as fo: [b] — [b]E and f1: [b] ~ [b]E’ = [b][a]E, the problem can be viewed as an abelian
hidden-shift problem with respect to fp and f1. We note that each query requires evaluating the
functions f; on arbitrary ideal classes (i.e. without being given a representative that is a product
of ideals of small prime norm) which is non-trivial. However, Childs—Jao—Soukharev show this
can be done in subexponential time and space [C]S14, §4].

Subexponential vs. practical. Animportantremark about all these quantum algorithms is that
they do not immediately lead to estimates for runtime and memory requirements on concrete
instantiations with H = cl(O). Although the algorithms by Kuperberg and Regev are shown to
have subexponential complexity in the limit, this asymptotic behavior is not enough to under-
stand the space and time complexity on actual (small) instances. For example, Kuperberg’s first
paper [Kupos, Theorem 3.1] mentions O(23V'°8 V) oracle queries to achieve a non-negligible
success probability when N is a power of a small integer. It also presents a second algorithm
that runs in O(3V21°8s Ny = O(21-8V19e Ny [Kupos, Theorem s.1]. His algorithms handle ar-
bitrary group structures but he does not work out more exact counts for those. Of course, this
does not contradict the time complexity of 20198 V) 35 stated above, but for a concrete security
analysis the hidden constants certainly matter alot and ignoring the O typically underestimates

58 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

the security. Childs—Jao—Soukharev [C]S14, Theorem 5.2] prove a query complexity of
LN[l/Q,\/i] = exp [(\/§+0(1))vlannlnN], (3.1)

where N = #cl(O), for using Regev’s algorithm for solving the hidden-shift problem. This
estimates only the query complexity, so does not include the cost of queries to the quantum
oracle (i.e. the isogeny oracle). Childs—Jao—Soukharev present two algorithms to compute the
isogeny oracle, the fastest of which is due to Bisson [Bisi2]. In [C]S14, Remark 4.8] Childs—Jao—
Soukharev give an upper bound of

Lp[1/2,1/V/?2] = exp [(1/\/§+0(1))\/lnplnlnp} (3-2)
on the running time of Bisson’s algorithm.

Remark 3.12. Childs—jao—Soukharev compute the total cost for computing the secret isogeny in [C]S14,
Remarks.5]tobe Lp[1/2,3/~/2] (using Regev and Bisson’s algorithms, requiring only polynomial space).
They appear to obtain this by setting N = p when multiplying (3.1) and (3.2), butas N ~ /p thisis an
overestimation and should be Lp[1/2,1+1/+/2). Either way, this is the largest asymptotic complexity of
the estimates. Also, [GV18] points out this algorithm actually has superpolynomial space complexity due
to the high memory usage of the isogeny oracle in [C]S14], but see [[LLR18].

Childs—Jao—Soukharev additionally compute the total time L;[1/2, 1/4/2] for computing the
secretisogeny combining Kuperberg [Kupos] and Bisson. This requires superpolynomial storage
(also before considering the memory usage of the oracle). Note thatin this combination the costs
of the oracle computation dominate asymptotically.

It is important to mention that asymptotically inferior algorithms may provide practical
improvements on our “small” instances over either of the algorithms studied by Childs—Jao—
Soukharev: For example, Couveignes [Couo6, §5] provides heuristic arguments that one can find
smooth representatives of ideal classes by computing the class-group structure (which can be
done in polynomial time on a quantum computer [Halos]) and applying a lattice-basis-reduction
algorithm such as LLL [LLL82] to its lattice of relations. This might be more efficient than using
Childs—Jao—Soukharev’s subexponential oracle. However, note that this method makes evalu-
ating the oracle several times harder for the attacker than for legitimate users, thus immediately
giving a few additional bits of security, since users only evaluate the action of very smooth ideals
by construction. We believe further research in this direction is necessary and important, since
it will directly impact the cost of an attack, but we consider a detailed analysis of all these al-
gorithms and possible trade-offs to be beyond the scope of this work.”

Remark 3.13. After we posted a first version of the paper this chapter is based on on the Cryptology
ePrint Archive, there were several independent attempts at assessing the security of CSIDH.

Biasse, Iezzi, and Jacobson [BIJ18] work out some more details of the attack ideas mentioned above for
Regev’s algorithm. They focus on the class-group-computation part of the oracle and they describe how to
represent random elements of the class group as a product of small prime ideals. Their analysis is purely
asymptotic and an assessment of the actual cost on specific instances is explicitly left for future work.

Bonnetain and Schrottenloher [BS18] determine (quantum) query complexities for breaking CSIDH
under the assumption that the quantum memory can be made very large, which implies that Kuperberg’s
faster algorithms would be applicable. They estimate the number of oracle queries as (52 /4)2-8V1g N

?The page margins are certainly too narrow to contain such an analysis.

3.7. SECURITY | 59

The 1.8 appears to approximate the /2 log 3 in Kuperberg [Kupos, Theorem 5.1]. The number of qubits
required is stated as 2+-8V108 N+2:3,

While we ignored Kuperberg’s algorithm due to the large memory costs, they take the stance that “the
most time-efficient version is relevant”, and so do not ignore this algorithm. For small N the number
of qubits stated in [BS18] might be possible, which would indeed make Kuperberg’s algorithm relevant
for these sizes. However, in this case the total cost is dominated by the high cost of computing the oracle,
which Childs—Jao—Soukharev placed at Lp[1/2,1/+/2). Bonnetain and Schrottenloher instead make use
of Couveignes’ (exponential-time, but perhaps better for small parameters) LLL-based method for the
oracle computation, applying BKZ instead for more effective lattice-basis reduction.

Jao, LeGrow, Leonardi, and Ruiz-Lopez address the issue of superpolynomial space in the oracle com-
putation identified by Galbraith and Vercauteren (stated above) and give a new algorithm for finding
short representations of elements. Their paper focuses on the asymptotic analysis of the oracle step so that
they achieve overall polynomial quantum space, but does not obtain any concrete cost estimates.

We analyze the cost of quantum evaluation of the CSIDH group action in Chapter 9. Even after
introducing several speedups to arithmetic in finite fields and computing isogenies in superposition, for
CSIDH-§12 it still takes 2*° quantum operations on a quantum computer of 2*° qubits to compute a single
evaluation of the Kuperberg or Regev oracle for success probability 2~ 32 and reduced range of exponents.

See Section 11.4 for an account of more recent developments.

3.7.3 — Instantiations. Finally we present estimates for some sizes of p.

Security estimates. Asexplainedin §3.7.1, the best classical attackhas query complexity O(¢/p),
and the number of queries has been worked out for different quantum attacks. We consider
[CJS14] in combination with Regev and Kuperberg (L [1/2,3/v/2] and Ly [1/2,1/v/2], respect-
ively) as well as the pure query complexity of Regev’s and Kuperberg’s algorithms (L x [1/2, V2],
0(23V1ee V) "and 0(2!-8V1°8 V) respectively). We summarize the resulting attack complexit-
ies, ignoring the memory costs and without restricting the maximum depth of quantum circuits,
for some sizes of p in Table 3.1. We note again that we expect these complexities to be subject
to more careful analysis, taking into account the implicit constants,” the (in)feasibility of long
sequential quantum operations, and the large memory requirement. We also include the estim-
ates on the query complexity and full attack complexity by [BS18].

We point out arecent analysis [Adj+18] which shows that the classical attack on SIDH (which
is the same for CSIDH) is likely slower in practice than current parameter estimates assumed,
which is due to the huge memory requirements of the searches. Similarly, the cost of the quantum
attacks is significantly higher than just the query complexity multiplied with the cost of the
group action, since evaluating the oracle in superposition is significantly more expensive than
on a classical machine.

Recall that public keys consist of a single element A € Iy, which may be represented us-
ing [log p] bits. A private key is represented as a list of n integers in {—m, ..., m}, where m
was chosen such that nlog(2m + 1) ~ log \/p, hence it may be stored using roughly (log p)/2
bits. Therefore the rows of Table 3.1 correspond to public key sizes of 64, 128, and 224 bytes, and
private keys are approximately half that size when encoded optimally.

BThis is illustrated dramatically by the eighth column stating a complexity of Lp[1/2,1/ \/5] for
[CJS14]-Kuperberg, which we recall arises by multiplying the query complexity of Kuperberg’s (first) algorithm
and Childs—Jao-Soukharev’s estimate Ly [1/2, 1/+/2] for the running time of Bisson’s algorithm; so here it would
make more sense to add the corresponding entries of the fourth column, but we decided to leave the numbers as they
are in order to be consistent in the way we discard o(1)’s.

60 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Table 3.1: Estimated attack complexities ignoring limits on depth. The three rightmost columns state costs for the com-
plete attack; the others state classical and quantum query complexities. All numbers are rounded to whole bits and use
N = #cl(O) = /p,0(1) = 0, and all hidden O-constants 1, except for numbers taken from [BS18].

& = | N S| =

= Y ~ ~ 7

S 4 2% ~| &

= |25l F |8 Bl = |25 . FS| =

Se T z|2d@ 50| 5|3 Tt

» - % ~ Vv 7|0 v A,] = ~ 0 [

— 3 w w 3

g w | Powl| 52 S22 | S |loge|o8e| S

CSIDH-(logp) || © 2 | 2 & | 2 | X2~ = =L | =%
CSIDH-512 128 62 48 29 | 325 139 47 71
CSIDH-1024 256 94 68 41 | 44.5 209 70 | 88
CSIDH-1792 448 129 90 54 | 575 288 96 | 104

Security levels. We approximate security levels as proposed by NIST for the post-quantum
standardization effort [NIST16, §4.A.5]. Thatis, the k-bit security level means that the required
effort for the best attacks is at least as large as that needed for a key-retrieval attack on a block
cipher with a k-bit key (e.g. AES-k for k € {128,192,256}). In other words, under the assump-
tion that the attacks query an oracle on a circuit atleast as costly as AES, we should have a query
complexity of at least 28! resp. v/2F to a classical resp. quantum oracle. NIST further restricts
the power of the quantum computation to circuits of maximum depth 2%° up to 2°, meaning
that theoretically optimal tradeoffs (such as the formulas in Table 3.1 above) might not be pos-
sible for cryptographic sizes.

The parameters for CSIDH-(log p) were chosen to match the query complexity of Regev’s
attack on the hidden-shift problem (see the third column in Table 3.1) for roughly 2¥/2, which
should match NIST levels 1-3 as the group action computation has depth atleast as large as AES.

Some other algorithms give lower estimates which makes it necessary to evaluate the exact
cost of the oracle queries or compute the lower-order terms in the complexity. The analysis in
[BS18, Table 8] states lower overall costs compared to AES. While this is a significant improve-
ment, it is not clear that this affects our security claim when accounting precisely for the actual
cost of oracle queries, as stated above. Our analysis in Chapter 9 shows costs of much more
than 240 qubit operations for evaluating the oracle for logp ~ 512, whereas [BS18] assumed
only 237, See also Section 11.4, which discusses CSIDH security claims including more recent
developments.

3.8 — Implementation

In this section, we outline our most important tricks to make the system easier to implement or
the code faster. As pointed out earlier, the crucial step is to use a field of size 4-£; - - - £,, — 1, where
the ¢; are small distinct odd primes; this implies that all ¢; are Elkies primes for a supersingular
elliptic curve over F, and that the action of ideals (¢;, 7 & 1) can be computed efficiently using
Fp-rational points. See Section 3.4 for these design decisions. The following section focuses on
lower-level implementation details.

Montgomery curves. The condition p + 1 = 4 (mod 8) implies (cf. Proposition 3.8) that all
curves in &y (Z[x], 7) can be written as y? = x3 + Az 4+ 2 with A € Fj, via an Fj,-isomorphism.

3.8. IMPLEMENTATION 61

This is commonly referred to as the Montgomery form [Mon87] of an elliptic curve and is popular
due to the very efficient arithmetic on its z-line. This extends well to computations of isogenies
on the z-line, as was first shown by Costello-Longa—Naehrig [CLN16, §3]. Our implementation
uses exactly the same formulas for operations on curves. For isogeny computations on Mont-
gomery curves we use a projectivized variant (to avoid almost all inversions) of the formulas
from Costello—Higil [CH17] and Renes [Ren18]. This can be done as follows.

For a fixed prime ¢ > 3, a point P of order 4, and aninteger k € {1,...,¢ — 1},let (X : Zy)
be the projectivized z-coordinate of [k] P. Then by defining ¢; € Fj, such that

-1 -1
H (Ziw+ X;) = Z c;w"
i=1 =0

as polynomials in w, we observe that
(T(A —30) : 1) = (Acoco_1 — 3(cocr—2 — c1¢e-1) : ¢o—1),

where
{—1 —1
TN LN (N %
=7 =2(7-%)

and Ais the Montgomery coefficient of the domain curve. By noticing that z([k] P) = «([¢—k]P)
forallk € {1,..., (¢ — 1)/2} we can reduce the computation needed by about half. Thatis, we
can compute (7(A — 30) : 1) iteratively in about 5¢M + ¢S operations'#, noting that 7(A —
30) is the Montgomery coefficient of the codomain curve of an isogeny with kernel (P) [Ren18,
Proposition 1]. If necessary, a single division at the end of the computation suffices to obtain an
affine curve constant. We refer to the implementation for more details.

Note that for a given prime ¢, we could reduce the number of field operations by finding
an appropriate representative of the isogeny formulas modulo (a factor of) the ¢-division poly-
nomial ¢y (as done in [CLN16] for 3- and 4-isogenies). Although this would allow for a more
efficient implementation, we do not pursue this now for the sake of simplicity.

Rational points. Recall thatthe goalisto evaluate the action of (the class of) anideal I* - - - [
onacurve E € &y (Z[r],), whereeachl; = (¢;, 7—1)is a prime ideal of small odd norm ¢; and
the e; are integers in a short range {—m, ..., m}. We assume F is given in the form E 4 : y* =
a3+ Ax? + 1.

The obvious way to do this is to consider each factor [;H in this product and to find the
abscissa of a point P of order ¢; on F, which (depending on the sign) is defined over Fj, or
IF,2\Fp. This exists by our choice of p and ¢; (cf. Section 3.4). Finding such an abscissa amounts
to sampling a random F,-rational z-coordinate, checking whether 2 + Az? + z is a square or
not (for [resp. [;) in F), (and resampling if it was wrong), followed by a multiplication by
(p+1)/¢; and repeating from the start if the resultis co. The kernel of the isogeny given by [;H is
then (P), so the isogeny may be computed using Vélu-type formulas. Repeating this procedure
for all [fl gives the result.

However, fixing a sign before sampling a random point effectively means wasting about half
of all random points, including an ultimately useless square test. Moreover, deciding on a prime
£; before sampling a point and doing the cofactor multiplication wastes another proportion of
the points, including both an ultimately useless square test and a scalar multiplication. Both of

“Here M and S denote a multiplication and squaring in Fp,.

62 CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

these issues can be remedied by not fixing an ¢; before sampling a point, but instead taking any
z-coordinate, determining the smallest field of definition (i.e. Fp or IF)2) of the corresponding
point, and then performing whatever isogeny computations are possible using that point (based
on its field of definition and order). The steps are detailed in Algorithm 3.2.

Algorithm 3.2: Evaluating the class-group action.

Input: A € F, and alist of integers (eq, ..., en).
Output: B such that [I{* .- ;"]E4 = Ep (where Eg: y* = 2® + Ba? +).

While some e¢; # 0do
2 Sample arandom z € Fy,.

-

3 Sets « +1ifz3 + Az? + zisasquarein Fp, else s «— —1.
4 Let S = {i|e; #0, sign(e;) = s}. If S = () then start over with anew z.
5 Letk < [];cq ¢i and compute Q < [(p + 1)/k] P.

6 For eachi € Sdo

7 Compute R + [k/¢;]Q. If R = oo then skip this i.

8 Compute anisogeny ¢: E4 — Eg: y*> = 2 + Bx? + z with ker(p) = R.
9 Set A+ B,Q + ¢(Q),k < k/¢;,and finally e; + e; — s.

10 Return A.

Due to the commutativity of cl(O), and since we only decrease (the absolute value of) each e;
once we successfully applied the action of [Z:.':1 to the current curve, this algorithm indeed com-
putes the action of [I{* (52 - - - [7"].

Remark 3.14. Since the probability that a random point has order divisible by £; (and hence leads to
an isogeny step in Algorithm 3.2) grows with ¢;, the isogeny steps for big £; are typically completed before
those for small £;. Hence it may make sense to sample the exponents e; for ideals |; from different ranges
depending on the size of £;, or to not include any very small ; in the factorization of p+ 1 at all to reduce
the expected number of repetitions of the loop above. Note moreover that doing so may also improve the
performance of straightforward constant-time adaptions of our algorithms, since it yields stronger upper
bounds on the maximum number of required loop iterations (at the expense of slightly higher cost per
isogeny computation). Varying the choice of the £; can also lead to performance improvements if the
resulting prime p has lower Hamming weight. Finding such a p is a significant computational effort but
needs to be done only once; all users can use the same finite field.

Remark 3.15. Algorithm 3.2 is obviously strongly variable-time when implemented naively. Indeed, the
number of points computed in the isogeny formulas is linear in the degree, hence the iteration counts of
certain loops in our implementation are very directly related to the private key. We note that it would not
be very hard to create a constant-time implementation based on this algorithm by always performing the
maximal required number of iterations in each loop and only storing the results that were actually needed
(using constant-time conditional instructions), although this incurs quite a bit of useless computation,
leading to a doubling of the number of curve operations on average. We leave the design of optimized
constant-time algorithms for future work.

Public-key validation. Recall that the public-key validation method outlined in Section 3.5
essentially consists of computing [(p + 1) /¢;] P for each ¢, where P is a random point on E. Per-

3.8. IMPLEMENTATION 63

forming this computation in the straightforward way is simple and effective. On the other hand,
a divide-and-conquer approach, such as the following recursive algorithm, yields better speeds
at the expense of slightly higher memory usage. Note that Algorithm 3.3 only operates on public
data, hence need not be constant-time in a side-channel resistant implementation.

Algorithm 3.3: Batch cofactor multiplication. [Sutoy, Algorithm 7.3]

Input: An elliptic-curve point P and positive integers (k1,. .., kn).
Output: The points (Q1, .. ., Qn), where Q; = [Hj#- kj] P.
1 If n = 1 then return (P). // base case

2 Setm « [n/2] andletu « [[;%, ks, v < [Ti, 1 ki

3 Compute L < [v]P and R <+ [u]P.

4 Recursewithinput L, (k1, ..., km) giving (Q1, ..., @m). // left half
5 Recurse withinput R, (K1, - -, kn) giVIng (Qm+1,-- -, Qn). // right half
6 Return (Q1,...,Qn).

This routine can be used for verifying that an elliptic curve E/Fp, is supersingular as follows: Pick
arandom point P € E(Fp) and run Algorithm 3.3 on input [4]P and (¢4, ..., £5) to obtain the
points Q; = [(p + 1)/¢;] P. Then continue like in Algorithm 3.1 to verify that E is supersingular
using these precomputed points.

In practice, it is not necessary to run Algorithm 3.3 as a black-box function until it returns all
the points Q1, . .., @Qn: The order checking in Algorithm 3.1 can be performed as soon as a new
point Q; becomes available, i.e., in the base case of Algorithm 3.3. This reduces the memory us-
age (since the points Q; can be discarded immediately after use) and increases the speed (since
the algorithm terminates as soon as enough information was obtained) of public-key validation
using Algorithms 3.1 and 3.3. We note that the improved performance of this algorithm com-
pared to Algorithm 3.1 alone essentially comes from a time-space trade-off, hence the memory
usage is higher (cf. Section 3.8.1). On severely memory-constrained devices one may instead opt
for the naive algorithm, which requires less space but is slower.

3.8.1— Performance results. On top of a minimal implementation in the Sage computer
algebra system [Sage] for demonstrative purposes, we created a somewhat optimized proof-
of-concept implementation of the CSIDH group action for a particular 512-bit prime p. While
this implementation features 512-bit field arithmetic written in assembly (for Intel Skylake pro-
cessors), it also contains generic C code supporting other field sizes and can therefore easily be
ported to other computer architectures or parameter sets if desired."”

The prime p is chosen asp = 4 - £1--- 74 — 1 where ¢; through ¢73 are the smallest 73
odd primes and ¢74 = 587 is the smallest prime distinct from the other ¢; that renders p prime.
This parameter choice implies that public keys have a size of 64 bytes. Private keys are stored
in 37 bytes for simplicity, but an optimal encoding would reduce this to only 32 bytes. Table 3.2
summarizes performance numbers for our proof-of-conceptimplementation. Note that private-
key generation is not listed as it only consists of sampling n random integers in a small range
{—m, ..., m}, which has negligible cost.

50ur code for this chapter is published in the public domain and is available for download at https://yx7.cc/
code/csidh/csidh-latest.tar.xz.

https://yx7.cc/code/csidh/csidh-latest.tar.xz
https://yx7.cc/code/csidh/csidh-latest.tar.xz

64 ‘ CSIDH: AN EFFICIENT POST-QUANTUM GROUP ACTION

Table 3.2: Performance numbers for our proof-of-concept implementation (2018-08-26), averaged over 10 000 runs on
an Intel Skylake ig processor clocked at 3.5 GHz.

Clock cycles | Wall-clock time | Stack memory

Key validation 5.5 105 cc 2.1ms 4368 bytes
Group action 106 - 10° cc 40.8 ms 2464 bytes

We emphasize that both our implementations are intended as a proof of concept and unfit
for production use; in particular, they are explicitly not side-channel resistant and may contain
any number of bugs. We leave the design of hardened and more optimized implementations for
future work.

Chapter 4

Faster SeaSign signatures
through improved rejection sampling

This chapter is for all practical purposes identical to the paper Faster SeaSign signatures through
improved rejection sampling [DPV1g] authored jointly with Thomas Decru and Frederik Vercaut-
eren, which was published at PQCrypto 2019.

4.1— Introduction

CSIDH’s small key sizes prompted De Feo and Galbraith soon afterwards to transform it into
a signature scheme called SeaSign [DG19]. The construction uses the Fiat—Shamir with aborts
framework, a technique commonly used in lattice-based cryptography [Lyuog], in combination
with an isogeny-based identification scheme going back to Couveignes [Couo6] and independ-
ently Stolbunov [Sto12]. Their paper presents three different versions of SeaSign featuring vari-
ous trade-offs between signature size, public-key size, and secret-key size. One of these versions
attains 128 bits of security with signatures of less than one kilobyte. An issue impacting all of
these schemes, however, is that the signing and verification times are rather substantial. Indeed,
the basic SeaSign scheme takes (on average) almost two days to sign a message on a typical CPU,
whereas the variants with smaller signatures or public keys still take almost ten minutes to sign
(on average).

In this chapter we tackle this performance issue in the more general setting of using group
actions in a “Fiat-Shamir with aborts” scheme. We first discuss two (unfortunately mutually ex-
clusive) adjustments that reduce the likelihood of rejections, which decreases the expected num-
ber of failed signing attempts before a success and hence makes signing more efficient. Next, we
describe a modification that significantly speeds up the signing process at the cost of a small
increase in signature size. The basic idea is to allow the prover to refuse answering a small fixed
number of challenges, thereby reducing the overall probability of aborting. To attain a given se-
curity level, the total number of challenges — and correspondingly the signature size — will be
somewhat larger than for standard Fiat-Shamir with aborts. As an application of these general
techniques, we analyze the resulting speed-up for the various versions of the SeaSign signature
scheme. The improvement is most noticeable when applied to the basic scheme: the original
signing cost goes down from almost two days to just over half an hour. The other two, more ad-
vanced variants are still sped up by a factor of four to roughly two minutes per signature. Even
though this is still too slow for most (if not all) applications, it is a significant improvement over
the state of the art, and the underlying ideas of these speed-ups might be useful for other cryp-
tographic schemes as well.

66 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

Acknowledgements. We are thankful to Steven Galbraith for his observation about shorter sig-
natures in Remark 4.3, and to Taechan Kim for pointing out an error in an earlier version of the
script in Section 4.4.

4.1.1—Notation. The notation [a; b] denotes the integer range {a, . .., b}.

Fix n > 1. Throughout, we will consider a transitive action of the abelian group Z" on a
finite set X, with a fixed element Fy € X. We will assume that “short” vectors in Z" are enough
toreach “almost all” elements of X.! Moreover, we assume that the cost of computing the action
[V]E of avector v € Z" on an element E € X is linear in the 1-norm ||v|; = Z;L:ﬂvj\ of v.
(We will argue in Section 4.2.1 that these assumptions are satisfied in the CSIDH setting.)

4.2— Preliminaries

We recall some facts from Chapters 2 and 3.

4.2.1— CSIDH. Consider a supersingular elliptic curve E defined over Fp,, where p is a large
prime. While the endomorphism ring End(E) of E over the algebraic closure of F,, is noncom-
mutative, the ring Endp, (£) of endomorphisms defined over F, is an order O in the imaginary
quadratic field Q(,/=p).

The ideal class group of Endp, (E) = O is the quotient of the group of fractional invertible
idealsin O by the principal fractional invertible ideals in O, and will be denoted c1(O). The group
cl(O) acts on the set of IF;,-isomorphism classes of elliptic curves with F,-rational endomorph-
ism ring O through isogenies. More specifically, when given an O-ideal a and an elliptic curve
E with Endy, (E) = O, we define [a] E as the codomain of the isogeny wa: £ — E/a whose
kernel is (), ¢, ker(a). This isogeny is well-defined and unique up to Fj-isomorphism.

There are formulas for computing [a] E. However, for general a, this computation requires
large field extensions and hence has superpolynomial time complexity. To avoid this, CSIDH
restricts to ideals of the form a = [];_, [{*, where all [; are prime ideals of small norm ¢;, and
such that the action of [; can be computed entirely over the base field F,. The curve [a] E can then
be computed by chaining isogenies of degrees ¢;. In principle the cost of computing the action
of I; is in ©(¥;), but for small values of ¢; it is dominated by a full-size scalar multiplication,
which is why assuming cost |e| + - - - + |en | for computing the action of []_; [5?, as mentioned
in Section 4.1.1, comes close to the truth. (Moreover, in our setting, the |e;| are all identically
distributed, hence the differences in costs between various ¢; disappear on average.)

The CSIDH group action is defined as follows.

Parameters. Integersn > 1, m > 0. A prime p of the form 4 - ¢ --- ¢, — 1, with ¢; small
distinct odd primes. The elliptic curve Ep: y? = 23 4 x over F,. Write &,,(©) for the set of
(Fp-isomorphism classes of) elliptic curves over F, with Endy, (F) = O = Z[n], where 7 is the
Fp-Frobenius endomorphism.

Group action. A group element is represented’® by a vector (e1,...,en) € Z" sampled uni-
formly at random from [—m;m]", which defines the ideal a = [;_; I[* with [; = (¢;, 7 — 1).
A public element is a single coefficient A € Fp, representing the curve E 4 : y? = 23 + Az® + .

The result of the action of anideal a on a public element A €), assuming that E 4 has the right

'In other words: The action of Z™ on X factors through the quotient @ = Z" /A, where A < Z" is the stabilizer of
any F/ € X, and we assume that Q) is “sufficiently” covered by “short” vectors in Z™ under the quotient map Z™ — Q.
y y Yy q P
Note this representation matches the assumptions in Section 4.1.1.

4.2. PRELIMINARIES 67

/El

[a®]

a®] ————— B

\[3(51)]\> o
\

Es_1

Figure 4.1: Structure of Alice’s key pair.

endomorphism ring O, is the coefficient B of the curve [a] E4 : y* = 2 + Bz? + .

The security assumption of the group action is thatitis essentially a black-box version of the
group cl(O) on which anyone can efficiently act by translations. In particular, given two elliptic
curves E, E’ € X, it should be hard to find an ideal a of O such that E’ = [a]E.

Notice that it is not clear in general that the vectors in [—m;m]™ cover the whole group,
or even a “large” fraction. Unfortunately, sampling uniformly random from cl(O) is infeasible
for large enough parameters, since there is no known efficient way to compute the structure of
c1(O) in that case. In fact, knowing the exact class group structure would be sufficient to obtain
much more efficient signatures, since no rejection sampling would be required [DG19]. Under
the right assumptions however, the elements represented by vectors in [—m; m]" are likely to
cover a large fraction of the group as long as (2m + 1)™ > #cl(O). The values suggested for
(n,m) in [Cas+18] are (74, 5), which aim to cover a group of size approximately 2256 This results
in group elements of 32 bytes, public elements of 64 bytes, and a performance of about 40 ms per
group action computation. For more details, see Chapter 3.

As stated in Section 4.1.1, we will from now on abstract away the underlying isogeny-based
constructions and work in the setting of the group (Z", +) acting on a finite set X.

4.2.2—SeaSign. SeaSign [DG19] is a signature scheme based on a sketch of an isogeny-
based identification scheme by Couveignes [Couo6] and Stolbunov [Sto10],in combination with
the “Fiat-Shamir with aborts” construction [Lyuog] from lattice-based cryptography to avoid
leakage. The identification part of SeaSign works as follows. Note that our exposition differs
from [DG19] for consistency with the following sections.

Parameters. Like CSIDH, and additionally integers > 1and S > 2.3

Keys. Alice’s private keyisalista = (al"),...,al>~1) of § — 1 vectors sampled uniformly
atrandom from [—m;m]"™ C Z".

Fori € {1,...,S5 — 1}, write E; := [a(i)}EO, that s, the result of applying the group element
represented by a(”) € Z"; then Alice’s publickey s thelist [a] Eg := (Ey, . .., Eg_1) of her secret
vectors applied to the starting element Ej.

This situation is summarized in Figure 4.1.

3Technically, there is no reason for § to be an integer: it is sufficient that § € % - Z, but we will assume § € Z

throughout for simplicity.

68 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

E<---- [r] -
/ \\\\ > ’Ll
[b] e
/ //////[‘ } \\
Ey —— [a®] Ey

Es 4

Figure 4.2: The identification scheme in the scenario ¢ = 2.

Identification. Alice samples an ephemeral vector b uniformly random from
(64 1)m; (6+1)m]" CZ".

She then computes E = [b]Ey and commiits to E. On challengec € {0, ..., S—1}, she computes
r = b — al® (where a(”) is defined as 0). If r € [—6m; 6m]", she reveals r; else she rejects the
challenge. Bob verifies that [r] E. = F.

See Figure 4.2 for a visual representation of this protocol.

Since an attacker (who cannot break the underlying isogeny problems) has a 1/5 chance
of winning, this identification scheme provides log, S bits of security. In order to amplify the
security level, Alice typically computes ¢ > 1 independent vectors by, ..., by instead of just
one. The verifier responds with ¢ challenges ¢1,...,¢: € {0,...,5 — 1}. Alice then computes
ri=b;— al¢) forall1 < i < t and reveals them if all of them are in [—dm; 6m]"; else she rejects
the challenge. In order to not have to reject too often, é must be rather large; more specifically, §
was chosen as nt in [DG19] to achieve a success probability of roughly 1/e.

As mentioned in the introduction, [DG19] gives three SeaSign constructions. The original
idea is the scheme above with S = 2, i.e., the public key is a single public element. This results
in a large ¢ and therefore a very large signature. The second scheme lets the number of private
keys S range from 2 up to 2'¢, which results in smaller, faster signatures at the expense of larger
public-key sizes.* The final scheme reduced the size of the public key again by using a Merkle
tree, at the cost of increasing the signature size. We will not elaborate on all those variants in
detail.

To turn this identification scheme into a non-interactive signature protocol, the standard
Fiat—Shamir transformation can be applied [FS86]. In a nutshell, Alice computes the challenges

c1, ..., ct herself by hashing the ephemeral public elements [b1]Ey, ..., [b¢]Ep together with
her message. Alice then sends her signature ([b;]Ey, ..., [b¢]Eo; ri,...,r¢) to Bob, who can
recompute the challenges ¢y, . . ., ¢ to verify thatindeed [r;] Ee;, = [b;]Eg foralli € {1,...,t}.

4.3— The improved signature scheme

In this section we describe our improvements.

4.3.1—Core ideas.

4In [DG19], S is always a power of 2, but any S > 2 works.

4.3. THE IMPROVED SIGNATURE SCHEME 69

1. The first improvement is minor (but still has significant implications) and concerns the
identification scheme itself: the following observations result in two variants that are
more efficient than the basic scheme.>

e Variant 7: The ephemeral secret b is automatically independent of all secrets a®,
hence can berevealed even ifitlies outside of [—dm; dm]™. We remark that this vari-
ant is described in [DG19] already but disregarded as only a single signing attempt
is examined. When taking into account the average signing cost, however, it can
clearly improve performance, and we will quantify these improvements.

o Variant 7: Depending on the entries of the concrete private keys a'*), the ephem-
eral secret b can be sampled from a smaller set than the worst-case range used in
SeaSign to reduce the probability of rejection. Indeed, although the j-th entry in
eacha(® is a priori sampled uniformly in [—m; m], which makes the j-th coefficient
of each ephemeral vector b lie in the interval [— (& + 1)m; (6 + 1)m)], it is useless
(since it will always lead to a rejection) to sample the j-th coefficient outside the

smaller interval [-dm + m;; ém + M;] where m; = min{0, a§1), ce agsfl)} and
M; = max{0, ag.l), e ,a;s_l)}.

Itis clear that Variant F and Variant 7 are mutually exclusive: in Variant 7 the ephem-
eral secret b is sampled from a set that is dependent on the private keys a(® whereas for
Variant F to work it is required that this sampling is done completely independently.

2. The second improvement is more significant and modifies the “Fiat—Shamir with aborts”
transform as follows: assume theidentification scheme uses s-bit challenges (correspond-
ing to a probability of 27° that an attacker can cheat), and that each execution has prob-
ability of rejection . The SeaSign approach to attain security level A is to simultaneously
obtain t = [\/s] non-rejected executions of the identification protocol which happens
with probability (1 — €)f. Our approach increases the total number of challenges, but al-
lows the prover to refuse answering a fixed number w of them, since this tolerates much
higher rejection probabilities at the cost of a relatively small increase in public-key and
signature size.

We now provide more details on each of the above ideas.
4.3.2—Identification scheme.
Parameters. Integers S > 2and § > 1.
Keys. Like in SeaSign (Section 4.2.2).

Identification. Using Alice’s key pair (a, [a] Ep), a (log, S)-bit identification protocol can be
constructed as shown in Figure 4.3.

Lemma 4.1. The distribution of revealed vectors r is independent of a®).

Proof. Thisis trivialin Variant F in the event ¢ = 0. For the other cases, note that I is constructed

suchthatr =b—a(? is uniformly distributed on a set containing A := [—dm; dm]"”, no matter
what a(® is. Therefore, the distribution of r conditioned on the eventr € A is uniform on A
independently of a(®). O

5The acronyms F and 7T refer to “full” and “truncated” ranges, respectively.

70 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

Variant F Variant T

Alice samples a vector b uniformly random from the set ...

I= H [—6m 4+ my; om + M,;] C Z",
j=1
I=[-(+1)m; (§+1)m]" C Z". where

(1) . a(-s_l)}'

m; = min{0, a;’,..

M; = max{0, ag-l), R a§s71)}.

She then computes £ = [b]Ey and commits to E. On challenge ¢ € {0,...,5 — 1}, she
computest = b — a(®) (where a®) is defined as 0).

If c=0 or r€[—dm;om]", ... ‘ Ifr € [-dm;dm]™, ...

... then she reveals r; else she rejects the challenge. Bob verifies that [r]E. = E.

Figure 4.3: Our (log, S)-bitidentification scheme

Remark 4.2. Lemma 4.1 only talks about the conditional distribution of r if it is revealed. Note that in
Variant T, the probability that it can be revealed is still correlated to the entries of a(®) which may have
security implications. We show in Section 4.3.3 how to get around this issue in a signature scheme.

4.3.3 — Signature scheme. Ourimproved signature scheme is essentially the “Fiat—Shamir
with aborts” construction also used in SeaSign (see Section 4.2.2), except that we allow the signer
to reject a few challenges in each signature. The resulting scheme is parameterized by two in-
tegers t > 0, denoting the number of challenges the signer must answer correctly, and u > 0,
the number of challenges she may additionally refuse to answer.

Write ID for (one of the variants of) the identification scheme in Section 4.3.2.

Keys. Alice’s identity key consists of a key pair (a, [a] Ep) asin ID.

Signing. To sign a message m, Alice first generates a list by, ..., b4, of random vectors,
each sampled like the vector b in ID. She computes the corresponding list of public elements
[b1]Eo, - - ., [bt+u]Eo and hashes them together with the message m to obtain a list of chal-
lenges c1,...,ct4u € {0,...,5 — 1}. To produce her signature, she then traverses the tuples
(b;, c;) in a random order, computing the correct response r; = b; — a(®*) (as in ID) if possible
and a rejection X otherwise. Once ¢ successful responses have been generated, the remaining
challenges are all rejected in order not to leak any information about the rejection probability;
cf. Remark 4.2.° Finally, the signature is

([bl]Eo, ey [btJru]Eo; ry,... ,rt+u) N

where exactly u of the r; equal X. (If less than ¢ challenges could be answered, Alice aborts and
retries the whole signing process with new values of b;.)

6This is why the tuples are processed in a random order: Proceeding sequentially and rejecting the remaining tail
still leaks, since the number of X at the end would be correlated to the rejection probability.

4.4. ANALYSIS AND RESULTS 71

Verification. This again is standard: Bob first checks that at most u of the ¢ + u values r; have
been rejected X. He then recomputes the challenges cy, ..., ¢t4+ by hashing the message m
together with the ephemeral elements [b;]Eg and verifies that [r;]Ec, = [b;]Ep holds for all
1€{1,...,t+u}withr; #X.

Remark 4.3. The signatures can be shortened further: Sending those [b;] Eg with r; # X is wasteful. It
is enough to send the hash H of all ephemeral elements [b;| Eq instead, since Bob can extract c; from H,
recompute [b;| Eg as [r;) Ec,, and verify in the end that the hash H was indeed correct.

Remark 4.4. Asmentioned earlier, one can reduce the public-key size by using a Merkle tree, but this
does not significantly alter the computation time for any part of the protocol. Given that the main focus
of our adjustments to SeaSign is speeding it up, we will therefore not investigate this avenue any further.

Security. The proof for the security for this scheme is completely analogous to the original
SeaSign scheme. This follows from Lemma 4.1 and the fact that there are always a fixed number u
of X per signature in random positions. Instead of reproducing the proof here, we refer the reader
to [DG19].

4-4— Analysis and results

In order to quantify our speed-ups compared to the original SeaSign scheme, we analyze our
adjustments in the same context as [DG19]. This means (n,m) = (74,5) and logy p ~ 512.
Furthermore, we require 128 bits of security and let S range through powers of two between 2
and 216,

As mentioned before, Variant F and Variant 7 are mutually exclusive. For this reason, we
computed the results for both cases to compare which performs better under given conditions.
Variant 7 clearly converges to the original SeaSign scheme rapidly for growing S, while Vari-
ant F always keeps at least a little bit of advantage. It is clear that from a certain value of S
onward, Variant F will always be better. For small S however, Variant 7 will outperform Vari-
ant F rather significantly for average-case key vectors.

We now discuss how to optimize the parameters (¢, u, §) for a given S. The main cost metric
is the expected signing time’

§-(t+u)/q,

where q is the probability of a full signing attempt being successful (i.e., at most u rejections X).
This optimization problem depends on two random variables:

e The number Z of challenges that an attacker can successfully answer even though they
cannot break the underlying isogeny problems.

e The number Y of challenges that Alice can answer without leaking, i.e., the number of
non-rejected challenges.

Since the ¢t + u challenges are independent, both Z and Y are binomially distributed with count
t + u. Let T}, ., denote the tail cumulative distribution function of Bin, 4, i.e.,

"k i k—i
Tk,a(m)zz (Z)a (1-a) ’

1=z

70ther optimizations could look at the sum of signing and verification time, or even take into account key generation
time, but we will not delve into those options.

72 ‘ FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

which is the probability that a Biny, -distributed variable attains a value of at least x. The suc-
cess probability for an attacker is 1/.5, since he knows the correct answer to at most one of S
challenges c. In order to achieve 128 bits of security, it is required that

Pr[Z > t] = Tyyp,s(t) <2717

This condition implies that for fixed S and ¢, there is a maximal value wumaqz (t) for u, the number
of allowed rejections X, regardless of ¢.

Leto(d) denote Alice’s probability of being able to answer (i.e., notreject X) a single challenge
for a given value of §; hence Y ~ Bin, 1, ,(5)- In order to find the optimal (u, 9) for a given ¢, we
need to minimize the expression

6 (t+u)/qt,u,f),
where
Q(t7 u, 6) = PI‘[Y 2 t] = Tt+u,a(5) (t)

is the probability of a full signing attempt being successful. The function o depends on the vari-
ant (F or 7). In case of Variant F we have

1 S—1< 20m + 1)"

O =5+ \Grom+1

For Variant 7, the function o even depends on the private keys in use. With fixed private keys
a(l), ey a5~ and writing m; = min{0, a§1), ey ag»sfl)} and M; = max{0, agl), . agsfl)}
as before, the formula becomes

B 26m + 1
0(6)_1_[20m+1—mj+ M;’

j=1

For our analysis we work with the expected probability over all possible keys.

Our results for the optimization problem can be found in Table 4.1. The [Sage] code that
computes these values can be found in Section 4.4; it takes about twelve minutes on a single
core. We are quite confident that the values in Table 4.1 are optimal, but cannot strictly claim so
since we have not proven that the conditions used in the script to terminate the search capture
all optimal values, although this seems reasonable to assume.

There are two major differences in the way we present our data compared to [DG19)]. First of
all, we list the expected signing time instead of a single signing attempt, which represents the real
cost more accurately. Second, we express the time in equivalents of “normal” CSIDH operations
instead of in wall-clock time, which makes the results independent of a concrete choice of CSIDH
implementation and eases comparison with other work.

Unsurprisingly, the biggest speed-up can be seen for the basic SeaSign scheme (i.e., S = 2),
since thatis where the largest § could be found. The expected signing time is reduced by a factor
of 65, whereas verification is sped up by a factor of roughly 31, at the cost of doubling the sig-
nature size. As predicted, Variant F outperforms Variant 7 from a certain point onward, which
apparently is for § > 2. The case § = 21 gains a factor of 4.4 in the expected signing time and
6.0 in verification time. Note though that it only has 2.7% faster signing and 21% faster verific-
ation than the case S = 2! (which uses public keys half as big), which further emphasizes the
importance of choosing the right trade-offs. Perhaps unsurprisingly, taking « = wmaz (t) often
gives the best (expected) signing times, although this is not always the case: for instance, for
S = 26 we have umaz (10) = 29, but u = 22 with a bigger ¢ yields (slightly) better results.

4.4. ANALYSIS AND RESULTS 73

Table 4.1: Parameters for our improved SeaSign variants, optimizing for signing time. All of these choices provide > 128
bits of security (of course assuming that the underlying isogeny problems are hard). Lines with variant “—” refer to
the original parameter selection methodology suggested in [DGig]. The signature sizes make use of the observation
in Remark 4.3. The “CSIDHs” columns express the computational load in terms of equivalents of a “normal” CSIDH
operation, i.e., with exponents in [—m; m] ", making use of the assumption that the cost is linear in the 1-norm of the
input vector. Using current implementations [MR18; Cas+18], computing one “CSIDH”-512 takes approximately 40 ms
of wall-clock time on a standard processor. Finally, the rightmost column shows the speed-up in signing and verification
times compared to the original SeaSign scheme.

Public-key Signature E)fpe?ted E)fpe?ted EXPECFed Speed-up
S t u 6 Var bytes bytes signing signing Venfy]ng factors
attempts CSIDHs CSIDHs
21 128 o gu2 — 64b 19600b 2.718 3295480 1212416
2l 337 79 14 T 64Db 36838b 1.058 50175 38418 65.7]31.6
22 64 o 4736 — 192b 9216 b 2.718 823818 303104
22 144 68 133 T 192b 18256 b 1.063 29962 19152 27.5]15.8
25 43 o 3182 — 448Db 5967b 2.718 371862 136826
23 83 56 141 T 448D 11695b 1.078 21119 1703 17.6 | 11.7
24 32 o 2368 — 960b 4320b 2.718 205928 75776
24 59 58 19 F 960b 9376 b 1.076 14985 7021 13.7]|10.8
25 26 o 1924 — 1984b 3442b 2.717 135937 50024
25 43 50 m F 1984b 7301b 1.085 11198 4773 12.1] 105
26 22 o 1628 — 4032b 2866b 2.717 97322 35816
26 33 42 108 F 4032b 5835b 1.089 8824 3564 110|100
27 19 o 1406 — 8128 b 2440b 2.717 72585 26714
27 26 32 13 F 8128b 4550b 1.107 7254 2938 10.0] 9.1
28 16 o 1u84 — 16320b 2020b 2.717 51469 18944
28 22 30 106 F 16320b 4028b 1114 6139 2332 8.4]81
29 15 o mo — 32704 b 1883b 2.717 45235 16650
29 19 28 101 F 32704 b 3609b 1121 5321 1919 8.5]87
210 13 o0 962 — 65472b 1609 b 2.717 33974 12506
210 47 31 88 F 65472b 3593b 1113 4703 1496 72| 8.4
211 1n o 888 — 131008 b 1473b 2.716 28946 10656
211 5 oy 8¢ F 131008 b 3155b 1126 4208 1335 6.9|8.0
212 o 814 — 262080b 1340b 2.716 24322 8954
212 13 18 106 F 262080b 2413b 1.165 3828 1378 6.4 6.5
213 10 o 740 — 524224 b 1207b 2.716 20099 7400
213 1 20 94 F 524224 b 2436b 1153 3467 1128 5.8]6.6
2 16 o 740 — 1048512b 1208 b 2.716 20099 7400
214 g 92 F 1048512b 2276 b 1157 3193 1012 6.3|7.3
215 9 o 666 — 2097088 b 1075b 2.716 16279 5994
215 10 15 100 F 2097088 b 1934b 1191 2977 1000 5.5| 6.0
216 8 o 1592 — 4194240b 944b 2.716 12861 4736
216 10 22 y9 F 4194240b 2369 b 1147 2898 790 4.4]6.0

74 FASTER SEASIGN SIGNATURES THROUGH IMPROVED REJECTION SAMPLING

Script to produce Table 4.1

#!/usr/bin/env sage
RR = RealField(1000)

sechits = 128

pbits = 512

csidhn, csidhm = 74, 5

isz = lambda d: 2xdxcsidhm+1 # interval size

sigsize = lambda S, t, u, delta, var = '0': ceil(1/8 * (0

+ ceil(min(t+u, uxlog(t+u,2), txlog(t+u,2))) # indices of rejections
+ ceil(log(S,2)*(t+u)) # hash of ephemeral public keys
+ pbitsx*u # rejected ephemeral public keys

+ txceil(log(isz(delta+(var=="F'))**xcsidhn,2)))) # revealed secret keys
pksize = lambda t, S: ceil(1/8 * (S-1)*pbits)

def Bin(n, p, k): # Pr[Bin_n,p >= k
return sum(RR(1) * binomial(n, i) * p**xi * (1-p)**(n-i) for i in range(k, n+l))

@cached_function
def joint_minmax_cdf(n, x, y, a, b):
Pr that min and max of n independent uniformly random
integers in [a;b] satisfy min <= x and max <= y.
if x <aory < a: return 0
ify>b:y=5b
return RR((y-a+1)/(b-a+1))**n - (RR((y-x)/(b-a+l))**n if x <y else 0)

@cached_function

def joint_minmax(n, x, y, a, b):
Pr that min and max of n independent uniformly random
integers in [a;b] satisfy min = x and max = vy.
F = lambda xx, yy: joint_minmax_cdf(n, xx, yy, a, b)
return F(x,y) - F(x-1,y) - F(x,y-1) + F(x-1,y-1)

def prob_accept_original(delta, S):
sample r from [-(delta+l)*m, (delta+l)x*m];
reject r and a_c-r outside [-deltaxm; +delta*m]
return (isz(delta) / isz(delta+l)) =* csidhn # entries are independent

def prob_accept_full(delta, S):
sample r from [-(delta+l)xm, (delta+l)xm];
reject a_c-r outside [-deltaxm; +deltaxm]
prob = (isz(delta) / isz(delta+l)) *x csidhn # entries are independent
prob = 1/S*RR(1) + (S-1)/S*prob # can always reveal r
return prob

def prob_accept_truncate(delta, S):
prob = RR(0)
for x in range(-csidhm, csidhm + 1):
for y in range(x, csidhm + 1)
Pr[min and max coeffs of S-1 secret keys are x and y]
weight = joint_minmax(S-1, x, y, -csidhm, +csidhm)
sample from [min(0,x)-deltaxm, max(0,y)+deltaxm];
reject outside [-deltaxm; +delta*m]
prob += weight * isz(delta) / (isz(delta) + max(0,y) - min(0,x))
return prob ** csidhn # entries are independent

@cached_function
def max_u(t, S): # largest possible u for given S,t
u, F =1, lambda u: Bin(t+u, 1/S, t)
while F(u) <= 2xx-secbhits: u *= 2
lo, hi = u//2, u+l
while hi - lo > 1:
m = (lo+hi+l)//2
if F(m) <= 2%%-secbits: lo =m
else: hi =m
return lo

def prob_sign(t, u, sigma):
return Bin(t+u, sigma, t)

4.4. ANALYSIS AND RESULTS

def exp_csidhs_sign(t, u, delta, S, prob):

def

fo

3

pr_single = prob(delta, S)
pr-all = prob_sign(t, u, pr_single)
return (t+u) * delta / pr_all

csidhs_verif(t, delta):
return t x delta
s in range(1l, 17):

S = 2¥*s

t = ceil(secbits/log(S,2)) - 1
last_umax = -1

best_time, no_progress = 1./0, 0
while True:

if no_progress >= max(16, t/8): break #XXX hack
t+=1

if Bin(t + 4xt, 1/S, t) < 2%%x-secbits: umax = 4xt #XXX hack
else: umax = max_u(t,S)

no_progress_inner = True

for variant in (’OTF’ if t == ceil(secbits/log(S,2)) else 'TF’):
for u in ([0] if variant == 'O’ else reversed(range(last_umax+1l, umax+1))):

print(log(S,2), variant, t, u, no_progress, file=sys.stderr

prob = {'0’': prob_accept_original,
"F': prob_accept_full,
'T': prob_accept_truncate}[variant]

@cached_function
def f(x): return exp_csidhs_sign(t, u, x, S, prob)

if variant == '0’:
delta = csidhn * t

else:
_, delta = find_local_minimum(f, 1, 2%x24, tol=1)
delta = min((floor(delta), ceil(delta)), key = f)

if f(delta) < best_time:

print((’'logS={:2d} t={:3d} u={:3d} delta={:4d} {} ~> '\

'pksize={:9,d}b sigsize={:7,d}b ' \

"tries={:8.6f} signCSIDHs={:9,d} verifCSIDHs={:9,d}’) \

.format(log(S,2), t, u, delta, variant,
pksize(t,S),
sigsize(S, t, u, delta, variant),

float(l / prob_sign(t, u, prob(delta, S))),

round(f(delta)),
csidhs_verif(t, delta))
)
best_time = f(delta)
no_progress_inner = False

no_progress = no_progress + 1 if no_progress_inner else 0

last_umax = umax

75

Chapter g

Rational isogenies
from irrational endomorphisms

This chapter is for all practical purposes identical to the paper Rational isogenies from irrational
endomorphisms [CPV20] authored jointly with Wouter Castryck and Frederik Vercauteren, which
was published at Eurocrypt 2020.

5.1— Introduction

In this chapter, we give a polynomial-time algorithm to compute a connecting O-ideal between
two supersingular elliptic curves over Fj, with common Fj,-endomorphism ring O, from a de-
scription of their full endomorphism rings. This algorithm provides a reduction of the security
of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular
elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally dif-
ferent techniques. Furthermore, we also show that any supersingular elliptic curve constructed
using the complex-multiplication method can be located precisely in the supersingular isogeny
graph by explicitly deriving a path to a known base curve. This result prohibits the use of such
curves as a building block for a hash function into the supersingular isogeny graph.

Isogeny-based cryptography is founded on the hardness of computing an isogeny between
two given isogenous elliptic curves over a finite field F, which appears to remain hard even for
quantum computers. The currently most efficient instantiations can be broadly classified into
two families, known as SIDH [JD11] and CSIDH [Cas+18], depending on which supersingular
elliptic curves and connecting isogenies are being used.

SIDH works in the full supersingular ¢-isogeny graph, i.e., one considers the graph consisting
of all (isomorphism classes of) supersingular elliptic curves defined over F;, for a specifically
chosen prime p and connecting isogenies of small prime degree £. The vertices of this graph are
the j-invariants of the isomorphism classes and are all contained in IF). Finding a path between
two given vertices j(E7) and j(E2) is equivalent to constructing an isogeny between F; and E»
whose degree is a power of .

The full endomophism ring of a supersingular elliptic curve is a maximal order in a qua-
ternion algebra. Kohel, Lauter, Petit and Tignol [KLPT14] showed that the above path-finding
problem can be solved in (heuristically) expected polynomial time when given the endomorph-
ismrings of £'; and Fs; we refer to this algorithm as “KLPT” (see Section 2.4.9). Galbraith, Petit,
Shani and Ti [GPST16] later extended the KLPT algorithm specifically for the SIDH setting and
showed that knowledge of the endomorphism rings of F; and Es suffices to break SIDH. Res-
ults by Eisentrager, Hallgren, Lauter, Morrison and Petit [Eis+18] show that finding a path in the
isogeny graph is essentially equivalent to computing endomorphism rings.

78 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

CSIDH, on the other hand, restricts the isogeny graph under consideration to supersingu-
lar elliptic curves and isogenies defined over F, and mimics Couveignes’ construction of a “hard
homogeneous space”. In particular, if F is a supersingular elliptic curve over Fp, then its ring
of Fp-rational endomorphisms is an imaginary quadratic order O C Q(/—p). The letter C in
“CSIDH” refers to the commutativity of O, which gives rise to an action of the (commutative)
ideal-class group cl(O) on the set of supersingular elliptic curves over F;, having O as their ring
of Fp-rational endomorphisms; see Section 2.4.5. This class-group action immediately lends it-
self to several cryptographic primitives such as identification, non-interactive key agreement,
and even signature schemes.

5.1.1— Contributions. Our first contribution reduces the key recovery problem in CSIDH
to computing the full endomorphism ring of the target curve, where in many cases even one
non-F,-rational endomorphism suffices. More precisely, given two supersingular elliptic curves
E, E' over Fp, with Fp-rational endomorphism ring O, assuming sufficient knowledge of their
full endomorphism rings End(E) and End(E’), we show how to compute in polynomial time
anideala C O such that E/ = [a] E. This result can be seen as an analogon of [GPST16] for SIDH,
but uses different techniques, and in particular it does not rely on the KLPT algorithm [KLPT14].

Several remarks on this result are in order:

e In CSIDH all curves have the same known Fj,-rational endomorphism ring O, which there-
fore does not contain any information specific to E, nor to [a]. This explains why we re-
quire knowledge of at least one endomorphism of E thatis not Fj,-rational.

e Since both End(Ey) and End(E) are assumed to be known, one can run the KLPT al-
gorithm to obtain an isogeny a: Ey — E. However, this isogeny is most likely not F,-
rational and as such does not correspond to the CSIDH private key. Itis easy to verify that
the isogeny 8 = a o g, + mg o a, with 7 the p-power Frobenius endomorphism on
the respective curves, is an F,-rational isogeny' from Ej to E. Note that 8 can be eval-
uated efficiently on points of Fy, but it is unclear how to efficiently derive an invertible
ideal b C O whose action on Ej corresponds to 5. Such an ideal b is required to break the
CSIDH Diffle-Hellman key agreement and other derived protocols, since it is essentially
a curve-independent way of specifying an [, -rational isogeny.

e Our polynomial-time algorithm returns an ideal a whose norm is not necessarily smooth.
To efficiently compute the action of [a] therefore requires an extra smoothing step, which
obtains anideal of smooth normin the ideal class [a]. This smoothing step is standard and
consists of a combination of a class-group computation and lattice reduction to solve an
instance of the approximate closest-vector problem (CVP). The class-group computation
requires subexponential time using classical computers [HM8¢], but runs in polynomial
time on a quantum computer [Kitg6]. Using the BKZ algorithm [SE94], one can solve the
CVP problem up to a subexponential approximation factor in subexponential time. This
last step therefore implies that asymptotically, the smoothing step requires subexponen-
tial time. However, we note that for some practical instantiations of CSIDH, solving the
approximate CVP problem can be done fairly efficiently [BKVig].

Our second contribution is motivated by an important open problem in isogeny-based cryp-
tography, namely how to hash into a supersingular isogeny graph without revealing a path to
a known base curve. This problem remains open both in the SIDH (full isogeny graph) and the
CSIDH (Fp-rational isogeny graph) setting. The hash function introduced by Charles, Goren and

'Unless 8 = 0.

5.2. PRELIMINARIES 79

Lauter [CLGog] can be used to hash any string into the supersingular isogeny graph, but by con-
struction, the hash function itself leaks an isogeny path from a base curve. Toillustrate the issue,
we can compare with the standard elliptic-curve discrete-logarithm setting: The equivalent of
the CGL construction would start from the public base point P € E(F,) and construct a point Q
by multiplying P with a scalar computed deterministically from the message. As such, anyone
would know the discrete logarithm of @ with respect to P, which voids cryptographic applica-
tions relying on the assumption that the relationship between @ and P cannot be discovered.
To remedy this, elliptic-curve cryptosystems instead hash to curve points using maps like Ellig-
ator [BHKL13], which computes a point directly without passing through a scalar first, but an
equivalent of these constructions in isogeny-based cryptography is not known.

Besides the random-walk approach 4 la CGL, it is also possible to generate supersingular el-
liptic curves using the complex-multiplication (CM) method [Broog]. It is therefore natural to
wonder whether CM can be useful to hash into the supersingular isogeny graph, and in partic-
ular, whether finding paths between the resulting curves could be computationally hard. Our
second result squashes this hope by locating these curves (and therefore also a path to a base
curve) in the supersingularisogeny graph, in a surprisingly explicit manner (see Theorem 5.25(iii)
for the exact statement).

The remainder of the chapter is organized as follows. In Section 5.2 we recall the necessary
mathematical background. In Section 5.3 we introduce the notion of twisting endomorphisms
and explain their relation to F-rational isogenies. Section 5.4 describes our new algorithm to
compute a connecting ideal between two supersingular elliptic curves over [}, given their en-
domorphism rings and argues that (at least classically) our approach appears to be optimal. Fi-
nally, Section 5.5 shows how to locate supersingular elliptic curves constructed via CM in the
isogeny graph, by explicitly deriving a path to a known starting curve.

Acknowledgements. We thank Benjamin Wesolowski, Robert Granger, Christophe Petit, and
Ben Smith for interesting discussions regarding this work, and Lixia Luo for pointing out an er-
ror in an earlier version of Lemma 5.21, as well as a few smaller mistakes. Thanks to Daniel .
Bernstein for providing key insights regarding the proof of Lemma 5.23.

5.2 — Preliminaries

In this section we recall the required mathematical background and fix notation. Our focus lies
on supersingular elliptic curves over finite prime fields I, although much of what follows read-
ily generalizes to arbitrary elliptic curves over arbitrary finite fields. Some of the observations
below seem new.

For ease of exposition, we shall assume p > 5 throughout, noting that this is not necessarily
arequirement for all of the statements.

5.2.1— Quadratic twisting. For each odd prime number p we fix anon-square ¢ € F;, along
with a square root /€ € Fj2\Fp; if p = 3 (mod 4) then our default choice is ¢ = —1 and we
write i = /=1 € F 2. For an elliptic curve E: y? = f(z) over Fp defined by some squarefree
cubic polynomial f(z) € Fp[z], we call the curve E*: ¢ 1y? = f(x) the quadratic twist of E
over Fp. Themap 7g: E — Et, (z,9) — (z,vE-y)isa non-Fy-rational isomorphism. From
VEP = —\/€ one easily sees that

TECOTE = —TEt OTE, (51)

with 7 and 7 g the respective Frobenius endomorphisms of E and E?.

8o ‘ RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

It can exceptionally happen that our definition of the quadratic twist is a trivial twist in the
sense of [Silog, § X.2]:

Lemma 5.1. An elliptic curve E /F), is Fp-isomorphic to its quadratic twist E* if and only if p = 3
(mod 4) and j(E) = 1728.

Proof. After an Fp-isomorphism, we can assume E: y* = x3+ Az+ Bwith A, B € F), satisfying
4A% 4+ 27B? # 0. Then its quadratic twist is F,,-isomorphic to ? = 2% + A2z + B¢ for some
non-square £. According to [Silog, Prop. 111.3.1] this curve is Fp-isomorphic to E if and only if
Ae? = Au* and B¢® = Bu® for some u € Fp\{0}. This holds if and only if B = 0 and ¢? is a
fourth power, from which the lemma follows. O

5.2.2— Hard homogeneous spaces on supersingular curves. Fix a prime numberp > 5
and consider the imaginary quadratic number field K = Q(,/—p) along with its maximal order
Og. If E is a supersingular elliptic curve defined over Fp, then its ring Endy, (E) of Fj-rational
endomorphisms admits an isomorphism to an order O C K, under which 7y is mapped to
v/—p. In particular, O always contains the subring Z[\,/—p]|, hence if p = 1 (mod 4) then the
only possibility is O = Og = Z[/—p], while if p = 3 (mod 4) then either O = Z[,/=p]
or O = O = Z[(1++/—p)/2]. Recall from Definition 2.54 that &, (O) denotes the set of
Fp-isomorphism classes of (necessarily supersingular) elliptic curves having endomorphism
ring O.

Remark 5.2. Ifp = 3 (mod 4), then the Fy-endomorphism ring of a supersingular elliptic curve
E/Fyp is determined by its 2-torsion; see [DG16]: either we have #E(Fp)[2] = 2, in which case E €
&y (Zl\/—p)), or #£E(Fp)[2] = 4, in which case E € &p(Z[(14++/—p)/2]).

Every such order O comes equipped with its (ideal-)class group cl(O), which consists of in-
vertible ideals modulo non-zero principal ideals; the class of an invertibleideal a C O is denoted
by [a]. The number of elements of cl(O) is called the class number and denoted by h(O).

Lemma 5.3. Ifp = 3 (mod 4) then h(O) is odd, while if p = 1 (mod 4) then cl(O) has a unique
element of order 2, in particular h(O) is even.

Proof. This follows from genus theory [Cox13]. O

Through the map
cl(O) x &p(O) — &Up(O): ([a], E) — [a]E := E/E]d]

from Theorem 2.55, the class group acts in a free and transitive manner on the set &, (O). Here
E[a] denotes the intersection of the kernels of all elements of a interpreted as endomorphisms
of E; to compute this intersection it suffices to consider a set of generators of a.

Ignoring constructive issues, this group action (for large enough p) is conjectured to turn
&, (0) into a “hard homogeneous space”, in which the following problems are assumed to be
computationally infeasible:

Definition 5.4.

(Vectorization problem.) Given E, E' € &,(O), findtheideal class [a] € cl(O) forwhich E' = [a] E.

(Parallelization problem.) Given E, E', E" € &l,(0O), find the curve [a][b] E where [a], [b] € cl(O)
are such that E' = [a]E and E" = [b]E.

5.2. PRELIMINARIES | 81

The hardness of parallelization naturally relates to the security of the Diffie-Hellman-style key
exchange protocol built from the above group action: starting from a publicly known base curve
E € &p(0), the two parties Alice and Bob secretly sample [a] resp. [b] from cl(O), compute
[a] E resp. [b] E, and publish the result. The shared secret is then [a][b] E, which Alice computes
as [a]([b]E') and which Bob computes as [b]([a] E). Clearly, in order to solve the parallelization
problem, it suffices to solve the vectorization problem. On a quantum computer, the converse
holds as well; see Chapter 6.

For later use we recall the following rule, which was pointed out in Remark 3.5, albeit very
briefly and without proof (see also [Arp+19, Prop. 3.31]).

Lemma §.5. Forall [a] € cl(O) and all E € &, (O) we have [a] ' E = ([a] E}).

Proof. Itis convenient to assume that a is generated by elements of Z[,/—p], which can be done
withoutloss of generality by scaling with an appropriate principal ideal if needed. We claim that
the composition

t TlalBEt

([B

is an F)-rational isogeny whose kernel equals the ideal a obtained from a by complex conjuga-

E 23 E' — E'/E'[a] = [a]E

tion. This claim implies the lemma because aa is the principal ideal generated by N(a).
Let ¢ be the middle isogeny E* — E'/E![a]. Two applications of (5.1) yield

T([a)Et)t © (Tla)Et © P 0 TE) = (T[q)pt © P © TE) 0 TR,

implying the [-rationality. One verifies that a + by/—p € aif and only if a + brr g+ vanishes on
ker(p), which holds if and only if a — br g vanishes on ker(p o 7g), from which it follows that
ker(7q gt 0 p o TR) = ker(p o Ti) = Elal. O

5.2.3— CSIDH. CSIDH (Chapter 3)is an efficient instantiation of the more general supersin-
gular hard-homogeneous-spaces construction described in the previous section. Recall that we
letn € Z>; and consider a prime p of the form p = 4¢145 - - - £, — 1, where the ¢;’s are distinct
odd prime numbers. This impliesp = 3 (mod 8), so a priori there are two options for O, namely
Z],/=p] and the maximal order O = Z[(14+/—p)/2]. CSIDH chooses the former option. Recall
from Remark 5.2 that this corresponds to supersingular elliptic curves over F, having a unique
Fp-rational point of order 2.

Remark 5.6. In volcano terminology (see Section 2.5.1), the set &y (Z]/—p)) is the floor, and the set
8y (Z[(14++/—Dp)/2]) is the surface of the corresponding 2-volcano. We stress that CSIDH can be set up
equally well on the surface, although a convenient feature of the floor is that each E € &y(Z[\/—p))
is Fp-isomorphic to a Montgomery curve E 5 : y?> = x> + Ax? + x for a unique coefficient A € Fp;
furthermore, the coefficient defining E' is then given by — A.

The prime p was chosen such that the primes 1, {2, . . ., £, exhibit particularly easy splitting
behaviour in Z[,/—p], namely

We refer to the respective factors, which are complex conjugates of each other, by [; and [;. If
we define £y := 4 then (5.2) also applies to i = 0, so we can similarly define [and [y. All these
ideals are clearly invertible, so we can consider their classes [(;] and [[;] = [I;] 7! inside cl(O).
Although this is not known in general, it seems likely that the [[;]’s together generate the entire
class group.

82 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

Example 5.7. The concrete instantiation CSIDH-512 from [Cas+18] has n = 74, where {1, Lo, ..., {73
are the odd primes up to 373 and where {74 = 587. This results in a 511-bit prime p. The structure
of cl(Z],/—p]) was computed by Beullens, Kleinjung and Vercauteren [BKV19], whose results show that

(1] = [(3, v/=p — 1)] is in fact a generator.
The basicidea is then to let Alice and Bob choose their secrets as
] =[] (]2 - [la]® resp. [6] =[] [12]" -+ 1]

forexponentvectors (aj, ag, . .., an)and (b1, ba, . . ., bn) sampled randomly from some bounded
subset of Z", for instance uniformly from a (discrete) hypercube {—m, ..., m}" of cardinality
(2m + 1)" =~ h(Z[/=p]) = /p. The resulting public keys and shared secret are then com-
puted using |a1| + ... + |an| resp. |b1| + ... + |bn| repeated actions of [;] or [[;] 1 = [[;]. If
E € &86y(Z],/—p]) then the subgroups

El] ={P € Elts] | 7p(P) = P} = E(Fy)[t]
El;]={P€El]|rp(P)=-P}
consist of points having F;,-rational z-coordinates; therefore, these actions are easy to evaluate
using low-degree Vélu-type formulas and involving only arithmetic in Fy,.
We also point out the following class group relations:”

Lemma 5.8. Incl(Z[\,/—p]), we have

(][] [n] = o] # 1] and [GP[]° - [1n]° = [1].
Proof. One easily verifies that

1
Ly Iy = (%,\/—p— 1) and lolyly- Iy = (V=p—1).

The latter identity implies that [l][lo]---[lx] = [lo] "} = [lo], while the former shows that
[(1][l2] - - - [In] is an element of order 3. Indeed, it represents a non-trivial ideal class because
Z],/—p] contains no elements of norm (p + 1) /4, while its order divides 3 since

i.e. it belongs to the kernel of the group homomorphism
cl(0) — cl(Ok), a— aOk

which is 3-to-1 by [Con, Thm. 5.2]. O

Note that this allows for reduction of the secret exponent vectors of Alice and Bob modulo
(3,3,...,3). It also shows that the action of [[1][l2] - - - [ln] can be evaluated using a single ap-
plication of [lg] = [(4,+/—p + 1)]. The latter step can be taken using an isogeny of degree 4, or
using a composition of two isogenies of degree 2, which necessarily makes us pass through the

surface.

2 After we posted a version of the paper this chapter is based upon online, we learned that this was observed inde-
pendently and quasi-simultaneously in [OT20], with a more elaborate discussion.

5.3. TWISTING ENDOMORPHISMS 83

5.2.4 —The full endomorphism ring. The “full” endomorphism ring of a supersingular
elliptic curve, as opposed to merely the Fp-rational endomorphisms, plays a fundamental role
in the theory of supersingular isogeny graphs.

We recall the following facts from Section 2.4.6: An elliptic curve F is supersingular if and
only if End(FE) is non-commutative. In that case, End(F) embeds as a maximal order into a
certain quaternion algebra B, o ramified at p and infinity, which is unique up to isomorphism.
Concretely, Bp,oo can be constructed as a four-dimensional Q-algebra of the form Q & Qi &
Qj @ Qij, subject to the multiplication rules i> = —g, j> = —p, and ji = —ij, for some positive
integer ¢ that depends on p. In the common case that p = 3 (mod 4), we can and will use
g = 1. (Thus By, may be viewed as two imaginary quadratic fields “glued together” non-
commutatively.) We certainly cannot stress enough that the embedding End(E) «— Bp o is
extremely non-unique; in fact, there are always infinitely many choices, and usually none of them
sticks out as being particularly natural.

The notions of dual, degree, and trace of endomorphisms carry over to By oo: Taking the dual
corresponds to conjugation, which maps o = a+bi+c¢j+dijto@ = a— bi— ¢j — dij. The degree
turns into N(a) = aa = a? + b%q + ®p + d?qp, and the trace is simply tr(a) = a + @ = 2a.
Moreover, the trace yields a symmetric bilinear map («, 8) = tr(@g8) on Bp,co, With respect to
which thebasis 1, i, j, ijis orthogonal. With this, finding an embedding End(F) — By, oo when
being given rational maps that span End(F) in some computationally effective way is easy: A
variant of Schoof’s point counting algorithm [Sch85] can be used to compute traces of endo-
morphisms, and thereby the map (-, -), which can then be used in the Gram—Schmidt process
to compute an orthogonal basis of the given endomorphism ring. Once the basis is orthogonal,
some norm computations are necessary to align the given maps with the algebraic properties
of the abstract quaternion representation. See [Eis+18, § 5.4] for details. We will commonly use
the Q-basis (1, i, j, ij) in the forthcoming algorithms to compute with End(FE); the isomorph-
ism to the corresponding rational maps of curves will be made explicit whenever it is realized
computationally.

One reason why the endomorphism rings are interesting for cryptographic applications is
because they contain all the information necessary to construct an isogeny between two curves:
Given End(F) and End(E'), itis easy to find a connecting ideal T between them; that s, alatticein
By, thatis aleftideal of End(E) and arightideal of End(E"). For example, the choice Z = QQ’
from Proposition 2.64 works. The intersection of all kernels of endomorphisms contained in (a
scaled, integral equivalent of) this ideal is a finite subgroup determining a separable isogeny
FE — E’. Recall (Proposition 2.46) that the codomain curve of the isogeny given by such a left
ideal of End(FE) only depends on the left-ideal class of Z: This is what the Kohel-Lauter—Petit—
Tignol algorithm (Section 2.4.9) exploits to find a smooth-degree, hence efficiently computable,
isogeny between E and E’ given their endomorphism rings.

Since we are working with supersingular elliptic curves defined over Fp, our endomorph-
ism rings — maximal orders in By oo — will (by Section 2.4.1) always contain a copy of the
Frobenius order Z[\/—p] = Z[rg] C Endp(E). It thus makes sense to fix the image of the
Frobenius endomorphism 7 g when embedding End(E) into By, oo once and for all: We will
always assume that g is mapped to j.

5.3 — Twisting endomorphisms

As before, we focus on the case of finite fields Fj, with p > 5 prime.

84 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

Definition 5.9. Let E be an elliptic curve defined over Fy. An endomorphism oo € End(E) is called a
twisting endomorphism of E if
aomp =-—Tgoa

(Note that E must necessarily be supersingular for this to be possible.)

Lemma 5.10. Let E be an elliptic curve defined over Fy,. The non-zero twisting endomorphisms of E
are precisely the elements of End(E) that are purely imaginary over Endyp (E).

Proof. Write o = a + bi + ¢j + dij with a, b, ¢, d € Q; then using the fact that 7 is mapped to j,
the equalityc o 7y = —7p o aimpliesa = ¢ = 0. O

Lemma g§.11. Twisting endomorphisms have kernels defined over Fp. (Thus they always equal either
the zero map or an Fy,-isogeny followed by an isomorphism.)

Proof. Since 7@1 (ker(a)) = ker(avompg) = ker(—mgoa) = ker(a), the subgroup ker(«) is stable
under the action of Gal(Fp, /Fp), hence Fp,-rational. O

Lemma 5.12. Let E be an elliptic curve as above and let o be a non-zero twisting endomorphism of E.
Then g o a: E — E' is an Fp-rational isogeny of degree N(a.).

Proof. Since T is anisomorphism we have deg(7g o) = deg(a) = N(a), so it remains to prove
the I -rationality, which follows from

TEOQOTRE = —TEROMRp O =Tpt OTE OX

where the last equality uses that v/€ € F,2\Fy and therefore /& = —/Z. O

5.4 — Isogenies from known endomorphisms

In this section, we describe how to find a connecting ideal between two supersingular elliptic
curves over Iy, given their full endomorphism rings.

The basic idea behind our approach is to exploit the symmetry of the isogeny graph over F,,
with respect to quadratic twisting; cf. Lemma 5.5: Intuitively, the distance between a curve and
its quadratic twist tells us where in the graph it is located, and combining this information for
two curves allows finding the distance between them. See Figure 5.1 below for an illustration.

In more mathematical terms, the “distance” between F and its quadratic twist corresponds
to an invertible ideal a C O that connects FE to E', i.e., satisfies [a] E = E*. We will show in
Algorithm 5.1 how to find such an ideal, given the full endomorphism ring of E. Subsequently,
given two arbitrary supersingular elliptic curves E, E’ with the same Fp-endomorphism ring
O together with such a “twisting ideal” for each of them, Algorithm 5.2 can be used to find a
connecting ideal from F to F', i.e., an invertible ideal ¢ C O such that [(|F = E’.

The following lemma shows the relationship between ideals in End,(FE) and End(F) that
determine the same subgroup; it is of crucial significance for the forthcoming algorithms.

Lemma 5.13. Let E be a supersingular elliptic curve over F,. Consider a non-zero ideal ¢ C Endy (E)
and a non-zero left ideal T C End(E) such that the corresponding subgroups E[Z] and E|[c] are equal.
Then T N Endy(E) = wk.c for some k € 7.3

30ne could handle the purely inseparable part— powers of mg —in a unified way by working with scheme-
theoretic kernels. Since this issue is only tangential to our work, we will for simplicity avoid this technical complication
and deal with 7 g explicitly.

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 85

Proof. Following [Wat69, Thm. 4.5], we know that for every order O which can arise as an en-
domorphism ring, every ideal of O is a kernel ideal, and thus

T = {y € End(E) | ker(+) 2 E[Z)} -
¢ = {7 € Endp(E) | ker(y) 2 B[} - 75

with non-negative integers r,s € Z. Now E[Z] = E|[c¢] by assumption, hence it follows that
I NEndy(E) = 7y °c, which shows the claim. O

5.4.1—The algorithm. Throughout this section, we write O := End, (E) for brevity.

Recall from Section 5.2.4 that we assume End(E) is represented as a maximal order in Bp, oo
with respect to the 1, i, j, ij basis, and such that the Frobenius endomorphism 7 is mapped to
J € Bp,oo under the embedding.

We start off with an algorithm to find an ideal that connects a curve to its quadratic twist,
which will be used as a building block for the main algorithm to connect two arbitrary curves
with the same Fj,-endomorphism ring in the F;,-isogeny graph.

Algorithm 5.1: Connecting ideal of a curve and its twist.

Input: a supersingular E/F, and the full endomorphism ring End(E).
Output: an invertible ideal a C O such that [a]F = E*.

1 Find a non-zero element « € End(E) of the form zi + vij.

2 Compute theideal a := (End(E) - o) N Op.

3 Returna.

Lemma 5.14. Algorithm 5.1 s correct and runs in polynomial time.

Proof. Note that a € iOp is a twisting endomorphism of E according to Lemma 5.10. Hence,
E[End(FE) - a] = ker(a) is an Fp-rational subgroup of E giving rise to an Fp-rational isogeny
E — E', which is necessarily horizontal since O = Op:. Therefore, there exists an in-
vertible ideal ¢ of O such that E[c¢] = ker «, and we may apply Lemma 5.13 to conclude that
a = (End(E) - @) N O in fact equals the desired ideal ¢—up to powers of 7, which is an
endomorphism.

Regarding the runtime, everything consists of basic arithmetic in By oo and some linear al-
gebra over Q and Z. O

As mentioned before, the inherent symmetry of the F,-isogeny graph with respect to quad-
ratic twisting implies that the “location” of a curve FE in the graph is somehow related to the
properties of ideals that connect E to its quadratic twist E*. The following lemma makes this
intuition precise, in the sense that it determines a connecting ideal between two curves almost
uniquely when given a twisting ideal for each of them. This correspondence is then used in an
explicit manner to compute a connecting ideal in Algorithm 5.2.

Lemmas.15. Let Eg, F besupersingular elliptic curves defined over Fp with Endy (Fo) = Endp(E1),
such that we may simply write O for both. If b,c C O are invertible ideals such that [b|Eg = E} and
[(]E1 = EX, then the unique ideal class [a] such that [a] Eg = E} satisfies the equation [a]? = [b][c] L.

86 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

Kl

Figure 5.1: [llustration of Lemma 5.15 and the square-rootissue in Lemma 5.16. If theideal t = (2, \/—p) isnon-principal
and invertible in O, it corresponds to a point symmetry with respect to the “center” of the isogeny cycle, and the entire
relationship between Ej 1 and their twists is replicated on the “opposite” side with the “dual” curves [] Ep,1 and their
twists. This explains why the output of Algorithm 5.2 is a priori only correct up to multiplication by t; the quadratic
equation determining [a] simply cannot distinguish whether [a] jumps between the two worlds or not.

Proof. By Lemma 5.5, applying the action of an ideal class [u] to E" gives the same result as first
applying [] = [u] ™! and then twisting. Hence, if [a]Eg = F1, then [a] ' Ef = E!. However,
by the assumptions, we have [a] "' E§ = [a]~1[b] Ep on the left-hand side and E! = [(]E; =
[c][a] Ep on the right-hand side, which implies the claimed equality of ideal classes as the class-
group action is free. See Figure 5.1 for a visualization of the situation on an isogeny cycle. O

Lemma 5.16. Algorithm 5.2 is correct and runs in polynomial time.

Proof. Most of this follows from Lemmas 5.15 and 5.14. The square root in cl(O) to determine the
ideal a can be computed in polynomial time using the algorithm in [BSg6, § 6].

Regarding the correctness of the output, recall from Lemma 5.3 that the class number of O is
oddif p =3 (mod 4), hence the square root [a] is unique. On the other hand, ifp = 1 (mod 4),
then Lemma 5.3 implies that there are exactly two square roots. Now the order O has discrim-
inant —4p, hence (p) = (/—p)? and (2) = (2, 14++/—p)? are the only ramified primes. The prin-
cipal ideal (/—p) becomes trivial in cl(O). However, t := (2, 14++/=p) is non-principal as there

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 87

Algorithm 5.2: Connecting ideal of two curves.

Input: supersingular elliptic curves Eg, E1 /Fp with O, = O, = O, together with
their full endomorphism rings End(Ep) and End(E}).

Output: an invertible ideal a C O such that [a]Ey = E.
1 Using Algorithm 5.1, find an invertible ideal b C O with [b] Eq = E.
2 Likewise, find an invertible ideal ¢ C O such that [¢|E; = E%.
3 Compute anideal a C O such that [a]? = [b][c] ! in cI(©) using [BS96, § 6].
4 Ifp=1 (mod 4) and the right order of End(Ep) - ain By, is notisomorphic

to End(E1), thenreplace abya- (2, 14+/—p).

5 Return a.

is no element of norm 2 in O, hence [t] is an element of order 2 in cl(O). Thus the two square
roots of [b][c] "' are [a] and [a]. The final check in the algorithm identifies the correct choice by
lifting a to a left End(Ey)-ideal and comparing its right order to the endomorphism ring of E1;
they must be isomorphic if a determines an isogeny Fg — E; asintended. O

An example. To illustrate the algorithms in this section, we will show their workings on a
concrete, rather special example.

Lemma 5.17. Assumep = 3 (mod 4) and let Ey be a supersingular elliptic curve defined over F), with
Fp-endomorphism ring O. Let Ey be the elliptic curve in &, (O) having j-invariant 1728. If b C O is

an invertible ideal such that [6] By = EY, then the unique ideal class [a] such that [a) Eg = E is given
by [6]H(O)=1)/2,

Proof. This follows from Lemmas 5.1 and 5.15, together with the fact that the class number of O
is odd. O

Example 5.18. Assume thatp = 11 (mod 12). We illustrate Algorithm 5.2 by computing a connect-
ing ideal a between Eq: y? = x> + x and Ey: y?> = x> + 1. Note that both curves are contained
in p(ZL/—p)), as can be seen by considering E(Fp)[2]. If w € F,2\Fp denotes a primitive 3" root
of unity, then Ey admits the automorphism (x,y) — (wz,y), which will, by abuse of notation, be de-
noted by w as well. According to [McM14, Prop. 3.2],* the endomorphism ring of E1 is isomorphic to the
Bp,oo-order

“14i . 3+i+3j+ij

7j+ 7
2+J+ 6

Q=7+7

where i corresponds to 2w + 1 and satisfies i2 = —3, and as usual j corresponds to the Frobenius
endomorphism wg,. If we choose the twisting endomorphism o = i in Algorithm 5.1, then we find
QiNZ[j] = (3, — 1). (Of course, this also follows from the fact that 2w + 1 is a degree-3 isogeny
whose kernel {(0, £1), 0o} is Fp-rational.) So Et = [(3,/=p — 1)]F1, and we can take

a = (3,y=p— DAV 63

4Unfortunately, the statement of [McM14, Prop. 3.2] wrongly attributes this description to the quadratic twistof E; .
SHere we deviate from our convention thati? = —1 assoonasp = 3 (mod 4).

88 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

by Lemma 5.17. Thus, in the 3-isogeny graph associated with Ely(Z]/—p]), which is a union of cycles,
the curve Ey and its twist B : y? = 23 — 1 can be found “opposite” of our starting curve Eg, on the
same cycle. We will generalize this example in Section 5.5.

Example 5.19. Inparticular, the findings of Example 5.18 hold for a CSIDH primep = 4145 - - - £ —1
with £1 = 3, so that (3,/—p — 1) = 1. Note that E: y*> = 2> + 1 is isomorphic to the Montgomery
curve E_ sz: y? = 2% — V3. 22 + x through

E_\/§ — E7 (‘Tyy) — (52:6 - 1753y);

where \/3 € T, denotes the square root of 3 which is a square itself, and 6° = /3. In view of the class-
group computation carried out in [BKVi9] for the CSIDH-512 parameter set, the previous example shows
that the ideal

[%27326221 114742137588515093005319601080810257152743211796285430487798805863095

takes the starting Montgomery coefficient 0 to the coefficient —/3, and one further application of [y
takes it to \/3. Smoothing this ideal using the class-group relations of cl(Z[,/=p|) from [BKVi9] yields
(for instance) the CSIDH-512 exponent vector

(5, =7, -1, 1, —4, =5, -8, 4, -1, 5, 1, 0, -2, -4, =2, 2, =9, 4, 2,
57 1’ 17 17 ’57 747 27 67 5a 717 07 07 747 717 737 71’ 747 17 77
1, 4, 1, 4, -7, 0, -3, -1, 0O, 1, 2, 3, 1, 2, —4, -5 9, —1, 4,
0, 5 1, 0, 1, 1, 3, 0, 2, 2 2 -1, 2, 1, -1, 11, 3),

which can indeed be readily verified to connect Eq to E_ /5 by plugging it into a CSIDH-512 implement-
ation, such as that of [Cas+18], as a private key.

Example 5.20. Ifin Example 5.18, we instead choose the twisting endomorphism

i+ij _ 3+1i+3j+ij
3 6
then we obtain a twisting ideal of norm (p + 1) /3. In the CSIDH setting of Example 5.19 above, one can

deduce that this ideal is nothing but lolal3 - - - I, so this confirms the first class-group relation stated in
Lemma 5.8.

€9,

—1—j+42

5.4.2—Incomplete knowledge of endomorphism rings. At first sight, there appears to
be no strong reason why one requires the full endomorphism rings to be known exactly in Al-
gorithm 5.1, rather than for instance a full-rank proper subring @ C End(FE) containing O:
Twisting endomorphisms « can clearly be found in every full-rank subring, and one can still
compute the leftideal Q - o, which can then be intersected with O. The result is indeed an ideal
a of O, as desired, but unfortunately it turns out that a usually falls short of connecting E to its
quadratic twist unless in fact @ = End(F). This is not surprising: If Q is contained in multiple
non-isomorphic maximal orders, then the algorithm would need to work for all those maximal
orders — and therefore elliptic curves — simultaneously, which is absurd. However, luckily, one
can prove that a is only locally “wrong” at the conductor, i.e., the index f := [End(E) : QJ.

Lemma 5.21. Let Q C End(FE) a full-rank subring containing O and o € Q\{0} a twisting endo-
morphism. Defining a := (Q - &) N O and b := (End(E) - car) N O for ¢ € Z, we have inclusions of
O-ideals

by CaC by,

where the norm of the quotient (b1 : by) divides the squared conductor r2

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 89

Proof. The inclusions are obvious from End(F) - f C Q C End(F). Moreover,
fo1=(f-End(E)-a)N(f-0)C (End(E)- fa) NO = by,
and the inclusions we have just established imply a chain of surjections
b1/fb1 — b1/bf —> by /a

on the quotients of by. The first module in this sequence is clearly isomorphic to Z2 / fZ?, there-
fore the index [b1 : by] must be a divisor of |Z2) fz2%) = f2. O

Note that both ideals b1 and by from Lemma 5.21 would be correct outputs for a generaliza-
tion of Algorithm 5.1 to proper subrings of End(E), but a typically is not. However, the lemma
still suggests an easy strategy for guessing b after having obtained a from the subring variant of
Algorithm s.1, at least when factoring f is feasible and there are not too many prime factors: In
that case, one may simply brute-force through all ideals ¢ C O of norm dividing f? and output
ac for each of them. The lemma guarantees that a correct such c exists, since the ideal (b; : a) is
a good choice. This procedure is summarized in Algorithm g.3.

Algorithm 5.3: Twisting a curve using an endomorphism subring.

Input: a supersingular E/F, and arank-4 subring © C End(E) with Q D Op.
Output: a set A of invertible ideals a C O such that 3ac A with [a] E = E'.

1 Find a non-zero element a € Q of the form zi + ¥ij.

» Compute theideala := (Q - &) N Op.

3 Determine f = [End(F) : Q] as the (reduced) discriminant of Q divided by p.

4 Factor f and iterate through all ideals ¢ C © of norm dividing 2 to compute the set

A= {ac | ¢ C Oideal, N(c) | f2}.
5 Return A.

We can bound the size of the set A returned by the algorithm as follows: If the conductor f
factors into primes as f = [];_; p{’, then there are at most

ﬁ (Qei;r 2) c O((lng)2T)

=1

distinct O-ideals of norm dividing f2. Hence, if f is factorable in polynomial time and the num-
ber of distinct prime factors r is bounded by a constant, then Algorithm 5.3 takes polynomial
time to output polynomially many ideals, and at least one of them is guaranteed to be correct.

5.4.3—Can we do better? Itis a natural question to ask whether one can tweak the KLPT
quaternion-ideal algorithm [KLPT14] to simply output an ideal corresponding to an isogeny
defined over F, while preserving the main characteristics of the algorithm, namely the smooth-
ness of the ideal thatis returned and the (heuristic) polynomial runtime.

In this section, we argue that the answer is likely “no”, at least for classical algorithms: More
concretely, we show that such an algorithm can be used as a black-box oracle to construct, un-
der a few mild assumptions, a polynomial-time algorithm for the discrete-logarithm problem
in those imaginary-quadratic class groups where the prospective KLPT variant would apply. In
contrast, the currently best known algorithm is only subexponential-time [HM89]. Thus, the

90 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

basic conclusion appears to be that either our result is essentially optimal, or there exists an im-
proved classical algorithm to compute class-group discrete logarithms in (at least) some cases.
In a sense, this is not surprising: The requirement that the output be generated by an ideal
of the two-dimensional subring End,(E) removes about the same amount of freedom as was
“adjoined” when moving from Q(,/=p) to By oo in the first place. In fact, the KLPT algorithm
makes explicit constructive use of a quadratic subring of By oo to achieve its functionality; an
advantage that can be expected to cease when imposing strong restrictions on the output.

We formalize the situation as follows. Suppose we are given an algorithm A with the same
interface as Algorithm 5.2, i.e,, it takes as input two supersingular elliptic curves E, E' /F, with
the same F;,-endomorphism ring O, together with their full endomorphism rings, and outputs
anideal a C O such that [a]E = E’'. In addition, our hypothetical algorithm .A now guarantees
that all prime factors of the returned ideal a are elements of some polynomially-sized set Sp,
which may depend on the prime p or the ring O but not on the concrete input curves £ and E'.
For example, S might consist of the prime ideals of O with norm bounded by a polynomial in
log p.6

Then, Algorithm 5.5 can use such an oracle .4 to compute discrete logarithms in the subgroup
of cl(O) generated by the subset Sp in expected polynomial time, assuming that querying .A
takes polynomial time. Note that the core of the reduction is Algorithm 5.4, which employs A to
decompose class-group elements as a relation over the factor base Sp, and those relations are
subsequently used by Algorithm 5.5 in a generic and fairly standard index-calculus procedure.

A remark on notation: we make use of vectors and matrices indexed by finite sets I such
as Sp —in real implementations this would correspond to fixing an ordering of I and simply
storing normal vectors or matrices of length |I|. We use the notation |}/ to restrict a vector or
matrix to the columns indexed by a subset I’ C I.

Algorithm 5.4: Finding a class-group relation using A.

Input: an oracle A as above, and anideal a C O such that [a] € ([s] | s € So).
Output: avector (es | s € Sp) € Z5° such that [a] = [Teese 57

Find a supersingular E /F;, with Endp(E) = O and known End(E).

Apply KLPT to End(FE) - a to get an equivalent powersmooth left ideal Z.

-

N

w

Find the codomain E’ = [a] E by computing the isogeny defined by Z.

-

Compute End(E’) as the right order of Z in By .
Now query A to find an ideal ¢ € {Sp) such that [(|E = E' = [d]E.

€s

N«

By assumption, ¢ is of the form [[g,

7 Return that exponentvectore = (es | 5 € Sp).

Lemma 5.22. Algorithm 5.4 is correct. It takes polynomial time under the heuristic that the KLPT
algorithm runs in polynomial time.

Proof. Note that finding a curve E as desired is easy: first construct an arbitrary supersingular
elliptic curve over F, using [Broog], then potentially walk to the surface or floor of a 2-volcano.

6Under GRH, Bach [Bacgo] proved that cl(©) is generated by prime ideals of norm less than C'(log p)? for an
explicitly computable small constant C'. It is not known unconditionally whether a polynomial bound on the norms
suffices.

5.4. ISOGENIES FROM KNOWN ENDOMORPHISMS 91

Next, note that the curve E’ in fact equals [a] £, since End(E) - a and a define the same subgroup
of E and 7 is equivalent as a left ideal to End(E) - a. Computing End(E’) given Z is easy linear
algebra. Now, ¢ is a product of ideals in S by assumption on .4, and it must be equivalent to
a in cl(O) since the latter acts freely on &, (O). In conclusion, Algorithm 5.4 indeed returns a
correct relation vector for a and takes polynomial time to do so. U

Using Algorithm 5.4, we can then follow the generic index-calculus procedure shown in Al-
gorithm 5.5 to compute discrete logarithms in cl(O):

Algorithm 5.5: Solving DLP using index calculus (generic).

Input: . a generating set S of a finite abelian group G.
« an upper bound B on the cardinality |G]|.
- elements g, h € G such thath € (g).
- a probabilistic algorithm A : G — Z%, such that for all inputs a € G,
we have [|A(a)||cc < Banda =[] cq b2 @),
Output: an integer = such thatg” = h.
1 Fix alarge integer H > BQ|S|+1, (In practice, use much smaller H.)
» Initialize empty matrices M € Z%? and L € 7.9,

3 forn=1,2,...do

4 Pick integers u, v uniformly randomin {—H, ..., H}.

5 Invoke A to obtain a vector e € Z° such that g'h” =[]peg b™

6 Append (u, v) to M as a new row. Append e to L as a new row.

7 Compute a basis matrix K € Z"™" of the left kernel of L, which is a lattice in Z" of
rank r.

8 If the row span of K - M contains a vector of the form (z, —1) then

9 L Return z.

Lemma 5.23. Algorithm 5.5 is correct and runs in expected polynomial time.”

Proof sketch. Itis nothard to check that the output of the algorithm is correct if it terminates; we
thus only have to bound the expected runtime.

Since the proof is rather technical, we will merely show the overall strategy. Note that it
suffices to lower bound the success probability of the algorithm when r = 2 by a constant: Since
r > n — | S| throughout, it is evident that running | S| 4+ « iterations of Algorithm 5.5 has success
probability at least as big as | a/2] independent executions of the modified algorithm. We thus
want to lower bound the probability that two entries A1, Az in the second column of K - M are
coprime.

First, since A cannot distinguish from which scalars (u, v) the element gh? was obtained,
the conditional distribution of each coefficient of M after fixing a certain oracle output e is close

uhv

7Note that this does not require any assumptions on the output distribution of A(a), other than that the returned
vectors are correct. (The algorithm still takes polynomial time if the oracle A only succeeds on an inverse polynomial
fraction of inputs.)

92 ‘ RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

touniformon {—H, ..., H}. As the lattice spanned by the rows of K - M is clearly independent of
abasis choice, we may without loss of generality assume that the rows of K form a shortest basis
of Z" K; using lattice techniques, one can then show that the norms of vectors in a shortest basis
of Z" K are upper bounded by B2°|. (This uses the bound on the size of integers returned by
A.) Hence)\; is a “small” coprime linear combination of random variables essentially uniform
on {—H, ..., H}, which in turn implies that }; is close to uniform modulo all potential prime
divisors. Thus the probability that gcd(A1, A2) = 1 is lower bounded by a constant, similar to
the well-known fact that the density of coprime pairs in Z2 is ¢(2) ™! = 6/ O

For concreteness, we briefly spell out how to instantiate Algorithm g.5 for our particular ap-
plication to cl(O). Clearly, Algorithm 5.4 will serve as the oracle A, so the factor base S equals
the set S from Algorithm 5.4. In order to keep the representation sizes limited and to ob-
tain unique representatives of ideal classes, the required products g"h” should be computed
using the square-and-multiply algorithm combined with reduction of binary quadratic forms;
see [Cox13] for more context on the correspondence between quadratic forms and ideals (§ 7.B)
and the notion of reduction (§ 2.A). To select the estimate B on the group order, recall the upper

bound h(O) € O(,/plogp) from the class number formula.

5.5 — Vectorizing CM curves

To the best of our knowledge, there exist two practical methods for constructing supersingular
elliptic curves over a large finite field F),: either one reduces curves having CM by some order R
in an imaginary quadratic field F modulo (appropriately chosen) primes that do not splitin F,
or one performs isogeny walks starting from known supersingular curves. As pointed out earlier,
outside of trusted setup, the latter method is not suitable for most cryptographic applications.
In this section we focus on the former method; additional details can be found in Broker’s pa-
per [Broog] and the references therein. As we will see, from a security point of view, the situation
is even more problematic in this case: we show that the vectorization problem associated with
a CM-constructed supersingular elliptic curve over Fj, admits a surprisingly easy and explicit
solution.

In practice, when constructing supersingular elliptic curves over F;, one does not explicitly
write down CM curves. Rather, one computes the Hilbert class polynomial Hy (T') € Z[T] for
R, which is a monic irreducible polynomial whose roots are the j-invariants of the curves hav-
ing CM by R. This polynomial can be computed effectively, although the existing methods are
practical for orders having small discriminants only, one reason being that the degree of Hyg (T')
equals h(R). The roots of Hz (T') mod p € Fp[T] are precisely those j € F, which arise as the
j-invariant of a supersingular elliptic curve obtained by reducing an elliptic curve having CM
by R. Itis well-known that all these j-invariants are in fact elements of 2, i.e., the irreducible
factors of Hg (T') mod p are at most quadratic. The linear factors then correspond to elliptic
curves over [,

Example 5.24. The Hilbert class polynomial for Z[\/—17] is given by

_d 3 2
Hy y—7(T) = T* — 1782110400007° — 758436921600000007
— 3185070387200000000007 — 2089297506304000000000000,

5.5. VECTORIZING CM CURVES | 93

whose reduction modulo 83 factors as (T — 28)(T — 50)(T? + 7T + 73). This gives rise to two pairs of
quadratic twists of elliptic curves over Fgs that appear as the reduction modulo 83 of a curve with CM by
Zl/=17).

The main result of this section is the following theorem; for conciseness, our focus lies on
the setting where p = 3 (mod 4) and where

ZIV=I) S R € Q/=1)
for some odd prime number /, i.e., we want our CM curves to come equipped with an endo-
morphism ¥ satisfying ¥ o ¥ = [—/]. This leaves us with two options for R, namely Z[,/—¢] and
Z[(14+/—2£)/2]. In Remark 5.31 we will briefly comment on how to locate curves having CM by
more general imaginary quadratic orders.

Theorem 5.25. Letp = 3 (mod 4) and £ < (p + 1)/4 be primes with (_Tp) =1

(1) If¢ =1 (mod 4) then
HZ[N] (T) mod p
has precisely two Fy,-rational roots, both corresponding to a pair of quadratic twists of supersin-
gular elliptic curves. One pair is contained in &y (Z[\/—p)) while the other pair is contained in

&ty (Z[(1+/=p)/2]).
(i) If¢ =3 (mod 4) then both
Hyj14y=r)y2)(T) modp and H, /5 (T) mod p

have exactly one Fy,-rational root each, in both cases corresponding to a pair of quadratic twists of
elliptic curves. The first such pair is contained in Eyp(Z\/—p)), while the other pair is contained

in &y (Z[(1++/=p)/2))-

(iii) Let O € {Z|\/=p), Z[(14++/—p)/2]} and let E, E* € &8l,(O) be a pair of supersingular elliptic
curves over ¥y, arising as above. Up to order, this pair is given by the curves

[[](h(o)*l)/QEO and [[](h(0)+1)/2E0 (5.4)

for any prime ideal | C O lying above {. Here Ey: y> = a3 =+ x is the unique curve in &,(O)
with j-invariant 1728.

This theorem can be seen as a vast generalization of (5.3) from Example 5.18, where we dealt
with the reduction modulo p of the curve E: y? = 23 + 1 over Q having CM by the ring of
Eisenstein integers Z[e?™/3] = Z[(14+/—3)/2]. Up to twisting it is the only such curve: the
Hilbert class polynomial for Z[(1++/—3)/2] is just T. An endomorphism W satisfying U2 = —3
can be constructed as 2w + 1, where w is the automorphism E — E, (z,y) — (¢*™/3z,y).

One particularly interesting range of parameters satisfying the stated assumptions is where

o p=4010y---€n — 1is a CSIDH prime with n > 2, and

o {=/{;forsomei € {1,2,...,n}.

Ifn = 1then?; = (p + 1)/4, so Theorem 5.25 can no longer be applied. However, the reasons
for excluding the boundary case £ = (p + 1) /4 are rather superficial and the statement remains
largely valid in this case (the exclusion is related to the possible occurrence of j = 1728 as a
root of Hz (T') mod p, which comes with some subtleties in terms of quadratic twisting; see the
proof).

94 RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

5.5.1— Twisting endomorphisms from Deuring reduction. Before proving Theorem g.25,
we discuss Deuring lifting and reduction, with a focus on how the endomorphism ¥ behaves
under reduction.

Theorem 5.26 (Deuring’s reduction theorem). Let p be a prime number and let E be an elliptic
curve over a number field K which has CM by some order R in an imaginary quadratic number field F.
Let p be a prime of K above p at which E has good reduction. Then E mod p is supersingular if and only
if p ramifies or is inert in F.

Proof. Thisis part of [Lan87, Thm. 12 of Ch. 13]. O

When applying this to an elliptic curve E/K having CM by our order R C Q(/—¢) from
above, the endomorphism W satisfying ¥ o ¥ = [—/] reduces modulo p to an endomorphism
1 which also satisfies ¥ o) = [—£]. This is because reduction modulo p induces an (injective)
homomorphism of endomorphism rings; see for instance [Lan87, § 2 of Ch. g]. The following
proposition gives sufficient conditions for ¢ to be a twisting endomorphism.

Proposition 5.27. Assume K = Q(j(E)), p > 2and £ < (p + 1)/4. If E mod p is supersingular
and j(E mod p) € Fy, then deg(p) = 1 and

TE mod p © Y =—Y0TE mod pr (55)

i.e., 1 anticommutes with the p-power Frobenius endomorphism of E mod p.
The proof of this proposition relies on the following observation:

Lemma 5.28. Let v be an algebraic integer and K = Q(«). Consider a prime number p and a prime
ideal p C O above p. If Fp(amod p) T Ok /p, then p divides the discriminant of the minimal
polynomial f(x) € Z[z] of o over Q.

Proof. 1f p does not divide the discriminant of f(z), then

p=(pg(a)),

where g(z) € Z[z] is a monic polynomial of degree deg(p) whose reduction modulo p is an irre-
ducible factor in Fp[z] of f(z) mod p; this is a well-known fact, see e.g. [Mari8a, Thm. 27]. But
this implies that @ mod p is a generator of O /p over Fy, so the lemma follows by contradic-
tion. O

Proof of Proposition 5.27. The minimal polynomial of j(E) over Q is precisely the Hilbert class
polynomial Hx (T) for R. The field H = Q(/—¥, j(E)) is a quadratic extension of K known
as the ring class field for R, see [Cox13, proof of Prop. 1.32]. If R is a maximal order, then this is
better known as the Hilbert class field.

Using that £ < (p + 1)/4, we see that p does not ramify in Q(/—¢), hence it must be inert
by our assumption that £ mod p is supersingular. This implies that pOp splits as a product
of prime ideals 93 of degree 2, see [Cox13, Cor. 5.25] for a proof in case R is a maximal order
and [Cox13, proof of Prop. 9.4] for the general case (this is where we use the assumption p > 2).
Our prime ideal p is necessarily dominated by such a 9B, so it follows that

o either deg(p) = 1, in which case p must be inertin H, i.e., pOy =,
e ordeg(p) = 2,in which case p must splitin H.

5.5. VECTORIZING CM CURVES 95

But the latter option would imply that
Fp(5(E) mod p) = Fp(j(E mod p)) = Fp S Ok /p

and therefore, in view of Lemma 5.28, it would follow that p divides the discriminant of Hg (T').
This is impossible: by Gross—Zagier [GZ85, p.195] the primes p dividing the discriminant of
Hpg (T) cannot be larger than the absolute value of the discriminant of R, which is at most 4¢.
We have thus established that deg(p) = 1. Now let 3 be the non-trivial automorphism of H
over K. From [Lan87, § 4 of Ch. 10] we see that ¥ is not defined over K and therefore U = — .
But ¥ necessarily descends to the Frobenius automorphism o of O /B = F 2 over O /p = Fp,
from which it follows that) = —1). This implies (5.5) and thereby concludes the proof. O

We remark that the last part of the preceding proof mimics the proof of [GRo4, Prop. 6.1].
However, the statement of [GRo4, Prop. 6.1] is lacking an assumption on deg(p). For instance,
in our case, if deg(p) = 2 and therefore p splits in H, the reasoning fails because the extension
Op /B over Ok /p becomes trivial. And indeed, in these cases it may happen that the reduction
of ¥ mod p does not anticommute with Frobenius:

Example 5.29. The discriminant of the Hilbert class polynomial for Z[\/—29] is divisible by 83. More
precisely, its reduction modulo 83 factors as T(T — 50)(T — 67)2(T? + 7T + 73). One can verify that

inside K = Q[T]/(HZ[\/_—QQ] (T)), we have

830K = (83,T)(83,T — 50)(83, T — 7)(83,T% + 7T + 73),

where the third factor is a degree-2 prime ideal p modulo which T reduces to 67; note that 67> = 7
(mod 83). So in this case we have Fp, (T mod p) C Ok /p.

Let E be any of the two elliptic curves over Fg3 having j-invariant 67. By exhaustive search through
the possible kernels of order 29, one can check that E admits four distinct endomorphisms squaring to
[—29]. These appear in the form +1), £, where as in the proof of Proposition 5.27 we use o to denote
the action of the p-power Frobenius. In particular 1 does not anticommute with wg. Nevertheless, by
Deuring’s lifting theorem (recalled below), the pair (E,) must arise as the reduction of some CM curve
along with an endomorphism U satisfying ¥ o U = [—29]. (Note: this also applies to the pair (E,¢?),
which is reflected in the fact that 67 appears as a double root ofHZ[\/jZ] (T) mod 83.)

Theorem 5.30 (Deuring’s lifting theorem). Let E/F), be an elliptic curve and let o € End(E).
There exists an elliptic curve E' over a number field K along with an endomorphism o € End(E’) and
a prime p of K above p at which E' has good reduction, such that E' mod y is isomorphic to E and such
that o/ reduces to o modulo p.

Proof. See [Lan87, Thm. 14 of Ch.13]. O
5.5.2 — Proof of Theorem 5.25.
Proof of Theorem 5.25. Using quadratic reciprocity one checks that
AN i)
(7) =1 <= (» > =-1,

from which we see thatpisinertin Q(/—¢). Hence a curve with CM by Z[/—/] has supersingular
reduction modulo p and therefore the [F,-rational roots of the Hilbert class polynomial

HZ[M] (T) mod p

96 ‘ RATIONAL ISOGENIES FROM IRRATIONAL ENDOMORPHISMS

should correspond to pairs of quadratic twists in either the floor & (Z[,/—p]) or the surface
&p(Z](14++/=p)/2]). f £ = 3 (mod 4), then the same conclusions apply to Z[(1++/—£)/2].

As a side note, we remark that ¢ < (p + 1)/4 implies that y?> = 2 + z does not admit any
twisting endomorphisms of norm ¢, which is easy to elaborate from [McM14, Prop. 3.1]. In view of
Proposition 5.27, we therefore see that the Fy,-rational roots of the Hilbert class polynomial never
include 1728. Hence by Lemma 5.1 there is no ambiguity in what is meant by “pairs of quadratic
twists”. (Apart from this ambiguity, the theorem remains true under the weaker assumption
(< (p+1)/4)

We first claim that &, (Z[,/—p]) and &, (Z[(1++/—p)/2]) both contain at most one such
pair E, E*. Indeed, using Proposition 5.27 we see that E comes equipped with a twisting endo-
morphism ¢ of degree ¢, which by Lemma 5.12 corresponds to an F,-rational degree-¢ isogeny
E — E. Its kernel is necessarily of the form E[f] for some prime ideal [above £, i.e., we must
have E* = [[|E. But then we can solve the vectorization problem E = [a] Ey: from Lemma 5.17
we get that [a] = [[](*(©)=1)/2 since the pair

(@02 [r(©)+D/2 _ [(n(©)-1)/23

does not depend on the choice of [, this shows that the pair { E, E} is fully characterized by ,
implying the claim. At the same time this proves (iii).

Next, let us explain why &, (Z[,/—p)) and & (Z[(14+/—p)/2]) contain at least one such pair
E, E'. We remark that this comes for free if £ = 3 (mod 4), since in this case the Hilbert class
polynomials for Z[\/—¢] and Z[(14+/—¢) /2] have odd degree and split over IF 2, their roots being
supersingular j-invariants: hence they must admit at least one Fj,-rational root. In general, we
can reverse the reasoning from the previous paragraph and define E, E* using (5.4), for some
choice of prime ideal [above £. In particular E* = [(]E, which provides us with an F},-rational
degree-£ isogeny p: E — E', which we use to construct an endomorphism ¢y = 7z o ¢ of
E that is not Fy-rational. In contrast, it is easily verified that ¢ o 1 is F-rational. Therefore
the minimal polynomial of ¢ cannot admit a non-zero linear term, i.e., ¢ o ¢ must be a scalar-
multiplication map, necessarily of the form [+¢]. By Deuring’s lifting theorem F can be lifted to
an elliptic curve over a number field carrying an endomorphism ¥ whose reduction modulo a
suitable prime above p yields . Since ¥ must belong to an imaginary quadratic ring we see that
¥ o U = [—/] as wanted.

Altogether this proves (i), while for (ii) it leaves us with the task of showing thatif ¢ = 3
(mod 4), then the unique Fy,-rational root of

Hyj(14v=2)/2)(T) mod p

corresponds to a pair of elliptic curves { E, E'} with endomorphism ring Z[,/=p]. Equivalently,
we need to show that such curves admit a unique Fp,-rational point of order 2, rather than three
such points. To this end, let P € E be an Fj-rational point of order 2 and let ¢ be the endo-
morphism of F corresponding to (1-+++/—£)/2. Proposition 5.27 implies that 7z 0 ¢ = B o 7,
where % corresponds to (1—+v/—£) /2. But then clearly (¢ + %) (P) = P # oo, which implies that
B(P) # ¢(P) and therefore that 7 (o(P)) # ¢(P),1i.e., ¢(P)is anon-rational point of order 2.
This concludes the proof. O

Remark 5.31. The above ideas can be generalized to locate reductions mod p of CM curves carrying an
endomorphism U such that W o U = [—{10y - - - £s], where the {; < (p + 1)/4 are distinct odd primes

for which
(Fat) (56)

5.5. VECTORIZING CM CURVES | 97

We did not elaborate this in detail, but assume for instance that each {; splits in Q(,/—p); note that this
implies (5.6). Letting O € {Z[\/=p), Z[(1++/—D)/2]}, one expects that 25~ pairs E, E* in &,(O)
can be obtained as the reduction mod p of an elliptic curve carrying such an endomorphism V. Fixing for
eachi =1,2,...,saprimeideal l; C O of norm {;, these pairs are characterized by

E' =]k [L] - L] B
with (e2, e, . .., es) € {£1}° L. Asbefore, an application of Lemma 5.17 then solves the corresponding

vectorization problems.

Code. A proof-of-concept [Sage] script demonstrating some of the algorithms in Section 5.4
is available at https://yx7.cc/files/quat.sage.

https://yx7.cc/files/quat.sage

Chapter 6

Quantum equivalence of DLP and CDH
for group actions

This chapter is an updated version of the preprint Quantum equivalence of the DLP and CDHP
for group actions [GPSV18] authored jointly with Steven Galbraith, Benjamin Smith, and Frederik
Vercauteren.

6.1 — Introduction

In their seminal 1976 paper [DH76], Diffie and Hellman conjectured that breaking their new
key exchange protocol (in the sense of computing the shared secret from the public keys) was
as hard as computing discrete logarithms. This polynomial-time equivalence was later proven
(assuming knowledge of suitable auxiliary algebraic groups of smooth order) for all groups by
Maurer [Maug4], based on earlier results of den Boer [dB88] covering certain special cases.

In this short chapter, we prove an unconditional reduction between the analogous prob-
lems for group actions in the quantum setting. This result has important implications for the
quantum security of the CSIDH key-exchange scheme (Chapter 3).

Cryptographic group actions. Couveignes in 1997 introduced the notion of a hard homogeneous
space [Couo6], essentially a free and transitive finite abelian group action # : G x X — X which
is efficiently computable while other computational problems are hard. In Couveignes’ termin-
ology, these problems are vectorization and parallelization, named by analogy with the archetyp-
ical example of a homogeneous space: a vector space acting on affine space by translations (cf.
Figure 6.1). The vectorization problem is: given z and g+ in X, compute g € G. The paralleliz-
ation problem is: given z, g*x, and h*z in X, compute gh*z € X. The group-exponentiation
analogues of these problems are the discrete logarithm problem (DLP) and computational Diffie—
Hellman problem (CDH); see Section 2.1.2.

Figure 6.1: The vectorization and parallelization problems.

For twenty years, there was little interestin the hard-homogeneous-spaces framework, since
all known (conjectural) instantiations were either painfully slow in practice or already captured
by the group-exponentiation point of view. However, interest in these one-way group actions

100 ‘ QUANTUM EQUIVALENCE OF DLP AND CDH FOR GROUP ACTIONS

has reemerged in the more recent past due to the current focus on post-quantum cryptography,
where group-exponentiation Diffie-Hellman is broken in polynomial time by Shor’s algorithm,
but group actions are not.

Throughout, let G x X — X denote ahomogeneous space. In analogy with CSIDH, we write
a, b, ... for elements of the group G, and F for elements of the set X.

DLP-CDH reductions. Just like in the classical group-exponentiation setting, it is evident
that parallelization reduces to vectorization: recover a from ax F, then apply a to b E to ob-
tain abx E. Traditionally, the other direction is much more subtle. The reduction essentially
relies on the existence of auxiliary algebraic groups of smooth group order over Fy,, where the
g; are the prime divisors of the order of the group in which the DLP and CDH are defined. The
first result was given by den Boer [dB88] who showed the DLP and CDH to be equivalent in F)’
when pis a prime such that the Euler totient ¢(p — 1) is smooth. The auxiliary groups are simply
Fy; for each prime divisor g; | p — 1, and the smoothness assumption implies that the DLP in
each Fy; is easy. Maurer [Maug4] generalized this result to arbitrary cyclic groups G, assuming
that for each large prime divisor g; of |G|, there exists an efficiently constructible elliptic curve
E/F,, with smooth group order. On classical computers, these reductions do not apply in the
group-action setting [Smi18, §11].

However, we show that there exists a polynomial-time quantum reduction from the vectoriz-
ation to the parallelization problem for group actions without relying on any extra assumptions,
thereby proving the polynomial-time equivalence of both problems in the quantum setting.

6.2 — The reduction

Let 7 be an algorithm that reliably solves the parallelization problem for a homogeneous space
G x X — X.Inother words, 7 takes a* F and b x E and returns ab x E. We show that quantum
access to a quantum circuit that computes 7 allows one to solve the vectorization problem in
G x X — X in polynomial time.

Lemma 6.1. Given an element ax E € X and access to a parallelization oracle w, one can compute
a” * E for any integer n > 0 using O (logn) queries to .

Proof. We perform double-and-add in the “implicit group” [Smi18] of exponents, using the or-
acler: (a®*E, a¥ « E) — a® Y x E for addition and doubling. O

Theorem 6.2. Given a perfect (classical or) quantum parallelization algorithm , one can construct a
quantum algorithm that recovers a from elements E and ax E in X in polynomial time.

Proof. From the public description of G, one can compute the group structure Z/dy X - -+ X Z/dr
of G together with a basis {g1, ..., g} C G in quantum polynomial time using Boneh—Lipton’s
[BL95] or Kitaev’s [Kitg6] generalisation of Shor’s algorithm [Shog7a]; see Theorem 2.79.

Now, for z € Z", write g¢* = [];_; g7 and define
27" x7Z — X
(z,y) — g% * (aVxE),

where a¥ x F is computed using Lemma 6.1." Using the circuit for 7 one can construct a quantum
circuit that computes f. The function f is clearly a group homomorphism (to the implicit group

!For negative y, one may generally take a positive representative modulo the exponentlem(dy, . . . , dr) of G. This
is not needed in the CSIDH setting, since a~ ! E can be obtained by merely quadratic-twisting a* E.

6.3. IMPLICATIONS FOR CSIDH 101

on X), hence defines an instance of the hidden-subgroup problem with respect to its kernel, i.e.,
the lattice

L={(z,y)€Z X7 : g% =1 € G},

where v € Z' is any vector such that a = g%* This (abelian) hidden-subgroup problem can
be solved in polynomial time again using Shor’s algorithm. Finally, any vector in L of the form

(z,1) satisfles g~ % = a, hence yields a representation of a. O

Remark 6.3. It is unclear how to perform the reduction above when r is only guaranteed to succeed
with non-negligible probability o, meaning that the probability over all triples (E,ax E,bx E) € X3
that the oracle outputs ab* E is at least cv.

In the classical discrete-logarithm setting, it is straightforward to amplify the success probability of
CDH oracles using random self-reduction of problem instances [MWg6; Shog7b]: one computes lists of
possible values of g®° by blinding the inputs and unblinding the outputs, and uses majority vote to de-
termine the correct result. Any exponentially small failure probability can be achieved using polynomially
many queries [Shog7b, §5].

In the group-action setting, however, blinding does not work: The results cited above use a blinding
map of the form g% — (g%)*g¥ = g**TY, which relies on the fact that we can multiply two public keys.
But the best we can do for a mere group action is to translate the inputs by random elements, i.e., blind as
ax E — p*(ax E) witharandomy € G, which is insufficient: For example, if A is a perfect CDH oracle,
then the oracle B that returns the output of A either unmodified (with some probability <), or shifted by
a fixed element 3 € G, is entirely unaffected by blinding and hence cannot be amplified using this idea.
Thus, we must unfortunately leave the case of imperfect oracles as an open problem.

6.3 — Implications for CSIDH

Group actions are a useful, simple abstraction for reasoning about CSIDH and other isogeny-
based cryptosystems where the endomorphism rings of the underlying curves are commutative
(see Chapters 3, 4). In each of these cryptosystems, the group is G = cl(0O), the ideal-class
group of a maximal order O in some quadratic imaginary field, and the set X is comprised of
isomorphism classes of elliptic curves F (over a fixed finite field F) such that the endomorphism
ring End(FE) is isomorphic to O. The action G x X — X is givenby (a, E) ++ ax E := E’ where
E' is the codomain of an isogeny ¢a: E — E’ with kernel E[q], i.e., the finite subgroup of E
annihilated by all of the elements of a C End(E). Public keys are instances (E, ax E) of the
vectorization problem in this homogeneous space. In CSIDH, the Diffie-Hellman secret shared
between Alice and Bob, with publickeys (E, ax E) and (E, b* E), is ab* E. Recovering the shared
secret from the public keys is therefore solving a parallelization problem.

At first glance, then, Theorem 6.2 would appear to imply a polynomial-time equivalence
between the Diffie-Hellman problem for CSIDH and recovering CSIDH secrets from public keys.
However, this ignores an important subtlety: It is not known how to compute the action of ar-
bitrary ideals a C O in polynomial time. CSIDH gets around this issue by using secret keys of the
form a =[], [{*, where e = (e1,...,en) € Z" are short exponent vectors and the [; are a fixed
set of “small” ideals whose action is efficient.? Computationally, this manifests in a linear cost
in the 1-norm || (e, . .., en)|1 for evaluating the action of a.

2Note that v is only defined modulo the relation lattice R = d1Z @ - - - ® drZ of G with respectto g1, ..., gr.
The choice of v does not matter since L O R & {0}.
3Another way to view this is as an action of the group (Z", +).

102 ‘ QUANTUM EQUIVALENCE OF DLP AND CDH FOR GROUP ACTIONS

When applied to CSIDH, the algorithm in Theorem 6.2 will return some presentation of the
secret ideal class [a] as a product of generators g; (which can be chosen as the ideals [;), but
in general its action is not known to be computable in polynomial time: the exponent vector e
may have large norm. We can reduce the norm of e € Z" by solving a close(st)-vector problem
for the relation lattice ker(Z™ — cl(0)). But asymptotically, polynomial-time lattice reduction
algorithms cannot guarantee that the output will have norm small enough to ensure that the
resulting group action is computable in polynomial time.

However, this is not a problem for practical key sizes used in CSIDH. Since the dimensions n
used in CSIDH are rather small (e.g. the CSIDH-512 parameter set from [Cas+18] uses 74 prime
ideals), an efficient lattice-reduction algorithm such as BKZ [SEg4] with moderate block size
suffices to obtain highly practical results. For example: reducing a random relation lattice of
dimension 74 using BKZ with block size 20 yields exponent vectors only 8 times longer than
normal CSIDH-512 private keys. Therefore, our reduction is efficient in the CSIDH context for
some practical parameter sizes, despite the aforementioned asymptotical annoyances.

Chapter 7

Weak instances of SIDH variants from
improved torsion-point attacks

This chapter is an updated version of the preprint Weak instances of SIDH variants under improved
torsion-point attacks [Kut+20] authored jointly with Péter Kutas, Chloe Martindale, Christophe
Petit, Victoria de Quehen, and Katherine E. Stange.

7.1— Introduction

In recent years, isogeny-based cryptography has been receiving increased interest, partly due to
the fact thatisogeny-based key exchange has the smallest key sizes of all current post-quantum
candidates while still performing at a reasonable speed. The Supersingular Isogeny Diffie—Hellman
protocol, or SIDH, was the first practical isogeny-based key-exchange protocol, proposed by Jao
and De Feo in 2011 [JD11]. The most obvious way to attack SIDH is to solve the following problem:

Problem 7.1. Foralarge prime p and smooth coprime integers A and B, given two supersingular elliptic
curves Eq /T2 and E[F,,> connected by a degree- A isogeny ¢: Eo — E, and given the action of ¢ on
the B-torsion of Ey, recover ¢.!

Notice that this problem provides the attacker with more information than the ‘pure’ isogeny
problem, where the goal is to find an isogeny between two given curves without any further
hints or restrictions. The best known way to break SIDH by treating it as a pure isogeny problem
is a claw-finding approach on the isogeny graph having both classical and quantum complexity
OW/A - polylog(p)) [JS19].> However, Problem 7.1 could be easier than finding isogenies in gen-
eral, and indeed a line of work started in [Pet17], continued in [Bot+19], and now also with this
chapter, suggests that this may hold at least for some instantiations.

The additional torsion-pointinformation clearly does aid active attackers: In 2016, Galbraith,
Petit, Shani, and Ti [GPST16] presented an active attack against SIDH that sends key-exchange
messages with manipulated torsion points and detects whether the key exchange succeeds; this
allows recovering the secret within O(log A) queries. To mitigate this attack, [GPST16] proposes
using the Fujisaki-Okamoto transform, which generically renders a CPA-secure public-key en-
cryption scheme CCA-secure, and therefore thwarts those so-called reaction attacks. The result
of applying (a variant of) the Fujisaki—-Okamoto transform to SIDH is called Supersingular Isogeny
Key Encapsulation, or SIKE [Jao+19] for short. It is the only isogeny-based submission to NIST’s

'These constraints do not necessarily uniquely determine ¢, but any efficiently computable isogeny from Fg to 2
is usually enough to recover the SIDH secret [GPST16]. Moreover, ¢ is unique whenever B2 > 4A. [MP1g, § 4]

?Note that the naive meet-in-the-middle approach has prohibitively large memory requirements. Collision finding
alavan Oorschot—Wiener thus performs better in practice, although its time complexity is worse in theory [Adj+18].

104 IMPROVED TORSION-POINT ATTACKS

standardization project for post-quantum cryptography [NIST16] and is currently a Round 3 ‘Al-
ternate Candidate for Public-key Encryption and Key-establishment Algorithms’.

A particular choice made in SIKE is that one of the two curves, the ‘starting curve’ Ey, is a
special curve: It is defined over Fj, and has small-degree non-scalar endomorphisms, both of
which are very rare properties within the set of all supersingular curves defined over IF 2. On its
own, this fact does not seem to have any negative security implications for SIKE, but [GPST16]
shows that given an explicit description of both curves’ endomorphism rings, it is (under reas-
onable heuristic assumptions) possible to recover the secret isogeny; hence, breaking SIKE is no
harder than computing endomorphism rings of supersingular elliptic curves in some sufficiently
explicit representation.

In 2017, Petit [Pet17] introduced a method to solve some instances of Problem 7.1 based on
endomorphisms of the special starting curve. It uses the given action of the secret isogeny on a
large torsion subgroup to recover the isogeny itself, giving a passive heuristic polynomial-time
attack on non-standard variants of SIDH satisfying B > A* and A > p. However, in practice
both A and B are taken to be about the size of ,/p for efficiency reasons; thus this attack does
not apply to the SIKE parameters.

7.1.1— Contributions. We improve upon and extend Petit’s 2017 torsion-point attacks [Pet17]
in several ways. We argue heuristically in Section 7.3 that the imbalance conditions can be re-
laxed to [B > A% and A > p]or [B > A% and A > p'/?], and that furthermore allowing for
arbitrarily large B/A gives an attack for AB &~ p. We also show that even a mild imbalance of
parameters may lead to a heuristic improvement over the generic meet-in-the-middle or claw-
finding attack, and we show the relationship between the extremity of the imbalance and the
estimated complexity of the torsion-point attack.

Recall also thatin SIKE, the starting curve Ej is taken to be the curve with j-invariant 1728.3
In Section 7.4 we introduce the notion of a ‘trapdoor’ curve, which allows breaking or redu-
cing the security of an SIDH key exchange when used as the starting curve: We give a heur-
istic polynomial-time torsion-point attack on SIDH variants using a trapdoored starting curve
when B > A? (note the absence of a condition on p), and an attack of classical complexity
O(p2/5) and quantum complexity O(pl/s) on SIDH variants using a trapdoored starting curve
with B &~ A ~ p'/2. Note that this s as in SIKE, but starting from a trapdoored starting curve in-
stead of the curve with j-invariant 1728; thus, such curves could potentially be utilized as back-
doors. We also give the relationship between the extremity of the imbalance of the paramet-
ers and the complexity of the torsion-point attack applied to this case of trapdoored starting
curves, and argue that we expect there to be exponentially many trapdoor curves. Finally, we
show that it is possible to construct special primes p, together with an appropriate A and B,
for which torsion-point attacks are especially effective, even when using balanced parameters
A ~ B and/or using a starting curve with j-invariant 1728.

We emphasize that none of our attacks apply to the NIST candidate SIKE: for each attack
described in this chapter, at least one aspect of SIKE needs to be changed (e.g., the balance of the
degrees of the secret isogenies, the starting curve, or the base field prime). There are, however,
SIDH variants in the literature for which there are realistic parameter sets where our attacks may
have practical impact.

Of the existing proposals in the literature, our attacks are the most effective on the recent
proposal B-SIDH [Cos20], presented at ASIACRYPT 2020. As discussed in more detail in Sec-
tion 7.3.3, using parameters A ~ B =& p as suggested in [Cos20] may affect the security of the

30ne can also take a neighbour, but this does not affect the security analysis.

7.2. PRELIMINARIES ‘ 105

scheme due to our torsion-point attacks: Our quantum attack heuristically achieves a complex-
ity of O(pl/s), which is asymptotically the best known attack under the assumptions (1) that
the cost of breaking B-SIDH even after solving the generic isogeny problem is still greater than
O(p'/?), and (2) that Tani’s quantum claw-finding algorithm [Tano7] has complexity higher
than O(p'/3). The latter appears to be the case [JSi9]; the former is unclear. Note that in any
case, none of this violates the rather conservative security claims of [Cos20].

As a second example, we consider the recent n-party group key exchange proposal [A]]S19];
this can be interpreted for cryptanalysis purposes as an unbalanced (two-party) SIDH instance
with B &~ A" ! and AB ~ p. While we currently cannot break the case AB = p, the torsion-
point attacks we describe in Section 7.3 give rise to, for example, a quantum attack of complexity
O(A%* . polylog(p)) on a 3-party key exchange with AB = p''1°, a 10-party key exchange with
AB =~ p'% or a 100-party key exchange with AB = p!:%%4; these kinds of instantiations are
perfectly plausible by combining the group key exchange with ideas from B-SIDH. Furthermore,
the attack variant for trapdoored starting curves is heuristically classical polynomial-time for
three or more parties.

7.1.2— Comparison to earlier work. Bottinelli, de Quehen, Leonardi, Mosunov, Pawlega,
and Sheth [Bot+19] also gave an improvement on the balance from Petit’s 2017 paper [Pet17].
Our work overlaps with theirs (only) in Corollary 7.5, and the only similarity in techniques is in
the use of “triangular decomposition” [Bot+19, § 5.1]. Unfortunately, we have not found a way to
combine the two methods. Moreover, our results go beyond [Bot+19] in several ways: we con-
sider multiple trade-offs by allowing for superpolynomial attacks, as well as considering other
starting curves and base-field primes.

Acknowledgements. Thanks to Daniel]. Bernstein for his help with Section 7.3.5, and to John Voight
for answering a question of ours concerning Section 7.4.3. We would also like to thank the an-
onymous reviewers of an earlier version for their useful feedback.

7.2— Preliminaries

7.2.1— Notation. Throughout this chapter, we will neglect factors polynomial in log p. As
such, from this point on we will abbreviate O(g - polylog(p)) as O*(g).# Similarly, ‘smooth’
without further qualification always means polylog(p)-smooth. “Polynomial time” without ex-
plicitly mentioning the variables means “polynomial in the representation size of the input” —
usually the logarithms of integers. We let By o denote the quaternion algebra ramified at p
and oo, for which we use a fixed Q-basis (1,1, j, ij) such thatj2 = —p and i is a nonzero endo-
morphism of minimal norm with ij = —ji.

7.2.2 — Quantum computation cost assumptions. In the contextof NIST’s post-quantum
cryptography standardization process [NIST16], there is a significant ongoing effort to estimate
the quantum cost of fundamental cryptanalysis tasks in practice. In particular, while it seems
well-accepted that Grover’s algorithm provides a square-root quantum speedup, the complexity
of the claimed cube-root claw-finding algorithm of Tani [Tano7] has been disputed by Jaques
and Schanck [JS19], and the topic is still subject to ongoing research []S20].

Several attacks we present in this chapter use claw-finding algorithms as a subroutine, and
the state-of-the-art algorithms against which we compare them are also claw-finding algorithms.

4Each occurrence of polylog(p) is shorthand for a concrete, fixed polynomial in log p. (The notation is not meant
to imply that all instances of polylog(p) be the same.)

106 IMPROVED TORSION-POINT ATTACKS

We stress, however, that the insight provided by our attacks is independent of the choice of the
quantum computation model. For concreteness we chose the RAM model studied in detail by
Jaques and Schanckin [JS19], in which it is argued that quantum computers do not seem to offer
a significant speedup over classical computers for the task of claw-finding. Adapting our vari-
ous calculations to other existing and future quantum computing cost models, in particular with
respect to claw-finding, is certainly possible.

7.2.3 — The Supersingular Isogeny Diffie-Hellman protocol. We give a high-level de-
scription of SIDH [JD11]. The public parameters of the system are two smooth coprime numbers
A and B, a prime p of the form p = ABf — 1, where f is a small cofactor, and a supersin-
gular elliptic curve Ey defined over IF > together with points P4, Q 4, Pp,@p € Ep such that
Eo[A] = (Pa,Qa) and Ey[B] = (Pp, Qp).

The protocol then proceeds as follows:

1. Alice chooses arandom cyclic subgroup of Eg[A] as G4 = (Pa+[z 4]Q 4) and Bob chooses
arandom cyclic subgroup of Ey[B] as Gg = (Pp + [zB]QB)-

2. Alice computes the isogeny ¢4 : Eg — Ep/(Ga) =: E4 and Bob computes the isogeny
¢p : Eg — Eo/(G) =: Ep.

3. Alice sends the curve F4 and the two points ¢4 (Pp), ¢4 (Qp) to Bob. Similarly, Bob
sends (Ep, ¢p(Pa), ¢(Q4)) to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curve Ey /(G4, GB):
Alice computes ¢p(G4) = ¢p(Pa)+[ra]ldp(Q4) and uses thefactthat Ey/ (G4, Gp) =
Ep/{¢p(Ga)). Bob proceeds analogously.

(Publishing the action of the secret isogeny on public points can be considered the core idea behind SIDH: Alice needs ¢p g (G 4)
to complete the key exchange, but Bob must keep ¢ g secret and Alice must keep G 4 secret. Handing out the action of ¢ g on
a publicly known group that contains the secret G 4 is a clever workaround for this problem.)

The SIKE proposal [Jao+19] suggests various choices of (p, A, B) depending on the targeted
security level: All parameter sets use powers of two and three for A and B, respectively, with
A =~ Band f = 1. For example, the smallest parameter set suggested in [Jao+19] uses the prime
p = 2216 . 3137 _ 1. Other constructions belonging to the SIDH ‘family tree’ of protocols use
different types of parameters [Cos20; AJJS19; SGP19].

We may assume knowledge of End(Ep): The only known way to construct supersingular
elliptic curves is by reduction of elliptic curves with CM by a small discriminant (which implies
small-degree endomorphisms: see Chapter 5 or [LB20]), or by isogeny walks starting from such
curves (where knowledge of the path reveals the endomorphism ring, thus requiring trusted
setup). A common choice when p = 3 (mod 4) is j(Ep) = 1728 or a small-degree isogeny
neighbour of that curve [Jao+19].

7.2.4 — Petit’s torsion-point attacks. “Traditional” attacks on SIDH attempt to solve the
general isogeny problem or reduce isogeny finding to computing endomorphism rings. How-
ever, SIDH is based on Problem 7.1 introduced above, in which an adversary also gets the action
of the secret isogeny on the B-torsion of the starting curve Eg, which is the basis of another
attack strategy due to Petit [Pet17].

Remark 7.2. Problem 7.1 is a slight generalization of the Computational Supersingular Isogeny (CSSI)
Problem introduced in [[D11]. Here we do not require A and B to be prime powers (just smooth) and

7.3. IMPROVED TORSION-POINT ATTACKS 107

we do not require p to have a special form. We remark that some instances of Problem 7.1 require super-
polynomial space, as the extension fields required to represent ker(¢) and Eo|B] generally have degree
at least linear in A and B. Broadly speaking, the interesting cases are the ‘efficient’ instantiations where
computing ¢ and its action on Eo[B] takes time and space polynomial in log p, log A, and log B.

We outline Petit’s approach [Pet17] to solve some cases of Problem 7.1. The main steps are:

1. Compute a non-scalar endomorphism # € End(FEy) and integers d,e € Z such that
deg(¢ 0 0 o ¢ + [d]) = Be with e smooth and relatively small.

2. Recover an efficient representation of 7 = ¢ o 0 o ¢ + [d] using the fact that the action on
the B-torsion of ¢, hence of 7, is known.

3. Compute ker(7 — [d]) N E[A] and from that compute ¢ itself.

Notice that step 1 can be done as precomputation as it only depends on Ey, but not on the par-
ticular public key under attack. (The degree of 7 depends on the degree of ¢, but not on which
particular degree- A isogeny ¢ happens to be.)

First we address steps 2 and 3. In step 2, the endomorphism 7 can be decomposed into iso-
genies 7 o 1, where deg(v¥)) = B and deg(n) = e. The isogeny ¢ can be computed since 6 is
known and we know the action of ¢ (and thus of ¢) on Ey[B] (resp. E[B]). Then 7 can be found
by meet-in-the-middle using O*(,/e) operations. In step 3 we have ker(¢) C ker(r — [d]) N E[A],
and in fact they are usually equal. They are not equal if and only if ker(r — [d]) contains E[M]
for some divisor M of A4; itis shown in [Pet17, Section 4.3] how to resolve this issue.

The complexity of the algorithm clearly depends on the size of e, thus the efficiency of the
algorithm is dependent on the effectiveness of step 1. While the endomorphism ring of Ey is
usually known, it is not obvious how to find an element 6 as above. For example, in SIKE, the
starting curve has j-invariant 1728, whose endomorphism ring is (up to small denominators)
generated by Frobenius 7 : (z,y) — (z¥,y”) and the automorphism. : (z,y) — (—z,v/—1-y),
hence step 1 reduces to solving the norm equation

A% (pa® + pb® + &) + d* = Be; (7.1)

the left-hand-side of this equation is just the degree of 7 = ¢o o d+ [d] when § = avr + br + cv.
Petit [Pet17] gives an algorithm to solve Equation (7.1) in the regime A > pand B > A*: The
main idea is to choose e such that Be is a square modulo A2 solve for d modulo A?, and then
solve for c modulo p. What remains is the equation a®+b = M; which can be solved
efficiently by Cornacchia’s algorithm if the right-hand side is efficiently factorizable; else the
procedure is restarted with a new choice of e. Under the conditions A > pand B > A* this al-
gorithm can heuristically be expected to find a suitable solution in polynomial time. This already
suggests that there exist parameters for which Problem 7.1 is easier than the general supersin-
gular isogeny problem.

7.3 — Improved torsion-point attacks

In this section we generalize and improve the torsion-point attacks from Petit’s 2017 paper [Pet17].
Our setup is as in [Pet17]: we study SIDH instances in which Alice and Bob use the starting curve

SNote that the newest version of [Jao+19] changed the starting curve to a 2-isogenous neighbour of j = 1728, but
this does not affect the asymptotic complexity of the (in fact, any) attack and thus we will stick with the original starting
curve for simplicity.

108 ‘ IMPROVED TORSION-POINT ATTACKS

Eo/Fp: y* = 23 + x, with pis a prime congruent to 3 (mod 4),° Alice’s secret isogeny has de-
gree A = p®, and Bob’s secret isogeny has degree B = p®. SIKE consists of such instances with
a &~ (~ 1/2,butin our analysis we will allow c and 3 to vary. The case «+ 3 > 1 may seem arti-
ficial to readers mostly familiar with traditional SIDH or SIKE [JD11; Jao+17], but note that [Pet17]
and B-SIDH [Cos20] propose cryptographically interesting variants of SIDH with such paramet-
ers; furthermore, studying these cases helps our understanding of the case a + 8 = 1, cf. Fig-
ure 7.1. We assume without loss of generality that A < B and that we are attacking Alice’s key,
i.e, the secretisogeny is of degree A and we are given the action of ¢ on the B-torsion of Fy.

Caution: (In)equalities such as o + 3 > 1 are not to be interpreted as sharp bounds, but as
parameter regimes, and the claims may only hold asymptotically.

Petit’s 2017 classical, polynomial-time attack [Pet17] requires unbalanced parameters, un-
like those in SIKE, namely 8 > 4a > 4. In this section, we argue that even a mild imbalance
between « and 8 may result in a better (quantum) attack than the generic claw-finding/meet-
in-the-middle algorithm, thus far considered to be the best attack for any parameters not broken
by [Peti17] or [Bot+19]. We also reduce the degree of imbalance needed for the polynomial-time
algorithm to apply via a different method to [Bot+19]. Once more, we stress that these results
are based on heuristic assumptions and ignore factors polynomial in log p. The results of this
section are summarized in Figures 7.1 and 7.2, which will be justified by Theorem 7.8 and Heur-
istic Result 7.10. Note that Figure 7.1 illustrates a trade-off: The closer A and B are to each other,
the bigger their product AB must be for the attacks to apply, and conversely reducing AB re-
quires a stronger imbalance. Figure 7.1 shows that allowing for extremely unbalanced paramet-
ers B > A, we approach an attack on AB = p as in (for instance) SIKE.

Our results suggest that the choice o =~ 8 ~ 1/2 made in SIKE also minimizes the applicab-
ility of the torsion-point attack avenue. As we will show in Section 7.4, it is possible to improve
on the meet-in-the-middle/claw-finding complexity for balanced parameters with a different
starting curve, but with SIKE’s starting curve it does not seem possible to get an attack via this
method. However, since any imbalance can lead to a lower attack complexity, our results may
have an impact on SIDH variants such as B-SIDH [Cos20] and group key exchange [A]]S19]; see
Figure 7.2.

Remark 7.3. A couple of notes on the choices made in Figure 7.1:
o Algorithms with complexity polynomial in log p correspond to € = 0.

o The complexity of the attack is measured as a power of A, the degree of Alice’s secret isogeny. To-
gether with our assumption that A < B, this allows for easy comparison with the ‘generic attack),
i.e., classical or quantum claw finding.

o As discussed in Section 77.2.2, we use the RAM model studied in detail for claw-finding by Jaques
and Schanck in [[S19] for our quantum computation model. For the classical attack, we compare
against the basic meet-in-the-middle algorithm. Therefore, in this chapter, we take the complexity
of both classical and quantum claw-finding to be O*(A/?).

7.3.1—Improved balance of the polynomial-time attack. Among many other tradeoffs,
our work improves from a balance of B > A* > p* asin [Pet17] to a balance of B > A% > p?/?

or B > A% > p?. This improvement comes from one simple trick, explained below.

6More generally, these attacks apply for any ‘special’ starting curve in the sense of [KLPT14].

7.3. IMPROVED TORSION-POINT ATTACKS 109

a+p a+
3 : : 3
2 2

12 3 4 5 6 7 Bla 12 3 4 5 6 7 Bla

Figure 7.1: Possible choices of (c, 3) allowing for a classical attack (left) of complexity O*(A%) for € = © ., 0.4, 0.3,
0.2, 0.1, 0.0, and a quantum attack (right) of complexity O*(A%) for ¢ = o5, 0.4, 03, 0.2, 0.1, 0.0. The attack uses
Algorithm 7.3 and the complexities are justified in Theorem 7.8.

Petit’s attack solves Problem 7.1, in which we want to compute the isogeny ¢, by computing
0 € End(Ep) and a, b, ¢, d € Z such that there exists a small smooth integer e for which

A%(pa® + pb® +) + d* = deg(p 00 0 ¢ + [d]) = Be. (7.2)

Therestrictions B > A*and A > pare necessary for Petit’s algorithm to find a solution (a, b, ¢, d, €)
in polynomial time and output a sufficiently small, smooth e.
We show in the following theorem that (7.2) can be relaxed to

A% (pa® + pb® +) + d* = deg(p o0 00 d + [d]) = BZe.

This in turn allows us to relax the balance of A and Bto B > A3 > p3/2 or B > A% > p?
to find a solution (a, b, ¢, d,) with sufficiently small e, just by applying the same algorithm as
Petit [Pet17]. We do not repeat the algorithm here for conciseness, as we give a more general al-
gorithm in the next section that also encompasses our non-polynomial time attacks; the balance
of A and B is also addressed in the analysis in the following section.

Theorem 7.4. Let A, B be coprime smooth integers. Let Eq be a supersingular elliptic curve defined
over 2. Let ¢ be a secret isogeny of degree A from Eq to some curve E, and suppose that we are given
the action of ¢ on Ey[B]. Furthermore, assume we are given a trace-zero endomorphism 6 € End(FEy)
in a representation that can be efficiently evaluated on Ey[B], an integer d coprime to B, and a smooth
integer e such that

deg(¢p 000 ¢+[d]) = BZe.

Then we can compute ¢ in time O*(,/e) = O(/e - polylog(p)).

Proof. LetT = ¢ofo ¢+ [d]. Since the degree of 7 is B2e, it can be decomposed as 7 = ¢’ oo
where 9 and ¢’ are isogenies of degree B and 7 is an isogeny of degree e. The isogeny 1 can be
computed from the given action on the B-torsion as in Section 7.2.4.

To compute the isogeny 1/, we claim that ker(¢’) contains 7(E[B]) with index at most two.
Thus, we can first evaluate 7 on the B-torsion using the given action of §, then find ker(¢’) by
potentially brute-forcing a 2-isogeny, and finally compute ¢’ from v’ and run the rest of the

algorithm for each choice of 9’ the brute-force-of- step yields.

110 ‘ IMPROVED TORSION-POINT ATTACKS

We now prove the claim: First, ¢/ o 7 = [B] o 1) o 9/ establishes thatker(¢/’) D 7(E[B]). We
show that ker(7) 2 E[m] for any m > 2 dividing B. Suppose that 7 decomposes as 7’ o [m] for
7' € End(E), m € Z. Then m divides tr(r) = 2d, but note that gcd(m, 2d) € {1, 2} since d was
assumed coprime to B. Thus, the subgroup of E[B] killed by 7 is isomorphic to either Z/B or
7/ B x 7./2, which shows that |7(E[B])| € {B, B/2} and therefore [ker(¢) : 7(E[B])] € {1,2}.

Finally, for each choice of ¢)’, we attempt to recover the isogeny 7 by a generic meet-in-the-
middle algorithm, which runs in time O*(/e) since e is smooth. Note thatif e € O*(1), then the
entire algorithm runs in time polylog(p). O

For (a neighbour of) the initial curve used in SIKE [Jao+17] we deduce the following:

Corollary 7.5. Letp = 3 (mod 4) and j(Eo) = 1728. Consider coprime smooth integers A, B and
suppose that we are given an integer solution (a, b, ¢, d, €), with e smooth, to the equation

A%(pa® + pb® + *) + d* = Be. (7.3)

Then we can solve Problem 7.1 with the above parameters in time O*(,/e).

Proof. For a degree- A isogeny p: Fg — E, the left side of (7.3) is the norm form of
Z + ¢End(Eo)3 = Z + AEnd(Ey).

Choosing @ = avr + b + co € End(Ep) yields the desired result. O

7.3.2— Non-polynomial time torsion-point attacks. In this section we generalize Petit’s
polynomial-time attack to allow for attacks with any complexity better than O*(Al/ 2, that is,
attacks that improve upon the best known generic attack (cf. Section 7.2.2). Recall that A = p®
and B = p” are the degrees of Alice and Bob’s secret isogenies respectively, and that we measure
the complexity of the overall attack relative to A by writing it as O*(A?). The attack, following
the approach of Petit [Pet17] together with the improvements described above, naturally splits
into two stages: First, the ‘precomputation’ phase (Algorithm 7.1) in which a solution to (7.3)
is computed — notably, this depends only on the parameters (p, A, B) and not on the concrete
publickey under attack. Second, the ‘online’ phase (Algorithm 7.2) in which we utilize said solu-
tion to recover the secret isogeny as in Theorem 7.4 for a specific public key. Our modifications
to Petit’s method come in three independent guises, and the resulting algorithm is shown in
Algorithm 7.3:

° Precomputation phase:

— Larger d: When computing a solution to Equation (7.3), we fix e and then try up
to A% values for d until the equation has solutions. This allows us to further relax
the constraints between A, B, and p, at the price of an exhaustive search of cost
O*(AS) _ O*(paﬁ).

e Online phase:

— Larger e: We search for a solution to Equation (7.3) where e is any smooth number
< A®with e € [0, 1], whereas in [Pet17] the integer e was required to be polynomial
inlog p. This relaxes the constraints on A and B, ata price of a O*(e!/?) = O*(p®/?)
computation (to retrieve the endomorphism 7 defined in the proof of Theorem 7.4).

7.3. IMPROVED TORSION-POINT ATTACKS 111

— Smaller A: We first naively guess part of the secret isogeny and then apply Petit’s
techniques only on the remaining part for each guess. More precisely, we iterate
through isogenies of degree A7 | A, with v € [0, 1], and for each possible guess we
apply Petit’s techniques on Problem 7.1 with A" := A'=7 = p*(1=7) in place of A.
The Diophantine equation to solve thus turns into

A" (pa® + pb® + 2) + d* = B%e. (7.4)

Algorithm 7.1: Solving the norm equation; precomputation.

Input: « SIDH parameters p, A = p*, B = p°.
« Attack parameters 4, v, € € [0, 1], with A7 | A.

Output: A solution (a, b, ¢, d, €) to (7.4) with A’ = A1 =7 and e < A€ smooth.
1 Pick a smooth number e < A€ which is a square modulo A’2.
» Compute dj as the smallest positive integer such that d2 = eB? (mod A’?).
3 ford =1,2, ..., | A | such that dy + A?d’ < \/eB do
4 Letd = dg + A%d'.
5 Find the smallest positive integer ¢ such that ¢2A’? = eB? — d? (mod p),
or continue if no such c exists.
6 if eB? > d? + > A”? then
7 L Try finding (a, b) such that a® + b* = eB?—d’~c* A%

A/2p
If a solution is found, return (a, b, ¢, d,).

Algorithm 7.2: Recovering the secret isogeny; online phase.

Input: « All the inputs of Algorithm 7.1.
« An instance of Problem 7.1 with those parameters, namely a curve E and points
P,Q € E[B] where there exists a degree- A isogeny ¢ : Eg — E such that P, () are the
images by ¢ of a canonical basis of Ey[B].
«0 € End(Ep) and d, e € Z such that deg(A’0 4+ d) = B%e with e < A smooth.
Output: An isogeny ¢ matching the constraints given by the input.
1 for pg : E — E' an A7 -isogeny do
2 Compute P’ = [A77Y mod B] p4(P) and Q' = [A~"Y mod B] ¢4(Q).
3 Use Theorem 7.4 to compute ¢’ : Ey — E’ of degree A’ = A177,
assuming that P’ and Q’ are the images by ¢’ of the canonical basis of Eg[B],
or conclude that no such isogeny exists.
4 If ' is found then
5 LReturnap:@ogo’.

Algorithm 7.3: Solving Problem 7.1.

1 Invoke Algorithm 7.1, yielding a, b, ¢, d, e € Z, and then Algorithm 7.2 with
0 = avr + b + ct.

112 IMPROVED TORSION-POINT ATTACKS

Let us analyze the conditions under which Algorithm 7.1 can be expected to succeed:
Heuristic Result 7.6. We expect Algorithm 7.1 to produce a solution to Equation (7.4) in the regime
20 + ae > max {4a + 2a0 — day, 2+ 2a — 2a0 — 2ay}.

Justification. By construction we expectdg ~ A2, d ~ A2A% ~ A2(1-M+0 and eB? ~ A°B?,
so the ‘for’ loop in Algorithm 7.1 will run for A? iterations if

2a(2(1 —) +9) < ae+28.

The value cis then computed as a square root modulo p. We therefore expect ¢ &~ p most of
the time, and ¢ ~ pA~? with probability A=, thus a constant number of times over all possible
choices for d. For this particular ¢, we have ?A”? ~ p?A~2°0 A% ~ p?~200+22(1-%) gnd we
expect to satisfy the second ‘if’ condition in step 5 when

2 —2ad +2a(l —) < ae+ 26.
The two inequalities together give Heuristic Result 7.6. O
Lemma 7.7. Assume Heuristic Result 7.6 is satisfied.
1. The complexity of Algorithm 7.1 is O*(A%) classically and O*(A%/?) quantumly.
2. The complexity of Algorithm 7.2 is O*(AYt/?) dassically and O* (A0 +9)/2) quantumly.

Proof. The loop in Algorithm 7.1 has A° steps, each with polynomial complexity (use Cornacchia
for step 6). Quantumly, this search takes a square root of the classical cost (using Grover).

The loop in Algorithm 7.2 has approximately A” steps, and the main cost in each step is an
application of Theorem 7.4 with e ~ A°. On a classical computer the cost is approximately
O*(A7e'/?) = 0*(AY+¢/?). Using quantum search to guess the correct degree-A” isogeny ©g
in step 7.2, Algorithm 7.2 has quantum complexity O*(A7/2¢!/2) = 0* (A +9)/2), O

Theorem 7.8. Let0 < o < Band 0 < € < 1/2, and define

1+3a—-28 2a—p 1+a75}
3a T 2a 200)

I = max{

There exists a configuration (5,~,€) € [0;1]> of Algorithm 7.3 satisfying the condition given in
Heuristic Result 7.6, such that the attack cost according to Lemma 7.7 is at most O*(A), if and only if
€ > T for classical attacks, or € > T"/2 for quantum attacks.

Proof. Write f = 1 for classical algorithms and f = % for quantum algorithms; hence, the
complexity according to Lemma 7.7 equals € = max{ f0, fv + %e} Call atuple (8,7, ¢€) € [0;1)3
“admissible” if it satisfies the bounds

(44+20—4y—€ea<28 and (2—-20—2y—€a<28-2 (x)

from Heuristic Result 7.6. Suppose given an admissible tuple (4, v, €) with cost ¥ < 1/2. First,

notice that setting v := max{d, v+ %e}, the tuple (4,7, 0) is still admissible with the same %
(Since ¥ < 1/2, we have y/ < % < 1.) Thus, it suffices to consider admissible tuples (§,7',0)
with 0 < § < 4/ < 1 when optimizing. The bounds () simplify to

l4a—fB-—oy < ad < B—2a+ 207, ("

7.3. IMPROVED TORSION-POINT ATTACKS 113

which (leaving out the middle term «d and simplifying) implies

/

1+3a—28
> ot
> ™ (*1)

This establishes a lower bound on ~/, but it is not yet clear which of these values are actually
possible: For a given ', we additionally require a § € [0;~/] that satisfies the bounds (x). Hence,
the upper bound 3 — 2a + 2oy’ on ad in (¥) must be non-negative, which simplifies to

2a —

!
> .
2 (2)

Similarly, the lower bound 1 + « — 8 — a7 on & in (+) must not be greater than ay/, yielding

N > ez f
2

(*3)

Recalling that @ = f+/, this shows the claim. O

7.3.3 —Impact on B-SIDH. A recent proposal called B-SIDH [Cos20] consists of instantiat-
ing SIDH with parameters where AB is a divisor of p? — 1. Theorem 7.8 suggests that we may
expect a quantum attack of complexity O*(pl/g) when A ~ B = p. This compares to other
attack complexities in the literature as follows:

e Tani’s quantum claw-finding algorithm [Tano7] was claimed to have complexity O*(pl/ 3,
but [JS19] argues that the complexity is actually no lower than O*(p?/?) when the cost of
data-structure operations is properly accounted for.

e A quantum algorithm due to Biasse, Jao, and Sankar [B]S14] finds some isogeny between
the start and end curve in time O*(p1/4). While there is a heuristic argument for “stand-
ard” SIDH/SIKE that any isogeny suffices to find the correct isogeny [GPST16], this argu-
ment relies on the fact that the isogeny sought in SIKE has relatively small degree com-
pared to p, which is not true for B-SIDH, so this does currently not yield a complete attack.
The B-SIDH paper [Cos20] conservatively views [B]S14] as the best quantum attack.

e The cost of known classical attacks is no lower than O*(Al/z), which is achieved by meet-
in-the-middle techniques (using exponential memory) and potentially memoryless by
Delfs and Galbraith [DG16] when A ~ p assuming a sufficiently efficient method to pro-
duce the isogeny from some isogeny.

Thus, assuming our heuristics hold true, Algorithm 7.3 is asymptotically the best known attack
against B-SIDH at the moment. Should it turn out in the future that finding any isogeny suf-
fices to compute the right isogeny in time less than O*(pl/g), then combining that method with
Biasse—Jao—Sankar will yield a better quantum attack; at present it is not known how to do this.

Note thatfor 1/2 < a = 8 < 1, the (quantum) attack cost in terms of p may be lower than
O*(p'/?), butit does not get smaller than O*(p'/*) for balanced parameters.

The concrete example parameters in [Cos20] do not allow very strong torsion-attacks since
constructing optimal B-SIDH parameters (thus allowing for the most effective attacks) seems
difficult. For example, consider the kind of parameters proposed as an alternative for SIKEp610
using the Mersenne prime p = 2°?! — 1: In this example, A = 23% and B ~ 23%° hence a ~
B = 0.58, and by Theorem 7.8 our methods can be expected to lead to a quantum attack of
asymptotic complexity O*(A%46) € O*(p®27) on parameters with these size ratios. The full
range of B-SIDH parameters to which our attacks apply is summarized in Figure 7.1.

114 IMPROVED TORSION-POINT ATTACKS

7.3.4 — Impact on other variants of SIDH. The group key exchange protocol from [A]]S19]
with k parties can be reduced to an instance of Problem 7.1 with A ~ pl/k and B =~ p(k’l)/k.
Although our attacks only apply for AB > p, Figure 7.1 (or equivalently Theorem 7.8) shows
thatastheimbalanceincreases, the attack applies for AB approaching p. In particular, for alarge
number of parties k, the product A B does not have to be much larger than p for an (exponential)
torsion-point attack to apply.

Hence, our attacks do not seem to apply to the group key exchange as described in [A]]JS19],
which (like SIKE) satisfies AB < p. However, it is not inconceivable that someone implement-
ing a group key exchange protocol may borrow ideas from B-SIDH in order to improve efficiency,
especially given the scarcity of appropriate base field primes for group key exchange follow-
ing [AJJS19]. Such a combined group key exchange with ideas from B-SIDH could easily yield
a torsion-point attack: For example, even for 3 parties, parameters with AB ~ p? lead to a
quantum attack of (heuristic) complexity O*(Al/ 8), a fourth-root improvement over generic
claw finding.

7.3.5— Improvement prospects. In this section we consider how future improvements on
the resolution of Equation (7.3) might impact the hardness of Problem 7.1. We first estimate the
minimal size of e for a given set of parameters (p, A, B).

Heuristic Result 7.9. Solutions (a, b, ¢, d, €) to Equation (7.3) can be expected to satisfy
3
2 5f

Justification. We consider solutions with e < M for some fixed bound M. Since all summands
on the left-hand side are non-negative, they cannot be bigger than the upper bound M B of the
right-hand side. This yields the bounds
VMB . VMB . VMB . /N
a< AVp b< AVD A d<VvMB.

Hence the number of possible assignments of the variables e, a, b, ¢, d is about

VMB +MB +MB _ M*B*
MG GNE L HE VMB = M

Heuristically modelling both left- and right-hand side as uniformly random integers in the range
{0, ..., M B?}, this implies the expected number of solutions is about

M3 B* 2 M?B?
MUB' /(0 B?) = ALD
Solving this for one expected solution yields the claimed estimate. O

Heuristic Result 7.10. Assume that we are given a solution to Equation 7.3 for parameters as in Heur-
istic Result 7.9. Then we expect to solve Problem 7.1:

1. with classical complexity O*(1) when B > p'/? A3/2,
2. with dlassical complexity O*(AY/?) when B > p'/? A'/?, and
3. with quantum complexity O*(A'/?) when B > p'/2.

Justification. As we are given a solution to Equation (7.3), we no longer need Algorithm 7.1 and
can apply Algorithm 7.2 right away. Heuristic Result 7.9 gives the constraint

2(8 + ae) > 14 3a(l —), (7.5)

7.3. IMPROVED TORSION-POINT ATTACKS 115

which we now use in place of Heuristic Result 7.6 to optimally balance parameters.

1. For polynomial-time attacks we need ¢ = v = 0 by Lemma 7.7. Plugging this into (7.5)
gives 23 > 1 + 3q, hence the result.

2. Increasing either 7y or e will contribute to relaxing Inequality (7.5), and by Lemma 7.7 we
need v + ¢/2 < 1/2. Substituting v for (1 — €)/2in (7.5) gives

28> 1+ a(3—¢)/2.

Setting e = 1 and v = 0 simplifies this to 28 > 1 + «, hence the result.

3. Increasing either «y or e will contribute to relaxing Inequality (7.5), and by Lemma 7.7 we
need v + € < 1. Substituting «y for 1 — € in (7.5), we get

268> 1+ ae.

Setting € = 0 and v = 1/2 simplifies this to 28 > 1, hence the result.
O

Remark 7.11. In the group key exchange protocol of [A]]S19] with k parties we have A =~ p/* and
B ~ p*=D/* A better solver for Equation (7.3) could give an improved quantum attack when k > 2,
an improved classical attack when k > 3, and a (classical) polynomial-time attack when k > 5.

Remark 7.12. In contexts where several instances of Problem 7.1 need to be solved with the same para-
meters, Algorithm 7.1 only needs to be executed once. In this case the algorithm’s parameters can be
tweaked to reduce the average cost per instance.

1 2 3 1 2 3 «

Figure 7.2: Performance of our current attacks. Left: Algorithm 7.3. Right: Hypothetical attack assuming an optimal
polynomial-time solver for Equation 7.3 combined with Algorithm 7.2. Here A = p® and B = p®. Parameters
(v, B) above the red, orange and yellow lines are parameters admitting a polynomial-time attack, a classical attack
in O*(A/2), and a quantum attack in O*(A1/2), respectively. Parameters below the upper dashed line are those al-
lowing AB | (p? — 1) as in [Cos20]. Parameters below the lower dashed line are those allowing AB | (p — 1) as
in [Jao+17; Jao+19].

116 IMPROVED TORSION-POINT ATTACKS

7.4 — Trapdoor instances

In this section we give a method to specifically create instantiations of the SIDH framework for
which we can solve Problem 7.1 more efficiently given some extra information. Recall that we let
A < B denote the degrees of Alice’s and Bob’s secret isogenies, respectively, and let A = p® and
B = pP. Recall that for all the instances studied in Section 7.3, our attack methods can improve
upon the complexity of claw finding only when AB are greater than p (see Figures 7.1 and 7.2),
and that we can only expect solutions to Equation 7.3 with a polynomially small” value of e when
[B> A% and A > pl/z] or[B > A% and A > p|. However, all of this was only considering cases
where the starting curve has j-invariant 1728. In Section 7.4.1 we explore the question: For given
A, B can we construct starting curves for which we can solve Problem 7.1 with a better balance?
We will call such curves trapdoor curves (see Definition 7.13), and quantify the number of trapdoor
curves in Section 7.4.3.

In Sections 7.4.4 and 7.4.5, we also consider trapdoored choices of p, A, and B, for which we
can solve Problem 7.1 more efficiently even when starting from the curve with j-invariant 1728.

7.4.1—Trapdoor curves. This section introduces the concept of trapdoor curves and how to
find such curves. Roughly speaking, these are specially crafted curves which, if used as starting
curves for the SIDH protocol, are susceptible to a torsion-point attack by the party who chose
the curve, under only moderately imbalanced parameters A, B; in particular, the imbalance is
independent of p. In fact, when we allow for non-polynomial time attacks we get an asymp-
totic improvement on the best general attack for balanced SIDH parameters (but starting from
a trapdoor curve). These curves could potentially be utilized as backdoor curves, for example by
suggesting the use of such a curve as a standardized starting curve. We note thatitdoes not seem
obvious how trapdoored curves, such as those generated by Algorithm 7.4, can be detected by
other parties: The existence of an endomorphism of large degree which satisfies Equation 7.3
does not seem to be detectible without trying to recover such an endomorphism, which is hard
using all currently known algorithms.

The notion of trapdoor curves is dependent on the parameters A, B, which motivates the
following definition:

Definition 7.13. Let A, B be coprime positive integers and 0 < ¢ < 1/2. An (A, B,¢)-trapdoor
curve is a tuple (Eo, 0, d, e) of a supersingular elliptic curve Eq defined over some F,,>, an endomorph-
ism @ € End(Ep) in an efficient representation, and two integers d, e, such that Algorithm 7.2 solves
Problem 7.1 for that particular Eq in time O*(A?) when given (0, d, ¢). An (A, B)-trapdoor curve is
an (A, B, 0)-trapdoor curve, i.e., one for which Algorithm 7.2 takes time polynomial in log p.

Remark 7.14. Itisimportant that 0 is efficiently represented as it might not have smooth degree.

We summarize the complexity of our attack on SIDH instances starting at trapdoor curves
in Figure 7.3; this figure follows from Theorem 7.21. Note that these attacks do apply to balanced
parameters with AB = p and give a significant improvement on the meet-in-the-middle claw-
finding complexity for these cases. We stress however that this relies on using a special starting
curve and hence does not give an attack on SIKE when using the proposed (neighbour of a) start-
ing curve with j-invariant 1728, unless there happens to be short path from this starting curve
to a backdoor curve that can be found efficiently.

Algorithm 7.4 computes (A, B)-trapdoor curves in heuristic polynomial time, assuming we
have a factoring oracle (see Theorem 7.15).

7Recall that this is necessary to obtain a polynomial-time online cost in our attack.

7.4. TRAPDOOR INSTANCES 17

0.25

-
|8
w
N fp=—mmm i e =

Bla

Figure 7.3: Choices of A = p® and B = pP for which we can (heuristically) find an (A, B, €)-trapdoor curve
(Eo, 0, d,) within time O*(A®). An SIDH variant starting at E can be broken in time O*(A%) using our attack
when (0, d, e) is given. Red: Complexity of best known attack without having (6, d, €). Green: Classical complexity
of our attack when starting at a (A, B, ¢)-trapdoor curve. Blue: Quantum complexity of our attack when starting
ata (A, B, €)-trapdoor curve. : SIKE parameters. Violet: SIKE-like parameters, but starting instead from an
(A, B, €)-trapdoor curve.

Algorithm 7.4: Generating (A, B)-trapdoor curves.

Input: Aprime p = 3 (mod 4) and smooth coprime integers A, B with B > A2
Output: An (4, B)-trapdoor curve (Eo, 0, d, e) with Fy /F,..

1 Sete:= 1.

> While true do

Find an integer d such that d> = B%e (mod A?).

3
4 If d is coprime to B then

2 2 .
5 If Bgigd is square modulo p then

. . 2 g2

6 Find rational a, b, ¢ such that pa® + pb® + ¢® = Bf‘iﬂ.
7 break
8 Set e to the next square.

9 Setd = aij + bj +ci € By, .

10 Compute a maximal order O C By, containing 6.

1 Compute an elliptic curve Eg whose endomorphism ring is isomorphic to O.

12 Construct an efficient representation of the endomorphism 6 of Ey corresponding to 9.
13 Return (Ep,0,d, e).

Theorem 7.15. Given an oracle for factoring, Algorithm 7.4 can heuristically be expected to succeed in
polynomial time.

Remark 7.16. The imbalance 8 > 2« is naturally satisfied for a group key exchange in the style of
[AJ]S19] with three or more participants; we can break (in polynomial time) such a variant when starting
at an (A, B)-trapdoor curve.

Before proving Theorem 7.15 we need the following easy lemma:
Lemma 7.17. Let p be a prime congruent to 3 modulo 4. Let D be a positive integer. Then the quadratic

form Q(z1,x2,x3,24) = pr3 + pr3 4+ 23 — Da? has a nontrivial integer root if and only if D is a
quadratic residue modulo p.

18 ‘ IMPROVED TORSION-POINT ATTACKS

Proof. The proofis essentially a special case of [Simog, Proposition 10], but we give a brief sketch
of the proof here. If D is a quadratic residue modulo p, then pz? + pz3 + 22 — D22 has a solution
in Qp by setting z; = x3 = 0 and 24 = 1 and applying Hensel’s lemma to the equation 23 = D.
The quadratic form @ also has local solutions everywhere else (the 2-adic case involves looking
at the equation modulo 8 and applying a 2-adic version of Hensel’s lemma). If on the other hand
D is not a quadratic residue modulo p, then one has to choose x3 and x4 to be divisible by p.
Dividing the equation Q(x1, 2,23, z4) = 0 by p and reducing modulo p yields 23 + 23 = 0
(mod p). This doesnothave a solutionasp = 3 (mod 4). Finally, one can show that thisimplies
that @ does not have a rootin Q. O

Proof of Theorem 77.15. The main idea is to apply Theorem 7.4 in the following way: using Al-
gorithm 7.4, we find integers D, d, and e, with e polynomially small and D a quadratic residue
mod p, such that A2D 4 d> = BZe, and an element § € By, oo of trace zero and such that
6? = —D. We then construct a maximal order © C B, oo containing # and an elliptic curve
Eo with End(E) = O.

Most steps of Algorithm 7.4 obviously run in polynomial time, although some need further
explanation. We expect d2 ~ A% since we solved for d modulo B?, and we expect e to be small
since heuristically we find a quadratic residue after a small number of tries. Then the right-hand
side in step 6 should be positive since B > A2, so by Lemma 7.17 step 6 returns a solution using
Simon’s algorithm [Simos], assuming an oracle for factoring B2Z§d2 . For step 10, we can apply
either of the polynomial-time algorithms [IRg3; Voi13] for finding maximal orders containing a

fixed order in a quaternion algebra, which again assume a factoring oracle. Steps 11 and 12 can
be accomplished using the heuristically polynomial-time algorithm from [PL17; Eis+18] which

returns both the curve Ey and (see [Eis+18, § 5.3, Algorithm 5]) an efficient representation of 6.
O

Remark 7.18. The algorithm uses factorization twice. In Section 7.5 we discuss how one can ensure in
practice that the numbers to be factored have an easy factorization.

Remark 7.19. The main contribution of Simon’s paper is a polynomial-time algorithm for finding non-
trivial roots of (not necessarily diagonal) quadratic forms which does not rely on an effective version of
Dirichlet’s theorem. In our case, however, we only need a heuristic polynomial-time algorithm for find-
ing a nontrivial root (z,y, z,u) of a form pz?® + py? + 22 — Du®. We sketch an easy way to do this:
Suppose that D is squarefree, and pick a prime ¢ = 1 (mod 4) such that —pq is a quadratic residue
modulo every prime divisor of D. It is then easy to see that the quadratic equations pz? + py* = pqand
Du? — 22 = pq both admit a nontrivial rational solution which can be found using [CRo3].

Remark 7.20. Weak curves also have a constructive application: An improvement on the recent paper
[SKPS19] using Petit’s attack to build a one-way function ‘SETA’. In this scheme, the secret key is a secret
isogeny to a curve Es that starts from the elliptic curve with j-invariant 1728 and the message is the end
point of a secret isogeny from E to some curve En,, together with the image of some torsion points. The
reason for using j-invariant 1728 is in order to apply Petit’s attack constructively. One could instead use
a weak curve; this provides more flexibility to the scheme as one does not need to disclose the starting curve
and the corresponding norm equation is easier to solve.

7.4.2— Non-polynomial time attacks for trapdoor curves. In this section we give a fur-
ther generalization of Algorithm 7.3 to utilize some extra techniques available to us when the
starting curve Ej is trapdoored. Recall, as above, that A < B are the degrees of Alice’s and Bob’s

7.4. TRAPDOOR INSTANCES | 119

secret isogenies respectively, and A = p® and B = p”. Recall the definition of an (A, B, %)-
trapdoor curve (Ejy, 0, d, e) from Definition 7.13; in particular that such a curve gives rise to a
torsion-point attack of complexity O*(A%).

We show in this section that for & &~ 3, we can modify Algorithm 7.4 to compute a classically
(A, B,2/5)-trapdoor curve or a quantumly (A, B, 1/4)-trapdoor curve. We also show how the
attack on trapdoor curves improves for imbalanced parameters; see Figure 7.3 for a comparison
of previous results with Theorem 7.21.

Theorem 7.21. Heuristically:

o Let ¢ € [0,0.4]. For A, B such that B > A275/2€ 4 dlassical algorithm can construct a
(A, B,€)-trapdoor curve in time O*(A?), assuming an oracle for factoring.

o Let % € [0,0.25). Forevery A, B such that B > A*~*% | q quantum algorithm can construct a
(A, B, %)-trapdoor curve in polynomial time.

Proof. Modify Algorithm 7.4 as follows:
o Use A’ = A'™7instead of A, namely we will guess part of the isogeny with degree A | A.
e Instead of starting from e = 1, start the loop at e such that B%e > A",

’
e Choose A° random values of e < A€ (note e is not necessarily an integer square) until
there exists d such that d? = B%e mod (4’)?,

B%e—d* >0, (7.6)

and B2e — d? is a square modulo p. Once these values of d and e are found, continue like
in Algorithm 7.4, step 6.

The attacker can then invoke Algorithm 7.2 to compute the secretisogeny, using the data (0, d, e)
from Algorithm 7.4.

We analyze the complexity of running the modified Algorithm 7.4 followed by Algorithm
7.2. The two quadratic residuosity conditions are heuristically satisfied one in four times, so we
ignore them in this analysis. The cost of Algorithm 7.4 modified in this way becomes O*(AE/) for
a classical adversary and O*(A‘l/z) for a quantum adversary.

Note also that by construction we have e < A€, so the cost of running Algorithm 7.2 will be
O*(A7F</2) for a classical adversary and O*(A7+9)/2) for a quantum adversary, following the
same reasoning as in the complexity analysis of Algorithm 7.3.

We now look at the conditions for existence of a solution in Algorithm 7.4. Note thatd is a
priori bounded by (4")2 = A%2(!=)_ However, after trying A€ values for e we may hope to find
some d bounded by A%(1=7) ¢ To satisfy (7.6) we need

26 > a4 — 4y — 26 —¢),

and by construction we also need e <e
For a classical adversary, setting ¢ = ¢/ = 2y = ¥ gives the result. For a quantum adversary,
settinge = ¢ = 0and vy = 2 - ¥ gives the result. L

Remark 7.22. We found these choices for €, €',y by solving the following optimization problems for
a = B = 1/2, so at least in that case (which corresponds to SIKE) we expect there to be no better choice
with respect to overall complexity: For the best classical attack when oo = 8 = 1/2we solved the following
linear optimization problem:
min max{e/,'y—i—e/Q}.
4y+2€' +€>2,
e>e’

120 IMPROVED TORSION-POINT ATTACKS

For the best quantum attack when o = 8 = 1/2 we solved the following linear optimization problem:

min max{e//Q,('y—i—e)/Q}.
4'y+2e/+622
e>e

Remark 7.23. We have implemented the computation of the maximal orders for the SIKEp434 para-
meters A = 2216 and B = 3137,

7.4.3 — Counting trapdoor curves. Having shown how to construct trapdoor curves and
how to exploit them, a natural question to ask is how many of these curves we can find using the
methods of the previous section. Recall that the methods above search for an element ¥ € By, o
with reduced norm D. Theorem 7.24, due to Onuki [Onu20], suggests they can be expected to
produce exponentially (in log D) many different maximal orders, and using Lemma 7.25 we can
prove this rigorously for the (indeed interesting) case of (A, B)-trapdoor curves with AB =~ p
and A% < B < A3 (cf. Theorem 7.15).

We first recall some notation from [Onu20]. The set p(&¢(O)) consists of the reductions
modulo p of all elliptic curves over Q with complex multiplication by O. Each curve E = £ mod p
in this set comes with an optimal embedding ¢: O — End(E), referred to as an ‘orientation’
of E, and conversely, [Onu2o0, Prop. 3.3] shows that — up to conjugation — each oriented curve
(E,) defined over I, is obtained by the reduction modulo p of a characteristic-zero curve; in
other words, either (E, ¢) or (EP), .(P)) lies in p(&(0O)). Onuki proves:

Theorem 7.24 [Onu20, Theorem 3.4]. Let K be an imaginary quadratic field such that p does not
splitin K, and O an order in K such that p does not divide the conductor of O. Then the ideal class group
cl(O) acts freely and transitively on p(&U(O)).

Thus, it follows from well-known results about imaginary quadratic class numbers [Sie3s] that
asymptotically, there are h(—D) € Q(DY/?79) many trapdoor elliptic curves counted with mul-
tiplicities given by the number of embeddings of O. However, it is not generally clear that this
corresponds to many distinct curves (or maximal orders). As an (extreme) indication of what
could go wrong, consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 7.24 should not consist only of one elliptic curve
with lots of independent copies of O in its endomorphism ring.

We can however at least prove that this does not always happen. In fact, in the case that D
is small enough relative to p, one can show that there cannot be more than one embedding of O
into any maximal order in By, o0, implying that the h(— D) oriented supersingular elliptic curves
indeed must constitute h(—D) ~ /D distinct quaternion maximal orders:

Lemma 7.25. Let O be a maximal order in Bp,oo. If D = 3,0 (mod 4) is a positive integer smaller
than p, then there exists at most one copy of the imaginary quadratic order of discriminant — D inside O.

Proof. This follows readily from Theorem 2’ of [Kan89)]. O

This lemma together with Theorem 7.15 shows that there are ©(h(—D)) many (A, B)-trapdoor
maximal orders under the restrictions that B > A% and D < p. Consider the case (of interest)
in which AB = p: Following the same line of reasoning as in the proof of Theorem 7.15 we have
that B2/A2 — A? ~ D,whichif D < p~ AB implies that B g A3. Hence, as advertised above,
Lemma 7.25 suffices to prove that there are ©(h(—D)) many (A, B)-trapdoor maximal orders
under the restriction that AB ~ p and roughly A? < B < A3. For larger choices of B, it is no

7.4. TRAPDOOR INSTANCES 121

longer true that there is only one embedding of O into a quaternion maximal order: indeed, at
some point h(— D) will exceed the number ©(p) of available maximal orders, hence there must
be repetitions. While it seems hard to imagine cases where the orbit of cl(Z[f]) covers only a
negligible number of curves (recall that was our endomorphism of reduced norm D), we do
not currently know how (and under which conditions) to rule out this possibility.

Remark 7.26. Having obtained any one maximal order O that contains 6, it is efficient to compute
more such orders (either randomly or exhaustively): For any ideal a in Z|0), another maximal order with
an optimal embedding of Z[0)] is the right order of the left ideal T = Da. (One way to see this: a defines
a horizontal isogeny with respect to the subring O; multiplying by the full endomorphism ring does not
change the represented kernel subgrouy; the codomain of an isogeny described by a quaternion left ideal
has endomorphism ring isomorphic to the right order of that ideal. Note that this is similar to a technique
used by [CPV20] in the context O C Q(r).)

7.4.4— Trapdoored p for given A and B with starting vertex j = 1728. Another way
of constructing trapdoor instances of an SIDH-style key exchange is to keep the starting vertex
as j = 1728 (or close to it), keep A and B smooth or powersmooth (but not necessarily only
powers of 2 and 3 as in SIKE), and construct the base-field prime p to turn j = 1728 into an
(A, B)-trapdoor curve. In this section, let Ey denote the curve Ey: y2 = 23 + .

An easy way of constructing such a p is to perform steps 1 and 3 of Algorithm 7.4, and then
let D := %. Allowing p to be a variable, we can solve

D = p(a* +l)2) +
in variables a, b, ¢,p € Z, p prime, as follows. Factor D — ¢? for small ¢ until the result is of the
form pm where pis a large prime congruent to 3 modulo 4 and m is a number representable as a
sum of squares.’

Then, with § = avw + br + c the tuple (Ey, 0, d, e) is (A, B)-trapdoor. (Note that, in this
construction, we cannot expect to satisfy a relationship suchasp = ABf — 1 withsmall f € Z.)

As an (unbalanced) example, let us choose A = 2216 and B = 3%°Y and set e = 1. Then we
canused = B mod A% Let D = #, for which we will now produce two primes: First, pick
¢ = 53, then D — ¢? is a prime number (i.e,, a = 1, b = 0). Second, pick ¢ = 355, then D — ¢? is
5 times a prime number (i.e., a = 2,b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, let A be the product of every other prime from 3 up through
317, and let B be the product of all remaining odd primes < 479. With e = 4, we can again use
d = B mod A? and compute D as above. Then D — 1532 is prime and congruent to 3 modulo 4
(e,a=1,b=0).

7.4.5—Insecure A =~ B for j = 1728. For A ~ B, finding (A, B)-trapdoor curves seems
difficult. However, in this section we show that certain choices of (power)smooth parameters A
and B allowustofind f such thatj = 1728 can be made insecure over any F,,» withp = ABf—1.

One approach to this s to find Pythagorean triples A% +d? = B2 where A and B are coprime
and (power)smooth; then Ey: y?> = 2% + z is a trapdoor curve with § = ¢, the d value from the
Pythagorean triple, and e = 1. With this construction, we can then use any p = 3 (mod 4), in
particular one of the formp = ABf — 1.

8Some choices of A and Bresultin D = 2 (mod 4) which is an obstruction to this method.

122 IMPROVED TORSION-POINT ATTACKS

Note that given the isogeny degrees A, B, itis easy for anyone to detect if this method has
been used by simply checking whether B? — A? is a square; hence, an SIDH key exchange using
such degrees is simply weak and not just trapdoored.®

Problem 7.27. Find Pythagorean triples B> = A? + d? such that A and B are coprime and smooth
(or powersmooth,).

Pythagorean triples can be parameterized in terms of Gaussian integers. To be precise, prim-
itive integral Pythagorean triples a? = b2 + ¢ are in bijection with Gaussian integers z = m+ni
with ged(m,n) = 1 via the correspondence (a,b,¢) = (N(2), Re(2?), Im(2?)). The condition
that m and n are coprime is satisfied if we take z to be a product of split Gaussian primes, i.e.,
z =[], w; where N(w) = 1 (mod 4) is prime, taking care to avoid simultaneously including
a prime and its conjugate. Thus the following method applies provided that B is taken to be an
integer divisible only by primes congruent to 1 modulo 4, and B > A.

In order to guarantee that B = N(z) is powersmooth, one may take many small w;. In order
to guarantee that B is smooth, it is convenient to take z = w” for a single small Gaussian prime
w, and a large composite power k.

It so happens that the sequence of polynomials Re(z*) in variables n and m (recall that
z = n + mi) factors generically into relatively small factors for composite k, so that, when B? =
A% 4 d2, we can expect that A is frequently smooth or powersmooth. In practice, running a
simple search using this method, one very readily obtains example insecure parameters:

B — 5105
A=2%.11-19-29-41-59-61-139 - 241 - 281 - 419 - 421 - 839 - 2381 - 17921
- 21001 - 39761 - 74761 - 448139 - 526679 - 771961 - 238197121

d=3%-13-79-83-239-307-2801 - 3119 - 3361 - 3529 - 28559 - 36791 - 53759
-908321 - 3575762705759 - 23030958433523039

For this example, if we take p = 105AB — 1, we obtain a prime which is 3 modulo 4. Note
thathere B ~ 22** and A ~ 2238, Many other primes can easily be obtained (replacing 105 with
214, 222, etc).

Remark 7.28. When choosing parameter sets to run B-SIDH [Cos20], if the user is very unlucky, they
could hit an instance of such a weak prime. With this in mind, it would be prudent to check that a given
combination of A, B, and p does not fall into this category before implementing such a B-SIDH instance.

7.5 — Implementation

In this section we report on computations regarding Algorithm 7.4 for some concrete paramet-

ers. We chose parameters A = 2216, B = 3300, p = AB-277 — 1. Itis easy to see that we can

choose e = 1 and d equal to B modulo A%. Now we need to factor BQA’dz . The way we chose

d makes it easy as BQXd2 = BA}d (B + d). This is something which applies in other cases as

well, and to make sure that factorization is easy one can try choices of d until factoring B + d is

9We resist the temptation of referring to such instantiations as ‘door’ instead of ‘trapdoor’.

7.6. ADDITIONAL EXAMPLES OF TRAPDOORED PRIMES 123

B%_d? .

feasible (e.g., B + d is a prime number). For completeness, the factorization of Z—z% is

22.5.23.359 - 2089 - 39733 - 44059 - 74353 -

37628724343042581190433455539389264355404578964704347 ...
...59039416676945740598806299461624575502089058332472952 ...
...9427908921244148421914499463.

Once the factorization is known, we apply Simon’s algorithm, implemented in Pari/GP [Pari]

. . . 2 — 2
as qfsolve(), to compute a rational solution to the equation pa® +pb? + 2 = BA 4 Ara-
tional solution is given by

a = 32319123496536786843254458765608553095663568521872334 ...
...297530315749275438736572/ 2

b = 37902893736016880777193854875253045553175457573067191 ...
... 2406340378400674751175560/ =

c = 85437128777417136022423941321585505761757160615798739 ...
.. 72406075696054195168847143870020389324092617191284723 ...
..80905798835064955553407208320599901478282089806543945 ...
.. 266931422175906643935346/ z,

where

z = 87978348577011335417453239649099382225650021375809220 ...

...4820354441211407993264179570949123846469170675585119.

Once 6 is computed one has to compute an order Oy which contains . This can be accom-
plished in various ways. One way is to find a § such that 6’ + 6’6 = 0 and 6’ is an integer
multiple of the identity. This amounts to finding the kernel of the linear map n — 67 + né,
which is a 2-dimensional vector space over Q (i.e., one chooses an element in this kernel and
then multiplies it with a suitable integer). Itis preferable to construct Oy in this way so that the
discriminant of the order is the square of the reduced norm of 6¢’. In particular, if we choose
a @’ whose norm is easy to factor, then the discriminant is also easy to factor. One has a lot of
flexibility in choosing 6’ and lattice reduction techniques help finding one which is sufficiently
small and has an easy factorization. Note that the norm of 8’ will always be divisible by p since
the discriminant of every order is a multiple of p (and the norm of 6 is coprime to p). Finally, one
can compute a maximal order containing Op using [Magma]’s MaximalOrder() function.

7.6 — Additional examples of trapdoored primes

In the examples in Subsection 7.4.4, welet A = 2216 B = 3300 ¢ — 1 Weletd equal B mod A2,

2
and D = BA;Qd, hence

D = 16896420333246701930066245846797285820453043046692612 ...
... 34160275705261296847619733634147787139416180071370253 ...
... 151875694583397987452872630971686172791991823800180.

124 IMPROVED TORSION-POINT ATTACKS

We first choose ¢ = 53, then D — ¢? is aprime number (i.e,a =1, b = 0),

p = 16896420333246701930066245846797285820453043046692612 ...
... 34160275705261296847619733634147787139416180071370253 ...
... 151875694583397987452872630971686172791991823797371.

When ¢ = 355, then D — ¢? is 5 times a prime number, namely,

p = 33792840666493403860132491693594571640906086093385224 ...
...68320551410522593695239467268295574278832360142740506 ...
...30375138916679597490574526194337234558398364734831.

Both of these primes are congruent to 3 modulo 4.

We also give additional examples of Pythagorean triples as described in Section 7.4.5.
In particular, let

B =17%,
A=2°.32.5%.7.11-13-19-23-41-47-59- 61 - 101 - 181 - 191 - 199 - 239 - 421
=541 - 659 - 769 - 2281 - 16319 - 30119 - 285599 - 391679 - 1039081 - 1109159
For this, 177AB — 1 = 3 (mod 4) is prime. Finally, a powersmooth example is given by
B=5%13".17". 29" . 37" . 1% . 53% . 617 . 737 . 89t . 97,
A=2%.3.7.11-23-31-127-199 - 811 - 2903 - 155383 - 842041 - 933199 - 1900147
- 8333489 - 21629743 - 30583723 - 69375497

For this, 19AB — 1 = 3 (mod 4) is prime.

Chapter 8

How to not break SIDH

This chapter is for all practical purposes identical to the paper How to not break SIDH [MP19]
authored jointly with Chloe Martindale, which was published at CFAIL 2019.

8.1 — Introduction

This chapter’s topic of interest is the historically first practical isogeny-based key exchange: Su-
persingular Isogeny Diffie—Hellman (SIDH), conceived by Jao and De Feo in 2011 [JD11], is first and
foremost an ephemeral Diffie-Hellman-like key exchange. Unfortunately, it seems impossible
to efficiently determine whether a public key was generated honestly; this leads to an active
reaction attack which recovers a static private key in a linear (in the key size) number of quer-
ies [GPST16]. Based on this observation, SIDH was later transformed into SIKE [Jao+17], a key-
encapsulation mechanism (KEM) which is currently a second-round contestant in NIST’s call
for post-quantum cryptographic constructions [NIST16]. In SIKE, one party (the server) can use
a static key, while the other party generates a new ephemeral key pair for every connection. The
construction is generally the same as SIDH, except that as part of his side of the key exchange,
Bob encrypts his private key with the shared secret and sends it to Alice, who can then verify that
the public key matches what one would get from Bob’s alleged private key when following the
protocol honestly. If Alice performs this check before doing anything else with the shared secret,
she can be sure not to leak any information to dishonest clients: Bob only learns whether he was
honest or not, but he is probably already aware of that.

This chapter summarizes some of our and others’ fruitless attempts to cryptanalyze SIDH,
including a discussion of the reasons why they failed. We hope that this will be useful to other (in
particular, novice) researchers in the field of isogeny-based cryptography: In the past, we have
observed a tendency among practitioners to rediscover, and sink time into, some of the ideas
outlined in the following. Ideally, this work will provide a shortcut for those poor souls, allow-
ing them to skip past some of the approaches doomed to fail. Finally, we strongly believe that
publishing negative results can be valuable: One person’s useless observation may be another
person’s missing link.

Finally, note that we do expect the ideas outlined in the following to strike experienced read-
ers as naive or foolish. This is by design: Documenting the insight to be gained while debunk-
ing —in hindsight — flawed ideas is exactly the point of this work. “Trivial” is but another word
for “we understood it”.

Acknowledgements. The negative results presented here are the result of discussions with many
other researchers. We have tried to acknowledge all specific discussions in the relevant subsec-
tions. We would like to especially thank Tanja Lange for useful discussions regarding almost
every part, if not every part, of this chapter, as well as Dan Bernstein, Dan Boneh, Steven Gal-
braith, Ben Smith, and Fré Vercauteren for many insightful discussions.

126 HOW TO NOT BREAK SIDH

e

\Y N
L SN IR
IRLX NAIAR SA
S ey
NS

N

Y
7S

Figure 8.1: Left: Diffie-Hellman on a (too) structured graph. Right: The supersingular {2, 3}-isogeny graph over F 45, 2.

8.2 — Preliminaries

In this section, we give an account of the SIDH construction, introduce the problems it poses to
cryptanalysts, and finally summarize the mostimportant mathematical properties of the objects
of interest.

8.2.1—The SIDH key-exchange protocol [JD11]. The core idea in isogeny-based key ex-
change is to compose two random walks on an isogeny graph of elliptic curves in such a way
that the end node of both ways of composing is the same. However, the graph used in SIDH is
chaotic—it does not carry a computationally useful structure regular enough to support the
evident Diffie-Hellman-style key exchange depicted in Figure 8.1.

This creates a serious correctness challenge for key-exchange schemes trying to make use
of this graph. The resolution of this problem is the core contribution of SIDH: By sending ex-
tra information (so-called “auxiliary points”) that helps Alice and Bob orient themselves when
walking from the other party’s public key node, they are able complete the DH “diamond” .77
to obtain a shared secret.

Recall from Proposition 2.30 the following fundamental result:

Lemma 8.1. Let E be an elliptic curve and H a finite subgroup of E. Then there exists an elliptic curve
E/H and a separable isogeny o : E — E/H whose kernel is H. The codomain E/H and isogeny
@ are unique up to isomorphism.

Parameters. The main parameter in SIDH is a large prime p of the form p = P f — 1,
where 44, ¢ are distinct small primes (typically 2, 3) and f is a small cofactor (often 1) thatis
not divisible by ¢4 or {g."

Other parameters are: a supersingular elliptic curve Eo/Fp,* a basis (P4, Q4) of Eg[£*],
and a basis (Pg, Qp) of Eg[(;7]. Typically, Eq: y? = 2 + zisused.

Note that the choice of p and Ey implies that P4, Q 4, Pp, Qg are all defined over I, since
Eo(Fp2) =Z/(p+1) xZ/(p+1).

We refer to the curves used in SIDH as “SIDH curves”. These curves form a complete set of
representatives of all isomorphism classes of supersingular elliptic curves over Fy,.

!In Chapter 7, the more general notation A = £, and B = {57 was used.
*In principle, it is not required that E be defined over I, but this is beneficial for a variety of reasons. However,
there are some reasons to be concerned about special curves like the common choice j = 1728; see Section 8.4.3.

8.2. PRELIMINARIES 127

Keys. Alice’s secret key is an integer a € {0, ..., £;* — 1}, which defines the cyclic subgroup
A= (Py+(aQa) < Folt).

Her public key is the curve E/A together with the images ¢ 4 (Pg), v 4(Q) of Bob’s public
basis under her (secret) isogeny ¢ 4 : Eg — Eg/A.

Bob follows the same process: his secretkey is an integer b € {0, ..., {37 — 1}, which defines a
cyclic subgroup B = (Pg + [b]Qp) < Eg[457], and his publickeyis (Eo/B, o5(Pa), ¢B(Q4))-

Key exchange. Bob takes Alice’s public key (Eo/A, v4(Pp), v4(@p)) and uses the points
contained in it to shift his secret B < Eg[{;7] to Ey/A: He obtains

B' = 0a(B) = (pa(Pp) + [blea(@p)) < (Eo/A)[L57].

This allows him to compute the shared secret (Eg/A)/B’ = Eq/(A, B).
Alice proceeds in exactly the same way: she computes A’ := ¢p(A) to obtain the shared
secret (Eg/B) /A" = Ey/(A, B).

8.2.2 —Basic observations.

Rational points. Tate’s Theorem 2.35impliesthat £ 4 and E'g have the same number of points
as Ey, thatis, (p+ 1)2. Even stronger, [Waso8, Theorem 4.4] shows that all SIDH curves E have
isomorphic groups of IF,» -rational points:

EF,:) = Z/(p+1) X Z/(p+1).

Among other things, this (together with the smoothness of p + 1) implies that logarithms in
E(F,2) can be computed in polynomial time, and very efficiently in practice, using the Pohlig—
Hellman algorithm. Similarly, the generalization to “two-dimensional discrete logarithms” —
orin other words, decomposing a pointin E([F,2) over a basis of the group of rational points —is
efficient [Suto7, Algorithm 9.3]. Hence, the information p 4 (Pg), v 4(QpB) and o g(Pa), p(Q 4)
that Alice and Bob transmit reveals much more than just the action of the secret on mere two
points: it encodes the action of ¢ 4 resp. ¢ g on the entire £ - resp. £;* -torsion.

The graph structure. As mentioned before, the set of (isomorphism classes of) SIDH curves
together with (a subset of) the rational isogenies between them can be viewed as a graph, a
very useful viewpoint for understanding and arguing about isogeny-based cryptosystems. For
example, for every finite set S C Zx9, one obtains an S-isogeny graph where the edges are
isogenies whose degree isin S; an important special caseis S = {¢} where £ is a (typically small)
prime. One can prove [Eic38] that (up toisomorphism) there are | p/12] +¢ supersingular elliptic
curves defined over Fp,, where ¢ € {0, 1,2}.3 It turns out that all of these isomorphism classes
have a representative defined over F,2, hence the SIDH protocol actually works on the graph of
all supersingular elliptic curves defined over characteristic-p fields.

Moreover, the £-isogeny graph is always connected (for p { £), and it has excellent mixing
properties [Pizgo; JD11]: Any two nodes are expected to be connected via only O(log, p) steps in
the (-isogeny graph, that is, an £©(1°8¢P) jsogeny. By counting, it is clear that one cannot hope
for faster mixing: Since the (-isogeny graph is O(¢)-regular, there are at most O(£?) nodes at
distance < d from any given pointin the graph. Setting d € (log, p) makes sure one can atleast
hope to reach all ©(p) nodes within d steps, and the theory guarantees that this is indeed true.
More careful handling of the constants in the relevant mixing bounds shows that the leading
coefficient of the O(log, p) is in fact a small constant (< 6 for reasonably-sized p), hence the

3In the SIDH setting, where p = 11 (mod 12), wehavee = 2.

128 HOW TO NOT BREAK SIDH

SIDH shared secret is close to uniformly random in the supersingular isogeny graph. On the
other hand, this is clearly not true for the public keys, which (by counting) lie in a negligibly
small subset whose density is only O(1/,/p).

Endomorphism rings. Itis a classical result of Deuring [Deug1] that the (full) endomorphism
ring of a supersingular elliptic curve defined over Fy, is (isomorphic to) a maximal order in the
quaternion algebra Bp oo ramified at p and co. In the SIDH setting,* this means there exists a
ring isomorphism from the endomorphism algebra End°(E) = End(FE) ®7 Q to the Q-algebra
Bp.co = Q ® Qi ® Qj ® Qij with multiplication rules i> = —1,j%> = —p, and ij = —ji. The
endomorphism ring End(E) is thus generated by four linearly independent elements of By, oo
which span a maximal proper subring with respect to inclusion. The most prominent example
is the SIDH starting curve Ey: y? = 3 4 x, whose endomorphism ring is generated as a ring
by the endomorphisms ¢ and (: + 7)/2, where ¢: (z,y) — (—z,+/—1-y) is an automorphism of
order4 and 7: (z,y) — (2P, yP) is the p-power Frobenius endomorphism.> Hence a Z-basis of
End(Ep) is given by (1, ¢, “5™, 15T) . Note that one can in principle, although there are usually

computational hurdles, express the endomorphisms of any other supersingular elliptic curve
over Fp, with respect to this basis: Fixing an ¢-isogeny ¢: £y — F, we get an injective ring
homomorphism

End(E) < End®(Eg) 2 Bp,co, a — ha)/L. (8.1)

Notice that evaluating an endomorphism given in this representation requires first comput-
ing an elliptic-curve point division by ¢, which typically lies in a field extension of degree Q(¢),
hence special care needs to be taken to make sure this is feasible: for instance, choose ¢ to be
powersmooth [Eis+18, Algorithm g].

Also note that End(F) has many commutative subrings, the mostimportant example being
Z|r] when E is defined over F),. In principle, an efficient commutative subring can give rise to a
subexponential quantum attack [C]S14], although it seemsjust as hard to find an endomorphism
as to break the scheme in the first place. Therefore the only known example of this idea being
useful is Z[n]. It does mean, however, that finding an isogeny to a curve defined over F;, can lead
to a subexponential quantum attack; cf. Section 8.3.1.

Notonly is the endomorphism ring isomorphic to a maximal quaternion order, but the Deur-
ing correspondence also works in the other direction: there is a bijection between the set of super-
singular elliptic curves over Fp,, up to isomorphism, and the set of “oriented” maximal orders in
Bp,so [V0i18, Section 42.4]. Simply put, this means for every maximal order O C Bp, o there is
aset{j,j'} C F,2 such that curves with j-invariant j or j' have endomorphism ring O; further-
more, we have j = j¥, hence there is either one such curve, which can be defined over F,, or the
two curves are both defined over)2 and Galois conjugates of each other.

Moreover, this correspondence is categorical: Fixing a supersingular elliptic curve Ey as a
base object, every (-isogeny a: Eyg — E corresponds to aleft® ideala C End(Ep) of norm £, and
vice-versa (up to post-composition with isomorphisms) [Voi18, Section 42.3]. The codomain F
is determined up to isomorphism by the left-ideal class of a, hence finding different representat-
ives of an ideal class corresponds to finding different isogenies between two fixed curves. Not-
ably, given aleftideal a C Ey, itis easy to find the endomorphism ring of the image curve of the

4The technical condition hereis p = 3 (mod 4); the other cases are slightly different but not harder in principle.

5To seewhy (t+7)/2is an (integral) endomorphism of E, note that the affine 2-torsion points of E are all of the
form (€, 0) where 3 +¢ = 0,hence £ € {0, +£+v/—1}. Since&P = —&,wehave (1+7)(£,0) = (—&,0)+(€P,0) =
[2](=¢,0) = oo.

6Since conjugation swaps left and right multiplication, one could equivalently use right ideals.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM 129

corresponding isogeny: Under the embedding End(Ep) < Bp,oc given in (8.1), it is isomorphic
to another maximal order of By, o, and in fact, it turns out that the right order is the adequately
named right order

Opr(a)={r € Bpoo |ar Ca}.

It may suggest itself at first that this correspondence will be very useful as an attack tool
against SIDH. However, it seems that one simply cannot efficiently transcend into this alternate,
equivalent reality: All known approaches to compute the endomorphism ring of a given curve
essentially go through first finding an isogeny to either another curve with known endomorph-
ism ring (such that one can compute the right order as above), or to itself [Kohg6].

8.2.3 — Attack avenues against SIDH. The obvious way to attack SIDH is to try to recover
one of the secret isogenies ¢ 4, ¢ g from the public information. (We will often, without loss of
generality, silently assume that we are attacking Alice’s key.) A priori, it may seem like one re-
quires one of the actual secretisogenies; however, Galbraith—Petit—Shani-Ti have demonstrated
that any isogeny v between Eq and one of { E 4, Ep } is enough to recover the right isogeny and
therefore break the system [GPST16]. The reduction makes use of the fact that the secret iso-
genies in SIDH are relatively “short” compared to a “random” isogeny between two given curves:
There are ©(,/p) different secrets, while the graph sizeis ©(p), hence only an exponentially small
fraction of SIDH curves can be reached from the starting curve by isogenies shorter than the
secret keys. This observation is combined with the fact thatisogenies from F correspond to left
ideals of End(Ey), and isogeny codomains correspond to left-ideal classes (see Section 8.2.2): The
reduction first finds the ideal defining the known isogeny v: Ey — E 4, then employs lattice-
basis reduction to compute an equivalent ideal of small norm. Except for rare cases of bad luck,
this small-norm ideal corresponds to the secret isogeny ¢ 4. The “pure” problem of finding an
isogeny between Ey and a given SIDH curve is discussed in Section 8.3.

The isogeny-finding problem does not capture the full power of an attacker in SIDH. In ad-
dition to the target curve, attackers also see the action of the secret isogeny on a coprime tor-
sion subgroup, represented by the action on a few points that span said subgroup. These aux-
iliary points are the main innovation of SIDH, and the new setting they enable is the reason
for SIDH’s improved quantum security over other isogeny-based key exchanges [Couo6; RSo6;
Cas+18], but the additional information that Alice and Bob disclose may also be worrisome: Petit
has obtained cryptanalysis results on modified variants of SIDH using these extra points [Pet17].
(Un)fortunately, it seems like there is little hope for his approach to apply to the original, bal-
anced parameters; see Section 8.4.3. Other potential (but fruitless) approaches based on the
extra points are outlined in Section 8.4.

Finally, note that analogously to the classical Diffle-Hellman setting, there is of course also
the potential for an attack that obtains the shared secret without first recovering one party’s
secret key. Similar to the classical case, we are not aware of any ideas to attack SIDH from this
direction.

8.3 — Failed attempts to attack the pure isogeny problem
The pure isogeny problem for supersingular elliptic curves is:

Given supersingular E and E'/F 2, optionally with the guarantee that £ and E’
are £"-isogenous for some £, compute an isogeny ¢: E — E’.

We refer to this as the “pure” isogeny problem because the hardness assumption on which SIDH
is based features a stronger attacker: they also have knowledge of the images of some points

130 HOW TO NOT BREAK SIDH

under the isogenies ¢ 4, ¢ g in addition to just the domain and the codomains. Moreover, recall
from Section 8.2.3 that it is sufficient to recover an isogeny between Fj and one of F 4, Fg; the
correctisogeny can then (usually) be found by employing ideal-based techniques.

The best known classical or quantum attack to find an isogeny Fg — E 4 in the SIDH setting
is essentially a generic approach searching for Alice’s secretisogeny ¢ 4: compute and store ran-
dom walks of length ny /2 in the ¢4 -isogeny graph starting from Fy and E4 until two of them
“meet in the middle”; this algorithm takes time O(p'/*) as Alice’s isogeny from Ej to E4 has
degree approximately p/%. In practice, the memory cost of this algorithm is prohibitively high,
so parallel versions of van Oorschot—Wiener’s collision search algorithm with almost the same
theoretical time complexity but much better time-space tradeoffs and hence superior real-world
performance, are considered to be the best known attack against SIDH/SIKE [Adj+18; Cos+20].
Note that Tani’s O(p'/%) quantum algorithm [Tano7] for the claw-finding problem is deemed
unlikely to outperform the classical algorithm of van Oorschot—Wiener:

Our conclusion is that an adversary with enough quantum memory to run Tani’s
algorithm with the query-optimal parameters could break SIKE faster by using the
classical control hardware to run van Oorschot-Wiener. [JS19]

8.3.1—Finding the F;,-subgraph. The idea of using the F;,-subgraph to get a better clas-
sical attack on the pure isogeny problem was first studied by Delfs and Galbraith [DG16]. Biasse,
Jao, and Sankar [B]S14] later” applied the same ideas to construct a more efficient quantum al-
gorithm. The (other) attempts at exploiting the [, -subgraph presented here have certainly been
considered by many people, but not written down as it has not (yet?) led to an improved attack
on SIDH.

Trying to find a path to a curve in the Fp-subgraph turns out to be common theme in at-
tempts at attacking SIDH, so we now discuss the consequences such an algorithm would have.

Definition 8.2. Let S be a set of nodes in the SIDH {-isogeny graph G, and let S’ C S be the subset of
those nodes that are defined over Fp,. We define the Fy,-subgraph of G to be the full subgraph of G with
nodes from S’.

Fundamentally, the IF;,-subgraph forms a distinguished subset of the full isogeny graph that is
easily recognizable once we have found it, and it is also easy to identify those edges that go to
another node inside this subgraph.

Delfs—Galbraith use this observation to split the problem of finding an ¢-isogeny between
two arbitrary curves F, E’ into two smaller subproblems: finding a path from both E and E’ to
curves defined over Fp, and then connecting these two curves by an isogeny inside the subgraph.
The composition of these three isogenies forms an isogeny F — E'.

In total, one can show that there are approximately ,/p supersingular elliptic curves defined
over Fp,. The Fp-subgraph G’ of the SIDH ¢-isogeny graph, with £ a prime, is either (if £ odd) a
disjoint union of cycles of the same length, or (if £ = 2) such a union of cycles with one single
extra leaf “hanging down” from each node in the cycles. The components of these graphs are
known as a volcanoes, and we call the set of non-leaf nodes the surface.

Note that this implies that the surface subgraph is 2-regular, hence using a single ¢-isogeny
F)-subgraph leads to a time complexity of ©(,/p) for either finding a path between two given
nodes or determining that they do not lie in the same component. Using multiple ¢ yields an

7The publication dates suggest the opposite chronology, but a preprint of [DG16] was available online on the arXiv
as early as October 2013.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM ‘ 131

improvement, though: One can show that subexponentially many ¢ are sufficient to connect all
nodes, and (under GRH) that random walks on this combined graph mix quickly [[MVog]. Thus
the usual meet-in-the-middle techniques apply, reducing the time complexity of connecting
two IF,-subgraph curves to O(p'/*). Note how thisis notbetter at attacking SIDH than the easier
meet-in-the-middle attack outlined before; this is because the isogenies in SIDH are known to be
particularly short, a property which cannot be exploited by the Delfs—Galbraith approach since
almost none of the curves on the path are defined over F,.

Moreover, finding the Fp-subgraph in the first place by brute force costs 5(\/13) The density
of that subgraph is roughly 1/,/p, hence random walks can be expected to find a curve defined
over F,, after walking approximately a number of steps that is the reciprocal of this proportion,
ie, /p.

With respect to quantum attacks, similar problems apply: Once the Fj-subgraph has been
found, isogeny walks can be interpreted as a commutative class-group action of an imaginary
quadratic number ring, and therefore two nodes can be connected using a subexponential-time
hidden-shift quantum algorithm [Kupos; Kup13]. This was first applied to isogeny graphs of
elliptic curves in [C]S14]. However, there is still no known efficient quantum algorithm to find
the IFp-subgraph, hence this does not lead to an improved attack.

An Fp-compass? As stated above, the main problem to solve is finding an isogeny to a curve
defined over Fp,. The evident brute-force approach is not cheaper than breaking SIDH “directly”
using meet-in-the-middle or collision finding, and more sophisticated methods seem out of
reach. For instance, one observation is that a curve at distance d from the Fy-subgraph in the
{-isogeny graph has an endomorphism of degree £2¢p given by walking to the F),-subgraph, ap-
plying Frobenius, and walking back. Why this may seem a promising approach for detecting the
Fp-subgraph, it runs into the same problems as always: Checking whether a curve has an en-
domorphism of a certain norm seems to boil down to simply trying to find that endomorphism,
which is infeasible unless (here) the distance d to the Fy-subgraph is already extremely small.
We have seen many similar or equivalent, but equally fruitless, attempts in this direction come
and go in the past. For example, if a curve E is close to the Fj,-subgraph, there is a short isogeny
between F and its Galois conjugate E(P), but again there is no known way to detect that isogeny
unless we are already close enough to find the F),-subgraph with a generic approach.

Other subrings? One way to interpret the Fy,-subgraph is as the subset of curves with a cer-
tain endomorphism of norm p, namely the p-power Frobenius endomorphism. Hence, oneisim-
plicitly looking for those supersingular elliptic curves whose endomorphism ring contains the
Frobenius order Z[r], and in principle the same sort of subgraph exists for other commutative
subrings, like for example Z][¢], although in this case it only consists of the single node Ey.

Finding, for instance, a bigger commutative subring than Z[x] thatis contained in almost all
endomorphism rings in the graph would potentially allow to spend less time on searching for
the associated subgraph, but still apply the subexponential quantum attack once it is found.

However, there are a number of problems associated with this approach, one fundamental
in nature and the others (as usual) computational: The embedding End(E) < Bjp, oo is highly
non-canonical. This means thateven if one was able to compute (subrings of) the endomorphism
rings of two curves, there is still no way to tell how these rings are related under the embedding
from (8.1). The usual strategy to deal with this problem in theory is to make sure the embed-
dings are always compatible when considering two isogenous curves, but without knowing an
isogeny, this of course seems impossible to do in practice. This issue does not apply to Z[r] as,

132 ‘ HOW TO NOT BREAK SIDH

given a curve E /Fp, the endomorphism 7 is always trivial to find (it is just (z,y) — (2P, y")),
and since (by definition) isogenies defined over F;,, commute with 7, we automatically have
wwi/(deg(w)) = nwziz\/(deg(d))) = 7 for all isogenies ¢»: E — E’ defined over Fp. Therefore
it is possible to identify a canonical subring of the endomorphism ring which is automatically
compatible between different I, -isogenous curves.

The computational problems are the usual: It is not clear how to tell whether a given curve
E has an endomorphism of a given norm and trace, it seems impossible to make sure these en-
domorphisms are compatible choices without first finding an isogeny between the two curves
in question, and for the quantum part of the attack it must also be efficient to evaluate the endo-
morphisms on points.

8.3.2 - Lifting to characteristic zero. It is relatively well-known that to an ordinary el-
liptic curve E/F, one can canonically associate an elliptic curve E’/Qq® with the same endo-
morphism ring (viewed as an order in a quadratic number field) — this is normally referred to
as the “canonical lift” [LST64] [Mes72, Appendix], and E is the (unique) reduction of E’.

It is possible to compute this lift, for example via Satoh’s algorithm [Satoo], albeit not ef-
ficiently for large characteristic p. Furthermore, it is functorial — we can also lift (and reduce)
isogenies. A natural question is:

Given a supersingular elliptic curve E/F,» with endomorphism ring O, is there a
way to canonically construct an elliptic curve E’/C whose endomorphism ring is
isomorphic to a (well-chosen) commutative subring of O?

Suppose for the sake of argument that such a construction is efficiently computable and that
we can also lift and reduce isogenies. Then to find a path between E; /F, and E3 /F, we could
first compute their canonical lifts Ef /Qq and E5/Qq respectively and then compute an isogeny
E} — FE),which one could subsequently hope to reduce back to Fy. As Q4 < C, the lifts £ and
F can be viewed as complex elliptic curves. As a complex elliptic curve is nothing but a torus
and an isogeny between two such curvesisjust a C-linear map, one may hope to be able to easily
compute an isogeny over C using some linear algebra.

Unfortunately, the computational methods for lifting an ordinary elliptic curve E//Fq, such
as Satoh’s [Satoo], all exploit a known endomorphism 7 on F —in their case 7 is the Frobenius
7 — and construct an elliptic curve E’/C with endomorphism algebra End®(E’) = Q(7).

For a generic supersingular elliptic curve £ /F,,2, the only endomorphisms we know of are
scalar multiplications, i.e., lie in Z. (Recall that in the SIDH case the p?-power Frobenius is just
[—p].) So even if we could lift E in a meaningful and computable way to E’ /C while preserving a
known endomorphism, we simply would not know how to find that endomorphism in the first
place (as usual).

Computing a path from a generic supersingular elliptic curve £/F,» to a curve defined over
Fp, would be helpful in this context, but then there would then be easier ways to proceed, see
Section 8.3.1.

8.3.3 — Weil restrictions. Acknowledgements. Some of the ideas in this section were discussed
with participants of the Spontaneous Isogeny Day in Leuven in October 2018. We had particu-
larly enlightening discussions on this topic with Wouter Castryck, Steven Galbraith, Joost Renes,
Ben Smith, and Fré Vercauteren (alphabetical order).

8The field Qg, which can be embedded into C, is the fraction field of Z4, which is a finite extension of the p-adic
integers Zp, which has as elements power series in p.

8.3. FAILED ATTEMPTS TO ATTACK THE PURE ISOGENY PROBLEM ‘ 133

To any (supersingular) elliptic curve E/FF,2, one can in a natural way associate a (super-
singular) principally polarizable abelian surface® W (E)/F,, called the Weil restriction.”® Modulo
(many) technical details, the fundamental idea is to interpret the defining equation of E over IF >
as a set of equations over IFp instead by plugging in, then splitting over, an Fj,-basis of IF,,». The
Weil restriction is functorial: isogenies of elliptic curves defined over IF,,» restrict to isogenies of
their Weil restrictions over F,. This means that theisogeny graph of supersingular elliptic curves
defined over IF),> can be viewed as a subgraph of the isogeny graph of supersingular principally
polarized abelian surfaces over Fy,.

The center of the F),-rational endomorphism ring Endp, (A) of an abelian variety defined
over [Fp, is is an order in Q(7), where m is the p-power Frobenius of A [Tat66, Theorem 2.

One might hope thatin fact Endy, (4) ®zQ = Q(), ashappens when dim(A) = 1. We con-
sidered what the consequences of this might be: Assume that for the Weil restriction W (E 4) of
E 4 (Alice’s public key), the Fp-rational endomorphism ring is commutative. For all but finitely
many primes ¢, we then expect that the (¢, £)-isogeny" graph of supersingular principally po-
larized abelian surfaces defined over F), is a disjoint union of cycles, as justified at the end of
this section. If there is a list £1, . .., £, such that the connected component of the union of the
(£1,01),-..,(€n,€n)-isogeny graphs contains W (Ep) and W (E 4), then the problem of finding a
path from W (Ey) to W (E 4) can be viewed as a hidden shift problem, for which, if the individual
stepsin the path, i.e., isogenies, can be efficiently computed, there is a subexponential quantum
algorithm due to Kuperberg [Kupos; Kup13].

Any hope? We need the probability of W (Ey) and W (E 4) being in the same connected com-
ponent C of the union of the (£1,41),..., (¢n,£n)-isogeny graphs to be high, which can only
happen if C contains the Weil restrictions of almost all the supersingular elliptic curves defined
over Fpo.

We expect (as justified at the end of this section) that the (¢;, ¢;)-isogeny graphs will be the
disjoint union of cycles of length O(,/p). There exist ©(p) (Weil restrictions of) supersingular
elliptic curves defined over IF,,2, so to have any chance of C' covering almost all of these, we would
need to take n to be atleast Q(,/p).

Currently we cannot compute (¢, £)-isogenies efficiently enough unless £ = 2,* so we as-
sume for the sake of argument that the complexity of a somewhat optimized algorithm to do
this would scale at least as badly as Vélu’s formulas for elliptic curves. That is, we assume that
the evaluation of an (¢, £)-isogeny takes time (¢). Since we need to take atleast Q(,/p) different
primes 4, itis then definitely not true that “the individual steps in the path, i.e. isogenies, can be
efficiently computed”.

More ideas? We considered two variations on this idea:

1. Instead of hoping that W (E 4) is in the same connected component is W (Ey), hope that
itis in the same connected component of the Weil restriction of some curve defined over
Fp. Approximately one in ,/p (Weil restrictions of) elliptic curves over F,,» are (Weil re-
strictions of) elliptic curves over FFp, so looking at one cycle of length O(,/p), i.e., just one
(¢, £)-isogeny graph, might be enough.

9To read more about principally polarized abelian varieties, see [EvMo7, Chapter 11].
1°To read more about Weil restrictions, see [DNo3].

'To read more about (£, £)-isogenies, see [CRi5].

2To read more about computing (2,2)-isogenies efficiently, see [Cos18].

134 HOW TO NOT BREAK SIDH

However, since we do not know which curve over F,, we are looking for, it seems im-
possible to phrase this as a hidden shift problem, so Kuperberg’s algorithm does not apply.

2. Recall that we assume that Endy, (W (£ 4)) is an order in Q(r), where 7 is the p-power
Frobenius on W (E,). We explain below that 7 = (g,/p, where (g is an eighth root of
unity, and that we then expect that the application of an (¢, £)-isogeny to a supersingular
principally polarized abelian surface A/F, can be viewed as the action of an ideal in the
class group cl(Og ¢, /7)) (the £ are chosen so that Og ¢,) = L[Cs+/p] locally at £). The
reason that we expect the cycles in the (¢, £)-isogeny graph to have length approximately
/P comes from this action — this is (heuristically) the size of this class group.

However Og¢, /) 1s not the largest commutative subring of EndE(A) (locally at#): Since
Frobenius commutes with every endomorphism, we could add another endomorphism to
getarank-4 Z-module, the class group of which is likely to have a higher class number. But
thisis of course equivalent to finding non-obvious endomorphisms, which, if we could do,
would lead to a much easier way of attacking SIDH, as explained in Section 8.2.2.

A couple of handwavy mathematical details. As stated above, we expect the following property,
under the assumption that Endp, (W (£ 4)) is commutative: For all but finitely many primes ¢,
the (¢, ¢)-isogeny graph of supersingular principally polarized abelian surfaces defined over F),
is a disjoint union of cycles. We also conjectured that the cycles have length Q(,/p) (subject to
some heuristics). We briefly justify our expectations here.

Suppose that £ does not divide the index [(’)@(W) : Z[w]} , where 7 is the p-power Frobenius

on W(E4). Since under our assumptions, for any supersingular abelian surface S over IF;, with
commutative Fj,-rational endomorphism ring, we have

Z[r) C End]Fp (S) € OQ(#))

it follows that every supersingular abelian surface S/IFp has endomorphism ring Og) locally
at £. An isogeny of abelian surfaces is uniquely determined by its kernel (just like with elliptic
curves). In particular, if 7 is an ideal of Endp, (S) then we define f7 to be the isogeny from S with
kernel

ﬂ ker(a).

acl

Following exactly the same proof strategy as for elliptic curves, it is believable that the class
group of Og) acts on the set of supersingular abelian surfaces over F;, with endomorphism
ring Og() via

I+ E = f1(E).

Going one step further, we suppose for the sake of argument thathorizontal (£, £)-isogenies even
come from the action of an ideal [such that ZOQ(V=p) = L. If, as in the elliptic curve case, the
results for supersingular abelian surfaces over a prime field turn out to be analogous to results
for ordinary abelian surfaces, then such an ideal would send a supersingular abelian surface
S/Fp with endomorphism ring Og () equipped with a principal polarization ¢: S — SV toa
supersingular abelian surface f{(.5) /IFp with endomorphism ring Og) equipped with a prin-
cipal polarization £¢. The analogous result for the ordinary case that we refer to here is [Mar18b,
Proposition 3.6.1].

8.4. FAILED ATTACK ATTEMPTS THAT USE THE AUXILIARY POINTS ‘ 135

If all of this holds, then the (¢, £)-isogeny graph of any prime ¢ not dividing [O@(ﬂ) : Z[ﬂ']}

that splits in Og) is a cycle. Suppose that £Og) = [I. Then the length of the cycle is given by
the order of [I] in cl(Og(r))-

Furthermore, by a theorem of Manin and Oort [Oor74, p. 116], the Frobenius 7 equals ¢,/p,
where (is a root of unity. By a theorem of Tate [Tat66, Theorem 2], our assumption that the
endomorphism algebra B = Endy, (W(E4)) ®z Qis commutative is equivalent to saying that
[B : Q] = 4,s0(= (gisin fact an eighth root of unity, and the characteristic polynomial
of Frobenius is ¢ — p?. According to standard class group heuristics [CL84], we expect that
cl(Og(¢s,/p)) is cyclic or almost cyclic, and has order Q(,/p) —hence the (¢, £)-isogeny graph,
where ¢ satisfies all of the conditions above, is heuristically speaking the disjoint union of cycles
of length approximately /p.

8.4 — Failed attack attempts that use the auxiliary points

The attacker has more information available than just two isogenous curves: They also get the
action of Alice’s and Bob’s secret isogenies @ 4 resp. ¢ g on the 477 - resp. £, -torsion. We focus
on the problem of recovering the secret from a public key. Without loss of generality, suppose
that £;* < {3° and we are attacking Alice’s publickey (E4, 0 ao(PB), 9 4(QB)).

First, note that the extra information defines the secret isogeny uniquely: Consider two dis-
tinctd-isogenies ¢, ¢: E — E’ with the same action on the m-torsion. Then ker(¢—1) D E[m],
hence deg(¢ — 1) > #ker(¢ —) > m?. On the other hand, Lemma V.1.2 of [Silog] implies
deg(¢ — 9) < 4d. Combining these bounds yields m? < 4d. In SIDH, this implies that an o3 -
isogeny is uniquely defined by its action on the £ -torsion unless the parameters are highly
unbalanced. However, no efficient way to make use of this information is known.

8.4.1—Interpolation problems. By definition, isogenies are rational maps, henceitis clear
that given enough inputs and outputs, one can in principle recover the coefficients of that ra-
tional map [GG13, Section 5.8]. One can show [Ren18, Proposition 1] that in the SIDH setting, the
isogeny ¢ 4 can be written as

ot (@y) — (f(@), coy - f'(2))

for some rational map f €)2 () of degree £;* and a constant ¢y € Fq. Therefore, being given
theaction of ¢ 4, and thereby f, on “enough” points, one might hope to recover f and thus Alice’s
secretisogeny ¢ 4.

However, this is computationally infeasible: Even printing the result of the interpolation
takes time linear in the degree, which in SIDH is exponentially large (in the bit length of the
involved objects). One might wonder whether itis possible to evaluate the function while recon-
structing it, thus circumventing the exponentially big output, but all known ways to do (polyno-
mial or rational) interpolation still take time at least linear in the degree. The only conceivable
way to succeed with this approach would be to reconstruct the rational map while at the same
time rewriting it as a composition of rational maps, such that each of these maps has a degree
polynomially small in £4. While there are of course methods to decompose polynomials and ra-
tional maps into a composition of smaller-degree maps, these algorithms require first storing
the inputin full.

Generally, the approach of rational-function interpolation seems similar in spirit to the in-
terpolation idea in the next section, except that so far we have not made any use of the group
structure underlying the rational maps in question. Since we have been working with less than

136 HOW TO NOT BREAK SIDH

all the available structure, it seems reasonable to assume that this approach is fundamentally
inferior to the ideas in the next sections.

8.4.2— Group-theoretic approaches. Perhaps the most obvious idea to make use of the
auxiliary points is to try to extrapolate the known action of ¢ 4 on the /7 -torsion to a bigger
torsion subgroup to subsequently recover (part of) the secret.

Unfortunately, it is evident that purely group-theoretic methods are doomed to fail: Let
ged(m, 457) = 1. By the structure theorem of finite abelian groups, the ;7 - and m-torsion sub-
groups of an elliptic curve are independent; i.e., there are simply no nontrivial relations between
points of {g-power order and points of order m in the curve group. (In other words, the 437 m-
torsion subgroup is an internal direct product of the 437 - and the m-torsion.) Perhaps a reliable
extrapolation is too much to ask for, but it seems that even obtaining any information about the
action on the {4 -torsion with success probability (non-negligibly) better than random guessing
seems infeasible. In a sense, this is remarkable, since elliptic curves are also equipped with a geo-
metric structure, and many purely group-theoretical morphisms defined on elliptic curve groups
donot come from an isogenies, i.e., do notrespect the geometric structure. However, nobody has
yet discovered an efficient way to exploit this.

An effective Tate’s theorem? Rather than extrapolating to a coprime torsion subgroup, one may
instead attempt to lift the action of ¢4 on the /57 -torsion to a higher {g-power torsion sub-
group. In the limit, this lifting process would yield the action of ¢ 4 on the {z-adic Tate modules
TgB (Eo).13 Write £ = (.

If one knew how to do the lifting step, this observation may inspire hope: Itis known [Silog,
Theorem 7.7] that the natural map

Homg , (Eo, Ea) ®z Z¢ — Homg , (Ty(Eo), T¢(Ea))

is an isomorphism of Z,-modules, hence the action of an isogeny defined over IF,,» on a suffi-
ciently high £*-torsion completely determines the map. While this is a priori an abstract result,
Petit [Pet17] found a way to turn this into an efficient algorithm assuming k grows big enough;
see Section 8.4.3.

However, in any case, it seems that similar obstacles asin the previous section (extrapolating
to another torsion subgroup) apply: Group-theoretically, the action on E[¢¥] can be lifted to an
action on E[¢**1]in ¢* different ways. Also taking into account the known information about
the degree (coprime to ¢), this expansion factor shrinks slightly,'* but there still is no hope to
learn anything about the action on the £°°-torsion without making use of the geometry of the
underlying elliptic curve.

8.4.3 — Constructing endomorphisms to exploit the auxiliary points. Acknowledgements.
The ideas in this section are all based on Petit’s paper [Pet17], and in particular are the result
of discussions with Dan Bernstein (who showed us the technique used below to estimate the
expected size of solutions), Tanja Lange, and Christophe Petit (alphabetical order).

BThe functor Ty is defined as the inverse limit Ty(E) = %inn E[¢™] under the evident restriction maps
[€]: E[¢"T1] — E[€™); see for instance [Silog, Section IIL.7].
Note thatif £ # 0 in the field of definition of the curve E, then Ty (E) = Zy X Zg.
4The expansion factor is smaller, but still significant, for endomorphisms with known degree and trace: Forcing the
characteristic polynomial limits the amount of choice. Concretely, there are £2 different ways to lift a known action on
the £™-torsion to the £ -torsion while satisfying a given characteristic polynomial x mod £7+1.

8.4. FAILED ATTACK ATTEMPTS THAT USE THE AUXILIARY POINTS 137

Recall that in two-party SIDH
0t = 0P ~ \/p,
corresponding to Alice’s and Bob’s secret isogenies having roughly the same degree. Petit [Pet17]
shows how to construct an endomorphism on E 4 if instead

ZgB > e’flA ,

such that the capability to evaluate this endomorphism on the £37 -torsion — which is granted
to the attacker in the SIDH setting by means of the auxiliary points (see Section 8.2.2) — allows
one to reconstruct Alice’s secret isogeny.

Petit’s attack. Following the notation of Section 8.2.2, let 7 be the p-power Frobenius on Fy and
let + be the order-4 automorphism (x,y) + (—z,v/—1 - y) on Ey. Then for any a,b,c € Z,
we have an endomorphism acw + br + ¢. € End(Ep), and using the (unknown) £, -isogeny
va: Ey — E 4 we can, for every d € Z, define the endomorphism

a=palaar+br+c)pa+d €End(E,)
of degree (or equivalently, norm)'
deg(a) = ﬁinApaz + Ei’“‘pb2 + éi{“‘ &+ d>

Of course, since the attacker does not know ¢ 4, they cannot compute « directly. However,
writing Ny = £,* and Na = /37, Petit gives conditions under which one can efficiently find
a,b,c,d € Zsuch that

NZpa? + N2pb? + N2c? + d? = eNs, (8.2)

where e is a small cofactor controlling the remaining amount of brute-force work the attacker
has to do. If Ny = ¢” is big enough relative to Ny = £;*, then ker(«), and subsequently the
secret ker(¢ 4), can be recovered from the action of ¢ 4 on the /57 -torsion in polynomial time.

Any hope for {* ~ (P ~ ,/p? We can heuristically estimate the expected size of solutions
to (8.2) as follows. Suppose we want to count solutions with e < M for some fixed bound
M. Since all the terms in (8.2) are nonnegative, they cannot be bigger than the right-hand side,
which is =~ M /p. Hence

ab< VM -p 3t egVM-pTVY dag VM -ptt.

This means the total number of possible assignments for the variables a, b, ¢, d, e is approxim-
ately

M3p~3/2,
Assuming (wrongly, but for the sake of a rough estimate) that for each such assignment, the
left- and right-hand side of (8.2) are uniformly random nonnegative integers upper bounded by
~ M /p, the expected number of solutions with e < M is seen to be about

M?’p_?’/2 _ M2p—2
M./p ’

implying that one needs to increase M to approximately p before a solution can be expected.
This means that the smallest expected solution to (8.2) features the undesirable property e = p,

!5A reader comparing this with the formula given in [Pet17, p. 15] may wonder where ¢ has gone, but the norm of this
specific endomorphism ¢is ¢ = 1.

138 HOW TO NOT BREAK SIDH

which means that in this case, Petit’s attack performs much worse than simply applying one of
the known graph-walking attacks from Section 8.3 directly. We can therefore conclude that at
least heuristically, it seems extremely unlikely that Petit’s attack can possibly apply to the actual,
balanced SIDH parameters.

Chapter g9

Quantum circuits for CSIDH

This chapter is for all practical purposes identical to the paper Quantum circuits for the CSIDH: op-
timizing quantum evaluation of isogenies [BLMP19] authored jointly with Daniel J. Bernstein, Tanja
Lange, and Chloe Martindale, which was published at Eurocrypt 2019.

9.1— Introduction

This chapter is devoted to the study of the cost of breaking CSIDH (Chapter 3) using a quantum
computer. When only considering classical attacks, CSIDH (and its predecessor scheme due to
Couveignes and Rostovtsev—Stolbunov [Couo6; RSo6], which we refer to as CRS) has publickeys
and ciphertexts only about twice as large as traditional elliptic-curve keys and ciphertexts for a
similar security level against all known pre-quantum attacks.

For comparison, the SIDH (and SIKE) isogeny-based cryptosystems [JD11; DJP14; Jao+17] are
somewhat faster than CSIDH, but they do not support non-interactive key exchange, and their
public keys and ciphertexts are 6 times larger' than in CSIDH. Furthermore, there are concerns
that the extra information in SIDH keys might allow attacks; see [Pet17] and Chapter 7.

These SIDH disadvantages come from avoiding the commutative structure used in CRS and
now in CSIDH. SIDH deliberately avoids this structure because the structure allows quantum
attacks that asymptotically take subexponential time; see below. The CRS/CSIDH key size thus
grows superlinearly in the post-quantum security level. For comparison, if the known attacks
are optimal, then the SIDH key size grows linearly in the post-quantum security level.

However, even in a post-quantum world, it is not at all clear how much weight to put on
these asymptotics. It is not clear, for example, how large the keys will have to be before the
subexponential attacks begin to outperform the exponential-time non-quantum attacks or an
exponential-time Grover search. Itis not clear when the superlinear growth in CSIDH key sizes
will outweigh the factor 6 mentioned above. For applications that need non-interactive key ex-
change in a post-quantum world, the SIDH/SIKE family is not an option, and it is important
to understand what influence these attacks have upon CSIDH key sizes. The asymptotic per-
formance of these attacks is stated in Chapter 3, butitis challenging to understand the concrete
performance of these attacks for specific CSIDH parameters.

9.1.1— Contributions. The most important bottleneck in the quantum attacks mentioned
above is the cost of evaluating the class-group action, a series of isogenies, in superposition.

"When the goal is for pre-quantum attacks to take 2* operations (without regard to memory consumption), CRS,
CSIDH, SIDH, and SIKE all choose primes p &2 2**. The CRS and CSIDH keys and ciphertexts use (approximately)
logy p A2 4 bits, whereas the SIDH and SIKE keys and ciphertexts use 6 logy p & 24 bits for 3 elements of F ;2.
There are compressed variants of SIDH that reduce 6 logy pto4logy p & 16 (see [Aza+16]) and to 3.5 logy p & 14X
(see [Cos+17] and [Zan+18]), at some cost in runtime.

140 ‘ QUANTUM CIRCUITS FOR CSIDH

Each quantum attack incurs this cost many times; see below. The goal of this chapter is to ana-
lyze and optimize this cost. We focus on CSIDH because CSIDH is much faster than CRS.

Our main result has the following shape: the CSIDH group action can be carried out in B
nonlinear bit operations (counting ANDs and ORs, allowing free XORs and NOTs) with failure
probability at most e. (All of our algorithms know when they have failed.) This implies a revers-
ible computation of the CSIDH group action with failure probability at most € using at most 2B
Toffoli gates (allowing free NOTs and CNOTs). This in turn implies a quantum computation of
the CSIDH group action with failure probability at most € using at most 14 B T'-gates (allowing
free Clifford gates). Section 9.11 reviews these cost metrics and their relationships.

We explain how to compute pairs (B, €) for any given CSIDH parameters. For example, we
show how to compute CSIDH-512 for uniform random exponent vectors in {—5, ..., 5}"% using

o 1118827416420 ~ 2* nonlinear bit operations using the algorithm of Section 9.7, or
o 765325228976 ~ 0.7 - 20 nonlinear bit operations using the algorithm of Section 9.8,

in both cases with failure probability below 2732, CSIDH-512 is the smallest parameter set con-
sidered in Chapter 3. For comparison, computing the same action with failure probability 2732
using the Jao—LeGrow—Leonardi—Ruiz-Lopez algorithm [JLLR18], with the underlying modular
multiplications computed by the same method as in Roetteler—Naehrig—Svore—Lauter [RNSL17],
would use approximately 2% nonlinear bit operations.

We exploit a variety of algorithmic ideas, including several new ideas pushing beyond the
previous state of the art in isogeny computation, with the goal of obtaining the best pairs (B, €).
We introduce a new constant-time variable-degree isogeny algorithm, a new application of the
Elligator map, new ways to handle failures in isogeny computations, new combinations of the
components of these computations, new speeds for integer multiplication, and more.

9.1.2— Impactupon quantum attacks. Kuperberg [Kupos]introduced an algorithm using
exp((log N)/2+°()) queries to the oracle and exp((log N)/2+°(1)) quantum operations on
exp((log N)'/21°() qubits to solve the order- N dihedral hidden-subgroup problem. A variant
of the algorithm due to Regev [Rego4] uses only a polynomial number of qubits, although with
aworse o(1) for the number of queries and operations. A followup paper by Kuperberg [Kup13]
introduced further algorithmic options and tradeoffs.

Childs, Jao, and Soukharev [C]S14] pointed out that these algorithms could be used to attack
CRS. They analyzed the asymptotic cost of a variant of Regev’s algorithm in this context. This
costis dominated by queries, in part because the number of queries is large but also because the
cost of each query is large. Each query evaluates the CRS group action using a superposition of
group elements.

We emphasize that computing the exact attack costs for any particular set of CRS or CSIDH
parameters is complicated and requires a lot of new work. The main questions are (1) the exact
number of queries for various dihedral-hidden-subgroup algorithms, not just asymptotics; and
(2) the exact cost of each query, again not just asymptotics.

The first question is outside the scope of this chapter. Some of the simpler algorithms were
simulated for small sizes in [Kupos], [BN18], and [BS18], but note that Kuperberg commented
in [Kupos, page 5] that his “experiments with this simulator led to a false conjecture for [the]
algorithm’s precise query complexity”.

This chapter addresses the second question for CSIDH: the concrete cost of quantum al-
gorithms for evaluating the action of the class group, which means computing isogenies of el-
liptic curves in superposition.

9.1. INTRODUCTION 141

9.1.3 — Comparison to previous claims regarding query cost. Bonnetain and Schrotten-
loher claim in [BS18, online versions 4, 5, and 6] that CSIDH-512 can be broken in “only” 27!
quantum gates, where each query uses 237 quantum gates (“Clifford+T” gates; see Section 9.11.4).

We workin the same simplified model of counting operations, allowing any number of qubits
to be stored for free. We further simplify by counting only T-gates. We gain considerable per-
formance from optimizations not considered in [BS18]. We take the best possible distribution of
input vectors, disregarding the 22 overhead estimated in [BS18]. Our final gate counts for each
query are nevertheless much higher than the 2°7 claimed in [BS18]. Even assuming that [BS18]
is correct regarding the number of queries, the cost of each query pushes the total attack cost
above 280,

The query-cost calculation in [BS18] is not given in enough detail for full reproducibility.
However, some details are provided, and given these details we conclude that costly parts of the
computation are overlooked in [BS18] in at least three ways. First, to estimate the number of
quantum gates for multiplication in Fp, [BS18] uses a count of nonlinear bit operations for mul-
tiplication in F2[z], not noticing that all known methods for multiplication in Z (never mind
reduction modulo p) involve many more nonlinear bit operations than multiplication in Fo[z].
Second, at a higher level, the strategy for computing an £-isogeny requires first finding a point of
order ¢, an important cost not noticed in [BS18]. Third, [BS18] counts the number of operations
in a branching algorithm, not noticing the challenge of building a non-branching (constant-time)
algorithm for the same task, as required for computations in superposition. Our analysis ad-
dresses all of these issues and more.

9.1.4—Memory consumption. We emphasize that our primary goal is to minimize the
number of bit operations. This cost metric pays no attention to the fact that the resulting quantum
algorithm for, e.g., CSIDH-512 uses a quantum computer with 24° qubits.

Most of the literature on quantum algorithms pays much more attention to the number of
qubits. This is why [C]JS14], for example, uses a Regev-type algorithm instead of Kuperberg’s
algorithm. Similarly, [Cas+18] takes Regev’s algorithm “as a baseline” given “the larger memory
requirement” for Kuperberg’s algorithm.

An obvious reason to keep the number of qubits under control is the difficulty of scaling
quantum computers up to a huge number of qubits. Post-quantum cryptography starts from the
assumption that there will be enough scalability to build a quantum computer using thousands
of logical qubits to run Shor’s algorithm, but this does not imply that a quantum computer with
millions of logical qubits will be only 1000 times as expensive, given limits on physical chip size
and costs of splitting quantum computation across multiple chips.

On the other hand, [BS18] chooses Kuperberg’s algorithm, and claims that the number of
qubits used in Kuperberg’s algorithm is not a problem:

The algorithm we consider has a subexponential memory cost. More precisely, it
needs exactly one qubit per query, plus the fixed overhead of the oracle, which can
be neglected.

Concretely, for CSIDH-512, [BS18, online versions 1, 2, 3] claim 229 qubits, and [BS18, online
versions 4, 5, 6] claim 23! qubits. However, no justification is provided for the claim that the
number of qubits for the oracle “can be neglected”. There is no analysis in [BS18] of the number
of qubits used for the oracle.

We are not saying that our techniques need 2*° qubits. On the contrary: later we mention
various ways in which the number of qubits can be reduced with only moderate costs in the

240

142 ‘ QUANTUM CIRCUITS FOR CSIDH

number of operations. However, one cannot trivially extrapolate from the memory consumption
of CSIDH software (a few kilobytes) to the number of qubits used in a quantum computation.
The requirement of reversibility makes it more challenging and more expensive to reduce space,
since intermediate results cannot simply be erased. See Section 9.11.3.

Furthermore, even if enough qubits are available, simply counting qubit operations ignores
critical bottlenecks in quantum computation. Fault-tolerant quantum computation corrects er-
rors in every qubit at every time step, even if the qubit is merely being stored; see Section 9.11.5.
Communicating across many qubits imposes further costs; see Section 9.11.6. It is thus safe to
predict that the actual cost of a quantum CSIDH query will be much larger than indicated by
our operation counts. Presumably the gap will be larger than the gap for, e.g., the AES attack
in [GLRS16], which has far fewer idle qubits and much less communication overhead.

Acknowledgements. Thanks to Bo-Yin Yang for suggesting factoring the average over vectors
of the generating function in Section 9.7.3. Thanks to Joost Renes for his comments.

9.2 — Overview of the computation

We recall the definition of the CSIDH group action, focusing on the computational aspects of the
concrete construction rather than discussing the general case of the underlying algebraic theory.

Parameters. The only parameter in CSIDH is a prime number p of the formp =441 --- €, — 1,
where ¢1 < -+ < £y are (small) odd primes and n > 1. Note thatp = 3 (mod 8) andp > 3.

Notation. For each A € F,, with A2 # 4, define E 4 as the Montgomery curve y* = 234 A2? +
over . This curve E 4 is supersingular, meaning that #E4(Fp) = 1 (mod p), if and only if it
has trace zero, meaning that #E 4 (Fp) = p + 1. Here E 4 (Fp) means the group of points of E4
with coordinates in F), including the neutral element at co; and #E 4 (F) means the number of
points.

Define Sj, as the set of A such that E4 is supersingular. For each A € Sy and eachi €
{1,...,n}, there is a unique B € Sp such that there is an ¢;-isogeny from E4 to Ep whose
kernel is E 4 (Fp)[¢;], the set of points Q@ € E4(Fp) with £;,QQ = 0. Define £;(A) = B. One
can show that £; is invertible: specifically, [,i_l (A) = —L;(—A). Hence L5 is defined for each
integer e.

Inputs and output. Given an element A € S and alist (ey, ..., en) of integers, the CSIDH
group action computes L7 (L2 (- - (L7 (A))--+)) € Sp.

9.2.1— Distribution of exponents. The performance of our algorithms depends on the dis-
tribution of the exponent vectors (e1, . . ., en), which in turn depends on the context.

Constructively, [Cas+18] proposes to sample each ¢; independently and uniformly from a
small range {—C, ..., C}. For example, CSIDH-512 in [Cas+18] has n = 74 and uses the range
{—5,...,5}, sothere are 117* ~ 22°¢ equally likely exponent vectors. We emphasize, however,
that all known attacks actually use considerably larger exponent vectors. This means that the
distribution of exponents (eq, .. ., e,) our quantum oracle has to process is not the same as the
distribution used constructively.

The first step in the algorithms of Kuperberg and Regev, applied to a finite abelian group G, is
to generate a uniform superposition over all elements of G. The CRS and CSIDH schemes define
amap from vectors (e1, ..., en) € Z" toelements [- - - [* of the ideal-class group G. This map
has a high chance of being surjective but it is far from injective: its kernel is a lattice of rank n.
Presumably taking, e.g., 1774 length-74 vectors with entries in the range {8, . . ., 8} produces a

9.2. OVERVIEW OF THE COMPUTATION 143

close-to-uniform distribution of elements of the CSIDH-512 class group, but the literature does
not indicate how Kuperberg’s algorithm behaves when each group element is represented as
many different strings.

In his original paper on CRS, Couveignes [Couo6] suggested instead generating a unique
vector representing each group element as follows. Compute a basis for the lattice mentioned
above; on a quantum computer this can be done using Shor’s algorithm [Shog7a] which runs in
polynomial time, and on a conventional computer this can be done using Hafner and McCurley’s
algorithm [HM89] which runs in subexponential time. This basis reveals the group size #G and
an easy-to-sample set R of representatives for G, such as {(e1,0,...,0) : 0 < e; < #G} in the
special case that I} generates G; for the general case see, e.g., [Micot, Section 4.1]. Reduce each
representative to a short representative, using an algorithm that finds a close lattice vector. If
this algorithm is deterministic (for example, if all randomness used in the algorithm is replaced
by pseudorandomness generated from the input) then applying it to a uniform superposition
over R produces a uniform superposition over a set of short vectors uniquely representing G.

The same idea was mentioned in the Childs—Jao—Soukharev paper [C]S14] on quantum at-
tacks against CRS, and in the description of quantum attacks in Chapter 3. However, close-vector
problems are not easy, even in dimensions as small as 74. Bonnetain and Schrottenloher [BS18]
estimate that CSIDH-512 exponent vectors can be found whose 1-norm is 4 times larger than
vectors used constructively. They rely on a very large precomputation, and they do not justify
their assumption that the 1-norm, rather than the co-norm, measures the cost of a class-group
action in superposition. Jao, LeGrow, Leonardi, and Ruiz-Lopez [JLLR18] present an algorithm
that guarantees (1ogp)o(1) bits in each exponent, i.e., in the co-norm, but this also requires a
subexponential-time precomputation, and the exponents appear to be rather large.

Perhaps future research will improve the picture of how much precomputation time and per-
vector computation time is required for algorithms that find vectors of a specified size; or, al-
ternatively, will show that Kuperberg-type algorithms can handle non-unique representatives
of group elements. The best conceivable case for the attacker is the distribution used in CSIDH
itself, and we choose this distribution as an illustration in analyzing the concrete cost of our
algorithms.

9.2.2— Verification of costs. To ensure that we are correctly computing the number of bit
operations in our group-action algorithms, we have built a bit-operation simulator, and imple-
mented our algorithms inside the simulator. The simulator is available from https://quantum.
isogeny.org/software.html.

The simulator has a very small core that implements — and counts the number of — NOT,
XOR, AND, and OR operations. Higher-level algorithms, all the way from basicinteger arithmetic
up through isogeny computation, are built on top of this core.

The core also encapsulates the values of bits so that higher-level algorithms cannot inspect
those values by accident. There is an explicit mechanism to break the encapsulation so that out-
putvalues can be checked against separate computations in the Sage computer-algebra system.

9.2.3 — Verification of failure probabilities. Internally, each of our algorithms computes
the group action by moving the exponent vector (eq, ..., en) step by step towards 0. The al-
gorithm fails if the vector does not reach 0 within the specified number of iterations. Analyzing
the failure probability requires analyzing how the distribution of exponent vectors interacts with
the distribution of curve points produced inside the algorithm; each e; step relies on finding a
point of order ¢;.

https://quantum.isogeny.org/software.html
https://quantum.isogeny.org/software.html

144 ‘ QUANTUM CIRCUITS FOR CSIDH

We mathematically calculate the failure probability in a model where each generated curve
point has probability 1 —1/¢; of having order divisible by £;, and where these probabilities are all
independent. The model would be exactly correct if each point were generated independently
and uniformly at random. We actually generate points differently, so there is a risk of our failure-
probability calculations being corrupted by inaccuracies in the model. To address this risk, we
have carried out various point-generation experiments, suggesting that the model is reasonably
accurate. Even if the modelis inaccurate, one can compensate with a minor increase in costs. See
Sections 9.4.3 and 9.5.2.

There is a more serious risk of errors in the failure-probability calculations that we carry out
within the model. To reduce this risk, we have carried out 107 simple trials of the following
type for each algorithm: generate a random exponent vector, move it step by step towards 0 the
same way the algorithm does (in the model), and see how many iterations are required. The
observed distribution of the number of iterations is consistent with the distribution that we cal-
culate mathematically. Of course, if there is a calculation error that somehow affects only very
small probabilities, then this error will not be caught by only 107 experiments.

9.2.4 — Structure of the computation. We present our algorithms from bottom up, start-
ing with scalar multiplication in Section 9.3, generation of curve points in Section 9.4, compu-
tation of £; in Section 9.5, and computation of the entire CSIDH group action in Sections 9.6,
9.7, and 9.8. Lower-level subroutines for basic integer and modular arithmetic appear in Ap-
pendices 9.12 and 9.13 respectively.

Various sections and subsections mention ideas for saving time beyond what we have imple-
mented in our bit-operation simulator. These ideas include low-level speedups such as avoid-
ing exponentiations in inversions and Legendre-symbol computations (see Section 9.13.4), and
higher-level speedups such as using division polynomials (Section 9.9) and/or modular poly-
nomials (Section 9.10) to eliminate failures in the computation of £; for small primes. All of
the specific bit-operation counts that we state, such as the 1118827416420 ~ 24°
operations mentioned above, have been fully implemented.

nonlinear bit

9.3 — Scalar multiplication on an elliptic curve

This section analyzes the costs of scalar multiplication on the curves used in CSIDH: supersin-
gular Montgomery curves E4 : y? =2 + Az? + z over Fp.

For CSIDH-512, our simulator shows (after our detailed optimizations; see Appendices 9.12
and 9.13) that a squaring S in F, can be computed in 349596 nonlinear bit operations, and that
a general multiplication M in F, can be computed in 447902 nonlinear bit operations, while
addition in F,, takes only 2044 nonlinear bit operations. We thus emphasize the number of S
and M in scalar multiplication (and in higher-level operations), although in our simulator we
have also taken various opportunities to eliminate unnecessary additions and subtractions.

9.3.1—How curves are represented. We consider two options for representing F 4. The
affine option uses A € F), to represent E4. The projective option uses Ag, A1 € Fp, with
Ag # 0, torepresent E4 where A = A; /Ag.

The formulas to produce a curve in Section 9.5 naturally produce (A1, Ag) in projective form.
Dividing A; by Ag to produce A in affine form costs an inversion and a multiplication. Staying
in projective form is an example of what Section 9.13.5 calls “eliminating inversions”, but this
requires some extra computation when A is used, as we explain below.

The definition of the class-group action requires producing the output A in affine form at

9.3. SCALAR MULTIPLICATION ON AN ELLIPTIC CURVE 145

the end of the computation. It could also be beneficial to convert each intermediate A to affine
form, depending on the relative costs of the inversion and the extra computation.

9.3.2— How points are represented. Asin [Mil85, page 425, last paragraph] and [Mon87,
page 261], we avoid computing the y-coordinate of a point (z, y) on E 4. This creates some am-
biguity, since the points (z,y) and (z, —y) are both represented as « € F, but the ambiguity
does not interfere with scalar multiplication.

We again distinguish between affine and projective representations. As in [Bero6], we rep-
resent both (0, 0) and the neutral element on E 4 as z = 0, and (except where otherwise noted)
we allow X/0, including 0/0, as a projective representation of z = 0. The projective represent-
ation thus uses X, Z € Fy, torepresentz = X/Z if Z # 0,orz = 0if Z = 0. These definitions
eliminate branches from the scalar-multiplication techniques that we use.

9.3.3— Computing nP. We use the Montgomery ladder to compute nP, given a b-bit ex-
ponent n and a curve point P. The Montgomery ladder consists of b “ladder steps” operating
on variables (X2, Z2, X3, Z3) initialized to (1,0, 21, 1), where z] is the z-coordinate of P. Each
ladder step works as follows:

e Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit in iteration i is bit
np_1—; of n. This means computing X2 ¢ X3, ANDing each bit with the condition bit,
and XORing the result into both X5 and X3; and similarly for Zs and Zs.

o ComputeY = Xo — Zo, Y2 T = Xo+ Z5, T, X4 = T?Y? E=T%2-Y?% and Z4 =
E(Y? + ((A + 2)/4)E). This is a point doubling: it uses 2S + 3M and a few additions
(counting subtractions as additions). We divide A + 2 by 4 modulo p before the scalar
multiplication, using two conditional additions of p and two shifts.

o Compute C' = X3+ Z3, D = X3 — Z3, DT, CY, X5 = (DT + CY)?, and Zs = 21 (DT —
CY)?2. This is a differential addition: it also uses 2S + 3M and a few additions.

o Set (X2, Z2, X3, Z3) < (X4, Z4, X5, Zs).

¢ Conditionally swap (X2, Z3) with (X3, Z3), where the condition bitis again n,_1_;. We
merge this conditional swap with the conditional swap at the beginning of the next iter-
ation by using ny,_;_; ® np_;_o as condition bit.

Then n P has projective representation (X2, Z2) by [BL17, Theorem 4.5]. The overall costis 4bS +
6bM plus a small overhead for additions and conditional swaps.

Representing the input point projectively as X /Z; means computing X5 = Z; (DT +CY)?
and Zs = X1 (DT — CY)?, and starting from (1,0, X1, Z1). This costs bM extra. Beware that
[BL17, Theorem 4.5] requires Z; # 0.

Similarly, representing A projectively as A; /A means computing X4 = T2(449Y?) and
Zy = E(4A0Y? + (A1 4 2A0)E), after multiplying Y2 by 4A4. This also costs bM extra.

Other techniques. The initial Zo = 0 and Z3 = 1 (for an affine input point) are small, and
remain small after the first conditional swap, saving time in the next additions and subtractions.
Our framework for tracking sizes of integers recognizes this automatically. The framework does
not, however, recognize that half of the output of the last conditional swap is unused. We could
use dead-value elimination and other standard peephole optimizations to save bit operations.
Montgomery [Mon87, page 260] considered computing many scalar multiplications at once,
using affine coordinates (e.g., o = X2/Z2), for intermediate points inside each scalar multi-
plication and batching inversions across the scalar multiplications. This could be slightly less

146 ‘ QUANTUM CIRCUITS FOR CSIDH

expensive than the Montgomery ladder for large b, depending on the S/M ratio. Our compu-
tation of a CSIDH group action involves many scalar multiplications, but not in large enough
batches to justify considering affine coordinates for intermediate points. Computing the group
action for a batch of inputs might change the picture, but for simplicity we focus on the problem
of computing the group action for one input.

A more recent possibility is scalar multiplication on a birationally equivalent Edwards curve.
For large b, sliding-window Edwards scalar multiplication is somewhat less expensive than the
Montgomery ladder; see generally [BLo8] and [Hisio]. On the other hand, for constant-time
computations it is important to use fixed windows rather than sliding windows. Despite this
difficulty, we estimate that small speedups are possible for b = 512.

9.3.4— Computing P,2P,3P,...,kP. An important subroutine in isogeny computation
(see Section 9.5) is to compute the sequence P, 2P, 3P, ..., kP for a constantk > 1.

We compute 2P by a doubling, 3P by a differential addition, 4P by a doubling, 5P by a dif-
ferential addition, 6P by a doubling, etc. In other words, each multiple of P is computed by
the Montgomery ladder as above, but these computations are merged across the multiples (and
conditional swaps are eliminated). This takes 2(k — 1)S 4 3(k — 1)M for affine P and affine A.
Projective P adds | (k — 1)/2]M, and projective A adds |k/2|M.

We could instead compute 2P by a doubling, 3P by a differential addition, 4P by a differ-
ential addition, 5P by a differential addition, 6P by a differential addition, etc. This again takes
2(k — 1)S + 3(k — 1)M for affine P and affine A, but projective P and projective A now have
different effects: projective P adds (kK — 2)M if k > 2, and projective A adds M if kK > 2. The
choice here also has an impact on metrics beyond bit operations: doublings increase space re-
quirements but allow more parallelism.

9.4 — Generating points on an elliptic curve

This section analyzes the cost of several methods to generate a random point on a supersingular
Montgomery curve E4 : y?> = 23 4+ Az? + z, given A € F,. As in Section 9.2, p is a standard
prime congruent to 3 modulo 8.

Sometimes one instead wants to generate a point on the twist of the curve. The twist is the
curve —y? = 2% + Ax? 4 over Fp; note that —1is a non-square in F,. This curve is isomorphic
to E_ 4 by themap (z,y) — (—=z, y). Beware that there are several slightly different concepts of
“twist” in the literature; the definition here is the most useful definition for CSIDH, as explained
in [Cas+18].

9.4.1—Random point on curve or twist. The conventional approach is as follows: gener-
ate a uniform random z € Fp; compute z° + Az? + z; computey = (2> + Az? + 2)(PHt1/4: ang
check thaty? = 2% + Az? + =

One always has y* = (2% + Az? + 2)P*! = (2% + A2? + 2)% so +y? = 2° + A2® + z. About
half the time, 2 will match 3 + Az? + z;1i.e., (z, y) will be a point on the curve. Otherwise (z, y)
will be a point on the twist.

Since we work purely with z-coordinates (see Section 9.3.2), we skip the computation of y.
However, we still need to know whether we have a curve point or a twist point, so we compute
the Legendre symbol of #3 + Az? + x as explained in Section 9.13.4.

The easiest distribution of outputs to mathematically analyze is the uniform distribution
over the following p + 1 pairs:

e (x,+1) where z represents a curve point;

9.4. GENERATING POINTS ON AN ELLIPTIC CURVE ‘ 147

e (x,—1) where z represents a twist point.

One can sample from this distribution as follows: generate a uniform random u € Fp U {o0};
setz to uifu € Fp or to 0if u = co; compute the Legendre symbol of 23 + Az? + z; and replace
symbol O with +1ifu = 0or —1ifu = oo.

For computations, it is slightly simpler to drop the two pairs with z = 0: generate a uniform
random = € F, and compute the Legendre symbol of the value 23 + Az? + z. This generates a
uniform distribution over the remaining p — 1 pairs.

9.4.2—Random point on curve. Whatif twist points are useless and the goalis to produce
a point specifically on the curve (or vice versa)? One approach is to generate, e.g., 100 random
curve-or-twist points as in Section 9.4.1, and select the first point on the curve. This fails with
probability 1/21%0_ If a computation involves generating 2'° points in this way then the overall
failure probabilityis 1 — (1 — 1/2100)210 ~ 1/2%. One can tune the number of generated points
according to the required failure probability.

We save time by applying “Elligator” [BHKL13], specifically the Elligator 2 map. Elligator 2
is defined for all the curves E4 that we use, except the curve Ey, which we discuss below. For
each of these curves FE 4, Elligator 2 is a fast injective map from {2, 3, ..., (p — 1)/2} to the set
E 4(Fp) of curve points. This produces only about half of the curve points; see Section 9.5.2 for
analysis of the impact of this nonuniformity upon our higher-level algorithms.

Here are the details of Elligator 2, specialized to these curves, further simplified to avoid com-
puting y, and adapted to allow twists as an option:

e Input A € Fj, with A2 # 4and A # 0.

e Inputs € {1, —1}. This procedure generates a pointon E4 if s = 1, or on the twist of E 4
ifs=—1.

e Inputu € {2,3,...,(p—1)/2}.

e Computewv = A/(u? —1).

e Compute ¢, the Legendre symbol of v + Av? + v.
e Compute z asvif e = s, otherwise —v — A.

To see that this works, note first that v is defined since u? # 1, and is nonzero since A # 0.
One can also show that A% — 41is nonsquare for all of the CSIDH curves, so w34+ A + v #0,
soeislor—1.Ife = sthenz = vsoa® + Az? + z is a square for s = 1 and a nonsquare
fors = —1. Otherwisee = —sandz = —v — Asoz® 4+ Az? + 2 = —u?(v® + Av? +),
which is a square for s = 1 and a nonsquare for s = —1. This uses that v and —v — A satisfy
(—v— A2+ A(—v—A)+1=v>+Av+1and —v — A = —u?v.

The (p — 3)/2 different choices of u produce (p — 3)/2 different curve points, but we could
produce any particular z output twice since we suppress y.

The case A = 0. One way to extend Elligator 2 to the curve Ey is to setv = u when A = 0
instead of v = A/(u? —1). The point of the construction of v is that 2> + Az? + 2 forz = —v— A
is a non-square times v> 4+ Av? + v, i.e., that (—v — A) /v is a non-square; this is automatic for
A =0, since —1is anon-square.

We actually handle Ey in a different way: we precompute a particular base point on Ejy
whose order is divisible by (p + 1)/4, and we always return this pointif A = 0. This makes our
higher-level algorithms slightly more effective (but we disregard this improvementin analyzing
the success probability of our algorithms), since this point guarantees a successful isogeny com-

148 ‘ QUANTUM CIRCUITS FOR CSIDH

putation starting from Ep; see Section 9.5. The same guarantee removes any need to generate
other points on Ey, and is also useful to start walks in Section 9.10.

9.4.3 —Derandomization. Rather than generating random points, we generate a determ-
inistic sequence of points by taking « = 2 for the first point, u = 3 for the next point, etc. We
precompute the inverses of 1 — 22,1 — 32, etc,, saving bit operations.

An alternative, saving the same number of bit operations, is to precompute inverses of 1 — 2
for various random choices of u, embedding the inverses into the algorithm. This guarantees
that the failure probability of the outer algorithm for any particular input A, as the choices of u
vary, is the same as the failure probability of an algorithm that randomly chooses v upon demand
for each A.

We are heuristically assuming that failures are not noticeably correlated across choices of A.
To replace this heuristic with a proof, one can generate the u sequence randomly for each input
A. This randomness, in turn, may be replaced by the output of a stream cipher. The stream-
cipher inputs are (1) A as a nonce, and (2) a randomly chosen key used for all A. This output is
indistinguishable from true randomness if the cipher is secure. In this setting one cannot pre-
compute the reciprocals of 1 — u2, but one can still batch the inversions.

9.5— Computing an /-isogenous curve

This section analyzes the cost of computing a single isogeny in CSIDH. There are two inputs: A,
specifying a supersingular Montgomery curve E 4 over Fp; and 4, specifying one of the odd prime
factors £; of (p+1)/4 = 41 - - - £n. The outputis B = L£;(A). We abbreviate ¢; as £ and L; as L.

Recall that B is characterized by the following property: there is an £-isogeny from F 4 to
Ep whose kernelis E 4 (Fp)[£]. Beyond analyzing the costs of computing B = £(A), we analyze
the costs of applying the ¢-isogeny to a point on F 4, obtaining a point on E'g. See Section 9.5.4.

The basic reason that CSIDH is much faster than CRS is that the CSIDH construction allows
(variants of) Vélu’s formulas [Vél71; CH17; Ren18] to use points in E4 (Fp), rather than points
defined over larger extension fields. This section focuses on computing B via these formulas.
The cost of these formulas is approximately linear in ¢, assuming that a point of order £is known.
There are two important caveats here:

e Finding apointof order £is noteasy to do efficiently in constant time; see Section 9.5.1. We
follow the obvious approach, namely taking an appropriate multiple of a random point;
but this is expensive — recall from Section 9.3 that a goo-bit Montgomery ladder costs
2000S + 3000M when both A and the input point are affine — and has failure probability
approximately 1/¢.

e In some of our higher-level algorithms, is a variable. Then £ = ¢; is also a variable, and
Vélu’s formulas are variable-time formulas, while we need constant-time computations.
Generic branch elimination produces a constant-time computation taking time approx-
imately linear in ¢; + ¢2 + - - - + £n, which is quite slow. However, we show how to do
much better, reducing ¢1 + 2 + - - - + € tomax{¥¢1, €2, . . ., £n }, by exploiting the internal
structure of Vélu’s formulas. See Section 9.5.3.

There are other ways to compute isogenies, as explored in [Kie17; DKS18]:

e The “Kohel” strategy: Compute a univariate polynomial whose roots are the z-coordinates
of the points in E4 (Fp)[¢]. Use Kohel’s formulas [Kohg6, Section 2.4] to compute an iso-
geny corresponding to this polynomial. This strategy is (for CSIDH) asymptotically slower

9.5. COMPUTING AN /-ISOGENOUS CURVE 149

than Vélu’s formulas, but could nevertheless be faster when £ is very small. Furthermore,
this strategy is deterministic and always works.

e The “modular” strategy: Compute the possible j-invariants of Eg by factoring modular
polynomials. Determine the correct choice of B by computing the corresponding isogeny
kernels or, on subsequent steps, simply by not walking back.

We analyze the Kohel and modular strategies in Sections 9.9 and 9.10.

9.5.1—Finding a point of order /. We now focus on the problem of finding a point of order
£in E 4 (Fp). By assumption (p+1)/4is a product of distinct odd primes 41, . . ., £n; £ = £; is one
of those primes; and #F 4 (Fp) = p + 1. One can show that E4 (Fp) has a point of order 4 and is
thus cyclic:
EfA(Fp) X Z/(p+ 1) XZ/AXZL/l X -+ X L[ln .

We can try to find a point Q of order £in E 4 (Fp) as follows:
o Pick arandom point P € E 4(F), as explained in Section 9.4.

e Compute a “cofactor” (p + 1)/¢. To handle the case ¢ = ¢; for variable i, we first use bit
operations to compute the list /1, . . ., £,, where £; = {; for j # i and £; = 1; we then use
a product tree to compute ¢} - - - £},. (Computing (p + 1) /£ by a general division algorithm
could be faster, but the product tree is simpler and has negligible cost in context.)

e Compute @ = ((p + 1)/¢) P as explained in Section 9.3.

~

If Pis auniform random element of E 4 (F) then @ is a uniform random element of E 4 (F)[¢] =
Z/¢. The order of Q is thus the desired ¢ with probability 1 — 1/¢. Otherwise Q is oo, the neutral
element on the curve, which is represented by = 0. Checking for z = 0 is a reliable way to
detect this case: the only other point represented by z = 0is (0, 0), which is outside F 4 (Fp)[¢]
since £is odd.

Different concepts of constant time. Beware that there are two different notions of “con-
stant time” for cryptographic algorithms. One notion is that the time for each operation is in-
dependent of secrets. This notion allows the CSIDH user to generate a uniform random element
of E4(Fp)[f] and try again if the point is co, guaranteeing success with an average of £/(¢ — 1)
tries. The time varies, but the variation is independent of the secret A.

A stricter notion is that the time for each operation is independent of all inputs. The time
depends on parameters, such as p in CSIDH, but does not depend on random choices. We em-
phasize thata quantum circuit operating on many inputs in superposition is, by definition, using
this stricter notion. We thus choose the sequence of operations carried out by the circuit, and
analyze the probability that this sequence fails.

Amplifying the success probability. Having each 3-isogeny fail with probability 1/3, each 5-
isogeny fail with probability 1/5, etc. creates a correctness challenge for higher-level algorithms
that compute many isogenies.

A simple workaround is to generate many points Q1,Q2,...,Qy, and use bit operations
on the points to select the first point with # 0. This fails if all of the points have z = 0.
Independent uniform random points have overall failure probability 1/¢"¥. One can make 1/¢/V
arbitrarily small by choosing N large enough: for example, 1/3% is below 1/232 for N > 21, and
is below 1/22°¢ for N > 162.

We return to the costs of generating so many points, and the costs of more sophisticated
alternatives, when we analyze algorithms to compute the CSIDH group action.

150 ‘ QUANTUM CIRCUITS FOR CSIDH

9.5.2— Nonuniform distribution of points. We actually generate random points using
Elligator (see Section 9.4.2), which generates only (p — 3)/2 different curve points P. At most
(p + 1)/¢ of these points produce Q = oo, so the probability of failure is upper bounded by
(2/0)(p+1)/(p — 3) = 2/t.

This bound cannot be simultaneously tight for ¢ = 3,¢ = 5 and £ = 7 (assuming that
3-5-7divides p + 1): if it were then the Elligator outputs would include all points having orders
dividing (p + 1)/3 or (p + 1)/5 or (p + 1)/7, but this accounts for more than 54% of all curve
points; contradiction.

Points generated by Elligator actually appear to be much better distributed modulo each ¢,
with failure chance almost exactly 1/¢. Experiments support this conjecture. Readers concerned
with the gap between the provable 2/¢ and the heuristic 1/¢ may prefer to add or subtract a few
Elligator 2 outputs, obtaining a distribution provably close to uniform (see [Tib14]) ata moderate
cost in performance. A more efficient approach is to accept a doubling of failure probability and
use a small number of extra iterations to compensate.

We shall later see other methods of obtaining rational ¢-torsion points, e.g., by pushing
points through ¢ -isogenies. This does not make a difference in the analysis of failure probabil-
ities.

For comparison, generating a random point on the curve or twist (see Section 9.4.1) has fail-
ure probability above 1/2 at finding a curve point of order £. See Section 9.6.2 for the impact of
this difference upon higher-level algorithms.

9.5.3 — Computing an /-isogenous curve from a point of order /. Once we have obtained
the z-coordinate of a point @) of order ¢ in E 4 (F;), we compute the z-coordinates of the points
Q,2Q,3Q,...,((£ — 1)/2)Q. We use this information to compute B = £(A), the coefficient
determining the ¢-isogenous curve Ep.

Recall from Section 9.3.4 that computing Q, 2Q, 3Q, . .., ({—1)/2)Q has a costof ({—3)S+
1.5(¢ — 3)M for affine Q and affine A, and just 1M extra for affine @ and projective A. Chapter 3
took more time here, namely (¢ — 3)S + 2(¢ — 3)M, to handle projective) and projective A.
We decide, based on comparing ¢ to the cost of an inversion, whether to spend an inversion
converting @ to affine coordinates.

Given the z-coordinates of Q, 2Q, 3@, . . ., ((¢—1)/2)Q, Chapter 3 took approximately 3¢(M
to compute B. Meyer and Reith [MR18] pointed out that CSIDH benefits from using the Edwards-
coordinate isogeny formulas from Moody and Shumow [MS16]; we reuse this speedup. These
formulas work as follows:

e Computea =A+2andd=A—2.

e Compute the Edwards y-coordinates of @Q,2Q,3Q,...,((¢ — 1)/2)Q. The Edwards y-
coordinate is related to the Montgomery z-coordinate by y = (z — 1)/(z + 1). We are
given each x projectively as X/Z, and compute y projectively as Y/T whereY = X — Z
and T = X + Z. Note that Y and T naturally occur as intermediate values in the Mont-
gomery ladder.

e Compute the product of these y-coordinates: i.e., compute [[Y and [] 7. This uses a total
of (¢ — 3)M.

e Compute a’ = o’ (J[T)® and d’ = d*([]Y)®. Each ¢th power takes a logarithmic (in £)
number of squarings and multiplications; see Section 9.13.4.

o Compute, projectively, B = 2(a’+d’)/(a’—d’). Subsequent computations decide whether
to convert B to affine form.

9.6. COMPUTING THE ACTION: BASIC ALGORITHMS ‘ 151

These formulas are almost three times faster than the formulas used in [Cas+18]. The total cost
of computing B from @ is almost two times faster than in [Cas+18].

Handling variable £. We point out that isogeny computations for £ = 3,¢ = 5, = 7, etc., have
a Matryoshka-doll structure, allowing a constant-time computation to handle many different
values of £ with essentially the same cost as a single computation for the largest value of £.

Concretely, the following procedure takes approximately £,S + 2.5¢, M, and allows any
£ < £p. If the context places a smaller upper bound upon ¢ then one can replace ¢, with that
upper bound, saving time; we return to this idea later.

Compute the Montgomery z-coordinates and the Edwards y-coordinates of @, 2Q, 3Q, . . .,
((£n, — 1)/2)Q. Usebit operations to replace each Edwards y-coordinate with 1 after the first (¢—
1)/2 points. Compute the product of these modified y-coordinates; this is the desired product
of the Edwards y-coordinates of the first (¢ — 1)/2 points. Finish computing B as above. Note
that the exponentiation algorithm in Section 9.13.4 allows variable £.

9.5.4— Applying an /-isogeny to a point. The following formulas define an ¢-isogeny from
E 4 to Eg with kernel E 4 (Fp)[¢]. The z-coordinate of the image of a point P; € E4(Fp) under
this isogeny is

(e=1)/2 . 2
‘ z(P)z(jQ) — 1
w11 Corrl

Each z(jQ) appearing here was computed above in projective form X/Z, and the expression
(z(P)z(jQ) —1)/(z(P1) —2(3Q)) is (z(P1)X — Z)/(x(P1)Z — X). This takes 2M to compute
projectively if z(Py) is affine, and thus (¢ — 1)M across all j. Multiplying the numerators takes
((¢ — 3)/2)M, multiplying the denominators takes ((¢ — 3)/2)M, squaring both takes 2S, and
multiplying by z:(Py) takes 1M, for a total of (2¢ — 3)M + 2S.

Ifz(P;)isinstead givenin projective form as X1 /Z1, computing X1 X —Z1 Zand X1 Z—Z1 X
might seem to take 4M, but one can instead compute the sum and difference of the products
(X1 —Z1)(X 4+ Z)and (X1 + Z1)(X — Z), using just 2M. The only extra cost compared to the
affine case is four extra additions. This speedup was pointed out by Montgomery [Mon87] in
the context of the Montgomery ladder. The initial CSIDH software accompanying [Cas+18] did
not use this speedup but [MR18] mentioned the applicability to CSIDH.

In the opposite direction, if inversion is cheap enough to justify making z(P;) and every
z(jQ) affine, then 2M drops to 1M, and the total cost drops to approximately 1.5¢M.

As in Section 9.5.3, we allow ¢ to be a variable. The cost of variable ¢ is the cost of a single
computation for the maximum allowed ¢, plus a minor cost for bit operations to select relevant
inputs to the product.

9.6 — Computing the action: basic algorithms

Jao, LeGrow, Leonardi, and Ruiz-Lopez [JLLR18] suggested a three-level quantum algorithm to
compute L' --- L5, This section shows how to make the algorithm an order of magnitude
faster for any particular failure probability.

9.6.1— Baseline: reliably computing each £;. The lowest level in [JLLR18] reliably com-
putes L; as follows. Generate r uniform random points on the curve or twist, as in Section 9.4.1.
Multiply each point by (p + 1)/#4;, as in Section 9.5.1, hoping to obtain a point of order ¢; on the
curve. Use Vélu’s formulas to finish the computation, as in Section 9.5.3.

152 ‘ QUANTUM CIRCUITS FOR CSIDH

Each pointhas success probability (1/2)(1—1/¢;), where 1/2is the probability of obtaining a
curve point (rather than a twist point) and 1—1/¢; is the probability of obtaining a point of order
¢; (rather than order 1). The chance of all points failing is thus (¢;4+1)" /(2¢;)", decreasing from
(2/3)" for ¢; = 3down towards (1/2)" as £; grows . One chooses r to obtain a failure probability
as small as desired for the isogeny computation, and for the higher levels of the algorithm.

The lowest level optionally computes 51‘_1 instead of £;. The approach in [JLLR18], follow-
ing [Cas+18], is to use points on the twist instead of points on the curve; an alternative is to
compute ﬁ;l (A)as —L;(—A).

The middle level of the algorithm computes £, where e is a variable whose absolute value
is bounded by a constant C.. This level calls the lowest level exactly C times, performing a series
of C steps of Eiil, using bit operations on e to decide whether to retain the results of each step.
The +1 is chosen as the sign of e, or as an irrelevant 1 if e = 0.

The highest level of the algorithm computes £{* - - - L3, where each e; is between —C and
C, by calling the middle level n times, starting with £]* and ending with £7>. (Our definition
of the action applied L3 first, but the £; operators commute with each other, so the order does
not matter.)

Importance of bounding each exponent. We emphasize that this algorithm requires each
exponent e; to be between —C' and C, i.e., requires the vector (e, ..., en) to have co-norm at
most C.

Weuse C' = 5 for CSIDH-512 as an illustrative example, but all known attacks use larger vec-
tors (see Section 9.2.1). C'is chosen in [JLLR18] so that every input, every vector in superposition,
has co-norm atmost C; smaller values of C create a failure probability that needs to be analyzed.

We are not saying that the co-norm is the only important feature of the input vectors. On
the contrary: our constant-time subroutine to handle variable-£ isogenies creates opportunities
to share work between separate exponents. See Sections 9.5.3 and 9.7.

Concrete example. For concreteness we suppose that the input vectors are uniformly random
ine € {—5,...,5}7* The highest level calls the middle level n = 74 times, and the middle level
calls the lowest level C' = 5 times. Taking r = 70 guarantees failure probability at most (2/3)"°
at the lowest level, and thus failure probability at most 1 — (1 — (2/3)7%)™% ~ 0.750 - 2732 for
the entire algorithm.

This type of analysis is used in [JLLR18] to select r. We point out that the failure probability
of the algorithm is actually lower, and a more accurate analysis allows a smaller value of 7. One
can, for example, replace (1 — (2/3)")™ with [],(1 — (¢; + 1)"/(2¢;)"), showing that r = 59
suffices for failure probability below 2732, With more work one can account for the distribution
of input vectors e, rather than taking the worst-case e as in [JLLR18]. However, one cannot hope
to do better than » = 55 here: there is a 10/11 chance that at least one 3-isogeny is required,
and taking r < 54 means that this 3-isogeny fails with probability at least (2/3)54, for an overall
failure chance at least (10/11)(2/3)%* > 2732,

With the choice r = 70 as in [JLLR18], there are 74 - 5 - 70 = 25900 iterations, in total using
more than 100 million multiplications in Fp,. In the rest of this section we will reduce the number
of iterations by a factor 30, and in Section 9.7 we will reduce the number of iterations by another
factor 3, with only moderate increases in the cost of each iteration.

9.6.2 — Fewer failures, and sharing failures. We now introduce Algorithm 9.1, which im-
proves upon the algorithm from [JLLR18] in three important ways. First, we use Elligator to tar-
get the curve (or the twist if desired); see Section 9.4.2. This reduces the failure probability of

9.6. COMPUTING THE ACTION: BASIC ALGORITHMS 153

Algorithm 9.1: Basic class-group action evaluation.

Parameters: Odd primes ¢; < -+ < £p withn > 1, aprimep =4¢; --- £, — 1,and
positive integers (11, ...,7n).

Input: A € S, integers (e1, ..., en).

Output: L{' - - L5 (A) or “fail”.

1 fori < 1tondo

2 forj < 1tor;do

3 Let s = sign(e;) € {—1,0,+1}.

4 Find a random point P on F, 4 using Elligator.
5 Compute @ < ((p+1)/4;)P.

6 Compute Bwith Eg & F 4 /(Q)if Q # oc.

7 Set A + sBif @ # oo and s # 0.

8 | Sete; < e; —sifQ # oo.

9 Set A « “fail”if (e1,...,en) # (0,...,0).
Return A.

=
o

r points from (2/3)" to, heuristically, (1/3)" for £; = 3; from (3/5)" to (1/5)" for £; = 5; from
(4/7)" to (1/7)" for £; = 7; etc.

Second, we allow a separate r; for each ¢;. This lets us exploit the differences in failure prob-
abilities as ¢; varies.

Third, we handle failures already at the middle level instead of the lowest level. The strategy
in [JLLR18] to compute £ with —C' < e < C'is to perform C iterations, where each iteration
builds up many points on one curve and reliably moves to the next curve. We instead perform
r; iterations, where each iteration tries to move from one curve to the next by generating just
one point. For C' = 1 this is the same, but for larger C' we obtain better tradeoffs between the
number of points and the failure probability.

As a concrete example, generating 20 points on one curve with Elligator has failure prob-
ability (1/3)20 for ¢; = 3. A series of 5 such computations, overall generating 100 points, has
failure probability 1 — (1 — (1/3)%%)5 ~ 272937, If we instead perform just 50 iterations, where
each iteration generates one point to move 1 step with probability 2/3, then the probability that
we move fewer than 5 steps is just 3846601 /3%° ~ 2757-37; see Section 9.6.3. Our iterations are
more expensive than in [JLLR18] — next to each Elligator computation, we always (even when
Q = oo) perform the steps for computing an ¢;-isogeny — but (for CSIDH-512 etc.) this is not a
large effect: the cost of each iteration is dominated by scalar multiplication.

We emphasize that all of our algorithms take constant time. Expressions like “Compute
X <+ Y if ¢” mean that we always compute Y and the bit ¢, and we then replace the jth bit
X of X with the jth bit Y; of Y for each j if cis set, by replacing X; with X; @ ¢(X; @ Y}). This
is why Algorithm 9.1 always carries out the bit operations for computing an ¢;-isogenous curve,
as noted above, even when QQ = oco.

9.6.3 — Analysis. We consider the inner loop body of Algorithm 9.1 for a fixed 4, hence write
£ =1{;,e=e;andr = r; for brevity.
Heuristically (see Section 9.5.2), we model each point @ as independent and uniform ran-

154 ‘ QUANTUM CIRCUITS FOR CSIDH

Table 9.1: Examples of choices of r; for Algorithm 9.1 for three levels of failure probability for uniform random CSIDH-
512 vectors with entries in { —5, . . . , 5 }. Failure probabilities € are rounded to three digits after the decimal point. The
“total” column is) r, the total number of iterations. The “[JLLR18]” column is 74 - 5 - r, the number of iterations in
the algorithm of [JLLR18], with r chosen as in [JLLR18] to have 1 — (1 — (2/3)")74"5 atmost 271 or 2732 or 27256,
Compare Table 9.2 for {—10,...,10}.

) & 3 5 711 13 17 ... 359 367 373 587 | total | [JLLR:8]
0.499 - 271 u 9 8 7 7 6. 5 §5 5§ 5| 406 5920
0.178-2732 | 36 25 21 18 17 16 ... 10 10 10 9 869 25900
0.249-27256 | 183 126 105 85 80 73 ... 37 37 37 34 | 3640 167610

Table 9.2: Examples of choices of r; for Algorithm 9.1 for three levels of failure probability for uniform random CSIDH-512
vectors with entries in {—10, . . ., 10}. Failure probabilities € are rounded to three digits after the decimal point. The
“total” columnis Y 7;, the total number of iterations. The “[JLLR18]” columnis 74 - 10 - r, the number of iterations in
the algorithm of [JLLR18], with 7 chosen as in [JLLR18] to have 1 — (1 — (2/3)7)74"10 atmost 271 or 2732 or 27256,
Compare Table 9.1 for {—5,...,5}.

c b 3 5 7 11 13 17 ... 359 367 373 587 | total | [JLLR18]
0.521-271 20 15 14 13 12 12 ... 10 10 10 10 | 786 13320
0.257 - 2732 48 34 30 25 24 22 ... 15 15 15 14 | 1296 52540
0.215-27256 | 201 139 116 96 9o 82 ... 43 43 43 41 | 4185 | 335960

dom in a cyclic group of order ¢, so @ has order 1 with probability 1/¢ and order £ with probab-
ility 1 — 1/¢. The number of points of order ¢ through r iterations of the inner loop is binomially
distributed with parameters » and 1 — 1/¢. The probability that this number is |e| or larger is
proby ¢, = >3 (1) (1 - 1/¢)" /07—t This is exactly the probability that Algorithm 9.1 suc-
cessfully performs the |e| desired iterations of £31&%(¢).

Let C be anonnegative integer. The overall success probability of the algorithm for a partic-
ular input vector (eq,...,en) € {=C,...,C}"is

n n
H pI‘Obgivei,ri > H prOb&‘,,C,Ti'
i=1 i=1

Average over vectors to see that the success probability of the algorithm for a uniform random
vectorin {—C,...,C}Y" is[[}_; (3_c<.<c Proby, o, /(2C +1)).

9.6.4 —Examples of target failure probabilities. The acceptable level of failure probabil-
ity for our algorithm depends on the attack using the algorithm. For concreteness we consider
three possibilities for CSIDH-512 failure probabilities, namely having the algorithm fail for a uni-
form random vector with probabilities at most 2~ L 9732 and 27256,

Our rationale for considering these probabilities is as follows. Probabilities around 27 are
easy to test, and may be of interest beyond this chapter for constructive scenarios where failing
computations can simply be retried. If each computation needs to work correctly, and there are
many computations, then failure probabilities need to be much smaller, say 2732 Asking for
every input in superposition to work correctly in one computation (for example, [JLLR18] asks

9.7. REDUCING THE TOP NONZERO EXPONENT 155

for this) requires a much smaller failure probability, say 272°¢. Performance results for these
three cases also provide an adequate basis for estimating performance in other cases.

Table 9.1 presents three reasonable choices of (r1, ...,), one for each of the failure prob-
abilities listed above, for the case of CSIDH-512 with uniform random vectors with entries in
{-5,...,5}. For each target failure probability 4 and each i, the table chooses the minimum
risuchthat 3 oo, proby, ... /(2C + 1) is at least (1 — 8)'/™. The overall success prob-
ability is then at least 1 — § as desired. The discontinuity of choices of (r1, ...,) means that
the actual failure probability € is somewhat below ¢, as shown by the coefficients 0.499, 0.178,
0.2491in Table 9.1. We could move closer to the target failure probability by choosing successively
PnyTn—1, . .., adjusting the probability (1 — &)'/™ at each step in light of the overshoot from pre-
vious steps. The values r; for € &~ 0.499 - 2~ ! have been experimentally verified using a modified
version of the CSIDH software. To illustrate the impact of larger vector entries, we also present
similar data in Table 9.2 for uniform random vectors with entries in {—10, ..., 10}.

The “total” column in Table 9.1 shows that this algorithm uses, e.g., 869 iterations for fail-
ure probability 0.178 - 2732 with vector entries in {5, ..., 5}. Each iteration consists mostly
of a scalar multiplication, plus some extra cost for Elligator, Vélu’s formulas, etc. Overall there
are roughly 5 million field multiplications, accounting for roughly 2*! nonlinear bit operations,
implying a quantum computation using roughly 24° T-gates.

Asnoted in Section 9.1, using the algorithm of [JLLR18] on top of the modular-multiplication
algorithm from [RNSL17] would use approximately 2°* nonlinear bit operations for the same dis-
tribution of input vectors. We save a factor 30 in the number of iterations compared to [JLLR18],
and we save a similar factor in the number of bit operations for each modular multiplication
compared to [RNSL17].

We do not analyze this algorithm in more detail: the algorithms we present below are faster.

9.7— Reducing the top nonzero exponent

Most of the iterations in Algorithm 9.1 are spent on exponents that are already 0. For example,
consider the 869 iterations mentioned above for failure probability 0.178 - 2732 for uniform ran-
dom CSIDH-512 vectors with entries in {—5, ..., 5}. Entry e; has absolute value 30/11 on aver-
age, and needs (30/11)¢;/(¢; — 1) iterations on average, for a total of > _,(30/11)¢;/(¢; — 1) =~
206.79 useful iterations on average. This means that there are 662.21 useless iterations on aver-
age, many more than one would expect to be needed to guarantee this failure probability.

This section introduces a constant-time algorithm that achieves the same failure probab-
ility with far fewer iterations. For example, in the above scenario, just 294 iterations suffice to
reduce the failure probability below 2732, Each iteration becomes (for CSIDH-512) about 25%
more expensive, but overall the algorithm uses far fewer bit operations.

9.7.1—Iterations targeting variable /. It is obvious how to avoid useless iterations for
variable-time algorithms: when an exponent reaches 0, move on to the next exponent. In other
words, always focus on reducing a nonzero exponent, if one exists.

What is new is doing this in constant time. This is where we exploit the Matryoshka-doll
structure from Section 9.5.3, computing an isogeny for variable £ in constant time. We now pay
for an 4, -isogeny in each iteration rather than an ¢-isogeny, but the iteration cost is still domin-
ated by scalar multiplication. Concretely, for CSIDH-512, an average ¢-isogeny costs about 600
multiplications, and an £, -isogeny costs about 2000 multiplications, but a scalar multiplication
costs about 5000 multiplications.

156 ‘ QUANTUM CIRCUITS FOR CSIDH

Algorithm 9.2: Evaluating CSIDH by reducing the top nonzero exponent.

Parameters: Odd primes ¢; < --- < {p withn > 1,aprimep =441 --- ¢, — 1,and a
positive integer .
Input: A € Sp, integers (eg,...,en).
Output: L{' - - L5 (A) or “fail”.
1 forj + 1tordo
2 Leti = max{k : e # 0},ori =lifeache, =0.
3 Let s = sign(e;) € {—1,0,+1}.
4 Find a random point P on F 4 using Elligator.
5 Compute @ < ((p+1)/¢;)P.
6 Compute Bwith Eg = F 4 /(Q) if Q # oo, using the ¢;-isogeny formulas from
Section 9.5.3 with maximum degree ¢y,.
7 Set A + sBifQ # coand s # 0.

8 | Sete; «e; —sifQ # oo.
9 Set A « “fail”if (e1,...,en) # (0,...,0).
o Return A.

We choose to always reduce the top exponent that is not already 0. “Top” here refers to po-
sition, not value: we reduce the nonzero e; where ¢ is maximized. See Algorithm 9.2.

9.7.2—Upper bounds on the failure probability. One can crudely estimate the failure
probability of Algorithm 9.2 in terms of the 1-norm F = |ej| + - - - + |en| as follows. Model each
iteration as having failure probability 1/3 instead of 1/¢;; this produces a loose upper bound for
the overall failure probability of the algorithm.

In this model, the chance of needing exactly r iterations to find a point of order ¢; is the
coefficient of z" in the power series

(2/3)z + (2/9)2” + (2/27)a® + - - = 22/(3 — z).

The chance of needing exactly r iterations to find all E points is the coefficient of 2" in the Eth
power of that power series, namely ¢, = (};{11) 2F /3" for r > E. See generally [Wilg4] for
an introduction to the power-series view of combinatorics; there are many other ways to de-
rive the formula (g:ll) 2F /3" but we make critical use of power series for fast computations in
Sections 9.7.3 and 9.8.3.

The failure probability of r iterations of Algorithm 9.2 is at most the failure probability of r it-
erationsin thismodel, namely f(r, E) = 1—cg—cgy1—- - -—cr. Thefailure probability of ritera-
tions for a uniform random vector withentriesin {—C, ..., C}isatmost) o« p<,c f (7 E)g[E].
Here g[E] is the probability that a vector has 1-norm E, which we compute as the coefficient of
2% in the nth power of the polynomial (1 4 2z + 222 + --- + 22%)/(2C + 1). For example,
withn = 74 and C' = 5, the failure probability in this model (rounded to 3 digits after the
decimal point) is 0.999 - 27! for r = 302; 0.965 - 272 for r = 319; 0.844 - 2732 for r = 461;
and 0.570 - 272°0 for » = 823. As a double-check, we observe that a simple simulation of
the model for r = 319 produces 241071 failures in 1000000 experiments, close to the predicted
0.965 - 272 - 1000000 = 241250.

9.7. REDUCING THE TOP NONZERO EXPONENT 157

9.7.3 — Exact values of the failure probability. The upper bounds from the model above
are too pessimistic, except for £; = 3. We instead compute the exact failure probabilities as
follows.

The chance that £§* - - - £" requires exactly r iterations is the coefficient of 2" in the power

series
(61 — D)z ! (bn — 1)z \]
l —x b — ’
What we want is the average of this coefficient over all vectors (e1,...,en) € {—C,...,C}".
This is the same as the coefficient of the average, and the average factors nicely as

> 201+1((£411__12I)|61 NS 201+1((€ZI,_—12I)|%|

—C<e; <C —C<e,<C

We compute this product as a power series with rational coefficients: for example, we compute

the coefficients of 22, . .., %99 if we are not interested in 500 or more iterations. We then add
together the coefficients of z°, . . ., 2" to find the exact success probability of r iterations of Al-
gorithm 9.2.

As an example we again take CSIDH-512 with C' = 5. The failure probability (again rounded
to 3 digits after the decimal point) is 0.960 - 271 for 7 = 207;0.998 - 272 for r = 216;0.984 - 2732
for r = 294; 0.521 - 275! for r = 319; and 0.773 - 2726 for r = 468. We double-checked these
averages against the results of Monte Carlo calculations for these values of r. Each Monte Carlo
iteration sampled a uniform random 1-norm (weighted appropriately for the initial probabil-
ity of each 1-norm), sampled a uniform random vector within that 1-norm, and computed the
failure probability for that vector using the single-vector generating function.

9.7.4 — Analysis of the cost. We have fullyimplemented Algorithm 9.2 in our bit-operation
simulator. One iteration for CSIDH-512 uses 9208697761 ~ 232 bit operations, which includes
3805535430 ~ 232 nonlinear bit operations. More than 95% of the cost is explained as follows:

e Eachiteration uses a Montgomery ladder with a 511-bit scalar. (We could save a bit here:
the largest useful scalar is (p + 1)/3, which is below 2°1°)) We use an affine input point
and an affine A, so this costs 2044S + 3066 M.

e Each iteration uses the formulas from Section 9.5.3 with £ = 587. This takes 602S +
1472M: specifically, 584S+876M for multiples of the point of order ¢ (again affine); 584M
for the product of Edwards y-coordinates; 18S + 10M for two £th powers; and 2M to mul-
tiply by two 8th powers. (We merge the 6S for the 8th powers into the squarings used for
the ¢th powers.)

e Each iteration uses two inversions to obtain affine Q and A, each 507S + 97M, and one
Legendre-symbol computation, 506S + 96M.

This accounts for 4166S+4828M per iteration, i.e.,4166-349596+4828-447902 = 3618887792 ~
232 nonlinear bit operations.

The cost of 294 iterations is simply 294 - 3805535430 = 1118827416420 ~ 2%° nonlinear bit
operations. This justifies the first (B, €) claim in Section 9.1.

9.7.5 — Decreasing the maximum degrees. Always performingisogeny computations cap-
able of handling degrees up to 4, is wasteful: With overwhelming probability, almost all of the
294 iterations required for a failure probability of less than 2732 with the approach discussed
so far actually compute isogenies of degree (much) less than ¢,. For example, with e uniformly

158 ‘ QUANTUM CIRCUITS FOR CSIDH

random in {—5,..., 5}, the probability that 10 iterations are not sufficient to eliminate all 587-
isogenies is approximately 2~°C. Therefore, using smaller upper bounds on the isogeny degrees
for later iterations of the algorithm will not do much harm to the success probability while sig-
nificantly improving the performance. We modify Algorithm 9.2 as follows:

e Instead of a single parameter r, we use alist (1, ..., rn) of non-negative integers, each r;
denoting the number of times an isogeny computation capable of handling degrees up to
¢; is performed.

o The loop iterating from 1 through r is replaced by an outer loop on u from n down to 1,
and inside that an inner loop on j from 1 up to 7. The loop body is unchanged, except
that the maximum degree for the isogeny formulas is now ¢, instead of ¢,.

For a given sequence (r1, ..., Tr), the probability of success can be computed as follows:
e Foreachi € {1,...,n}, compute the generating function
1 (- D\
o= 3 (%
_c5e<c 2C +1 b —x

of the number of ¢;-isogeny steps that have to be performed.

e Since we are no longer only interested in the total number of isogeny steps to be com-
puted, but also in their degrees, we cannot simply take the product of all ¢; as before.
Instead, to account for the fact that failing to compute a ¢;-isogeny before the maximal
degree drops below ¢; implies a total failure, we iteratively compute the product of the ¢;
from k = n down to 1, but truncate the product after each step. Truncation after some
power z means eliminating all branches of the probabilistic process in which more than
t isogeny steps are needed for the computations so far. In our case we use t = Z?:i

after multiplying by ¢;, which removes all outcomes in which more isogeny steps of de-

gree > {; would have needed to be computed.

"

e After all ¢; have been processed (including the final truncation), the probability of success
is the sum of all coefficients of the remaining power series.

Note that we have only described a procedure to compute the success probabilty once rq, ...,
are known. Itis unclear how to find the optimal values r; which minimize the cost of the result-
ing algorithm, while at the same time respecting a certain failure probability. We tried various
reasonable-looking choices of strategies to choose the r; according to certain prescribed failure
probabilities after each individual step. Experimentally, a good rule seems to be that the fail-
ure probability after processing ¢; should be bounded by ¢ - 22/?~2, where ¢ is the overall target
failure probability. The results are shown in Table 9.3.

The average degree of the isogenies used constructively in CSIDH-512 is about 174.6, which
is not much smaller than the average degree we achieve. Since we still need to control the error
probability, it does not appear that one can expect to get much closer to the constructive case.

2732 and ¢ & 27256

Also note that the total number of isogeny steps for ¢ = is each only
one more than the previous number r of isogeny computations, hence one can expect significant
savings using this strategy. Assuming that about 1/4 of the total time is spent on Vélu’s formulas
(which is close to the real proportion), we get a speedup of about 16% for ¢ ~ 2732 and about

17% for € ~ 27256,

9.8. PUSHING POINTS THROUGH ISOGENIES 159

Table 9.3: Examples of choices of 75, . . . , 7; for Algorithm 9.2 with reducing the maximal degree in Vélu’s formulas for
uniform random CSIDH-512 vectors with entriesin {—5, . . . , 5}. Failure probabilities € are rounded to three digits after
the decimal point.

€| Tn...71 ‘Zrl avg. £
534535543543443434333433343

0594-27' 1 3333333333333333242333323332| 218 2050
3323232322322211100

955555455545455454455444544
0970-27%% | 44435344434443443434344343/ 295 1960
344334334343343334334

- 3486656655656555565555655555
0.705 -2~ 5555555555555555555465555546 | 469 1827
5555555655666677111638

9.8 — Pushing points through isogenies

Algorithms 9.1 and 9.2 spend most of their time on scalar multiplication. This section pushes
points through isogenies to reduce the time spent on scalar multiplication, saving time overall.
The general idea of balancing isogeny computation with scalar multiplication was intro-
duced in [D]P14] in the SIDH context, and was reused in the variable-time CSIDH algorithms
in [Cas+18]. This section adapts the idea to the context of constant-time CSIDH computation.

9.8.1— Why pushing points through isogenies saves time. To illustrate the main idea,
we begin by considering a sequence of just two isogenies with the same sign. Specifically, as-
sume that, given distinct ¢1 and ¢» dividing p + 1, we want to compute £1L2(A) = B. Here are
two different methods:

e Method 1. The method of Algorithm 9.1 uses Elligator to find P, € E4(Fp), computes
Q1 < [(p+1)/£1]P1, computes B4 = E4/{Q1), uses Elligator to find Py € E4/(Fp),
computes Q2 « [(p+1)/£2] Pz, and computes Eg = E 4/ /(Q2). Failure cases: if Q1 = oo
then this method computes A’ = A, failing to compute £1; similarly, if Q2 = oo then this
method computes B = A’, failing to compute L.

e Method 2. The method described in this section instead uses Elligator tofind P € E 4 (Fy),
computes R < [(p+ 1)/£162] P,computes Q < [(2] R, computesp: B4 — Ex=FE4/{Q)
and Q' = ¢(R),and computes Eg = E4//(Q’). Failure cases: if Q = oo then this method
computes @' = R (which has order dividing ¢3) and A’ = A, failing to compute Ly; if
Q' = oo then this method computes B = A’, failing to compute L.

For concreteness, we compare the costs of these methods for CSIDH-g12. The rest of this sub-

section uses approximations to the costs of lower-level operations to simplify the analysis. The
main costs are as follows:

e For p a 512-bit prime, Elligator costs approximately 60oM.

e Given P € E(Fp) and a positive integer k, the computation of [k] P via the Montgomery
ladder, as described in Section 9.3.3, costs approximately 10(logq k)M, i.e., approximately
(5120 — 101og,)M if k = (p + 1) /L.

160 ‘ QUANTUM CIRCUITS FOR CSIDH

e The computation of a degree-£ isogeny via the method described in Section 9.5.3 costs
approximately (3.5¢ + 2logy £)M.

e Given an f-isogeny ¢, : E — E’and P € E(Fp), the computation of ¢,(P) via the
method described in Section 9.5.4 costs approximately 2¢/M.

In conclusion, Method 1 costs approximately
(2-600 + 2 - 5120 + 3.501 + 3.505 — 8logy £1 — 8logy £2)M,
while Method 2 costs approximately
(600 + 5120 + 5.501 + 3.505 — 8logy £1 + 21ogy f2)M.

The savings of (6004 5120)M clearly outweighs the loss of (2¢; + 10 log,, £2)M, since the largest
value of £; is 587.

There are limits to the applicability of Method 2: it cannot combine two isogenies of opposite
signs, it cannot combine two isogenies using the same prime, and it cannot save time in applying
just one isogeny. We will analyze the overall magnitude of these effects in Section 9.8.3.

9.8.2—Handling the general case, two isogenies at a time. Algorithm 9.3 computes the
result of L7 --- L5*(A) for any exponent vector (e, ..., en). Each iteration of the algorithm
tries to perform two isogenies: one for the top nonzero exponent (if the vector is nonzero), and
one for the next exponent having the same sign (if the vector has another exponent of this sign).
As in Section 9.7, “top” refers to position, not value.

The algorithm pushes the first point through the first isogeny, as in Section 9.8.1, to save the
cost of generating a second point. Scalar multiplication, isogeny computation, and isogeny ap-
plication use the constant-time subroutines described in Sections 9.3.3, 9.5.3, and 9.5.4 respect-
ively. The cost of these algorithms depends on the bound ¢, for the prime for the top nonzero
exponent and the bound ¢, for the prime for the next exponent. The two prime bounds have
asymmetric effects upon costs; we exploit this by applying the isogeny for the top nonzero ex-
ponent after the isogeny for the next exponent.

Analyzing the correctness of Algorithm 9.3 — assuming that there are enough iterations; see
Section 9.8.3 — requires considering three cases. The first case is that the exponent vector is 0.
Then 4,4, s are initialized to 0, 0, 1 respectively, and 4,4’ stay 0 throughout the iteration, so A
does not change and the exponent vector does not change.

The second case is that the exponent vector is nonzero and the top nonzero exponente; is the
only exponent having sign s. Then ¢’ is 0 throughout the iteration, so the “first isogeny” portion
of Algorithm 9.3 has no effect. The point @ = R in the “second isogeny” portion is ¢P where
c=(p+1)/4;,s0£4;Q = 0. If Q = oo then i is set to 0 and the entire iteration has no effect,
except for setting A to sA and then back to s(sA) = A. If @ # oo then ¢ stays nonzero and A
is replaced by £;(A), so A at the end of the iteration is £ applied to A at the beginning of the
iteration, while s is subtracted from e;.

The third case is that the exponent vector is nonzero and that e; is the next exponent having
the same sign s as the top nonzero exponent e;. By construction i’ < i < nso £y < £,,_1. Now
R = cP wherec = (p + 1)/(¢;£;). The first isogeny uses the point Q = ¢; R, which is either
oo or a point of order £;s. If Q is co then 4’ is set to 0; both A and the vector are unchanged; the
point R must have order dividing ¢;; and the second isogeny proceeds as above using this point.
If Q has order ¢,/ then the first isogeny replaces A with £;/ (A), while subtracting s from e;s and
replacing R with a point of order dividing ¢; on the new curve (note that the ¢;/ -isogeny removes

9.8. PUSHING POINTS THROUGH ISOGENIES 161

Algorithm 9.3: Evaluating the class-group action by reducing the top nonzero exponent
and the next exponent with the same sign.

1

2

3
4

12

17

18

19

20

Parameters: Odd primes ¢1 < --- < £ withn > 1,aprimep =4¢;--- ¢, — 1,and a
positive integer .
Input: A € Sp, integers (eq, ..., en).
Output: L5 --- L5 (A) or “fail”.
for j + 1tordo
Setl «+ {k:1<k<mnandeg #0}.
Seti < max [and s < sign(e;) € {—1,1},0ri < Oand s « 1if I = {}.
SetI’ < {k:1 <k < iandsign(e;) = s}.
Seti’ < max I’ ori « 0if I' = {}.
Twist. Set A « sA.
Isogeny preparation. Find a random point P on E 4 using Elligator.
Compute R <~ cPwherec =4[] <<, iz izir {j.
Firstisogeny. Compute Q) < ¢; R, where {; means 1.
[Now £;Q = ooifi’ #0.] Seti’ + 0if Q = oo.
Compute B with Eg = E4/(Q) if i’ # 0, using the ;s -isogeny formulas from
Section 9.5.3 with maximum degree £,,_1.
Set R to the image of Rin Eg if i’ # 0, using the £;/ -isogeny formulas from
Section 9.5.4 with maximum degree £,,_1.
Set A < Bande; < ey —sifi’ #0.
Second isogeny. Set Q <+ R.
[Now £;Q = ooifi # 0.] Seti + 0if Q = oo.
Compute Bwith Ep = E,/(Q) if i # 0, using the ¢;-isogeny formulas from
Section 9.5.3 with maximum degree ¢y,.
Set A+ Bande; < e; — sifi #£ 0.
| Untwist. Set A < sA.
Set A + “fail”if (e1,...,en) # (0,...,0).
Return A.

any ¢, from orders of points in the same cyclic subgroup); again the second isogeny proceeds as
above.

9.8.3 — Analysis of the failure probability. Consider a modified dual-isogeny algorithm

in which the isogeny with a smaller prime is saved to handle later:

e Initialize an iteration counter to 0.
e Initialize an empty bank of positive isogenies.
e Initialize an empty bank of negative isogenies.

e For each ¢ in decreasing order:

162 ‘ QUANTUM CIRCUITS FOR CSIDH

— While an ¢-isogeny needs to be done and the bank has an isogeny of the correct sign:
Withdraw an isogeny from the bank, apply the isogeny, and adjust the exponent.

— While an ¢-isogeny still needs to be done: Apply an isogeny, adjust the exponent,
deposit an isogeny with the bank, and increase the iteration counter.

This uses more bit operations than Algorithm 9.3 (since the work here is not shared across two

isogenies), but it has the same failure probability for the same number of iterations. We now

focus on analyzing the distribution of the number of iterations used by this modified algorithm.
We use three variables to characterize the state of the modified algorithm before each ¢:

e i > (0is theiteration counter;
e j > 0is the number of positive isogenies in the bank;
e k > 0isthe number of negative isogenies in the bank.

The number of isogenies actually applied so faris 2¢ — (j + k) > i. The distribution of states is
captured by the three-variable formal power series 3, si}j’kxiyjzk where s; ; 1, is the prob-
ability of state (4, 7, k). Note that there is no need to track which primes are paired with which;
this is what makes the modified algorithm relatively easy to analyze.

If there are exactly h positive £-isogenies to perform then the new state after those isogenies
is (i,7 — hyk)ifh < j,or (i +h — j,h — j, k) if h > j. This can be viewed as a composition of
two operations on the power series. First, multiply by yih. Second, replace any positive power
of y ! with the same power of zy; i.e., replace 2y’ 2* for each j < 0 with o' 7y ~7 ¥

We actually have a distribution of the number of ¢-isogenies to perform. Say there are h iso-
genies with probability ¢;,. We multiply the original series by >, < any~ ", and then eliminate
negative powers of y as above. We similarly handle i < 0, exchanging the role of (j, y) with the
role of (k, 2).

As in the analyses earlier in the chapter, we model each point Q for an ¢-isogeny as having
order 1 with probability 1/¢ and order ¢ with probability 1 —1/¢, and we assume that the number
of ¢-isogenies to perform is a uniform random integere € {—C, ..., C}. Then g, for h > Ois the
coefficient of 2" in Yo<e<c (= 1)x) /(£ —x))¢/(2C + 1); also, g_p, = gp,.

We reduce the time sgent on these computations in three ways. First, we discard all states
with ¢ > r if we are not interested in more than r iterations. This leaves a cubic number of
states for each £: every i between 0 and r inclusive, every j between 0 and 7 inclusive, and every
k between 0 and 7 — j inclusive.

Second, we use fixed-precision arithmetic, rounding each probability to an integer multiple
of (e.g.) 27°2. We round down to obtain lower bounds on success probabilities; we round up to
obtain upper bounds on success probabilities; we choose the scale 27°'2 so that these bounds
are as tight as desired. We could save more time by reducing the precision slightly at each step of
the computation, and by using standard interval-arithmetic techniques to merge computations
of lower and upper bounds.

Third, to multiply the series 3, , siyj7kxiyjzk by > h>0 any~ ", we instead actually mul-
tiply >, Si,j,kyj by > p>0 qny " for each (i, k) separately. We use Sage for these multiplica-
tions of univariate polynomials with integer coefficients. Sage, in turn, uses fast multiplication
algorithms whose cost is essentially bd for d b-bit coefficients, so our total cost for n primes is
essentially bnr.

Concretely, we used under two hours on one core of a 3.5GHz Intel Xeon E3-1275 v3 to com-
pute lower bounds on all the success probabilities for CSIDH-512 with b = 512 and r = 349, and

9.9. COMPUTING ¢-ISOGENIES USING DIVISION POLYNOMIALS 163

under three hours® to compute upper bounds. Our convention of rounding failure probabilities
to 3 digits makes the lower bounds and upper bounds identical, so presumably we could have
used less precision.

We find, e.g., failure probability 0.943 - 27! after 106 iterations, failure probability 0.855 -
2732 after 154 iterations, and failure probability 0.975 - 27257 after 307 iterations. Compared to
the 207, 294, 468 single-isogeny iterations required in Section 9.7.3, the number of iterations has
decreased to 51.2%, 52.3%, 65.6% respectively.

9.8.4 — Analysis of the cost. Wehave fullyimplemented Algorithm 9.3in our bit-operation
simulator. An iteration of Algorithm 9.3 uses 4969644344 ~ 232 nonlinear bit operations, about
1.306 times more expensive than an iteration of Algorithm 9.2.

If the number of iterations were multiplied by exactly 0.5 then the total cost would be multi-
plied by 0.653. Given the actual number of iterations (see Section 9.8.3), the costis actually mul-
tiplied by 0.669, 0.684, 0.857 respectively. In particular, we reach failure probability 0.855 - 2732
with 154 - 4969644344 = 765325228976 ~ 0.7 - 2% nonlinear bit operations. This justifies the
second (B, €) claim in Section 9.1.

9.8.5—Variants. The idea of pushing points through isogenies can be combined with the
idea of gradually reducing the maximum prime allowed in the Matryoshka-doll isogeny formu-
las. This is compatible with our techniques for analyzing failure probabilities.

A dual-isogeny iteration very late in the computation is likely to have a useless second iso-
geny. It should be slightly better to replace some of the last dual-isogeny iterations with single-
isogeny iterations. This is also compatible with our techniques for analyzing failure probabilit-
ies.

There are many different possible pairings of primes: one can take any two distinct positions
where the exponents have the same sign. Possibilities include reducing exponents from the bot-
tom rather than the top; reducing the top nonzero exponent and the bottom exponent with the
same sign; always pairing “high” positions with “low” positions; always reducing the largest ex-
ponents in absolute value; always reducing e; where |e;|¢; /(¢; — 1) is largest. For some of these
ideasitis not clear how to efficiently analyze failure probabilities.

This section has focused on reusing an Elligator computation and large scalar multiplication
for (in most cases) two isogeny computations, dividing the scalar-multiplication cost by (nearly)
2, in exchange for some overhead. We could push a point through more isogenies, although
each extra isogeny has further overhead with less and less benefit, and computing the failure
probability becomes more expensive. For comparison, [Cas+18] reuses one point for every ¢;
where e; has the same sign; the number of such ¢; is variable, and decreases as the computation
continues. For small primes it might also save time to push multiple points through one isogeny,
asin [D]P14].

9.9 — Computing /-isogenies using division polynomials

As the target failure probability decreases, the algorithms earlier in this chapter spend more
and more iterations handling the possibility of repeated failures for small primes ¢ — especially
¢ = 3, where each generated point fails with probability 1/3.

*It is unsurprising that lower bounds are faster: many coefficients gy, round down to 0. We could save time in the
upper bounds by checking for stretches of coefficients that round up to, e.g,, 1/2512, and using additions to multiply by
those stretches.

164 ‘ QUANTUM CIRCUITS FOR CSIDH

Algorithm 9.4: ¢-isogeny using division polynomials.

Parameters: Odd primes ¢; < --- < {p withn > 1, aprimep =44y --- ¢, — 1,and
Lef{ly,... . ln}.
Input: A € 5.
Output: L(A).
1 Compute the ¢-division polynomial ¢y € Fp[X] of E4.
2 Compute ¢y = ged(XP — X, 1p).
3 Letp = X + AX? 4 X and compute x, = ged(p®PTD/2 — p, ¥y).
4 Use Lemma 9.1 0n yy to compute B suchthat Eg = E 4 /E 4 (Fp)[4].

5 Return B.

This section presents and analyzes an alternative: a deterministic constant-time subroutine
that uses division polynomials to always compute ¢-isogenies. Using division polynomials is
more expensive than generating random points, and the cost gap grows rapidly as £ increases,
but division polynomials have the advantage that each iteration is guaranteed to compute an
£-isogeny. See also Section g.10 for an alternative that uses modular polynomials rather than
division polynomials.

Division polynomials can be applied as a first step to any of our class-group evaluation al-
gorithms: compute the group action for some number of powers of Efl, . LE (notnecessar-
ily C powers of each), and then handle the remaining isogenies as before. Our rough estimates in
this section suggest that the optimal choice of s is small: division polynomials are not of interest
for large primes /.

9.9.1—Algorithm. The idea behind the following algorithm is to take the ¢-division poly-
nomial ¢y of E4, whose roots are the z-coordinates of nonzero ¢-torsion points; identify a di-
visor xg of ¢, that defines the [, -rational subgroup of E 4 [¢]; and finally use a variant of Kohel’s
formulas [Kohg6, Section 2.4] to compute the codomain of the isogeny defined by x, and thus
B = L(A).

Lemma 9.1. Let E4: y?> = 2° + Az? + x be a Montgomery curve defined over a field k with
char (k) # 2. Consider a finite subgroup G < E of odd sizen > 3 and let x € k[z] be a monic squarefree
polynomial of degree d = (n — 1) /2 whose roots are exactly the x-coordinates of all nonzero points in G.
Write

d d
o=—xd=1]; 7= x[1]; 7= x[0],
where x[i] € k is the coefficient of =* in . Then there exists an isogeny E 5 — Ep with kernel G, where

B =n(r(A—60)+ 67).

Proof. This is obtained by decomposing the formulas from [Ren18] into elementary symmetric
polynomials, which happen to occur as the given coefficients of . O

Lemma 9.2. Algorithm 9.4 is correct.

9.9. COMPUTING /¢-ISOGENIES USING DIVISION POLYNOMIALS 165

Proof. First, XP — X = [lser, (X — a) implies that 1y is the part of 1, that splits into linear
factors over Fp. Second, for any p € Fyp, choosing y € I such that v =p gives

PP p =y —y) =y [] - .
acF,

Therefore theroots of x4 are exactly the z-coordinates of the nonzero F, -rational £-torsion points
on E. Finally, the correctness of the output follows from Lemma 9.1. O

9.9.2— Cost. To analyze how this approach compares to Vélu’s formulas, we focus on rough
estimates of how cost scales with ¢, rather than an exact cost analysis. Finite field squarings S
are counted as M for simplicity. Let x(d) denote the cost of multiplying two d-coefficient poly-
nomials. To establish a rough lower bound, we assume p(d) = (dlogy d)M, which is a model of
the complexity of FFT-based fast multiplication techniques. For a rough upper bound, we use
d?M, which is a model of the cost of schoolbook multiplication.

Computing division polynomials. There are two obvious methods for obtaining division poly-
nomials: Either evaluate the recursive definition directly on a given A € I, or precompute the
division polynomials as elements of F»[A, 2] in advance and evaluate them at a given A €), at
runtime. We estimate the number of operations required for both approaches.

Recursive definition. Ignoring multiplications by small fixed polynomials, the division poly-
nomials satisfy a recursive equation of the form

fo = fafofe = far for f2,

where the indices a, b, ¢, a’, b, ¢’ are integers within 2 of £/2 (so there are at most 5 distinct in-
dices). Continuing this recursion involves indices within 2/1 + 2 = 3 of £/4 (at most 7 distinct
indices), within 3.5 of £/8 (at most 8), within 3.75 of £/16 (at most 8), etc.

Each of fa, fy, fc has approximately ¢2 /8 coefficients, so computing fa fy, /2 costs (2 (£2 /8)+
(€2 /4))M. The rough lower bound is (¢ log, £)M, and the rough upper bound is (3¢*/32) M.

Computing f, involves computing both fo f;, f2 and f, f/ fcz,. Therecursion involves at most
5 computations for £/2, at most 7 computations for £/4, and at most 8 computations for each
subsequent level. The total is

(14+5/2+7/4+8/8+8/16 + ---)(20% logy £)M = (29/2)(¢* logy £)M
for the rough lower bound, and
(1+45/4+7/16 + 8/64 + 8/256 + - - -)(3¢* /16)M = (137/256)¢*M

for the rough upper bound.

Evaluating precomputed polynomials. The degree of Uy € Fp[A, z]is (¢2 — 1)/2 in z and
upper bounded by £2/8 + 1in A, so overall ¥, has at most about £*/16 coefficients. Evaluating
a precomputed U, € Fp[x][A] at A € F, using Horner’s method takes at most about (£4/16)M.
This improves the rough upper bound.

Extracting the split part. As stated in Algorithm 9.4, extracting the part v, of v, that splits
over Fp, amounts to computing ged(X? — X, 1)p). The exponentiation X” mod 1)y is computed
using square-and-multiply with windows (similar to Section 9.13.5), which uses about logy p

166 ‘ QUANTUM CIRCUITS FOR CSIDH

Table 9.4: Rough estimates for the number of Fp,-multiplications to compute £(A) using division polynomials (Al-
gorithm 9.4).

y4 ‘ 3 5 7 11 13 17 19 23 29
215.1 21748 219.6 222.1 223.1 224.6 225.3 226.4 22747
214.5 216.4 217.6 219.1 219.7 220.6 220.9 221.6 222.3

rough upper bound
rough lower bound

squarings and about (logy p) /(log, log, p) multiplications. For simplicity we count this as a total
of 1.21logy p multiplications, which is a reasonable estimate for 512-bit p.

For the number of F,-multiplications needed to compute X mod v, we obtain approxim-
ately 2.41log, p - £2 log ¢ for the lower bound on j(d) and 0.6 log, p - £* for the upper. Here we
assume cost p(d) for reducing a degree-(2d—2) polynomial modulo a degree-d polynomial.

The computation of ged ((X? mod 1) — X, ;) can be done using Stevin’s algorithm which
uses roughly d>M, where d is the degree of the larger of the input polynomials. In this case, since
deg(1py) ~ £2 /2, this amounts to about (£* /4) M.

Fast arithmetic improves ged computation to O(d - (logy d)>)M asymptotically; see, e.g.,
[Str83]. We are not aware of literature presenting concrete speeds for fast constant-time ged
computation. For a rough lower bound we assume 2d(logs d)?M, i.e., about 4¢% (logy, £)? M.

Extracting the kernel polynomial. Note thatdeg(z;) = £ — 1: Each rootin F}, of 1, gives rise to
two points of order £ in the +1 or —1 Frobenius eigenspace, which contain ¢ — 1 nonzero points
each. Hence, as before, the cost of obtaining x, from ¢} is roughly (2.4logy p - £log, £)M resp.
2.41og, p - £2M for the exponentiation, plus 2¢(logy £)2M resp. £2M for the ged computation.

Computing the isogeny. Lemma 9.11s just a simple formula in terms of a few coefficients of
and can be realized using 2M and some additions, hence has negligible cost.

9.9.3 —Total cost. In summary, the cost of Algorithm 9.4 in Fj,-multiplications has a rough
lower bound of

min {(29/2)22 logs £, 64/16} +2.410gy p - 12 logy € + 40% (logy £)*
+2.41l0gy p - £1ogy £ + 2¢(log, £)*
and a rough upper bound of
4 4 4 2 2
07/164+0.6logop- € + £ /44 2.4logop- £+ £°.

Table 9.4 lists values of these formulas for logy p ~ 512 and small £.

The main bottleneck is the computation of X? mod ¢,: for each bit of p there is a squaring
modulo 1), a polynomial of degree (¢#2 — 1) /2. For comparison, the scalar multiplication in Sec-
tion 9.5 involves about 10M for each bit of p, no matter how large £ is, but is not guaranteed to
produce a point of order 4.

9.10 — Computing /-isogenies using modular polynomials

One technique suggested by De Feo, Kieffer, and Smith [Kie17; DKS18] to compute the CRS group
action is to use the (classical) modular polynomials ®,(X,Y), which vanish exactly on the pairs
of j-invariants that are connected by a cyclic £-isogeny. For prime ¢, the polynomial ®,(X,Y) is

9.10. COMPUTING ¢-ISOGENIES USING MODULAR POLYNOMIALS 167

symmetric and has degree £ + 1 in the two variables, hence fixing one of the variables to some j-
invariant and finding the roots of the resulting univariate polynomial suffices to find neighbours
in the £-isogeny graph.

The advantage of modular polynomials over division polynomials is that the degree £ + 1 of
®4(j,Y) grows more slowly than the degree (£ — 1)/2 of the ¢-division polynomial ¢, used in
Section 9.9: modular polynomials are smaller for all £ > 5. However, using modular polynomi-
als requires solving two problems: disambiguating twists and disambiguating directions. We
address these problems in the rest of this section.

9.10.1— Disambiguating twists. It may seem that computing ¢-isogenous curves by find-
ing roots of ®,(X,Y) is not applicable to the CSIDH setting, since a single j-invariant almost
always defines two distinct nodes in the supersingular I -rational isogeny graph, namely Ep
and £_p for some B € Sp. Knowing j(E(4)) is not enough information to distinguish £(A)
from —L(A).

This problem does not arise in CRS: Twists always have the same j-invariant but, in the or-
dinary case, are notisogenous. A random twist point has negligible chance of being annihilated
by the expected group order, so one can reliably recognize the twist at the expense of a scalar
multiplication.

For CSIDH, one way to distinguish the cases £(A) = B and £(A) = —Bis to apply a dif-
ferent isogeny-computation method (from, e.g., Section 9.5 or Section 9.9) to compute £(B). If
L(B) = —Athen L(A) = —B; otherwise L(A) = B.

This might seem to remove any possible advantage of having used modular polynomials to
compute + B in the first place, since one could simply have used the different method to compute
L(A). However, below we will generalize the same idea to £°(A), amortizing the costs of the
different method across the costs of e computations using modular polynomials.

An alternative is as follows. The Bostan—Morain-Salvy—Schost algorithm [BMSS08], given a
curve C (in short Weierstrass form, but the algorithm is easily adjusted to apply to Montgomery
curves) and an £-isogenous curve C’, finds a formula for the unique normalized ¢-isogeny from
C to C'. Part of this formula is the kernel polynomial of the isogeny: the monic degree-(£ — 1)
polynomial D € F;,[X] whose roots are the z-coordinates of the nonzero elements of the kernel
of the isogeny. The algorithm uses ¢'1°() field operations with fast multiplication techniques.
The output of the algorithm can be efficiently verified to be an ¢-isogeny from C to C’, so the
algorithm can also be used to test whether two curves are £-isogenous.

Use this algorithm to test whether there is an £-isogeny from F 4 to E'g, and, if so, to find the
kernel polynomial D. Check whether D divides X? — X, i.e., whether all of the nonzero elements
of the kernel have z-coordinates defined over Fy,; this takes one exponentiation modulo D. Also
check whether D divides (X® + AX? 4+ X)PT1/2 _ (X3 4+ AX? 4 X), i.e., whether all of the
nonzero elements of the kernel have y-coordinates defined over [F,. These tests are all passed if
and onlyif B = L(A).

Both of these approaches also incur the cost of computing B € F), given j(Ep), which we
handle as follows. First note that there are at most two such B: different Montgomery models of
the same curve arise from the choice of point of order 2 which is moved to (0, 0); in our setting,
there is only one rational order-2 point, hence B is unique up to sign. The j-invariant of Eg is an
evenrational function of degree 6in B, hence solving for B € F), given j(Ep) amounts to finding
the F-roots of a degree-6 polynomial g € F,,[Y?]. To do so, we first compute h = ged(YP —Y;, g)
to extract the split part; by the above h is a quadratic polynomial. A solution B € F;, can then be
obtained by computing a square root.

168 ‘ QUANTUM CIRCUITS FOR CSIDH

We also mention a further possibility that appears to eliminate all of the costs above: replace
the classical modular polynomials for j with modular polynomials for the Montgomery coeffi-
cient A. Starting with standard techniques to compute classical modular polynomials, and re-
placing j with A, appears to produce, at the same speed, polynomials that vanish exactly on the
pairs (A, B) where E 4 and Ep are connected by a cyclic £-isogeny. The main cost here is in proof
complexity: to guarantee that this approach works, one must switch from the well-known the-
ory of classical modular polynomials to a suitable theory of Montgomery (or Edwards) modular
polynomials.

9.10.2 — Disambiguating directions. A further problem is that each curve has two neigh-
bors in the ¢-isogeny graph. The modular polynomial does not contain enough information
to distinguish between the two neighbours. Specifically, the roots of ®,(j(E4),Y) in F;, are
J(Er(ay) and j(E,-1(4)), which are almost always different. Switching from j-invariants to
other geometric invariants does not solve this problem.

This is already a problem for CRS, and is already solved in [Kie17; DKS18] using the Bostan—
Morain—Salvy—Schost algorithm. The application of this algorithm in the CRS context s slightly
simpler than the application explained above, since there is no need for isogeny verification: one
knows that E'g is £-isogenous to F 4, and the only question is whether the kernel is in the correct
Frobenius eigenspace. For CSIDH, the question is whether the y-coordinates in the kernel are
defined over Fy,.

9.10.3 —Isogeny walks. We now consider the problem of computing £(A). As before,
L7¢(A) can be computed as —L(—A), so we focus on the case e > 0.

After the first step £(A) has been computed (see above), identifying the correct direction
in each subsequent step is easy, as pointed out in [DKS18, Algorithm ElkiesWalk]. The point is
that (except for degenerate cases) another step in the same direction never leads back to the
previously visited curve; hence simply avoiding backward steps is enough. The cost of disam-
biguating directions is thus amortized across all e steps.

We also amortize the cost of disambiguating twists across all e steps as follows. We ascertain
the correct direction at the first step. We then compute the sequence of j-invariants for all e
steps. At the last step, we compute the corresponding Montgomery coefficient and ascertain the
correct twist.

Algorithm 9.5 combines these ideas. For simplicity, it avoids the Bostan—Morain—Salvy—
Schost algorithm and uses another isogeny-computation method instead, such as Algorithm 9.4,
to disambiguate the direction at the first step and to disambiguate the twist at the last step.

The correctness of Algorithm 9.5 is best explained through the graph picture: Recall that the
¢-isogeny graph (labelled by A-coefficients) is a disjoint union of cycles which have a natural
orientation given by the map L.

Since —L£(—A) = L 1(A), negating all labels in a cycle C corresponds to inverting the ori-
entation of the cycle. For a cycle C as above, let C /= denote the quotient graph of C by negation.
This is the same thing as applying j-invariants to all nodes. If C contains 0, then C/+ is a line
with inflection points at the ends; else C/=+ has the same structure as C. In both cases C/=+ is
unoriented.

For brevity, write j; = j(E,:(4)). Algorithm 9.5 starts out on a cycle C as above by com-
puting one step £ with known-good orientation. It then reduces to C/=+ and continues walking
in the same direction simply by avoiding backwards steps when possible; there are only (up to)
two neighbours at all times. Therefore, the property jeur = j; holds at the end of each iter-

9.11. COST METRICS FOR QUANTUM COMPUTATION 169

Algorithm 9.5: Isogeny graph walking using modular polynomials.

Parameters: Odd primes {; < --- < £p withn > 1, aprimep =44y -+ - £ — 1,
Le{ly,...,ln}, and anintegere > 1.
Input: A € 5.
Output: L°(A).
1 Compute B = L(A) using another algorithm.
2 Set jprev = j(E4) and jeur = j(EB).
3 fori < 2toedo
4 Compute f < ged(Y? — Y, Py (jeur, Y)).
5 Let ¢, d € Fp be the coefficients of f, such that f = Y2 + ¢ + d.
6 | Set(jprev,jcur) < (Jeur,c — jprev)-

7 Find B € Fy such that j(EB) = jeur.

<]

Compute C' = L(B) using another algorithm.
9 Set B+ —B lf](EC) = Jprev.
o Return B.

I

ation of the loop; in particular, arbitrarily lifting je to a node with the right j-invariant yields
B € {£L£°(A)}. Finally, computing and comparing j(E.(g)) = j(Ez(42¢(4))) = Je+1 to the
value je_1 known from the previous iteration of the loop reveals the correct sign.

9.10.4 — Cost. Algorithm 9.5 requires two calls to a separate subroutine for £ and some ex-
tra work (computing a p power modulo a degree-6 polynomial), so it is never faster than re-
peated applications of the separate subroutine when e < 2. On the other hand, replacing this
subroutine with the Bostan—Morain-Salvy—Schost algorithm, and/or replacing classical mod-
ular polynomials with modular polynomials for A, might make this approach competitive for
e = 2 and perhapsevene = 1.

No matter how large e is, Algorithm 9.5 requires computing the polynomials ged(Y? — Y, g)
and ged(Y? =Y, ®p(jeur, Y)) for each isogeny. The degree of g is smaller than in Algorithm 9.4
for £ > 5, but the ged cost quickly becomes much more expensive than the “Vélu” method from
Section 9.5 as £ grows. However, this algorithm may nevertheless be of interest for small values
of £. If Algorithm 9.4 (rather than the Vélu method) is used as the separate £ subroutine then
Algorithm 9.5 is deterministic and always works.

9.11 — Cost metrics for quantum computation

This section reviews several cost metrics relevant to this chapter.

9.11.1— Bit operations. Computations on today’s non-quantum computers are ultimately
nothing more than sequences of bit operations. The hardware carries out a sequence of NOT
gates b — 1 @ b; AND gates (a,b) — ab = min{a, b}; OR gates (a,b) — max{a, b}; and XOR
gates (a,b) — a @ b. Some of the results are displayed as outputs.

Formally, a computation is a finite directed acyclic graph where each node has 0, 1, or 2 in-
puts. Each 0-input node in the graph is labeled as constant 0, constant 1, or a specified input bit.
Each 1-input node in the graph is labeled NOT. Each 2-input node in the graph is labeled AND,

170 ‘ QUANTUM CIRCUITS FOR CSIDH

OR, or XOR. There is also a labeling of output bits as particular nodes in the graph.

The graph induces a function from sequences of input bits to sequences of output bits. Spe-
cifically, given values of the input bits, the graph assigns a value to each node as specified by the
label (e.g., the value at an AND node is the minimum of the values of its two input nodes), and
in particular computes values of the output bits.

Our primary cost metric in this chapter is the number of nonlinear bit operations: i.e., we
count the number of ANDs and ORs, disregarding the number of NOTs and XORs (and 0s and
1s). The advantage of choosing this cost metric is comparability to the Toffoli cost metric used
in, e.g,, [HRS17] and [RNSL17], which in turn is motivated by current estimates of the costs of
various quantum operations, as we explain below.

A potential disadvantage of choosing this cost metric is that the cost metric can hide arbit-
rarily large sequences of linear operations. For example, there are known algorithms to multiply
n-coefficient polynomials in Fo[z] using ©(n) nonlinear operations (see, e.g., [PR15]), but this
operation count hides ©(n?) linear operations. Other algorithms using n(log n)1+°(1) total bit
operations (see, e.g., [Sch77] and [HHL17]) are much better when n is large, even though they
have many more nonlinear bit operations.

This seems to be less of anissue for integer arithmetic than for polynomial arithmetic. Adding
nonzero costs for NOT and XOR requires a reevaluation of, e.g., the quantitative cutoff between
schoolbook multiplication and Karatsuba multiplication, but does not seem to have broader
qualitative impacts on the speedups that we consider in this chapter. Similarly, our techniques
can easily be adapted to, e.g., a cost metric that allows NAND gates with lower cost than AND
gates, reflecting the reality of computer hardware.

9.11.2 — The importance of constant-time computations. One can object to the simple
model of computation explained above as not allowing variable-time computations. The graph
uses a constant number of bit operations to produce its outputs, whereas real users often wait
input-dependent amounts of time for the results of a computation. If a particular input is pro-
cessed faster than the worst case, then the time saved can be spent on other useful computations.

However, our primary goal in this chapter is to evaluate the cost of carrying out a CSIDH
group action on a huge number of inputs in quantum superposition. Operations are carried out
on all of the inputs simultaneously, and then a measurement retroactively selects a particular
input. The costdepends on the number of operations carried out on all inputs, not on the number
of operations that in retrospect could have been carried out for the selected input.

The same structure has an impact at every level of algorithm design. In conventional al-
gorithm design, if a function calls subroutine X for some inputs and subroutine Y for other
inputs, then the cost of the function is the maximum of the costs of X and Y. However, a compu-
tation graph does not allow this branching. One must instead compute a suitable combination
such as

bX (inputs) + (1 @ b)Y (inputs),

taking the total time for X and Y, or search for ways to overlap portions of the computations of
XandY.

One can provide branches as a higher-level abstraction by building a computation graph
that manipulates an input-dependent pointer into an array of instructions, imitating the way
that CPU hardware is built. Itis important to realize, however, that the number of bit operations
required to read an instruction from a variable location in an array grows with the size of the
array, so the total number of bit operations in this approach grows much more rapidly than the

9.11. COST METRICS FOR QUANTUM COMPUTATION 171

number of instructions. A closer look at what actually needs to be computed drastically reduces
the number of bit operations.

The speedup techniques considered in this chapter can also be used in constant-time non-
quantum software and hardware for CSIDH, reducing the cost of protecting CSIDH users against
timing attacks. However, our main focus is the quantum case.

9.11.3 — Reversible bit operations. Bits cannot be erased or copied inside a quantum com-
putation. For example, one cannot simply compute a XOR gate, replacing (a, b) with a @ b, or an
AND gate, replacing (a, b) with ab. However, one can compute a “CNOT” gate, replacing (a, b)
with (a, a @ b); or a “Toffoli” gate, replacing (a, b, ¢) with (a, b, c @ ab).

In general, an n-bit reversible computation begins with a list of n input bits, and then applies a
sequence of NOT gates, CNOT gates, and Toffoli gates to specified positions in the list, eventually
producing n output bits. Each of these gates is its own inverse, so one can map output back to
input by applying the same gates in the reverse order.

Bennett’s conversion (see [Ben73], which handles the more complicated case of Turing
machines) is a generic transformation from computations, as defined in Section 9.11.1, to revers-
ible computations. Say the original computation maps z € {0,1}* to F(z) € {0,1}*. The
reversible computation then maps (z,y,0) € {0, 1} ™ to (2,y @ F(z),0) € {0, 1}*+¢F™
for some choice of m that will be clear in a moment; the m auxiliary zero bits are called ancillas.
The effect of the reversible computation upon more general inputs (z,y, z) € {0, 1}k+[+m is
more complicated, and usually irrelevant.

For each AND gate (a,b) — ab in the original computation, the reversible computation al-
locates an ancilla ¢ and performs (a, b, ¢) — (a, b, c® ab) as a Toffoli gate. Note that if the ancilla
¢ begins as 0 then this Toffoli gate produces the desired bit ab. More generally, for each gate in
the original computation, the reversible computation allocates an ancilla ¢ and operates revers-
ibly on this ancilla, in such a way that if the ancilla begins with 0 then it ends with the same bit
computed by the original gate. For example:

e For each constant-1 gate () — 1, the reversible computation allocates an ancilla ¢ and
performs a NOT gatec+— 1 —c.

e For each NOT gate b — 1 @ b, the reversible computation allocates an ancilla ¢ and per-
forms (b, ¢) — (b,c® 1 @ b) as a NOT gate and a CNOT gate.

e For each XOR gate (a,b) — a @ b, the reversible computation allocates an ancilla ¢ and
performs (a, b, ¢) — (a,b,c @ a & b) as two CNOT gates.

The reversible computation thus maps (z, y, 0) to (z, y, z) where zis the entire sequence of bits in
the original computation, including all intermediate results. In particular, z includes the bits of
F(z),and ¢ additional CNOT gates produce (z, y® F'(x), z). Finally, re-running the computation
of z in reverse order has the effect of “uncomputing” z, producing (z,y ® F(z),0) as claimed.

The number of Toffoli gates here is exactly twice the number of nonlinear bit operations in
the original computation: once in computing z and once in uncomputing z. There is a larger
expansion in the number of NOT and CNOT gates compared to the original number of linear bit
operations, but, as mentioned earlier, we focus on nonlinear bit operations.

Sometimes these overheads can be reduced. For example, if the original computation is
simply an AND (a, b) — ab, then the reversible computation stated above uses two Toffoli gates
and one ancilla—

e (a,b,y,0) — (a,b,y, ab) with a Toffoli gate,
e (a,b,y,ab) — (a,b,y ® ab, ab) with a CNOT gate,

172 ‘ QUANTUM CIRCUITS FOR CSIDH

e (a,b,y ® ab,ab) — (a,b,y & ab, 0) with another Toffoli gate,

— butitisbetter to simply compute (a, b, y) — (a, b, y®ab) with one Toffoli gate and no ancillas.
We do not claim that the optimal number of bit operations is a perfect predictor of the optimal
number of Toffoli gates; we simply use the fact that the ratio is between 1 and 2.

Note that Bennett’s reversible computation operates on an n-bit state wheren = k + £+ m
is essentially the number of bit operations in the original computation. Perhaps the original com-
putation can fit into a much smaller state (depending on the order of operations, something
not expressed by the computation graph), but this often relies on erasing intermediate results,
which a reversible computation cannot do. Even in a world where arbitrarily large quantum
computers can be built, this number n has an important impact on the cost of the correspond-
ing quantum computation, so it becomes important to consider ways to reduce n, as explained
in Section 9.11.5.

9.11.4 — T'-gates. The state of n qubits is, by definition, a nonzero element (vg, vy, ...) of
the vector space C?" . Measuring these n qubits produces an n-bitindex i € {0,1,...,2" — 1},
while modifying the vector to have 1 at position ¢ and 0 elsewhere. The chance of obtaining 7 is
proportional to |v;|%. One can, if desired, normalize the vectors so that > i = 1.

An n-qubit quantum computation applies a sequence of NOT (often written “X”), CNOT,
Hadamard (“H”), T, and T~ ! gates to specified positions within n qubits. There is a standard
representation of these gates as the matrices

0 1 1 1 1 0 1 0
1 0}’ "\1 —1)7\0 exp(in/4)) \0 exp(—ir/4)

respectively; if vectors are normalized then the Hadamard matrix is divided by v/2. There is also
a standard way to interpret these matrices as acting upon vectors in C?" . For example, applying
the NOT gate to qubit 0 of (vg, v1,v2,vs,...) produces (v, vg, v3,v2, . ..); measuring after the
NOT has the same effect as measuring before the NOT and then complementing bit 0 of the
result. Applying the NOT gate to qubit 1 of (vg, v1, v2,v3, . . .) produces (v2, v3, vg, v1, . . .).

The consensus of quantum-computer engineers appears to be that “Clifford operations”
such as NOT, CNOT, H, T?, and T2 are at least two orders of magnitude less expensive than
T and T 1. Itis thus common practice to allow 7% (“S” or “P”) and T2 as further gates, and
to count the number of T and T~ 1, while disregarding the number of NOT, CNOT, H, T2 and
T~2. The total number of T and T~ is, by definition, the number of T-gates.

There is a standard conversion from an n-bit reversible computation to an n-qubit quantum
computation. NOT is converted to NOT; CNOT is converted to CNOT; Toffoli is converted to a
sequence of 7 T'-gates and some Clifford gates. Multiplying 7 by an upper bound on the number
of Toffoli gates thus produces an upper bound on the number of T'-gates.

As in Section 9.11.3, these overheads can sometimes be reduced. For example:

o O O
o O =

= o O O
o = O O

o All of the quantum gates mentioned here operate on one or two qubits at a time. The
intermediate results in a Toffoli computation can often be reused for other computations.

e In a more sophisticated model of quantum computation that allows internal measure-
ments, Jones [Joni2] showed how to implement a Toffoli gate as 4 T'-gates, some Clifford
gates, and a measurement. We follow [GLRS16] in mentioning but disregarding this al-
ternative.

9.11. COST METRICS FOR QUANTUM COMPUTATION 173

e In the same model, a recent paper by Gidney [Gid17] showed how to implement n-bit in-
teger addition using about 4n T'-gates (and a similar number of Clifford gates and meas-
urements). For comparison, a standard “ripple carry” adder uses about 2n nonlinear bit
operations.

As before, we do not claim that the optimal number of Toffoli gates is a perfect predictor of the
number of T'-gates; we simply use the fact that the ratio is between 1 and 7.

9.11.5 — Error-correction steps; the importance of parallelism. To recap: Our primary
focus is producing an upper bound on the number of nonlinear bit operations. Multiplying by 2
gives an upper bound on the number of Toffoli gates for a reversible computation, and multiply-
ing this second upper bound by 7 gives an upper bound on the number of T"-gates for a quantum
computation. Linear bit operations (and the corresponding reversible and quantum gates) do
not seem to be a bottleneck for the types of computations considered in this chapter.

There is, however, a much more important bottleneck that is ignored in these cost metrics:
namely, fault-tolerance seems to require continual error correction of every stored qubit.

Surface codes [FMMCi2] are the leading candidates for fault-tolerant quantum computa-
tion. A logical qubit is encoded in a particular way as many entangled physical qubits spread
over a surface. Some of the physical qubits are continually measured, and operations are carried
out on the physical qubits to correct any errors revealed by the measurements. The consensus
of the literature appears to be that performing a computation on a logical qubit will be only a
small constant factor more expensive than storing an idle logical qubit.

One consequence of this structure is that all fault-tolerant quantum computations involve
entanglement throughout the entire computation, contrary to the claim in [BS18] that a partic-
ular quantum algorithm “does not need to have a highly entangled memory for a long time”.

Another consequence of this structure is that the cost of a quantum computation can grow
quadratically with the number of bit operations. Consider, for example, an n-bit ripple-carry
adder, or the adder from [Gid17]. This computation involves ©(n) sequential bit operations and
finishes in time ©(n). Each of the ©(n) qubits needs active error correction at each time step, for
a total of ©(n?) error-correction steps.

The product of computer size and time is typically called “area-time product” or “AT” in the
literature on non-quantum computation; “volume” in the literature on quantum computation;
and “price-performance ratio” in the literature on economics. The cost of quantum error correc-
tion is not the only argument for viewing this product as the true cost of computation: there is a
more fundamental argument stating that the total cost assigned to two separate computations
should not depend on whether the computations are carried out in serial (using hardware for
twice as much time) or in parallel (using twice as much hardware).

From this perspective, it is much better to use parallel algorithms for integer addition that
finish in time ©(log n). This still means ©(n log n) error-correction steps, so the costis larger by
a factor ©(log n) than the number of bit operations.

At a higher level, the CSIDH computation involves various layers for which highly paral-
lel algorithms are not known. For example, modular exponentiation is notoriously difficult to
parallelize. A conventional computation of z mod n, 22 mod n, z* mod n, z® mod n, etc. can
store each intermediate result on top of the previous result, but Bennett’s conversion produces a
reversible computation that uses much more storage, and the resulting quantum computation
requires continual error correction for all of the stored qubits. Shor’s algorithm avoids this issue
because it computes a superposition of powers of a constant x; this is not helpful in the CSIDH
context.

174 ‘ QUANTUM CIRCUITS FOR CSIDH

Bennett suggested reducing the number of intermediate results in a reversible computation
by checkpointing the computation halfway through:

e Compute the middle as a function of the beginning.

e Uncompute intermediate results, leaving the beginning and the middle.

e Compute the end as a function of the middle.

e Uncompute intermediate results, leaving the beginning, middle, and end.
e Recompute the middle from the beginning.

e Uncompute intermediate results, leaving the beginning and end.

This multiplies the number of qubits by about 0.5 but multiplies the number of gates by about
1.5. See [Ben89] and [Knigs] for analyses of further tradeoffs along these lines.

This chapter focuses on bit operations, as noted above. Beyond this, Section 9.13.6 makes
some remarks on the number of qubits required for our computations. We have not attempted
to analyze the time required for a parallel computation using a specified number of qubits.

9.11.6 — Error-correction steps on a two-dimensional mesh. There is a further problem
with counting bit operations: in many computations, the main bottleneck is communication.

For example, FFT-based techniques multiply n-bitintegers using nt oM bit operations, and

can be parallelized to use time just n®(!) with area n'*°(1). However, Brent and Kung [BK81]
showed that integer multiplication on a two-dimensional mesh of area n'*°(!) requires time
n95+°() even in a model where information travels instantaneously through arbitrarily long

wires.

Plausible architectures for fault-tolerant quantum computation, such as [FMMCi2], are built
from near-neighbor interactions on a two-dimensional mesh. Presumably, as in [BK81], n' T°(1)
qubits computing an n-bit product require time n95+°M) ‘and thus n'>T°M) error-correction
steps. One might hope for quantum teleportation to avoid some of the bottlenecks, but spread-
ing an entangled pair of qubits across distance n%->*°() takes time n®-5+°(!) in the same archi-
tectures.

We have not attempted to analyze the impact of these effects for concrete sizes of n. We
have also not analyzed communication costs at higher levels of the CSIDH computation. For
comparison, attacks against AES [GLRS16] use fewer qubits, and perform much longer stretches
of computation on nearby qubits.

9.12— Basic integer arithmetic

We use b bits ng, n1,n2, . . ., np_1 to represent the nonnegative integer ng + 2ny1 + 4ng + - - - +
2b—1nb_1_ Each element of {0, 1,...,2b— 1} has aunique representation as b bits. This section

analyzes the cost of additions, subtractions, multiplications, and squarings in this representa-
tion.

9.12.1— Addition. We use a standard sequential ripple-carry adder. If b > 1 then the sum
of the b-bitintegersrepresented by ng, n1,na, ..., ny_1 andmg, mi, ma, ..., my_1 isthe (b+1)-

9.12. BASIC INTEGER ARITHMETIC 175

bit integer represented by sg, s1, s2, . . ., s, computed as follows:
g = ng @ mo; 80 = T0; €o = nomo;
r1 =mn1 B my; s1 =1 O co; c1 =ni1m1 D xico;
T2 = ng G my; s2 = x2 D cy; c2 = nama @ x2c1;

Tp—1 =Np—1 DMp—1; Sp—1 = Tp—1 D Cp—2; Cp—1 = Np—1Mp—1 D Tp—1Cp—2;
Sp = Cp—1-

There are 5b — 3 bit operations here, including 2b — 1 nonlinear bit operations. Our primary cost
metric is the number of nonlinear bit operations.

More generally, to add a b-bit integer to an a-bit integer with a < b, we use the formulas
above to obtain a (b + 1)-bit sum, skipping computations that refer to mqa, mg+1, ..., mp_1-

Minor speedups: If a = 0 then we instead produce a b-bit sum. More generally, we could (but
currently do not) track ranges of integers more precisely, and decide based on the output range
whether a sum needs b bits or b + 1 bits. This is compatible with constant-time computation:
the sequence of bit operations being carried out is independent of the values of the bits being
processed.

9.12.2 — Subtraction. We use a standard ripple-borrow subtractor to subtract two b-bitin-
tegers modulo 2°, obtaining a b-bit integer. The formulas are similar to the ripple-carry adder.
The total number of operations grows from 5 to 7 for each bit but the number of nonlinear oper-
ations is still 2 per bit.

9.12.3 — Multiplication. Write Q(b) for the minimum number of nonlinear bit operations
for b-bit integer multiplication. We combine Karatsuba multiplication [KO63] and schoolbook
multiplication, as explained below, to obtain concrete upper bounds on Q(b) for various values
of b. See Table 9.5.

We are not aware of previous analyses of Q(b). Itis easy to find literature stating the number
of bit operations for schoolbook multiplication, but we do better starting at 14 bits. For b = 512
we obtain Q(512) < 241908 (using an algorithm with a total of 536184 bit operations), while
schoolbook multiplication uses 784896 nonlinear bit operations (and a total of 1568768 bit op-
erations).

It is also easy to find literature on the number of bit operations for polynomial multiplic-
ation mod 2, but carries make the integer case much more expensive and qualitatively change
the analysis. For example, [KS15] uses Karatsuba’s method for polynomials all the way down to
single-bit multiplication, exploiting the fact that polynomial addition costs 0 nonlinear bit op-
erations; for integer multiplication, Karatsuba’s method has much more overhead. Concretely,
Karatsuba’s method uses just 3° = 19683 nonlinear bit operations to multiply 512-bit polyno-
mials; we use 12 times as many nonlinear bit operations to multiply 512-bit integers.

Schoolbook multiplication. Schoolbook multiplication of two b-bit integers has two stages.
The first stage is b2 parallel multiplications of individual bits. This produces 1 product at position
0; 2 products at position 1; 3 products at position 2;; b products at position b— 1; b— 1 products
at position b; ...; 1 product at position 2b — 2. The second stage repeatedly

¢ adds two bits at position 7, obtaining one bit at position ¢ and a carry bit at position ¢ + 1,
or, more efficiently,

176 ‘ QUANTUM CIRCUITS FOR CSIDH

1 65 8313 129 25912 193 50221 257 79732 321 114068 385 153686 449 197391
2 6 66 8497 130 26224 194 50631 258 80237 322 114669 386 154350 450 198131
3 18 67 8813 131 26733 195 51310 259 81067 323 115655 387 155448 451 199341
4 36 68 8940 132 26925 196 51563 260 81387 324 116035 388 155866 452 199802
5 60 69 9201 133 27377 197 52161 261 82097 325 116877 389 156807 453 200845
6 20 70 9397 134 27701 198 52594 262 82614 326 117490 390 157494 454 201601
7 126 71 9664 135 28098 199 53124 263 83267 327 118263 391 158354 455 202540
8 168 72 9736 136 28233 200 53296 264 83467 328 118499 392 158615 456 202834
9 216 73 10070 137 28699 201 53930 265 84252 329 119428 393 159655 457 203956
10 270 74 10272 138 28968 202 54295 266 84712 330 119972 394 160261 458 204608
11 330 75 10618 139 29440 203 54924 267 85442 331 120834 395 161233 459 205675
12 396 76 10757 140 29644 204 55200 268 85774 332 121226 396 161674 460 206152
13 468 77 11042 141 29992 205 55657 269 86315 333 121863 397 162385 461 206932
14 535 78 11256 142 30267 206 56017 270 86720 334 122340 398 162923 462 207529
15 630 79 11547 143 30682 207 56565 271 87330 335 123058 399 163738 463 208429
16 684 80 11625 144 30762 208 56669 272 87473 336 123225 400 163918 464 208619
17 795 81 11989 145 31307 209 57384 273 88217 337 124101 401 164926 465 209751
18 851 82 12209 146 31649 210 57835 274 88691 338 124659 402 165568 466 210468
19 974 83 12585 147 32206 211 58537 275 89441 339 125541 403 166571 467 211559
20 1036 84 12736 148 32416 212 58808 276 89718 340 125866 404 166944 468 211981
21 1171 85 13045 149 32910 213 59434 277 90403 341 126671 405 167858 469 212960
22 1239 86 13277 150 33264 214 59872 278 20883 342 127235 406 168495 470 213636
23 1386 87 13592 151 33697 215 60402 279 91444 343 127892 407 169237 471 214440
24 1460 88 13676 152 33844 216 60597 280 91656 344 128140 408 169521 472 214750
25 1608 89 14070 153 34352 217 61190 281 92288 345 128880 409 170347 473 215625
26 1688 90 14308 154 34645 218 61532 282 92644 346 129296 410 170812 474 216126
27 1859 91 14703 155 35159 219 62153 283 93343 347 130115 411 171729 475 217072
28 1934 92 14866 156 35381 220 62411 284 93626 348 130446 412 172097 476 217453
29 2092 93 15188 157 35759 221 62873 285 94130 349 131034 413 172758 477 218153
30 2195 94 15427 158 36058 222 63243 286 94553 350 131529 414 173314 478 218725
31 2369 95 15755 159 36509 223 63788 287 95187 351 132271 415 174142 479 219559
32 2431 96 15845 160 36595 224 63887 288 95275 352 132371 416 174254 480 219694
33 2607 97 16247 161 37188 225 64619 289 96171 353 133423 417 175429 481 220845
34 2726 98 16492 162 37560 226 65072 290 96724 354 134072 418 176152 482 221551
35 2014 99 16917 163 38165 227 65820 201 97632 355 135125 419 177314 483 222704
36 2978 100 17081 164 38393 228 66106 202 97982 356 135535 420 177773 484 223156
37 3172 101 17438 165 38929 229 66750 203 98758 357 136432 421 178755 485 224126
38 3303 102 17706 166 39313 230 67219 204 99323 358 137082 422 179465 486 224834
39 3509 103 18058 167 39782 231 67808 295 100036 359 137904 423 180371 487 225741
40 3579 104 18154 168 39941 232 67990 206 100254 360 138158 424 180650 488 226010
41 3791 105 18597 169 40491 233 68699 207 101111 361 139137 425 181723 489 227102
42 3934 106 18860 170 40808 234 69113 2908 101613 362 139712 426 182357 490 227747
43 4158 107 19290 171 41364 235 69781 299 102409 363 140618 427 183334 491 228727
44 4234 108 19477 172 41604 236 70083 300 102771 364 141029 428 183780 492 229181
45 4464 109 19811 173 42012 237 70576 301 103360 365 141703 429 184514 493 229013
46 4619 110 20061 174 42335 238 70949 302 103801 366 142205 430 185052 494 230446
47 4850 111 20423 175 42822 239 71513 303 104465 367 142955 431 185849 495 231243
48 4932 112 20514 176 42914 240 71640 304 104620 368 143134 432 186052 496 231449
49 5169 113 20959 177 43555 241 72338 305 105430 369 144043 433 186996 497 232382
50 5325 114 21237 178 43957 242 72782 306 105946 370 144621 434 187597 498 232080
51 5585 115 21698 179 44599 243 73482 307 106762 371 145536 435 188569 499 233970
52 5673 116 21872 180 44845 244 73743 308 107063 372 145874 436 188919 500 234312
53 5928 117 22278 181 45412 245 74380 309 107808 373 146706 437 189807 501 235231
54 6107 118 22572 182 45815 246 74826 310 108330 374 147290 438 190436 502 235886
55 6349 119 22937 183 46309 247 75351 311 108939 375 147973 439 191165 503 236628
56 6432 120 23056 184 46480 248 75549 312 109169 376 148228 440 191431 504 236899
57 6702 121 23492 185 47050 249 76139 313 109855 377 149000 441 192272 505 237769
58 6868 122 23745 186 47380 250 76473 314 110241 378 149435 442 192742 506 238247
59 7154 123 24183 187 47956 251 77120 315 111000 379 150281 443 193666 507 239231
60 7265 124 24373 188 48203 252 77383 316 111307 380 150625 444 194044 508 239630
61 7510 125 24699 189 48630 253 77853 317 111853 381 151233 445 194697 509 240309
62 7692 126 24954 190 48966 254 78244 318 112312 382 151742 446 195250 510 240901
63 7939 127 25337 191 49467 255 78828 319 113000 383 152505 447 196090 511 241814
64 8009 128 25415 192 49565 256 78914 320 113094 384 152611 448 196197 512 241908

Table 9.5: Upper bounds on Q(b) for b < 512: e.g,, Q(3) < 18. Q(b) is the minimum number of nonlinear bit
operations for b-bit integer multiplication.

9.12. BASIC INTEGER ARITHMETIC 177

o adds three bits at position 4, obtaining one bit at position ¢ and a carry bit at position i+ 1,

until there is only one bit at each position.

There are several standard ways to organize the second stage for parallel computation: for
example, Wallace trees [Wal64] and Dadda trees [Dad65]. Dadda trees use fewer bit operations
since they make sure to add three bits whenever possible rather than two bits. Since parallelism
isnotvisible in our primary cost metric, we simply add sequentially from the bottom bit. Overall
we use 6b? — 8b bit operations for b-bit schoolbook multiplication (if b > 2), including 36* — 3b
nonlinear bit operations.

Karatsuba multiplication. When b is not very small, we do better using Karatsuba’s method:
the product of Xg + 20 X1 and Yy + 2°V7 is Zo + 2221 + 222 Z9 where Zp = XYy, Z2 = X1Y4,
and Z; = (Xo+ X1)(Yo + Y1) — (Zo + Z2).

Karatsuba’s method reduces a 2b-bit multiplication to two b-bit multiplications for Zy and
Za,two b-bitadditions for Xg+X1 and Yy+Y7, one (b+1)-bitmultiplication, one 2b-bit addition
for Zo + Z, one subtraction modulo 22°+! for Z;, and a 4b-bit addition for (Zo +2%°Z5) +2° Z;.
Some operations in the 4b-bit addition can be eliminated, and counting carefully shows that

Q2b—1)<Qb—1)+Q(b) + Qb+ 1)+ 17b — 12,
Q(2b) <2Q(b) + Qb+ 1) + 17b — 4.

These formulas do better than schoolbook multiplication for Q(14) and for Q(16), Q(17),. ...
For comparison, similar formulas apply to M (b), the total number of bit operations (linear
and nonlinear) for b-bit polynomial multiplication mod 2. The cost of schoolbook multiplication
then scales as 202 rather than 3b%. The overhead of “refined Karatsuba” multiplication scales as
Tbrather than 175, already giving improved bounds on M (6), and giving, e.g., M (512) < 109048.

Other techniques. We have skipped some small speedups. For example, the top bit of (X¢ +
X1)(Yo + Y1) does not need to be computed. As another example, one can use “refined Karat-
suba” multiplication for integers; see [HS15] for one way to organize the carry chains. Presumably
we have missed some other small speedups.

Toom multiplication [Too63] implies Q(b) € b'T°(1), FFT-based improvements in the o(1)
appear in, e.g., [Pol71], [Nic71, page 532], [SS71], [Furo7], [HHL16], and [HH18]. Our Karatsuba-
based bounds on Q(b) can thus be improved for sufficiently large values of b, and perhaps for
values of b relevant to CSIDH. For comparison, Bernstein [Beroga] obtained M (512) < 98018
using Toom multiplication, not a large improvement upon the M (512) < 109048 bound men-
tioned above from refined Karatsuba multiplication.

9.12.4 — Squaring. Schoolbook squaring saves about half the work of schoolbook multiplic-
ation. Specifically, for each pair (i, j) with ¢ < j, schoolbook multiplication adds both n;m; and
n;m; to position i+, while schoolbook squaring adds n;n; to position i+ j+1; also, schoolbook
multiplication adds n;m; to position 2i, while schoolbook squaring adds n; (which is the same
as n?) to position 2i. Overall we use 3b> — 6b + 3 bit operations for b-bit schoolbook squaring,
including 1.56% — 2.5b 4 1 nonlinear bit operations.

Karatsuba squaring also hasless overhead than Karatsuba multiplication, but the ratio over-
head/schoolbook is somewhat larger for squaring than for multiplication, making Karatsuba
squaring somewhat less effective. We obtain squaring speedups from Karatsuba squaring—
in our primary cost metric, nonlinear bit operations — starting at 22 bits. For 512 bits we use
143587 nonlinear bit operations, about 60% of the nonlinear bit operations that we use for mul-
tiplication.

178 ‘ QUANTUM CIRCUITS FOR CSIDH

9.12.5— Multiplication by a constant. We save even more in the multiplications that arise
in reduction modulo p (see Section 9.13.1), namely multiplications by large constants. The exact
savings depend on the constant; for example, for seven different 512-bit constants, we use

107338, 110088, 109574, 111760, 107925, 107711, 108234

nonlinear bit operations, about 45% of the multiplication cost. Here the schoolbook method is
as follows: if m is the constant 1 then add n; to position i + j. We use Karatsuba multiplication
starting at 30 bits.

Other techniques. There is some literature studying addition chains (and addition-subtraction
chains) with free doublings. For example, [D1Zo7] shows that multiplication by a b-bit constant
uses O(b/log b) additions (and [Lefo3] shows that most constants require ©(b/log b) additions),
for a total of O(b? /log b) bit operations. This is asymptotically beaten by Karatsuba multiplica-
tion, but could be useful as an intermediate step between schoolbook multiplication and Karat-
suba multiplication.

9.13 — Modular arithmetic

CSIDH uses elliptic curves defined over F;,, where p is a standard prime number. For example,
in CSIDH-512, pis the prime number4 -3 -5-7-11---373 - 587 — 1, between 2510 3nd 2511 a1l
primes between 3 and 373 appear in the product.

Almost all of the bit operations in our computation are consumed by a long series of multi-
plications modulo p, organized into various higher-level operations such as exponentiation and
elliptic-curve scalar multiplication. This section analyzes the performance of modular multi-
plication, exponentiation, and inversion.

9.13.1— Reduction. We completely reduce a nonnegative integer z modulo p as follows. As-
sume that z has ¢ bits (so 0 < z < 2°), and assume 2071 < p < 2P withb > 2.

If ¢ < bthen thereisnothingtodo: 0 < z < 2b—1 < p. Assume from now on that ¢ > b.

Compute an approximation q to z/p precise enough to guarantee that 0 < z —gp < 2p. Here
we use the standard idea of multiplying by a precomputed reciprocal:

e Precompute R = {2C+2/pJ . Formally, this costs 0 in our primary cost metric, since pre-

computation is part of constructing our algorithm rather than running our algorithm. More
importantly, our entire algorithm uses only a few small values of ¢, so this precomputation
has negligible cost.

e Compute ¢ = { Lz/?b_zJ R/2C_b+4J . The cost of computing q is the cost of multiplying
the (¢ — b+ 2)-bitinteger {z/QbiQJ by the constant (¢ — b+ 3)-bitinteger R. Computing
{z/2b_2J means simply taking the top ¢ — b 4 2 bits of z.

By construction R < 2°72/pand ¢ < zR/2°7% s0 ¢ < z/p. Checking that z/p < ¢ + 2 involves
more inequalities:

¢« 2°72/p <« R4+ 1s0z/p < z(R+1)/2°7% < zR/2°"2 + 1/4. This uses the fact that
0<z<2°

o 2/2"72 < [2/2072] 4 1,50 (/207 R/2° T < | 272072 | R/2e TP 4 12, This uses
the fact that 0 < R < 26703,

. {z/Zbin R/2¢70H < g4 1.

9.13. MODULAR ARITHMETIC | 179

e Hencez/p<q+1+1/24+1/4=q+7/4.

Next replace z with z — gp. This involves a multiplication of the (¢ — b + 1)-bit integer g by
the constant b-bit integer p, and a subtraction. We save some time here by computing only the
bottom b + 1 bits of gp and z — gp, using the fact that0 < z — gp < b+l

At this point (the new) z is between 0 and 2p — 1, so all that remains is to subtract p from 2
ifz>p.

Compute y = z —p mod 20F1 Useyp, the bitat position b of y, to select between the bottom
b bits of z and the bottom b bits of y: specifically, compute yo @ yp(yo @ 20), y1 D yp(y1 B 21),
and so on through yp_1 ® yp(yp—1 D 2p—1).- lf 2 > pthen0 < z—p < p < 2Ysoy =z — pand
yp = 0, so these output bits are yg, y1, - - . , yp—1 as desired;if z < p then < p<z—p<0
soy=z—p+ 20*1 and yp = 1, so these output bits are zp, 21, . . ., 2p_1 as desired.

Other techniques. We could save time in the multiplication by R by skipping most of the com-
putations involved in bottom bits of the product. It is important for the total of the bits thrown
away to be at most 2°~ %2 so that ¢ is reduced by at most 1/4, the gap between ¢ + 2 and the
g + 7/4 mentioned above.

We could vary the number of bits in R, the allowed range of z — gp, etc. The literature some-
times recommends repeatedly subtracting p once z is known to be small, butif the range is (e.g.)
0 through 4p — 1 then it is slightly better to first subtract 2p and then subtract p.

Historical notes. Multiplying by a precomputed reciprocal, to compute a quotient and then a
remainder, is often called “Barrett reduction”, in reference to a 1986 paper [Bar86]. However,
Knuth [Knu81, page 264] had already commented in 1981 that Newton’s method “for evaluating
the reciprocal of a number was extensively used in early computers” and that, for “extremely
large numbers”, Newton’s method and “subsequent multiplication” using fast multiplication
techniques can be “considerably faster” than a simple quadratic-time division method.

9.13.2 — Multiplication. To multiply b-bit integers z, y modulo p, we follow the conven-
tional approach of first multiplying = by y, and then reducing the 2b-bit product zy modulo p as
explained in Section 9.13.1.

For example, for CSIDH-512, we use 241814 nonlinear bit operations for g11-bit multiplica-
tion, and 206088 nonlinear bit operations for reduction modulo p, for a total of 447902 nonlin-
ear bit operations for multiplication modulo p.

Generic conversion to a quantum algorithm (see Section 9.11.4) produces 14 - 447902 =
6270628 T-gates. This T'-gate count is approximately 48 times larger than the cost “217” claimed
in [BS18, Table 6]. The ratio is actually closer to 100, since [BS18] claims to count “Clifford+T”
gates while we count only 7T'-gates. We do not claim that the generic conversion is optimal, but
there is no justification for [BS18] using an estimate for the costs of multiplication in a binary
field as an estimate for the costs of multiplication in Fy,.

Squaring. For CSIDH-512, we use 143508 nonlinear bit operations for g11-bit squaring, and again
206088 nonlinear bit operations for reduction modulo p, for a total of 349596 nonlinear bit op-
erations for squaring modulo p. This is about 78% of the cost of a general multiplication, close
to the traditional 80% estimate.

Other techniques. Montgomery multiplication [Mon85] computes zy/2” modulo p, using a
multiple of p to clear the bottom bits of zy. This has the same asymptotic performance as clear-
ing the top bits; it sometimes requires extra multiplications and divisions by 2° modulo p but
might be slightly faster overall.

180 ‘ QUANTUM CIRCUITS FOR CSIDH

9.13.3 —Addition. A standard speedup for many software platforms is to avoid reductions
after additions. For example, to compute (z + y)z modulo a 511-bit p, one computes the 512-bit
sum z + y, computes the 1023-bit product (z 4 y)z, and then reduces modulo p.

However, bit operations are not the same as CPU cycles. An intermediate reduction of z 4+ y
modulo p (using the last step of the reduction procedure explained in Section 9.13.1, a conditional
subtraction of p) involves relatively few bit operations, and saves more bit operations because
the multiplication and reduction are working with slightly smaller inputs.

9.13.4 — Exponentiation with small variable exponents. Ourisogeny algorithmsinvolve
various computations 2° mod p where e is a variable having only a few bits, typically under 10
bits.

To compute z¢ mod p where e = eg + 2e1 + 4eg + - -- + 27 Ley_ 1, we start with z€-1,
square modulo p, multiply by 2°* -2, square modulo p, and so on through multiplying by 2. We
compute each 2 by using the bit e; to select between 1 and z; this takes a few bit operations
per bit of z, as in Section 9.13.1.

Starting at b = 4, we instead use “width-2 windows”. This means that we perform a se-
quence of square-square-multiply operations, using two bits of e at a time to select from a pre-
computed table of 1, z, 22 mod p, 2% mod p. For example, for 10-bit exponents, we use 9 squar-
ings and 5 general multiplications.

None of the CSIDH parameters that we tested involved variable exponents e large enough to
justify window width 3 or larger.

9.13.5— Inversion. We compute the inverse of z in Fj, as 2P =2 mod p. This is different from
the situation in Section 9.13.4, in part because the exponent hereis a constant and in part because
the exponent here has many more bits.

We use fractional sliding windows to compute zP~2 mod p. This means that we begin by
computing 22, 2%, 2%, 27, 2% ..., 2" modulo p, where W is a parameter; “fractional” means
that W + 1 is not required to be a power of 2. We then recursively compute z¢ as (°/%)? if e
is even, and as =" times 7" if e is odd, where r € {1,3,5,7,9,..., W} is chosen to maximize
the number of 0 bits at the bottom of e — 7. For small e we use some minor optimizations lis-
ted in [BLo8, Section 3]: for example, we compute z€ as #¢/2~12¢/2*1 if ¢ is a multiple of 4 and
e <2W —2.

We choose W as follows. Given a b-bit target exponent e, we automatically evaluate the cost
of the computation described above for each odd W < 2b + 3. For this evaluation we model the
cost of a squaring as 0.8 times the cost of a general multiplication, without regard to p. We could
instead substitute the exact costs for arithmetic modulo p.

For CSIDH-512, we use 537503414 bit operations for inversion, including 220691666 nonlin-
ear bitoperations. Here W is chosen as 33. There are 507 squarings, accounting for 507-349596 =
177245172 nonlinear bit operations, and 97 general multiplications, accounting for the remain-
ing 97 - 447902 = 43446494 nonlinear bit operations.

Batching inversions. We use Montgomery’s trick [Mon87] of computing 1/y and 1/z by first
computing 1/yz and then multiplying by z and y respectively. This reduces a batch of two in-
versions to one inversion and three multiplications; a batch of three inversions to one inversion
and six multiplications; etc.

Inversion by exponentiation allows input 0 and produces output 0. This extension of the
inversion semantics is often convenient for higher-level computations: for example, some of
our computations sometimes generate input 0 in settings where the output will later be thrown

9.13. MODULAR ARITHMETIC 181

away. However, Montgomery’s trick does not preserve these semantics: for example, if y = 0
and z # 0 then Montgomery’s trick will produce 0 for both outputs.

We therefore tweak Montgomery'’s trick by replacing each input 0 with input 1 (and repla-
cing the corresponding output with 0; we have not checked whether any of our computations
need this). To do this with a constant sequence of bit operations, we compare the input to 0 by
ORing all the bits together, and we then XOR the complement of the result into the bottom bit
of the input.

Eliminating inversions. Sometimes, instead of dividing z by z, we maintain z/z as a fraction.
This skips the inversion of z, but usually costs some extra multiplications. We quantify the
effects of this choice in describing various higher-level computations: for example, this is the
choice between “affine” and “projective” coordinates for elliptic-curve points in Section 9.3.2.

The Legendre symbol. The Legendre symbol of modulo p is, by definition, 1 if x is a nonzero
square modulo p; —1 if z is a non-square modulo p; and 0 if z is divisible by p. The Legendre
symbol is congruent modulo p to 2(P~1)/2 and we compute it this way.

The cost of the Legendre symbol is marginally smaller than the cost of inversion. For ex-
ample, for CSIDH-512, there are 506 squarings and 96 general multiplications, in total using
535577602 bit operations, including 218988158 nonlinear bit operations.

Other techniques. It is well known that inversion in F, via an extended version of Euclid’s al-
gorithm is asymptotically much faster than inversion via exponentiation. Similar comments
apply to Legendre-symbol computation.

However, Euclid’s algorithm is a variable-time loop, where each iteration contains a variable-
time division. This becomes very slow when it is converted in a straightforward way into a
constant-time sequence of bit operations. Faster constant-time variants of Euclid’s algorithm
are relatively complicated and still have considerable overhead; see, e.g., [Bosi4] and [RNSL17,
Section 3.4].

We encourage further research into these constant-time algorithms. Sufficiently fast inver-
sion and Jacobi-symbol computation could save more than 10% of our overall computation time.

9.13.6 —Fewer qubits. In this subsection we look beyond our primary cost metric and con-
sider some of the other costs incurred by integer arithmetic.

Consider, e.g., the sequence of bit operations described in Section 9.13.5 for inversion in the
CSIDH-512 prime field: 537503414 bit operations, including 220691666 nonlinear bit operations.
A generic conversion (see Section 9.11.3) produces a reversible computation using 2-220691666 =
441383332 Toffoli gates.

It is important to realize that this reversible computation also uses 537503414 bits of in-
termediate storage, and the corresponding quantum computation (see Section 9.11.4) requires
537503414 qubits. The factor 2 mentioned in the previous paragraph accounts for the cost of
“uncomputation” to recompute these intermediate results in reverse order; all of the results are
stored in the meantime. Presumably many of the linear operations can be carried out in place,
reducing the intermediate storage, but this improvement is limited: about 40% of the bit oper-
ations that we use are nonlinear. The number of qubits is even larger for higher-level computa-
tions, such as our algorithms for the CSIDH group action.

In traditional non-reversible computation, the bits used to store intermediate results in one
multiplication can be erased and reused to store intermediate results for the next multiplica-
tion. Something similar is possible for reversible computation (and quantum computation), but
one does not simply erase the intermediate results; instead one immediately uncomputes each

182 ‘ QUANTUM CIRCUITS FOR CSIDH

multiplication, doubling the cost of each multiplication. The inversion operation uses many of
these double-cost multiplications and accumulates its own sequence of intermediate results,
which also need to be uncomputed, again using the double-cost multiplications. To summar-
ize, this reuse of bits doubles the number of Toffoli gates used for inversion from 441383332 to
882766664. Similar comments apply to qubits and T-gates.

Theintermediate space used for multiplication outputsininversion, in scalar multiplication,
etc. can similarly be reused, but this produces another doubling of costs. Even after these two
doublings, our higher-level computations still require something on the scale of a million qubits.

Quantum algorithms are normally designed to fitinto far fewer qubits, even when this means
sacrificing many more qubit operations. For example — in the context of applying Shor’s attack
to an elliptic curve defined over a prime field — Roetteler, Naehrig, Svore, and Lauter [RNSL17,
Table 1] squeeze b-bit reversible modular multiplication into

e 5b + 4 bits using approximately (16 log, b — 26.3)b? Toffoli gates, or

e 3b + 2bits using approximately (32 logs b — 59.4)b? Toffoli gates.

22487 or 22583 Toffoli gates for b = 511, far more than the number of Toffoli

These are about
gates we use.
We focus on the challenge of minimizing the number of nonlinear bit operations for the
CSIDH class-group action. Understanding the entire tradeoff curve between operations and
qubits — never mind more advanced issues such as parallelism (Section 9.11.5) and communic-
ation costs (Section 9.11.6) — goes far beyond the scope of this chapter. See [PRM17] for some re-
cent work on improving these tradeoffs for reversible Karatsuba multiplication; see also [Che16],

which fits Karatsuba multiplication into fewer bits but does not analyze reversibility.

Chapter 10

CCA security of lattice-based encryption
with error correction

This chapter is for all practical purposes identical to the paper HILAg Pindakaas: On the CCA se-
curity of lattice-based encryption with error correction [BGLP18] authored jointly with Daniel J. Bern-
stein, Leon Groot Bruinderink, and Tanja Lange, which was published at Africacrypt 2018.

10.1 — Introduction

HILAg [Saai7b] is a public-key scheme designed by Saarinen and published at SAC 2017. It was
submitted as a “Key Encapsulation Mechanism and Public Key Encryption Algorithm” [Saai7a]
to NIST’s call [NIST16] for post-quantum proposals. HILAg's design is based on Ring Learn-
ing With Errors (RLWE) over NTRU NTT rings. HILAg takes the same ring parameters as New
Hope [ADPS16] and changes the reconciliation method by which Alice and Bob achieve the same
key to get a much lower chance of decryption failures.

The HILAg submission [Saai7a] states

This design also provides IND- CCA secure KEM-DEM [CSo3] public key encryption if used
in conjunction with an appropriate AEAD [Rogoz] such as NIST approved AES256-GCM
[FIPo1, Dwoo7].

In this chapter we show that HILAg is not CCA secure: We compute Alice’s secret key by sending
her multiple encapsulation messages and using her answers to determine whether her decapsu-
lated shared secret matches a certain guess or not. Our attack works independently of whether
an AEAD is used or not and despite the error correcting code introduced in HILAg,

We have fully implemented our attack and experimentally verified that it works with high
probability. We use the HILAg reference implementation for Alice’s part and also to verify that
the retrieved secret key works for decryption. We use a slightly modified version of the same
software for computations on the attacker’s side; of course the attacker need not follow the com-
putations an honest party would.

Acknowledgement. We thank Christine van Vredendaal for helpful discussions.

10.1.1—Related work. Ajtai—-Dwork [ADg7] and NTRU [HPS¢8] are the oldest lattice-based
encryption systems. In 1999 Hall, Goldberg, and Schneier [HGS99] developed a reaction attack
which recovers the Ajtai-Dwork private key by observing decryption failures for suitably crafted
encryptions to the public key. They wrote “We feel that the existance of these attacks effect-
ively limits these ciphers to theoretical considerations only. That is, any implementation of the
ciphers will be subject to the attacks we present and hence not safe.”

184 ‘ CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Hoffstein and Silverman [HSoo] adapted the attack to NTRU. As a defense, they suggested
modifying NTRU to use the Fujisaki-Okamoto transform [FOg9]. For a system without decryp-
tion failures, this transform turns a CPA-secure system into a CCA-secure one. At the same
time this complicates and slows down the cryptosystem. For NTRU, the transform turns out
to still allow attacks that exploit occasional decryption failures induced by valid ciphertexts; see
[How+03].

New Hope [ADPS16] is a key-encapsulation mechanism (KEM), presented as a key-exchange
protocol. It allows occasional decryption failures for valid ciphertexts, and explicitly avoids the
“changes” that would be required for the Fujisaki—-Okamoto transform. To prevent reaction at-
tacks and other chosen-ciphertext attacks by a malicious Bob, New Hope requires using ephem-
eral keys, meaning keys that change with every execution of the protocol. The New Hope paper
warns that reusing a public key in multiple protocol runs (“key caching”) would be “disastrous
for security”, although it does not describe an attack.

Fluhrer [Flu16] showed the details of how to attack key reuse in a similar key-exchange pro-
tocol. Followup work [Din+17] extended the attack to more key-exchange protocols.

HILAg is similar to New Hope, and still does not use the Fujisaki-Okamoto transform. HILAg
includes an error-correction step that practically eliminates decryption failures for valid cipher-
texts. HILAg does not warn against key caching: on the contrary, the most natural interpretation
of the HILAg security claims is that HILAg is secure against chosen-ciphertext attacks. See Sec-
tion 10.5. We published our results in December 2017; as of February 2018, the designer of HILAg
has not proposed an alternative interpretation of the security claims.

10.2 — Data flow in the attack

A KEM is defined by three algorithms. Key generation produces a secret key and a public key.
Encapsulation produces a ciphertext and a session key, given a public key. Decapsulation pro-
duces a session key or failure, given a ciphertext and a secret key. The HILAg submission docu-
ment [Saai17a] gives details and reference code for a particular KEM, the “HILAg KEM”.

Our attack is a key-recovery attack against the HILA5 KEM: the attacker, evil Bob, ends up
computing the secret key of a target Alice. This secret key gives the attacker the ability to run the
decapsulation algorithm using Alice’s secret key, and thus the ability to immediately decrypt
legitimate ciphertexts sent by other users to Alice.

Our attack is a chosen-ciphertext attack: evil Bob chooses ciphertexts to provide to Alice
(different from the legitimate ciphertexts), and learns something from observing the outputs of
Alice decapsulating those ciphertexts. Formally, the attack shows that the HILAg KEM does not
provide IND-CCA2 security.

There are two important ways that the attack does not need the full power of a CCA2 de-
capsulation oracle. First, the attack is what is called a “reaction attack” in [HGS99] or a “sloppy
Alice attack” in [VDTo2]: evil Bob has a guess for the output of each decapsulation, and learns
whether Alice’s actual decapsulation output matches this guess. Evil Bob does not need any
further information.

Second, evil Bob chooses all of his ciphertexts, and learns the secret key from Alice’s reac-
tions, before seeing the legitimate ciphertexts to decrypt. Formally, the attack shows not only
that the HILA5 KEM does not provide IND-CCA2 security, but also that it does not provide IND-
CCA1 security.

10.2.1— Hashing the secret key does not stop the attack. One can easily stop key-recovery
attacks by defining HILAgHash as follows. HILAgHash key generation picks a uniform random

10.2. DATAFLOW IN THE ATTACK 185

32-byte string s, and then runs HILAg key generation to obtain a public key, hashing s to gen-
erate all randomness used in HILAg key generation. The HILAgHash secret key is s. HILAgHash
encapsulation is the same as HILAg encapsulation. HILAgHash decapsulation reconstructs the
HILAg secret key from s (again running the HILAg key-generation algorithm; alternatively, the
HILAg secret key can be cached), and then runs the HILAg decapsulation algorithm.

Unless the hash function is easy to invert, a key-recovery attack against HILAg does not pro-
duce a key-recovery attack against HILAgHash. However, this hashing does not prevent the at-
tacker from decrypting legitimate ciphertexts sent by other users to Alice.

10.2.2— AEAD does not stop the attack. A PKE is defined by three algorithms. Key genera-
tion produces a secret key and a public key, as in a KEM. Encryption produces a ciphertext, given
a plaintext and a public key. Decryption produces a plaintext or failure, given a ciphertext and a
secret key.

The subtitle of the HILAg submission is “Key Encapsulation Mechanism (KEM) and Public
Key Encryption Algorithm”. The submission document does notinclude a definition of a PKE, but
NIST had already stated before submission that it would automatically convert each submitted
KEM to a PKE using the following “standard conversion technique”: “appending to the KEM
ciphertext, an AES-GCM ciphertext of the plaintext message” where the AES-GCM key is “the
symmetric key output by the encapsulate function”. This is the standard Cramer—Shoup “KEM-
DEM” construction, using AES-GCM as the DEM. We write “HILAg PKE” for the PKE that NIST
will automatically produce in this way from the HILAg KEM.!

Breaking the IND-CCAz2 security of a KEM does not necessarily imply breaking the IND-CCA2
security of a PKE obtained in this way. IND-CCA2 attacks against the KEM can see session keys
produced by decapsulation, whereas IND-CCA2 attacks against the PKE are merely able to see
the result of AES-GCM decryption using those keys.

However, our attack against the HILAg5 KEM is also a key-recovery attack against the HILAg
PKE. It is important here that the attack is a reaction attack: what evil Bob needs to know is
merely whether a guessed session key is correct. Starting from this guessed session key, evil Bob
produces avalid AES-GCM ciphertext using this guess as an AES key. If decapsulationin fact pro-
duces this session key then AES-GCM decryption succeeds and produces the plaintext that evil
Bob started with. If decapsulation produces a different session key then AES-GCM decryption is
practically guaranteed to fail (anything else would be a surprising security flaw in AES-GCM),
so evil Bob sees a decryption failure from the PKE.

To summarize, evil Bob sees decryption failures from the PKE, and learns from this which
guesses were correct, which is the same information that evil Bob obtains from the KEM. Evil
Bob then computes the secret key from this information. Consequently, the HILAg PKE does not
provide IND-CCA2 security, and does not even provide IND-CCA1 security.

10.2.3 — Black holes would stop the attack. Like other chosen-ciphertext attacks, our at-
tack is inapplicable to scenarios where the results of decapsulation and decryption are hidden
from the attacker. For example, if ciphertexts are sent to NSA’s public key, and if NSA hides the
results of applying its secret key to those ciphertexts, then an attacker outside NSA cannot use
our attack to compute NSA’s secret key. However, if NSA reacts to those results in a way that

'NIST actually deviates slightly from the KEM-DEM construction: it specifies a “randomly generated IV” for AES-
GCM, while Cramer and Shoup use a deterministic DEM. For consistency with the ciphertext sizes mentioned in
[Saaiya], we actually define “HILAg PKE” to be the Cramer—Shoup construction using AES-GCM with an all-zero IV.
Switching to NIST’s construction would expand ciphertext sizes by 12 bytes using the default IV sizes for AES-GCM, and
would not affect our attack.

186 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

leaks to the attacker which ciphertexts were valid, then the attacker can compute NSA’s secret
key.

10.2.4 — The Fujisaki—-Okamoto transform would stop the attack. We briefly outline a
more radical change to HILAg, which we call “HILAgFO”. HILAGFO ciphertexts are slightly larger
than HILAg ciphertexts, decapsulation is more complicated, and decapsulation is extrapolated
(from reported HILAg benchmarks) to be several times slower, but HILA5FO would stop our at-
tack.

The idea of the HILAGFO KEM is to reapply the encapsulation algorithm as part of decapsu-
lation, and check whether the resulting ciphertext is identical to the received ciphertext. This is
notanew idea: itis used in many other submissions to NIST (with various differences in details),
typically with credit to Fujisaki and Okamoto [FOgg].

HILAg does not provide any easy way to reconstruct the randomness used in encapsulation
(mostimportantly Bob’s b), so the HILA;FO KEM computes this randomness as a hash of a plain-
text recovered as part of decapsulation. The HILAg KEM does not transmit a plaintext, so the
HILA5FO KEM is instead built from the HILAg PKE.

Encapsulationin the HILAGFO KEM thus chooses arandom plaintext, and encrypts this plain-
text using the HILAg PKE (the HILAg KEM producing a session key for AES-GCM) using a hash
of the plaintext to compute all randomness used inside the PKE. Decapsulation applies HILAg
PKE decryption (HILAg KEM decapsulation producing a session key for AES-GCM decryption),
and checks that the resulting plaintext produces the same ciphertext.

Deriving a PKE from the HILA5FO KEM would involve two layers of AES-GCM, which can
be compressed to one layer as follows: place 32 bytes of randomness at the beginning of the
user-supplied plaintext, and then encrypt this plaintext using the HILAg PKE, again using a hash
of the plaintext to compute all randomness used inside the PKE. The overall ciphertext size is
the original plaintext size, plus 32 bytes (the randomness), plus the HILAg KEM ciphertext size,
plus 16 bytes (the AES-GCM authenticator), i.e., 32 bytes more than the HILAg PKE. The main
costin HILAGFO decryption (for short messages) is reapplying HILAg KEM encapsulation, which
according to [Saai7a, Table 1] is five times slower than HILAg KEM decapsulation.

Preliminaries

10.3

This section describes the HILAg scheme and Fluhrer’s attack on RLWE schemes.

10.3.1—The HILAj scheme. We describe the scheme as given in [Saai7a, Section 4.9] but
leave out formatting and NTT conversions. These are used in the attack implementation to in-
terface with the reference implementation but do not contribute to the security and hamper
readability.

The major computations take place in the ring R = Zg[z]/(z™ + 1), where n = 1024 and
q = 12289. Alice’s secret key is a small, random polynomial a € R, where small (here and in
the following) means that the coefficients are chosen from a narrow distribution around zero,
more precisely the discrete binomial distribution ¥ which has integer values in [—16, 16]. To
compute the public key she picks another small random polynomial e € R and arandom g € R
and computes A = ga + e. She publishes (g, A) and keeps a as her secret.

An honest Bob picks two random small polynomials b,e¢’ € R and computes B = gb + ¢’
and y = Ab. Bob sends B to Alice. The second value

y = Ab = (ga + e)b = gab + eb =~ gab

10.3. PRELIMINARIES 187

is very close to what Alice can compute using her secret:
z=aB =a(gh+¢€) = gab+ €'a ~ gab,

because a, b, e, e’ are all small.

A simple rounding operation to achieve a shared secret, such as taking the top bits of each
coefficient, will induce differences between Alice’s and Bob’s version with too high probability.
For example, Bob could take k[i] = |2y[i]/q| and Alice could take k'[i] = |2x[4]/q], where we
use t[¢] to denote the ith coefficient of polynomial or vector ¢, but for indices with (gab)[i] ~ 0
(or q/2) the error-terms can cause the values to flip to a different bit, i.e., k[i] # k’[4]. For this
rounding operation, we call elements of {0, ¢/2} the “edges”, as these are the values for which it
is probable that errors occur.

This is why Bob sends a second vector, a binary reconciliation vector c, to help Alice recover
the same k as Bob. Basically, this means that the scheme uses two pairs of edges. If y[i] was close
to one edge of a certain pair, Bob will choose the other pair of edges, so that Alice can still suc-
cessfully recover the shared secret. In previous work [Peii4], the reconciliation vector achieves a
successful shared secret with high probability, as long as |z[i] — y[é]| < q/8.

HILAg differs in how these reconciliation bits are computed. For each coefficient y[i] of y Bob
computes k[i] = [2y[i]/q], c[i]] = |4 y[i]/q] mod 2, and

] = { L f(yli] mod |g/41) ~ La/8)] < 6

0 otherwise,

where 3 = 799. He then selects the first 496 positions i for which d[i] = 1 and restarts with fresh
band ¢’ if there are fewer. Positions with d[i] = 1 are those for which itis likely that Alice and Bob
recover the same value. In other words, for these indices the value (gab)[¢] is likely to be far away
from an edge, thus further reducing the probability of errors in the shared secret. (Note that the
description suggests to discard some positions if there are more than 496 such positions while
the code deterministically discards the later ones by setting d[;j] = 0 for them.)

The encapsulation consists of B, d, ¢, and an extra part r described below; here d covers the
full n positions while ¢ can be compressed to those positions ¢ where d[i] = 1.

Alice recovers the k[¢] at the selected 496 positions by computing

K'[i] = [2 (2[i] - c[i] - [a/4] + [¢/8] mod q) /q].

The HILAg submission shows that k'[i] = k[i] with probability 1 — 2736, Let k (resp. k) be the
496-bit string given by the concatenation of the k[4] (resp. k’[4]).

The role of r is not well described but the HILAg design overview says that is an encrypted
encoding of a part of k. It is computed by splitting k as k = m/||z, where m gets the first 256
bits and z the remaining 240 bits. HILAg uses a custom-designed error-correcting code XEg that
corrects at least g errors to compute a 240-bit checksum s of m and then computes r = s & z,
where @ denotes bitwise addition (XOR).

Alice computes k' = m/||2’, the checksum s’ on m’, and applies the XEg error correction to
m’,s’, 2" and r to correct m’ to m.

10.3.2 — Fluhrer’s attack. The chosen-ciphertext attack on HILAg that we presentis a vari-
ant of the following attack against key reuse in RLWE-based key exchange protocols presented
by Fluhrer in 2016 [Flui6]. This section assumes that Bob computes the c[i] and k[i] in a way
similar to the previous section. The d[i] were added in HILAg and will be considered in the next
section.

188 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Recall that Alice’s version of the shared secret key is
gab + €a,

where g is some large public generator element, a and b are Alice’s and Bob’s small private keys,
and ¢’ is a small noise vector chosen by Bob. This version of the shared secret differs from Bob’s
by some small error, hence they need to employ a reconciliation mechanism to arrive at the same
secret bit string.

The general strategy of an evil Bob is to artificially force one (say, the first) coefficient of gab
to be close to the edge M between the intervals that are mapped to bits 0 and 1 during recon-
ciliation. An honest user would set the reconciliation bit ¢[0] in that case, so Alice would use
another mapping that is less likely to produce an error; but evil Bob does not. Since evil Bob
proceeds honestly except for the first bit, he knows two possibilities for Alice’s key, hence he can
query Alice with one of these guesses and distinguish between 0 and 1 based on her reaction. If
we assume for the moment that evil Bob can choose, hence knows, (gab)[0], this tells him that
(€’a)[0] lies in a certain interval.

After a few queries using binary search with varying values for (gab)[0], evil Bob knows the
exact distance of (¢/a)[0] from the edge, and if he sets ¢’ = 1, this distance is nothing but the
first coefficient of Alice’s secret key a. Note that in Fluhrer’s setting the edge M is at zero and
he uses b with (gab)[0] = 1, hence evil Bob can just multiply that b by small distances to obtain
a prescribed (gab)[0] when searching for (¢’a)[0]. In our adaptation of the attack to HILAg, this
step is more involved; see Section 10.4.2.

One could apply this method individually to each coefficient to extract Alice’s full secret key.
However, being able to recover the coefficient at one position is enough: due to the structure of
the underlying ring, evil Bob can shift the ith coefficient of @ into the constant term of ¢’a by
setting ¢/ to —2™ ¢, i.e., a vector with one entry of —1 and 0 elsewhere.

We now come back to the assumption made above. Notice that evil Bob does not a priori
know a vector b € R such that (gab)[0] = 1, but he can still reasonably guess one: Alice’s public
key is ga + e for small vectors a and e, hence if bis a small low-weight vector such that (b - (ga +
€))[0] is close to 1, there is a good chance that in fact (gab)[0] = 1. Thus, while evil Bob does not
have a deterministic method to find an “evil” b, he can still just make educated guesses based on
Alice’s public key until he finds one that works. Finding b € R with (b - (ga + ¢))[0] close to 1 is
an offline computation using only Alice’s public key; testing for (gab)[0] = 1 requires interaction
with Alice.

There are several follow-ups to Fluhrer’s paper, e. g. the recently posted [Din+17], but a small
and new generalization of Fluhrer’s attack is sufficient to attack HILAg.

10.4— Chosen-ciphertext attack on HILAg

In this section, we describe how we circumvent the error-correction code and how to adapt
Fluhrer’s attack to the HILAg case.

10.4.1—Working around error correction. The HILAg construction includes XEg as an
error-correcting code that is applied to the shared secret after decapsulation. Both Alice and
Bob compute their version of a redundancy check, which will help Alice to correct up to 5 errors
in the shared secret. The redundancy part r is divided into ten subcodewords r = rq, ..., rg of
variable sizes. For the purpose of the attack, these sizes do not matter, but we use the same nota-
tion L; for the size, as in the HILAg paper. This means we canindex eachr; = r(; oy...7(; ,—1)
fori € {0,...,9}.

10.4. CHOSEN-CIPHERTEXT ATTACK ON HILAg 189

Bob first computes his part of the HILAg encapsulation, i.e., he computes his version of the
shared secret, selects the indices that are safe to use by Alice and computes the reconciliation
vector. The last 240 bits of Bob’s shared secret are used in XEg error-correction. From these bits,
Bob constructs his redundancy check r’, and sends this as part of the ciphertext.

Upon receiving Bob’s ciphertext, Alice first computes her part of the HILAg decapsulation,
i.e., she computes her version of the shared secret. Then she computes her own redundancy
check and computes the distance r* with Bob’s r’ from the ciphertext:

T‘A =ror
To determine which bits in the shared secret are erroneous, Alice determines a weight value
ws € [0,10] for each of the 256 bits by the following formula:

9
A A A
Wg =70, |k/16] T er,k mod L;
j=1

Now, if a single bit k of Alice’s shared secret is flipped, it means w,? = 10 [Saa17a, Lemma 2],

and it is therefore detectable and correctable by Alice. Moreover, it is shown that XEg corrects
bit k as long as ka > 6 [Saai7a, Theorem 1], which means XEg can correct at least 5 bits in the
shared secret. This means that applying Fluhrer’s original attack directly to HILAg will not work,
as Fluhrer’s original attack depends crucially on the attacker’s ability to detect single-bit errors
in Alice’s version of the shared secret. Thus, to apply Fluhrer’s attack, we have to work around
these error-correction abilities.

In the attack described in the next section, we focus on inducing errors only in the first bit
k = 0 of the shared secret. This means the attacker evil Bob needs to force w§' to be less than
6, as this means XEg is no longer capable of correcting the first bit. However, evil Bob needs to
leave the remaining error-correction in place, otherwise he still does not know if the first bit was
the only flipped bit. In order to do that, evil Bob needs to change his redundancy check r’ to do
exactly that. As w§' is obtained by summing up the first bits of the subcodeword distances r?*,
he can flip any 5 of the bits labeled TE07O) through TE970) to force wh® < 6. Our attack flips the
first 5 of these bits. This means in the following section we consider the issue of error-correction
solved and can directly apply a modification of Fluhrer’s attack.

10.4.2 — Details of the attack. This section elaborates evil Bob’s approach to recover Alice’s
secret key. As mentioned before, the general procedure mimics Fluhrer’s attack (Section 10.3.2).
The major steps are:

1. Guess a small low-weight secret by such that (gabg)[0] is at the edge M.
2. Foreachd € {—16,...,16}, compute bs such that (gabs)[0] = M + 4.
3. For each target coefficient of Alice’s secret:

a) Choose ¢’ such that (¢’a)[0] is the target coefficient.
b) Perform a binary search using the b5 to recover the target coefficient.

(Alice’s coefficient (gabs 4 ¢’a)[0] maps to a 1 bitiff (—e’a)[0] > §.)

4. Iftheresultslook “bad” after recovering a few coefficients in this way, the guess for by was
probably wrong and evil Bob should start over at step 1.

190 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

Note thatfor each oracle query, i.e., for every interaction with Alice, Bob proceeds honestly except
for using specially crafted bs and ¢/, setting dy = ¢op = 1, and flipping a few bits in the error
correction as described in Section 10.4.1. We now explain and analyze the steps above in more
detail.

Forcing coefficients near the edge. In HILAg's reconciliation mechanism, there is no edge at zero
for any choice of reconciliation bit, hence Fluhrer’s attack does not apply without modifications.
We chose to set the reconciliation bit ¢y to 1 and attack the edge at

M = |q/8] = 1536.

To perform the binary search for Alice’s secret coefficients in the attack, we need to find small
low-weight vectors bs such that
(9abs)[0] = M + 6

forall s with |§| < 16. (As mentioned in Section 10.3.2, Fluhrer’s evil Bob attacked M = 0, thushe
could guess by based on Alice’s public key and set bs = 4 - b1.) One could of course try to guess
each bs individually based on Alice’s public key, but as we want to get all by right at the same
time, this has exponentially low success probability. Instead, we make use of a special property
of the M used in HILAg: The inverse

M~ mod q= -8
is small.” Hence, as soon as evil Bob successfully guessed by, he may simply set
bs =(1+ SM~! mod q) - bo.

In our case, we choose by with only two non-zero coefficients from {41}, thus bs will have only
two non-zero coefficients bounded by 14-84. This property is necessary to make sure evil Bob can
actually know what Alice’s version of the shared secret will be (except for the target bit thatleaks
information): If the coefficients of bs are too large, the error eb — ¢’a between Alice’s and Bob’s
shared secrets becomes too large to recover from and their secrets will mismatch no matter what
the value of the attacked bit is. In theory, with these parameters we still expect a tiny possibility
of unintended errors, but this happens so rarely that it is not an issue in practice. If it ever does
occur, Bob can detect that his recovered secret key is wrong and simply start over with a new bg.

When evil Bob chooses a random by with two non-zero coefficients in {£1} and such that
(Abg)[0] = M, the probability that in fact (gabg)[0] = M holds is just the probability that two
¥ 1¢-distributed values sum to zero:

32 2
Z (32> /254 ~ 9.9%,
1=0 ¢

hence he can expect to find a good by after about 10 tries. Since A can be approximated by a
uniformly distributed sequence over Zg, the expected number of +1-combinations of two coef-

ficients of A which equal M is
(24 =

Hence, the probability that evil Bob exhausts this pool of choices without finding a good by is
roughly 2725,

2Note that this also holds for some other “natural” choices of M asrounded fractions of g, butitis not automatically
true for any conceivable M.

10.4. CHOSEN-CIPHERTEXT ATTACK ON HILAg 191

(If this ever happens, then evil Bob can still retry the attack with a larger interval, i.e., search
for bg with |(Abg)[0] — M| < K for some small K. This would in theory work for a wider range
of keys, but the expected number of wrong guesses grows slightly. One could also choose three
non-zero coefficients in by, although this increases the chance of unintended errors in Alice’s
shared secret. We have not had any problems with K = 0in practice.)

Detecting bad guesses. After choosing by based on Alice’s public key as described above, evil
Bob may just go ahead and try to recover Alice’s secret key using that bg. If it is correct, he will of
course find a sequence that looks like it was sampled from the ¥4 distribution. If by is bad, say,
(9abo)[0] = M + ~ for some small v # 0, then

(gabs)[0] = M + 6 + v — 84,

hence typically (gabs)[0] is considerably smaller than M if § > 0 and considerably largerif § < 0;
in both cases Alice’s secret (¢/a)[0] is dominated by § + v — 86+, which means the oracle out-
put does not depend on the secret. This implies the binary search will always converge to 0 or
—1 when by is bad. (For § = 0, the behavior does depend on (¢’a)[0] since + is small, so both
cases really occur.) Evil Bob can detect this failure mode by determining a few coefficients and
checking whether all of them are in {0, —1}. If this is the case, evil Bob simply starts over with
anew bg. The probability that an actual secret key starts with a sequence of k coefficients from
{0, —1} is about 0.27% hence setting k = 8 reduces the probability of a false negative to roughly
271% There is a small probability of false positives if evil Bob uses only this heuristic (e. g., when
|v] = 1), but this can easily can be detected using statistical methods (the recovered sequence
will not be ¥ 4-distributed) or by simply testing the obtained secret key in the end and running
the attack again if it failed. In practice the heuristic works fine.

The number of queries. Assuming we already have a good by, the binary search needs an ex-
pected 5 + ¢ queries to the oracle to recover one coefficient.? Since evil Bob decides whether he
has a good by based on the first few coefficients that he obtains using that by, he usually wastes
a few hundred queries on guesses for by that turn out to be useless: If he looks at the first 8 coef-
ficients obtained from each by as suggested above, this adds expected ~ 400 queries to the 5120
needed to recover all the coefficients. In summary, evil Bob will with overwhelming probability
recover Alice’s secret key in less than 6000 queries.

Evil Bob can trade computation for a smaller number of queries: retrieve some coefficients,
and reduce the original lattice problem to low enough dimension to solve by computation.

10.4.3 — Implementation. We implemented a proof of concept of the attack in Python, re-
using portions of the HILAg reference implementation via the ctypes library. The only modific-
ations we made to the reference implementation were making some functions non-static to be
able to call them from within Python, and adding extra parameters to the encapsulation func-
tion (not used by Alice) such that evil Bob can override his private values b and ¢’. The complete
attack script can be found at https://helaas.org/hila5-20171218.tar.gz. As expected, we
have never observed the attack script failing to recover Alice’s key. The empirical number of
queries matches the theoretical prediction made above.

3The € arises from the fact that W16 samples from 33 > 25 distinct values, but the extremal values occur so rarely
thate &~ 2727,

https://helaas.org/hila5-20171218.tar.gz

192 CCA SECURITY OF LATTICE-BASED ENCRYPTION WITH ERROR CORRECTION

10.5— HILAg security claims

In this section, we discuss our interpretation of security claims made by both the paper and NIST
submission of HILAg, which motivated this chapter.

NIST does not require IND-CCAz2 security for KEM and PKE submissions. Instead it requires
submissions to say whether they are aiming for IND-CCA2 security or merely for IND-CPA se-
curity.

IND-CPA security is adequate in the context of key exchange in TLS, if a new public key is
generated for each TLS session. For example, New Hope [ADPS16] appears to be safe for use
in TLS. New Hope does not aim for IND-CCA2 security, and specifically warns against using a
key more than once: “No key caching ... it is crucial that both parties use fresh secrets for each
instantiation”.

We emphasize that our attack does not break the IND-CPA security of HILAg. If HILAg were
clearly labeled as aiming merely for IND-CPA security then our attack would merely be a cau-
tionary note, showing the importance of not reusing keys.

However, HILAg went beyond claiming IND-CPA security. There are some undefined words
in the HILAg security claims, but the most natural interpretation of the security claims is that
the HILAg PKE provides IND-CCAz2 security. There is certainly a high risk of the claims being
interpreted in this way by potential users. Our attack shows that the HILAg PKE does not provide
IND-CCA2 security.

There is even a risk of users thinking that the HILAg KEM is being claimed to provide IND-
CCA2 security.* The HILAg submission document does not say that the HILA5 KEM security
target is merely IND-CPA. Our attack shows that the HILAg KEM does not provide IND-CCA2
security.

We give four quotes from [Saai7a] to explain why the HILAg security claims are most natur-
ally interpreted as claiming IND-CCA2 security for the HILAg PKE. We have not found anything
in [Saa17a] or [Saai7b] indicating a different interpretation.

[Saa17a, Section1]: The HILA§ KEM can be adopted for public key encryption in straight-
forward fashion. We recommend using the AES-256-GCM AEAD [FIPo1, Dwoo7] in con-
junction with the KEM when public key encryption functionality is desired.

The details of this “conjunction” are not formally defined. The most natural interpretation is
that this is the HILAg PKE, using the session key produced by the HILAg KEM as the AES-GCM
key.

[Saai7a, Section 4.1]: NIST requires at least IND-CPA [BDPR98] security from a KEM
scheme (Section 1.6). ... The design also provides IND-CCA secure KEM-DEM [CSo3]
public key encryption if used in conjunction with an appropriate AEAD [Rogoz] such as
NIST approved AES256-GCM [FIPo1, Dwooy]. These properties are derived from [Peii4].

This is a claim of IND-CCA security for a PKE. “IND-CCA” in the literature usually means IND-
CCAz2, although sometimes it means merely IND-CCA1. The PKE is not formally defined, but
again the most natural interpretation is simply that the session key produced by the HILA; KEM

4Adam Langley posted an online table of speeds for announced KEMs submitted to NIST. He wrote “I only want to
list CCA-secure KEMs here”. He listed HILAg, and accepted a correction from the HILAg author regarding the speed of
HILAs. After the correction, HILAg had the fastest decapsulation in the entire table.

10.5. HILAg SECURITY CLAIMS 193

is the AES-GCM key used to encrypt a user-supplied plaintext. Our attack shows that this PKE
does not even provide IND-CCA1 security, let alone IND-CCA2 security.

Our attack does not work against what we call the HILAGFO PKE (see Section 10.2.4), a more
complicated PKE using the Fujisaki-Okamoto transformation. This transformation is also men-
tioned in “[Pei14]” as a way to achieve IND-CCA security. It is conceivable that the HILAg sub-
mission was alluding to a PKE of this type. However, this interpretation does not appear to be
compatible with the statement “Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC”
in [Saa17a, Section 6]; the HILAGFO ciphertext size is 32 bytes larger than this.

[Saa17a, Section 4.9]: For active security we suggest that K is used as keying material
for an AEAD (Authenticated Encryption with Associated Data) [Rogoz] scheme such as
AES256-GCM [Dwoo?, FIPo1] or Keyak [BDP™ 16] in order to protect message integrity.

Here “K” is defined as the session key produced by the HILA5 KEM. In the context of KEMs and
PKEs, “active security” is normally interpreted as IND-CCA2 security, although it might have
other interpretations. The authentication in AES-GCM prevents modifications to the message
encrypted by AES-GCM, but this is not enough to stop active attacks, since it does not protect
the underlying KEM.

[Saa17a, Section 6.1]: HILAS is essentially drop-in compatible with current public key
encryption applications. There are no practical usage restrictions.

Security against chosen-ciphertext attacks is essential for a wide range of current PKE applica-
tions, so this would appear to include a claim of CCA security for the HILAg PKE. However, our
attack retrieves the secret key from the HILAg PKE.

Chapter 11

Recent developments

In this short chapter, we account for some developments that occurred after the works this thesis
is based upon were first written, and hence may not have received sufficient appreciation in the
earlier chapters.

11.1— CSIDH is not an ideal group action

Chapter 3 focused on the application of CSIDH to Diffie-Hellman style (non-interactive) key
exchange, which actually requires less than a full-fledged group action. More concretely, the
protocol does notinvolve composing group elements; it merely acts by elements sampled from a
convenient distribution. However, more advanced protocols based on group actions do require
the full functionality of a group, including efficient composition of arbitrary elements. It may
seem at first that this is trivial in CSIDH: The ideals in CSIDH are of the form] [7* with exponent
vectors e € Z", thus (cf. Chapter 4) the CSIDH group action can be viewed as an action of (Z", +)
which happens to factor through cl(0), and composition in Z™ is simply addition. However,
even for short vectors such as those sampled according to Section 3.4, composing just a few of
these vector additions can make the size of the coefficients grow very quickly, and unfortunately,
the cost of Algorithm 3.2 has a strong (atleastlinear) dependency on the 1-norm of the exponent
vector. Thus, while it is obviously true that addition of group elements is efficient, the resulting
exponent vector may no longer admit efficiently computing its action on the isogeny graph.
This issue can be solved at the cost of an exponential precomputation phase as suggested by
Couveignes [Couo6]. Another, more recent take on the problem is based on ideas from [Bis12]:
CSI-FiSh (see [BKV19] and below) performs only subexponential precomputation, leading to
subexponential complexity for evaluating the action of ideals. While still inefficientin an asymp-
totic sense, this appears to be reasonably fast in practice [BKVig]. However, there are still no
known techniques for evaluating the action of arbitrary ideals in overall polynomial time.

11.2 — CSI-FiSh: Canonical exponent vectors

In Remark 3.9, we stated as an open problem to find an algorithm for representing the product of
two class-group elements given as CSIDH exponent vectors (cf. Section 11.1) in such a way that
the product does not reveal information about the factors. For instance, if the exponents are all
sampled independently from {—m, ..., +m} as suggested in Section 3.4, then any coefficient of
the sum greater than +m reveals that both summands must have a positive entry at that index.
Generalizing this simple example leads to much more statistically detectable leakage.

Oneway to thwart thisissueis to truncate the probability space to a subset where everything
behaves uniformly; this is done using rejection sampling in SeaSign [DG19]. Unfortunately, des-
pite our improvements in Chapter 4, this approach is not very efficient, and may not satisfy the
requirements of many practical applications.

196 RECENT DEVELOPMENTS

Another avenue is taken by the signature scheme CSI-FiSh: It simply accepts the idea of
naively adding vectors together with no rejections, but rewrites the result into a canonical rep-
resentative using the relation lattice of the class group with respect to the chosen generators [;.
Concretely, the relation lattice is the kernel A of the group homomorphism

n
Z" — c(0), (er,..en) — [,
i=1

and it is clear that the action of two CSIDH exponent vectors e, e’ € Z™ on the isogeny graph
is the same if and only if ¢’ € e + A. To compute a canonical representative of the coset e + A
for some input vector e € Z", CSI-FiSh solves a closest-vector problem to find a vector k € A
close to e, and the result of the rewriting step is a short vectore — k € e + A, which is used as a
canonical representative of e + A.

Note that besides “canonicalizing” sums of exponent vectors, this approach also enables us
to sample uniformly at random in cl(O): For simplicity (but by no means necessarily), assume
that cl(O) is cyclic of order NV with generator [;; then we can sample from cl(O) uniformly at
random by picking a uniform u € {0, ..., N—1}, letting e € Z" be the exponent vector with all
zeroes except for coefficient v atindex j, and applying the rewriting algorithm to e.

The (perhaps only) downside is that some of these steps are computationally expensive:
Computing the relation lattice means computing the class-group structure, which can be done in
subexponential time using an algorithm of Hafner—-McCurley [HM89], and solving the closest-
vector problem during the rewriting step requires to precompute a short lattice basis which takes
time exponential in the dimension n. CSI-FiSh has managed to solve all these problems in prac-
tice for the smallest CSIDH parameter set (CSIDH-512; see Section 11.4 for security considera-
tions) and produced a proof-of-concept implementation taking less than 400 milliseconds to
sign and verify with this instantiation [BKVig].

11.3 — Slow isogenies may be a good thing

Interestingly, the problems described in Sections 11.1 and 11.2 are not just an obstacle: They can
also be used constructively as a hardness assumption for a cryptographic primitive known as
verifiable delay function (VDF), which has blockchain' applications. Intuitively, it consists of a
function which is slow to evaluate (even using arbitrary parallelism), but once the output is
known, its correctness can be verified efficiently (potentially given a witness that is also gen-
erated by the evaluation algorithm). See [BBBF18] for a more detailed and formal description.
In the isogeny setting, such a construction can be obtained as follows [DMPS19]: Publish
anisogeny ¢: E — E’ of large smooth degree, say ¢! for a small prime ¢, and also publish a
point P € E of large prime order N together with its image ¢(P) € E’ under the isogeny. The
input to the VDF is a point Q € E’ of order N, and evaluating the VDF means simply com-
puting the image $(Q) of the input point @ under the dual isogeny . Doing so naively using
repeated ¢-isogeny steps clearly takes time ©(T'). To verify the output, anyone can compute the
two pairings en (P, (Q)) and en (p(P), Q) and accept if and only if they match. Since taking
duals is the adjoint with respect to the Weil pairing, this procedure works if $(Q) is correct. An
attacker would like to obtain $(Q) without really going through the effort of evaluating ¢ step
by step: One way of doing this is to precompute % on a basis of the N-torsion, then solve a two-
dimensional DLP on input), and simply return the appropriate linear combination of the pre-
computed images. Another attack avenue is to try and “shorten” the isogeny ¢ into an isogeny

"Tsaid it!

11.4. QUANTUM ATTACKS ON CSIDH ‘ 197

with the same action on N -torsion that can be evaluated more efficiently. When using a CSIDH-
styleinstantiation (which is advantageous since it allows for very compactrepresentations of o),
finding such a shortcut essentially means going through the expensive computation decribed in
Section 11.2, which is infeasible for sufficiently large parameters. (Note that this primitive is not
post-quantum secure due to relying on the hardness of two-dimensional discrete logarithms,
which can be computed in polynomial time using Shor’s algorithm; see Section 2.6.2.)

11.4 — Quantum attacks on CSIDH

Starting with our publication of a preprint of the article [Cas+18] underlying Chapter 3, the
quantum security level of CSIDH has been the subject of some controversy. At that time, all
available sources stated only asymptotic security levels, which the first draft of [Cas+18] used
in a naive way to come up with preliminary parameter-size estimates. The Asiacrypt version of
the paper (which Chapter 3 is based on) added an overview table covering the various estimates
existing in the literature at that point. Moreover, the decision to focus on a g12-bit instantiation
for the proof-of-concept implementation was in part made to ease comparison with earlier and
parallel work [Kie17; DKS18], which had used the same field size.* The contemporary responses
to these initial estimates are summarized in Remark 3.13.

In February 2019, Kuperberg gave a presentation at the AIM workshop Quantum algorithms
for analysis of public-key crypto about his second — generalized and optimized — algorithm for
the abelian hidden-shift problem (see Section 2.6.3). The second algorithm does not improve
upon the complexity 200/Togm) of the first algorithm (see Theorem 2.84), but the hidden con-
stants are smaller and the algorithm is much more configurable. While the article [Kup13] fo-
cuses primarily on asymptotic complexity, Kuperberg outlined several directions in which the
algorithm could be optimized in terms of concrete cost, including in particular ways to trade off
quantum for (presumably much cheaper) classical computation.

Peikert [Pei2o] concretized these ideas and suggested example parametrizations of Kuper-
berg’s algorithm together with detailed cost estimates in a particular model of quantum compu-
tation. His conclusion is that the number of queries to the CSIDH oracle for breaking CSIDH-512
is only about 2'¢, and that the dominating cost factor for breaking this parameter set s incurred
by the implementation of the group action in superposition, i.e., the component analyzed in
Chapter 9. This leads to a total CSIDH-g12 attack cost estimate of 2°® T-gate operations on ap-
proximately 240 qubits,3 while also using 28 bits of quantum-accessible classical storage.

Bonnetain and Schrottenloher [BS20] considerably updated their original preprint [BS18] to
rectify some of the shortcomings pointed out in [BLMP19], and the resulting conclusions are
similar to those of [Pei2o], albeit focusing on different tradeoffs that allow for much more ex-
pensive classical computation on the quantum computer’s control hardware. Concretely, they
claim an attack on CSIDH-512 that performs 21 oracle queries using 2716 T-gate operations on
2153 qubits, and in addition requires 286 classical operations.

In December 2020, Chévez-Saab, Chi-Dominguez, Jaques, and Rodriguez-Henriquez pub-
lished a preprint [CCJR20] revisiting these cost estimates, including a more detailed analysis in
the depth x width (DW) cost metric. For CSIDH-512, they state a sieving cost of 22! oracle calls,

2Stolbunov’s PhD thesis [Sto12] discusses sizes up to 428 bits.

3The number of qubits used by the oracle is not mentioned in [Pei20], but to achieve the number of T-gates cited
from [BLMP19] in [Pei20], about the same number of qubits is required. Applying Bennett’s depth—-width tradeoff (halv-
ing the number of qubits multiplies the time by 1.5; cf. Section 9.11) yields, for instance, an estimate of & 273-8 T-gates
on presumably much more realistic & 213 qubits.

https://aimath.org/workshops/upcoming/quantumalg/
https://aimath.org/workshops/upcoming/quantumalg/

198 RECENT DEVELOPMENTS

using 224 classical processors and 2! qubits, resulting in a total cost of 2% in the DW metric.
Note that this does not include the cost of oracle calls in superposition, which (cf. Chapter 9)
appear to be very significant.

Do these analyses imply that CSIDH-512 does not reach the attack costs required for the
“level 1” security category used by NIST for its post-quantum cryptography standardization pro-
ject [NIST16]? The cited sources affirm the answer is “yes”. However, coming up with a fair com-
parison remains difficult as NIST’s categories are phrased in terms of attacking AES-128 using
generic attacks. The relevant algorithms for AES are very different in nature from the Kuperberg
sieve, and (for lack of sufficiently advanced quantum hardware to run experiments on) it is at
present unclear how to accurately model the costs of accessing different kinds of memory, and
in particular the relative costs of quantum versus classical computation. (For example, [CCJR20]
states that classical processors and qubits are given “equal weight” in the cost metric, which can
only hold true in reality assuming colossal future improvements in quantum-computing tech-
nology in terms of both energy consumption and monetary investment.) In conclusion, while
it is clearly possible to compare the costs of breaking CSIDH-512 and AES-128 in some choice of
cost model, today’s evidence is perfectly consistent with both the scenario that even a single
CSIDH-512 oracle call in superposition incurs a higher real-world cost than breaking AES-128
using classical processors, as well as the scenario that CSIDH-512 will be broken within a minute
on a pocket quantum calculator.

11.5— The DDH problem for CM actions

We have established in Chapter 6 that being able to reliably break the group-action analogue of
the computational Diffie-Hellman problem is sufficient to construct a quantum attack against
the group-action analogue of the discrete logarithm problem with only polynomial overhead.
(See Section 2.1.3 for some background.) However, thisimplies nothing about the hardness of the
decisional Diffie-Hellman problem. This knowledge gap was partially filled in 2020 by [CSV20],
which exhibits families of CM-action-based cryptosystems where one can efficiently solve DDH,
with no indication that this affects the security of CDH or DLP in any way. Luckily, CSIDH is not
a member of these (big) families where DDH is weak, and there are no known attacks against
DDH or CDH short of simply recovering the secret key first.

The DDH attackis based on the centuries-old mathematical framework of genus theory, which
relates to the two-torsion of ideal-class groups of imaginary quadratic number rings. It turns out
that some of this two-torsion structure remains accessible even after passing from ideals to el-
liptic curves by applying the CM action: Concretely, [CSV20] shows how to evaluate the maps
induced on & (O) by quadratic characters x of cl(O) via the isomorphism from Theorem 2.55;
that is, given nothing but the curve [a] Ey it recovers the value of x([a]).* The computation re-
quires polynomial time and breaks DDH with significant advantage, very similar to the classical
example of computing Legendre symbols to solve DDH in Fj,.

The simple reason why the attack does not apply to CSIDH is that the class groups used in
CSIDH always have odd order, hence there simply are no non-trivial quadratic characters. For
systems where the attack does apply, a simple (but perhaps not computationally advantageous)
fix is to restrict private keys to a subgroup where all quadratic characters are constant, much like
DDH remains (pre-quantumly) unbroken in subgroups of F}, of large prime order.

4In the situation depicted in Figure 5.1, the unique nontrivial quadratic character essentially reveals whether we
have jumped to the “opposite side” of the isogeny graph via [t] or not.

11.6. FASTER ISOGENY EVALUATION: VELU | 199

11.6 — Faster isogeny evaluation: \/élu

It seems that until recently, many isogeny researchers took the assumption for granted that
Vélu's formulas (Proposition 2.31) are optimal in the sense that computing a (separable) iso-
geny from its kernel must inherently take time linear in the degree. This belief may be motivated
in part by the fact that the object that is apparently being computed also has size linear in the
degree: Explicit defining polynomials for the isogeny require linear space, hence writing them
down will surely take at least linear time as well.

However, in most (if not all) known isogeny-based cryptographic protocols, the explicit de-
fining polynomials are of little interest, and the core operations used in cryptography seem to be
computing the image of a point under the isogeny and computing the coefficients of the codo-
main curve. Notice that the second task can be reduced to the first: Given a handful of points on
an elliptic curve known to be of a specific form (e.g. a Weierstraft curve) easily permits interpol-
ating the curve equation. Hence, the fundamental task is to compute the map

(E,P.£,Q) — »op(Q),

where P, € E are points, P has finite order ¢, and ¢ p is a fixed isogeny with kernel (P), and
there is no obvious lower bound for the complexity of this problem (except for the time it takes
to read the input).

Vélu’s original formulas [Vél71] and more modern and optimized versions following the same
idea [Ren18; MS16] use ©(¢) base-field operations to compute an £-isogeny. In 2020, the v/élu
algorithm [BDLS20] has finally improved the complexity to O(/¢) base-field operations, and
the method is founded on an adaptation of known techniques to quickly evaluate polynomials
whose roots are powers to the elliptic-curve setting. This is not just an asymptotic improve-
ment: The speedup begins to kick in at isogeny degrees relevant for CSIDH, and the proof-of-
concept implementation of [BDLS20] achieves a 1% speedup for CSIDH-512 with growing spee-
dup factors the larger the parameter sizes become, already reaching an 8% speedup for CSIDH-
1024. This is improved further in follow-up work [ACR20].

We remark that in principle, there is again no apparent reason for the complexity O(/7) to be
optimal. It does however seem that fundamental breakthroughs are needed to achieve isogeny
evaluation in (for instance) a logarithmic or even constant number of base-field operations.

11.7— Hardened CSIDH implementations

Section 3.8 described a simple proof-of-concept implementation of CSIDH without any attempt
being made to resist side-channel attacks. Since then, several works on constant-time and/or
optimized implementations of CSIDH have appeared. We note that turning Algorithm 3.2 into
a constant-time algorithm in an efficient manner is non-trivial due to possible failures when
sampling rational points of small order ¢, and due to a potentially large (secret-dependent) search
space of evaluation strategies for chained isogenies.

We briefly survey some works on constant-time CSIDH. All numbers given are for CSIDH-512,
but note that the more recent works on the topic include bigger sizes in light of Section 11.4. In
2018, [MCR19] gave the first complete constant-time implementation of CSIDH by altering the
proof-of-concept implementation of Chapter 3. Constant-timeness caused an almost threefold
increase in runtime, and was achieved using generic branch-elimination techniques together
with some optimizations specific to CSIDH: Restricting private keys to non-negative exponents
to avoid case distinctions; “dummy isogenies”, which exploit the fact that Vélu’s formulas can be
repurposed to (almost) compute a scalar multiplication; and “SIMBA”, which reduces the time

200 ‘ RECENT DEVELOPMENTS

spent on scalar multiplications by processing isogenies in smaller batches when running (a vari-
ant of) Algorithm 3.2. (The latter optimization is also relevant for variable-time CSIDH imple-
mentations.) These ideas found continued use in [OAYT19], which however reintroduced neg-
ative exponents, yielding a speedup of close to 30%. Both of these algorithms were revisited
in [Cer+19], which improved the side-channel protections at the expense of some performance.
All the works mentioned so far rely on seemingly rather ad-hoc optimizations. The underlying
parameter spaces were formalized (in different ways) in [HLKA20] and [CR20], which phrase
finding good strategies formally as an optimization problem and give improved solutions with
speedups between 3% and 12%. Finally, the currently fastest constant-time CSIDH implementa-
tion was obtained in [ACR20] based on the/éluisogeny-evaluation algorithm (see Section 11.6).
It saves between 3% and 5% for CSIDH-512, but as mentioned in Section 11.6, the speedup grows
for bigger parameters (reaching around 25% for CSIDH-1792).

Given that the main disadvantage of CSIDH is its relatively bad performance, more work on
optimized and side-channel resistant implementations is definitely necessary and important.

11.8 — Repeated isogenies from radicals

All the algorithms mentioned in Section 11.7 still follow the general layout of Algorithm 3.2, in
the sense that they repeatedly sample points in the +1 or —1 eigenspace of Frobenius, project
them to ¢;-torsion subgroups, and push points through isogenies to compute several different
£;-isogenies using only one random point. Castryck, Decru, and Vercauteren [CDV20] propose
a radically different approach, which (specialized to the CSIDH setting) allows computing the
action of [[]® faster than computing the action of [I] independently e times when ¢ is small. They
achieve this by giving explicit formulas (involving polynomials and an £¢th root) for a rational
point of order £ on the curve E//(P) when P € Eisitself arational point of order ¢, which allows
immediately applying [I] again using Vélu’s or the v/élu formulas, without going through the
effort of random sampling and cofactor multiplication (with a failure chance) again.

The net gain of this approach is a speedup of 19% over the plain variable-time v/élu-based
implementation of CSURF-512.5

SCSURF [CD20] is a slight variant of CSIDH that can use 2-isogenies in addition to odd ¢; by working with super-
singular elliptic curves on the surface of the 2-isogeny volcano.

Summary

Cryptography on Isogeny Graphs

This thesis contains a variety of results on isogeny-based cryptography.

Conventional algorithms for asymmetric operations like public-key encryption or digital
signatures rely on the (presumed) hardness of certain mathematical problems such as the fac-
torization of integers into primes or the discrete-logarithm problem (DLP). However, once suffi-
ciently powerful quantum computers become reality, some of the most commonly used under-
lying problems will be solvable in polynomial time using variants of a 1994 quantum algorithm
by Shor, which in turn breaks a large fraction of the cryptography used on the internet today.

One particular, relatively new approach to replace quantum-vulnerable algorithms is based
on isogenies between elliptic curves over finite fields. Isogenies are non-constant rational maps
which are also group homomorphisms. Their very rich mathematical structure gives rise to new
cryptosystems suitable as replacements for endangered algorithms, while (to the best of our
knowledge) offering post-quantum security.

This work spans both facets of cryptologicresearch, focusing onisogeny-based cryptography
in particular: It covers constructive contributions — building completely new functionality or
making cryptosystems more efficient to use in practice — as well as cryptanalysis, which helps
us understand the (in)security of these systems against powerful adversaries.

On the constructive side, we show how to construct an efficient one-way group action using
isogeny graphs of supersingular elliptic curves defined over F, now known as CSIDH /'siz said /.
We also describe an improved, more efficient version of SeaSign, a signature scheme using such
group actions as a building block. Moreover, we give an algorithm to locate a supersingular curve
in the F,-isogeny graph when given additional information about its ring of endomorphisms,
which can be seen as an Fj,-analogue of an existing, very important algorithm for the IF > case
and may have both constructive and destructive applications. Lastly, we give a short proof that
the natural group-action analogues of the Diffie-Hellman and discrete-logarithm problems are
polynomial-time equivalent under quantum reductions.

On the cryptanalysis side, we extend and improve so-called torsion-point attacks that apply
to certain families of SIDH-like cryptosystems. We also give a summary of several other natural
ideas to attack SIDH and explain why each of them appears to fail. Finally, we analyze the cost of
evaluating the CSIDH group action on a quantum computer, an essential subroutine in a known
subexponential-time attack whose cost has a significant impact on the total attack complexity.

Curriculum Vitae

Lorenz Panny (or, in other words: I) was born in 1994 in Eggenfelden, Bavaria, Germany.

After graduating from Konig-Karlmann-Gymnasium Altdtting in 2011 with a programming
project, he found himself struggling with the decision whether to study mathematics or com-
puter science, therefore he opted for the natural choice — both, at TU Miinchen. His computer
science studies ended in 2014 with a B.Sc. thesis on automated theorem proving at the Chair for
Logic and Verification. In mathematics, his focus converged towards (algorithmic) algebra, cul-
minating in a B.Sc. thesis on ¢-adic point counting for elliptic curves in 2015, and a M.Sc. thesis
on p-adic point counting for hyperelliptic curves in 2017. Just a few weeks later, he started his
PhD studies in cryptology as an ECRYPT-NET fellow at TU Eindhoven, which have since led to
the existence of this very thesis. During his PhD, he undertook research visits to the COSIC group
at KU Leuven (yielding some of the work contained in this thesis), as well as to Simons Institute
programs on lattices and quantum computing in Berkeley.

Outside academia, Lorenz frequently participates in and co-organizes hacking competitions
known as “CTF” together with his team hxp, achieving fairly decent success in international
championships. In a non-empty subset of the remaining time, he likes to play the drums.

https://hxp.io

[ACR20]

[ADg7]

[Adj+18]

[ADPS16]

[AJIS19]

[AJL17]

[Arp+19]

[Aza+16]

[Bacgo]

[Bar86]

Bibliography

Gora Adj, Jesus-Javier Chi-Dominguez and Francisco Rodriguez-Henriquez. On new
Vélu's formulae and their applications to CSIDH and B-SIDH constant-time implement-
ations. IACR Cryptology ePrint Archive 2020/1109. 2020.

url: https://ia.cr/2020/1109.

Miklds Ajtai and Cynthia Dwork. “A Public-Key Cryptosystem with Worst-Case/
Average-Case Equivalence”. In: STOC. ACM, 1997, pp. 284—293.

Gora Adj, Daniel Cervantes-Vdzquez, Jesus-Javier Chi-Dominguez, Alfred Me-
nezes and Francisco Rodriguez-Henriquez. “On the Cost of Computing Isogenies
Between Supersingular Elliptic Curves”. In: Selected Areas in Cryptography — SAC
2018. Vol. 11349. Lecture Notes in Computer Science. Springer, 2018, pp. 322—343.
url: https://ia.cr/2018/313.

Erdem Alkim, Léo Ducas, Thomas Péppelmann and Peter Schwabe. “Post-quantum
Key Exchange — A New Hope”. In: USENIX Security Symposium. USENIX Associ-
ation, 2016, pp. 327—343. url: https://ia.cr/2016/758.

Reza Azarderakhsh, Amir Jalali, David Jao and Vladimir Soukharev. Practical Su-
persingular Isogeny Group Key Agreement. IACR Cryptology ePrint Archive 2019/330.
2019. url: https://ia.cr/2019/330.

Reza Azarderakhsh, David Jao and Christopher Leonardi. “Post-Quantum Static-
Static Key Agreement Using Multiple Protocol Instances”. In: Selected Areas in Cryp-
tography — SAC 2017. Vol. 10719. Lecture Notes in Computer Science. Springer, 2017,
PPp. 45-63.

Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nel-
son, Travis Scholl and Jana Sotdkova. Adventures in Supersingularland. IACR Crypto-
logy ePrint Archive 2019/1056. 2019. url: https://ia.cr/2019/1056.

Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel and Christopher
Leonardi. “Key Compression for Isogeny-Based Cryptosystems”. In: AsiaPKC@
AsiaCCS. ACM, 2016, pp. 1—10. url: https://ia.cr/2016/229.

Eric Bach. “Explicit bounds for primality testing and related problems”. In: Math-
ematics of Computation 55.191 (1990), pp. 355-380.
Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key Encryption

Algorithm on a Standard Digital Signal Processor”. In: CRYPTO. Vol. 263. Lecture
Notes in Computer Science. Springer, 1986, pp. 311—323.

https://ia.cr/2020/1109
https://ia.cr/2018/313
https://ia.cr/2016/758
https://ia.cr/2019/330
https://ia.cr/2019/1056
https://ia.cr/2016/229

206 ‘

[BBBF18]

[BDLS20]

[Ben73]

[Ben89]

[Ber+14]

[Bero6]

[Beroga]

[Berogb]

[BGLP18]

[BHKL13]

[BIJ18]

[Bis12]

[B]S14]

BIBLIOGRAPHY

Dan Boneh, Joseph Bonneau, Benedikt Biinz and Ben Fisch. “Verifiable Delay Func-
tions”. In: CRYPTO (1). Vol. 10991. Lecture Notes in Computer Science. Springer,
2018, pp. 757—788. url: https://ia.cr/2018/601.

Daniel . Bernstein, Luca De Feo, Antonin Leroux and Benjamin Smith. “Faster com-
putation of isogenies of large prime degree”. In: ANTS XIV: Proceedings of the four-
teenth algorithmic number theory symposium. Ed. by Steven Galbraith. Auckland, 2020.
url: https://iac.r/2020/341.

Charles H. Bennett. “Logical Reversibility of Computation”. In: IBM Journal of Re-
search and Development 17 (1973), PP- 525-532.

Charles H. Bennett. “Time/Space Trade-Offs for Reversible Computation”. In: SIAM
Journal on Computing 18.4 (1989), pp. 766—776.

Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange, Peter
Schwabe and Sjaak Smetsers. “TweetNaCl: A Crypto Library in 100 Tweets”.
In: LATINCRYPT. Vol. 8895. Lecture Notes in Computer Science. Springer, 2014,
pp. 64—83. url: https://tweetnacl.cr.yp.to/.

Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: Public
Key Cryptography. Vol. 3958. Lecture Notes in Computer Science. Springer, 2006,
pp. 207—228. url: https://cr.yp.to/papers.html#curve25519.

Daniel J. Bernstein. “Batch Binary Edwards”. In: CRYPTO. Vol. 5677. Lecture Notes
in Computer Science. Springer, 2009, pp. 317—336.
url: https://cr.yp.to/papers.html#bbe.

Daniel]. Bernstein. “Introduction to post-quantum cryptography”. In: Post-
Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes Buchmann and Erik
Dahmen. 1st ed. Springer, 2009. isbn: 978-3-540-88702-7.

Daniel]. Bernstein, Leon Groot Bruinderink, Tanja Lange and Lorenz Panny. “HILAg
Pindakaas: On the CCA Security of Lattice-Based Encryption with Error Correc-
tion”. In: AFRICACRYPT. Vol. 10831. Lecture Notes in Computer Science. Springer,
2018, pp. 203—216. url: https://ia.cr/2017/1214.

Daniel J. Bernstein, Mike Hamburg, Anna Krasnova and Tanja Lange. “Elligator:
elliptic-curve points indistinguishable from uniform random strings”. In: ACM
Conference on Computer and Communications Security. ACM, 2013, pp. 967—98o0. url:
https://ia.cr/2013/325.

Jean-Francois Biasse, Annamaria lezzi and Michael J. Jacobson, Jr. “A note on the
security of CSIDH”. In: INDOCRYPT. Vol. 11356. Lecture Notes in Computer Science.
Springer, 2018, pp. 153-168. url: https://arxiv.org/abs/1806.03656.

Gaetan Bisson. “Computing endomorphismrings of elliptic curves under the GRH”.
In: Journal of Mathematical Cryptology 5.2 (2012), pp. 101—114.
url: https://ia.cr/2011/042.

Jean-Francois Biasse, David Jao and Anirudh Sankar. “A Quantum Algorithm for
Computing Isogenies between Supersingular Elliptic Curves”. In: INDOCRYPT.
Vol. 8885. Lecture Notes in Computer Science. Springer, 2014, pp. 428—442.

https://ia.cr/2018/601
https://iac.r/2020/341
https://tweetnacl.cr.yp.to/
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#bbe
https://ia.cr/2017/1214
https://ia.cr/2013/325
https://arxiv.org/abs/1806.03656
https://ia.cr/2011/042

[BK81]

[BKV19]

[BLo7]

[BLo8]

[BL13]

[BL17]

[BLgs]

[BLMP19]

[BMSSo08]

[BN18]

[Bong8]

[Bosi4]

BIBLIOGRAPHY 207

Richard P. Brent and Hsiang-Tsung Kung. “The Area-Time Complexity of Binary
Multiplication”. In: Journal of the ACM 28.3 (1981), pp. 521-534.
url: https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf.

Ward Beullens, Thorsten Kleinjung and Frederik Vercauteren. “CSI-FiSh: Efficient
Isogeny based Signatures through Class Group Computations”. In: ASTACRYPT ().
Vol. 11921. Lecture Notes in Computer Science. Springer, 2019, pp. 227—247. url:
https://ia.cr/2019/498.

Daniel J. Bernstein and Tanja Lange. “Faster Addition and Doubling on Elliptic
Curves”. In: ASTACRYPT. Vol. 4833. Lecture Notes in Computer Science. Springer,
2007, pp. 29—-50. url: https://ia.cr/2007/286.

Daniel J. Bernstein and Tanja Lange. “Analysis and optimization of elliptic-curve
single-scalar multiplication”. In: Finite fields and applications 2007. American Math-
ematical Society, 2008, pp. 1-19. isbn: 978-0-8218-4309-3/pbk.

url: https://ia.cr/2007/455.

Daniel J. Bernstein and Tanja Lange. “Non-uniform Cracks in the Concrete: The
Power of Free Precomputation”. In: ASIACRYPT (2). Vol. 8270. Lecture Notes in
Computer Science. Springer, 2013, pp. 321—340. url: https://ia.cr/2012/318.

Daniel J. Bernstein and Tanja Lange. “Montgomery curves and the Montgomery
ladder”. In: Topics in computational number theory inspired by Peter L. Montgomery. Ed.
by Joppe W. Bos and Arjen K. Lenstra. Cambridge University Press, 2017, pp. 82—115.
url: https://ia.cr/2017/293.

Dan Boneh and Richard J. Lipton. “Quantum Cryptanalysis of Hidden Linear Func-
tions (Extended Abstract)”. In: CRYPTO. Vol. 963. Lecture Notes in Computer Sci-
ence. Springer, 1995, pp. 424—437.

url: https://crypto.stanford.edu/~dabo/pubs/papers/quantum.pdf.
Daniel]. Bernstein, Tanja Lange, Chloe Martindale and Lorenz Panny. “Quantum
Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies”. In: EURO-
CRYPT (2). Vol. 11477. Lecture Notes in Computer Science. Springer, 2019, pp. 409—
441.url: https://ia.cr/2018/1059.

Alin Bostan, Francois Morain, Bruno Salvy and Eric Schost. “Fast algorithms for
computing isogenies between elliptic curves”. In: Mathematics of Computation
77.263 (2008), pp. 1755-1778. url: https://www.ams.org/journals/mcom/2008 -
77-263/50025-5718-08-02066-8/50025-5718-08-02066-8.pdf.

Xavier Bonnetain and Marfa Naya-Plasencia. “Hidden Shift Quantum Cryptana-
lysis and Implications”. In: ASIACRYPT. Vol. 11274. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 560-592. url: https://ia.cr/2018/432.

Dan Boneh. “The Decision Diffie—Hellman Problem”. In: ANTS. Vol. 1423. Lecture
Notes in Computer Science. Springer, 1998, pp. 48-63.

url: https://crypto.stanford.edu/~dabo/abstracts/DDH.html.

Joppe W. Bos. “Constant time modular inversion”. In: Journal of Cryptographic En-

gineering 4.4 (2014), pp. 275—281.
url: http://joppebos.com/files/CTInversion.pdf.

https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://ia.cr/2019/498
https://ia.cr/2007/286
https://ia.cr/2007/455
https://ia.cr/2012/318
https://ia.cr/2017/293
https://crypto.stanford.edu/~dabo/pubs/papers/quantum.pdf
https://ia.cr/2018/1059
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf
https://ia.cr/2018/432
https://crypto.stanford.edu/~dabo/abstracts/DDH.html
http://joppebos.com/files/CTInversion.pdf

208 ‘

[Bot+19]

[Broo8]
[Broog]

[BSo7]

[BS18]

[BS20]

[BS96]

[BVo7]

[BYgo]

[Cas+18]

[CCJR20]

[CD2o0]

[CDV20]

[Cer+19]

BIBLIOGRAPHY

Paul Bottinelli, Victoria de Quehen, Chris Leonardi, Anton Mosunov, Filip Pawlega
and Milap Sheth. The Dark SIDH of Isogenies. IACR Cryptology ePrint Archive
2019/1333. 2019. url: https://ia.cr/2019/1333.

Reinier Broker. “A p-adic algorithm to compute the Hilbert class polynomial”. In:
Mathematics of Computation 77.264 (2008), pp. 2417—2435.

Reinier Broker. “Constructing supersingular elliptic curves”. In: Journal of Combin-
atorics and Number Theory 1.3 (2009), pp. 469—273.

Reinier Broker and Peter Stevenhagen. “Efficient CM-constructions of elliptic
curves over finite fields”. In: Mathematics of Computation 76.260 (2007), pp. 2161—
2179.

Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis of CSIDH
and Ordinary Isogeny-based Schemes. IACR Cryptology ePrint Archive 2018/537; ver-
sion 20180621:135910. Newer version: [BS20]. 2018.

url: https://eprint.iacr.org/2018/537/20180621:135910.

Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of
CSIDH”. In: EUROCRYPT (2). Vol. 12106. Lecture Notes in Computer Science.
Springer, 2020, pp. 493—522. url: https://ia.cr/2018/537.

Wieb Bosma and Peter Stevenhagen. “On the computation of quadratic 2-class
groups”. In: Journal de Théorie des Nombres de Bordeaux 8.2 (1996), pp. 283—313.

Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms: an algorithmic ap-
proach. Vol. 20. Algorithms and Computation in Mathematics. Springer, 2007. isbn:
978-3-540-46367-2.

Gilles Brassard and Moti Yung. “One-Way Group Actions”. In: CRYPTO. Vol. 537.
Lecture Notes in Computer Science. Springer, 1990, pp. 94—107.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: ASIA-
CRYPT (3). Vol. 11274. Lecture Notes in Computer Science. Springer, 2018, pp. 395—
427.url:https://ia.cr/2018/383.

Jorge Chavez-Saab, Jesus-Javier Chi-Dominguez, Samuel Jaques and Francisco
Rodriguez-Henriquez. The SQALE of CSIDH: Square-root vélu Quantum-vesistant
isogeny Action with Low Exponents. IACR Cryptology ePrint Archive 2020/1520. 2020.
url: https://ia.cr/2020/1520.

Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: PQCrypto.
Vol. 12100. Lecture Notes in Computer Science. Springer, 2020, pp. 111—129. url:
https://ia.cr/2019/1404.

Wouter Castryck, Thomas Decru and Frederik Vercauteren. “Radical Isogenies”.
In: ASIACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer, 2020,
PP- 493—519. url: https://ia.cr/2020/1108.

Daniel Cervantes-Vdzquez, Mathilde Chenu, Jesus-Javier Chi-Dominguez, Luca
De Feo, Francisco Rodriguez-Henriquez and Benjamin Smith. “Stronger and Faster
Side-Channel Protections for CSIDH”. In: LATINCRYPT. Vol. 11774. Lecture Notes
in Computer Science. Springer, 2019, pp. 173—193. url: https://ia.cr/2019/837.

https://ia.cr/2019/1333
https://eprint.iacr.org/2018/537/20180621:135910
https://ia.cr/2018/537
https://ia.cr/2018/383
https://ia.cr/2020/1520
https://ia.cr/2019/1404
https://ia.cr/2020/1108
https://ia.cr/2019/837

[CH17]

[Chei6]

[CIs14]

[CKi9]

[CL84]

[CLGog9]

[CLN16]

[Con]

[Cos+17]

[Cos+20]

[Cos18]

[Cos20]

[Couo6]

[Cox13]

[CPV20]

BIBLIOGRAPHY 209

Craig Costello and Hiiseyin Higil. “A Simple and Compact Algorithm for SIDH with
Arbitrary Degree Isogenies”. In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 303—329. url: https://ia.cr/2017/504.

Yiping Cheng. Space-Efficient Karatsuba Multiplication for Multi-Precision Integers.
2016. arXiv: 1605.06760. url: https://arxiv.org/abs/1605.06760.

Andrew M. Childs, David Jao and Vladimir Soukharev. “Constructing elliptic curve
isogenies in quantum subexponential time”. In: Journal of Mathematical Cryptology
8.1 (2014), pp. 1—29. url: https://arxiv.org/abs/1012.4019.

Leonardo Colo and David Kohel. “Orienting supersingularisogeny graphs”. In: Nut-
MiC 2019.2019. url: https://ia.cr/2020/985.

Henri Cohen and Hendrik W. Lenstra, Jr. “Heuristics on class groups of number
fields”. In: Number Theory Noordwijkerhout 1983. Ed. by Hendrik Jager. Springer,
1984, pp. 33—62. isbn: 978-3-540-38906-4.

Denis X. Charles, Kristin E. Lauter and Eyal Z. Goren. “Cryptographic Hash Func-
tions from Expander Graphs”. In: Journal of Cryptology 22.1 (2009), pp. 93—113. url:
https://ia.cr/2006/021.

Craig Costello, Patrick Longa and Michael Naehrig. “Efficient Algorithms for Su-
persingular Isogeny Diffie-Hellman”. In: CRYPTO (1). Vol. 9814. Lecture Notes in
Computer Science. Springer, 2016, pp. 572—601. url: https://ia.cr/2016/413.

Keith Conrad. The conductor ideal. Expository paper.
url: https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf.

Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes and
David Urbanik. “Efficient Compression of SIDH Public Keys”. In: EUROCRYPT (1).
Vol. 10210. Lecture Notes in Computer Science. 2017, pp. 679—706.

Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes and Fernando Virdia.
“Improved Classical Cryptanalysis of SIKE in Practice”. In: Public Key Crypto-
graphy (2). Vol. 12111. Lecture Notes in Computer Science. Springer, 2020, pp. 505—
534. url: https://ia.cr/2019/298.

Craig Costello. “Computing Supersingular Isogenies on Kummer Surfaces”. In:
ASIACRYPT (3). Vol. 11274. Lecture Notes in Computer Science. Springer, 2018,
Pp- 428—456. url: https://ia.cr/2018/850.

Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Tor-
sion”. In: ASIACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer,
2020, Pp. 440—463. url: https://ia.cr/2019/1145.

Jean-Marc Couveignes. Hard Homogeneous Spaces. IACR Cryptology ePrint Archive
2006/291. 2006. url: https://ia.cr/2006/291.

David A. Cox. Primes of the form x> + ny?: Fermat, class field theory, and complex mul-
tiplication. 2nd ed. Pure and Applied Mathematics. Wiley, 2013, pp. xviii+356. isbn:
978-1-118-39018-4.

Wouter Castryck, Lorenz Panny and Frederik Vercauteren. “Rational Isogenies from
Irrational Endomorphisms”. In: EUROCRYPT (2). Vol. 12106. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 523—548. url: https://ia.cr/2019/1202.

https://ia.cr/2017/504
https://arxiv.org/abs/1605.06760
https://arxiv.org/abs/1605.06760
https://arxiv.org/abs/1012.4019
https://ia.cr/2020/985
https://ia.cr/2006/021
https://ia.cr/2016/413
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://ia.cr/2019/298
https://ia.cr/2018/850
https://ia.cr/2019/1145
https://ia.cr/2006/291
https://ia.cr/2019/1202

210 ‘

[CRo3]

[CRig]

[CR20]

[CSo3]

[CS18]

[CSV20]

[Dadé6s]

[dB8S]

[DeF+20]

[DeF17]

[Deug1]

[DG16]

[DGi9]

[DH76]

[Din+17]

BIBLIOGRAPHY

John Cremona and David Rusin. “Efficient solution of rational conics”. In: Mathem-
atics of Computation 72.243 (2003), pp. 1417—1441.

Romain Cosset and Damien Robert. “Computing (¢, £)-isogenies in polynomial
time on Jacobians of genus 2 curves”. In: Mathematics of Computation 84.294 (2015),
PP- 1953-1975.

Jesus-Javier Chi-Dominguez and Francisco Rodriguez-Henriquez. Optimal strategies
for CSIDH. IACR Cryptology ePrint Archive 2020/417. 2020.

url: https://ia.cr/2020/417.

Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-Key
Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack”. In: SIAM
Journal on Computing 33.1 (2003), pp. 167—226. utl: https://ia.cr/2001/108.

Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic: The
case of large characteristic fields”. In: Journal of Cryptographic Engineering 8.3 (2018),
pp. 227—240. url: https://ia.cr/2017/212.

Wouter Castryck, Jana Sotdkovd and Frederik Vercauteren. “Breaking the De-
cisional Diffie-Hellman Problem for Class Group Actions Using Genus Theory”.
In: CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science. Springer, 2020,
pp- 92—120. url: https://ia.cr/2020/151.

Luigi Dadda. “Some schemes for parallel multipliers”. In: Alta frequenza 34.5 (1965),
PP- 349-356.

Bert den Boer. “Diffie-Hellman is as Strong as Discrete Log for Certain Primes”. In:
CRYPTO. Vol. 403. Lecture Notes in Computer Science. Springer, 1988, pp. 530—539.

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit and Benjamin Weso-
lowski. “SQISign: Compact Post-quantum Signatures from Quaternions and Iso-
genies”. In: ASTACRYPT (1). Vol. 12491. Lecture Notes in Computer Science. Springer,
2020, pp. 64—93. url: https://ia.cr/2020/1240.

Luca De Feo. Mathematics of Isogeny Based Cryptography. Lecture notes for a summer
school on mathematics for post-quantum cryptography. Thies, Senegal, 2017. url:
https://defeo.lu/ema2017/poly.pdf.

Max Deuring. “Die Typen der Multiplikatorenringe elliptischer Funktionenkérper”.
In: Abhandlungen aus dem Mathematischen Seminar der Universitit Hamburg 14 (1941),
Pp- 197—272.

Christina Delfs and Steven D. Galbraith. “Computing isogenies between super-
singular elliptic curves over Fp,”. In: Designs, Codes and Cryptography 78.2 (2016),
PD- 425—440. url: https://arxiv.org/abs/1310.7789.

Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from
Class Group Actions”. In: EUROCRYPT (3). Vol. 11478. Lecture Notes in Computer
Science. Springer, 2019, pp. 759—789. url: https://ia.cr/2018/824.

Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE
Trans. Information Theory 22.6 (Nov. 1976), pp. 644—654.

Jintai Ding, Saed Alsayigh, R. V. Saraswathy, Scott R. Fluhrer and Xiaodong Lin.
“Leakage of signal function with reused keys in RLWE key exchange”. In: ICC. IEEE,
2017, pp. 1-6.

https://ia.cr/2020/417
https://ia.cr/2001/108
https://ia.cr/2017/212
https://ia.cr/2020/151
https://ia.cr/2020/1240
https://defeo.lu/ema2017/poly.pdf
https://arxiv.org/abs/1310.7789
https://ia.cr/2018/824

[D1Zo7]

[DJP14]

[DKS18]

[DMPS19]

[DNo3]

[DPVig]

[Eic38]

[Eis+18]

[Eis+20]

[EvMo7]

[FHKP13]

[Flui6]

[FMMCi2]

BIBLIOGRAPHY 211

Vassil S. Dimitrov, Laurent Imbert and Andrew Zakaluzny. “Multiplication by a
Constant is Sublinear”. In: ARITH-18 2007. 2007, pp. 261—268.
url: http://www.lirmm. fr/~imbert/pdfs/constmult_arith18.pdf.

Luca De Feo, David Jao and Jéréme Plat. “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies”. In: Journal of Mathematical
Cryprology 8.3 (2014), pp. 209—247. url: https://ia.cr/2011/506.

Luca De Feo, Jean Kieffer and Benjamin Smith. “Towards Practical Key Exchange
from Ordinary Isogeny Graphs”. In: ASIACRYPT (3). Vol. 11274. Lecture Notes in
Computer Science. Springer, 2018, pp. 365—394. url: https://ia.cr/2018/485.

Luca De Feo, Simon Masson, Christophe Petit and Antonio Sanso. “Verifiable Delay
Functions from Supersingular Isogenies and Pairings”. In: ASTACRYPT (1). Vol. 11921.
Lecture Notes in Computer Science. Springer, 2019, pp. 248—277.

url: https://ia.cr/2019/166.

Claus Diem and Niko Naumann. “On the structure of Weil restrictions of abelian
varieties”. In: Journal of the Ramanujan Mathematical Society 18.2 (2003), Pp. 153—174.
url: https://arxiv.org/abs/math/0504359.

Thomas Decru, Lorenz Panny and Frederik Vercauteren. “Faster SeaSign Signatures
Through Improved Rejection Sampling”. In: PQCrypto. Vol. 11505. Lecture Notes in
Computer Science. Springer, 2019, pp. 271—285.

url: https://ia.cr/2018/1109.

Martin Eichler. “Uber die Idealklassenzahl total definiter Quaternionenalgebren”.
In: Mathematische Zeitschrift 43.1 (Dec. 1938), pp. 102-109.

Kirsten Eisentrager, Sean Hallgren, Kristin E. Lauter, Travis Morrison and Chris-
tophe Petit. “Supersingular Isogeny Graphs and Endomorphism Rings: Reductions
and Solutions”. In: EUROCRYPT (3). Vol. 10822. Lecture Notes in Computer Science.
Springer, 2018, pp. 329—368. url: https://ia.cr/2018/371.

Kirsten Eisentréger, Sean Hallgren, Chris Leonardi, Travis Morrison and Jennifer
Park. Computing endomorphism rings of supersingular elliptic curves and connections to
pathfinding in isogeny graphs. 2020. arXiv: 2004 . 11495.

url: https://arxiv.org/abs/2004.11495.

Bas Edixhoven, Gerard van der Geer and Ben Moonen. Abelian varieties. Book in pre-
paration. 2007.
url: https://www.math.ru.nl/personal/bmoonen/research.html#bookabvar.

Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz and Kenneth G. Paterson. “Non-
Interactive Key Exchange”. In: Public Key Cryptography. Vol. 7778. Lecture Notes in
Computer Science. Springer, 2013, pp. 254—271. url: https://ia.cr/2012/732.

Scott R. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive 2016/085. 2016. url: https://ia.cr/2016/085.

Austin G. Fowler, Matteo Mariantoni, John M. Martinis and Andrew N. Cleland.
“Surface codes: Towards practical large-scale quantum computation”. In: Physical
Review A 86.032324 (2012). url: https://arxiv.org/abs/1208.0928.

http://www.lirmm.fr/~imbert/pdfs/constmult_arith18.pdf
https://ia.cr/2011/506
https://ia.cr/2018/485
https://ia.cr/2019/166
https://arxiv.org/abs/math/0504359
https://ia.cr/2018/1109
https://ia.cr/2018/371
https://arxiv.org/abs/2004.11495
https://arxiv.org/abs/2004.11495
https://www.math.ru.nl/personal/bmoonen/research.html#bookabvar
https://ia.cr/2012/732
https://ia.cr/2016/085
https://arxiv.org/abs/1208.0928

212 ‘

[FO99]

[FS86]

[Faro7]
[Gali2]

[Galgg]

[GG13]
[Gid17]

[GLRS16]

[GPS17]

[GPST16]

[GPSV18]

[GRo4]

[Grog6]

[GV18]

[GZ85]

[Halog]

BIBLIOGRAPHY

Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: CRYPTO. Vol. 1666. Lecture Notes in Com-

puter Science. Springer, 1999, pp. 537-554-

Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identific-
ation and Signature Problems”. In: CRYPTO. Vol. 263. Lecture Notes in Computer
Science. Springer, 1986, pp. 186—194.

Martin Firer. “Faster integer multiplication”. In: STOC. ACM, 2007, pp. 57-66.

Steven D. Galbraith. Mathematics of Public-Key Cryptography. Cambridge University
Press, 2012. isbn: 978-1-107-01392-6.

Steven D. Galbraith. “Constructing Isogenies between Elliptic Curves Over Finite
Fields”. In: LMS journal of Computation and Mathematics 2 (1999), pp. 118—138.

Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra. 3rd ed.
Cambridge University Press, 2013. isbn: 978-1-139-85606-5.

Craig Gidney. “Halving the cost of quantum addition”. In: Quantum 2.74 (2017). url:
https://quantum-journal.org/papers/q-2018-06-18-74/.

Markus Grassl, Brandon Langenberg, Martin Roetteler and Rainer Steinwandt.
“Applying Grover’s Algorithm to AES: Quantum Resource Estimates”. In: PQCrypto.
Vol. 9606. Lecture Notes in Computer Science. Springer, 2016, pp. 29—43. url:
https://arxiv.org/abs/1512.04965.

Steven D. Galbraith, Christophe Petit and Javier Silva. “Identification Protocols and
Signature Schemes Based on Supersingular Isogeny Problems”. In: ASIACRYPT ().
Vol. 10624. Lecture Notes in Computer Science. Springer, 2017, pp. 3—33.

url: https://ia.cr/2016/1154.

Steven D. Galbraith, Christophe Petit, Barak Shani and Yan Bo Ti. “On the Security of
Supersingular Isogeny Cryptosystems”. In: ASTACRYPT (1). Vol. 10031. Lecture Notes
in Computer Science. Springer, 2016, pp. 63—91. url: https://ia.cr/2016/859.

Steven D. Galbraith, Lorenz Panny, Benjamin Smith and Frederik Vercauteren.
Quantum Equivalence of the DLP and CDHP for Group Actions. IACR Cryptology ePrint
Archive 2018/1199. 2018. url: https://ia.cr/2018/1199.

Steven Galbraith and Victor Rotger. “Easy decision Diffie—Hellman groups”. In: LMS
Journal of Computation and Mathematics 7 (2004), pp. 201—218.
url: https://ia.cr/2004/070.

Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
STOC. ACM, 1996, pp. 212—219. url: https://arxiv.org/abs/quant- ph/9605043.

Steven D. Galbraith and Frederik Vercauteren. “Computational problems in super-
singular elliptic curve isogenies”. In: Quantum Information Processing 17 (2018). url:
https://ia.cr/2017/774.

Benedict H. Gross and Don B. Zagier. “On singular moduli”. In: Journal fiir die Reine
und Angewandte Mathematik. 355 (1985), pp. 191—220.

Sean Hallgren. “Fast quantum algorithms for computing the unit group and class
group of a number field”. In: STOC. ACM, 2005, pp. 468—474.
url: http://cse.psu.edu/~sjh26/unitgroup.pdf.

https://quantum-journal.org/papers/q-2018-06-18-74/
https://arxiv.org/abs/1512.04965
https://ia.cr/2016/1154
https://ia.cr/2016/859
https://ia.cr/2018/1199
https://ia.cr/2004/070
https://arxiv.org/abs/quant-ph/9605043
https://ia.cr/2017/774
http://cse.psu.edu/~sjh26/unitgroup.pdf

[Har77]

[Has36]

[HGS99]

[HH18]

[HHK17]

[HHL16]

[HHL17]

[His1o]

[HLKA20]

[HM89]

[How+03]

[HPS98]

[HRS17]

[HSoo0]

BIBLIOGRAPHY 213

Robin Hartshorne. Algebraic Geometry. 1st ed. Graduate Texts in Mathematics 52.
Springer, 1977. isbn: 978-1-4419-2807-8.

Helmut Hasse. “Zur Theorie der abstrakten elliptischen Funktionenkérper III. Die
Struktur des Meromorphismenrings. Die Riemannsche Vermutung.” In: Journal fir
die reine und angewandte Mathematik 175 (1936), pp. 193—208.

Chris Hall, Ian Goldberg and Bruce Schneier. “Reaction Attacks against several
Public-Key Cryptosystems”. In: ICICS. Vol. 1726. Lecture Notes in Computer Sci-
ence. Springer, 1999, pp. 2—12.

David Harvey and Joris van der Hoeven. Faster integer multiplication using short lattice
vectors. 2018. arXiv: 1802.07932. url: https://arxiv.org/abs/1802.07932.

Dennis Hofheinz, Kathrin Hévelmanns and Eike Kiltz. “A Modular Analysis of the
Fujisaki-Okamoto Transformation”. In: TCC (1). Vol. 10677. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 341—371. url: https://ia.cr/2017/604.

David Harvey, Joris van der Hoeven and Grégoire Lecerf. “Even faster integer mul-
tiplication”. In: Journal of Complexity 36 (2016), pp. 1—30.
url: https://arxiv.org/abs/1407.3360.

David Harvey, Joris van der Hoeven and Grégoire Lecerf. “Faster Polynomial Mul-
tiplication over Finite Fields”. In: Journal of the ACM 63.6 (2017), 52:1—52:23. url:
https://arxiv.org/abs/1407.3361.

Huseyin Hisil. “Elliptic curves, group law, and efficient computation”. PhD thesis.
Queensland University of Technology, 2010.
url: https://eprints.qut.edu.au/33233/.

Aaron Hutchinson, Jason T. LeGrow, Brian Koziel and Reza Azarderakhsh. “Further
Optimizations of CSIDH: A Systematic Approach to Efficient Strategies, Permuta-
tions, and Bound Vectors”. In: ACNS (1). Vol. 12146. Lecture Notes in Computer Sci-
ence. Springer, 2020, pp. 481—5o1. url: https://ia.cr/2019/1121.

James L. Hafner and Kevin S. McCurley. “A rigorous subexponential algorithm for
computation of class groups”. In: Journal of the American Mathematical Society 2.4
(1989), pp. 837-850. issn: 0894—0347.

Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph
H. Silverman, Ari Singer and William Whyte. “The Impact of Decryption Failures
on the Security of NTRU Encryption”. In: CRYPTO. Vol. 2729. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 226—246.

Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman. “NTRU: A Ring-Based Pub-
lic Key Cryptosystem”. In: ANTS. Vol. 1423. Lecture Notes in Computer Science.
Springer, 1998, pp. 267—288.

Thomas Haner, Martin Roetteler and Krysta M. Svore. “Factoring using 2n+2 qubits
with Toffoli based modular multiplication”. In: Quantum Information & Computation
17.7&8 (2017), pp. 673—684. url: https://arxiv.org/abs/1611.07995.

Jeffrey Hoffstein and Joseph H. Silverman. Reaction Attacks Against the NTRU Public
Key Cryptosystem. NTRU Cryptosystems Technical Report o015, version 2. 2000. url:
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/
NTRUTech015. pdf.

https://arxiv.org/abs/1802.07932
https://arxiv.org/abs/1802.07932
https://ia.cr/2017/604
https://arxiv.org/abs/1407.3360
https://arxiv.org/abs/1407.3361
https://eprints.qut.edu.au/33233/
https://ia.cr/2019/1121
https://arxiv.org/abs/1611.07995
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/NTRUTech015.pdf
https://web.archive.org/web/http://www.ntru.com/NTRUFTPDocsFolder/NTRUTech015.pdf

214 ‘

[HS15]

(J13]
[IR93]

[Jao+17]

[Jao+19]

[JD11]

[JLLR18]

[JMVoo]

[Joniz2]

[JS19]

[JS20]

[Kan89]

[Kie17]

[Kitg6]

BIBLIOGRAPHY

Michael Hutter and Peter Schwabe. “Multiprecision multiplication on AVR revis-
ited”. In: Journal of Cryptographic Engineering 5.3 (2015), pp. 201—214.
url: https://ia.cr/2014/592.

Sorina Ionica and Antoine Joux. “Pairing the volcano”. In: Mathematics of Computa-
tion 82.281 (2013), pp. 581-603.

Gdbor Ivanyos and Lajos Rényai. “Finding maximal orders in semisimple algebras
over Q”. In: Computational Complexity 3.3 (1993), pp. 245—261.

David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev and David Urbanik. Supersingular Isogeny
Key Encapsulation. Submission to [NIST16]. 2017. url: https://sike.org.

David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Mi-
chael Naehrig, Joost Renes, Vladimir Soukharev and David Urbanik. Supersingular
Isogeny Key Encapsulation. Update of [Jao+17] for round 2 of [NIST16]. 2019. url:
https://sike.org.

David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems from Su-
persingular Elliptic Curve Isogenies”. In: PQCrypto. Vol. 7071. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 19—34. url: https://ia.cr/2011/506.

David Jao, Jason LeGrow, Christopher Leonardi and Luis Ruiz-Lopez. “A subexpo-
nential-time, polynomial quantum space algorithm for inverting the CM group ac-
tion”. In: MathCrypt 2018 (2018). To appear.

David Jao, Stephen D. Miller and Ramarathnam Venkatesan. “Expander graphs
based on GRH with an application to elliptic curve cryptography”. In: Journal of
Number Theory 129.6 (2009), pp. 1491-1504.
url: https://arxiv.org/abs/0811.0647.

Cody Jones. “Low-overhead constructions for the fault-tolerant Toffoli gate”. In:
Physical Review A 87.022328 (2012).

Samuel Jaques and John M. Schanck. “Quantum Cryptanalysis in the RAM Model:
Claw-Finding Attacks on SIKE”. In: CRYPTO 2019. Ed. by Alexandra Boldyreva and
Daniele Micciancio. Vol. 11692. Lecture Notes in Computer Science. Springer, 2019,
pp- 32—61. url: https://ia.cr/2019/103.

Samuel Jaques and André Schrottenloher. “Low-gate Quantum Golden Collision
Finding”. In: Selected Areas in Cryptography — SAC 2020. 2020.
url: https://ia.cr/2020/424.

Masanobu Kaneko. “Supersingular j-invariants as singular moduli mod p”. In:
Osaka Journal of Mathematics 26.4 (Jan. 1989), pp. 849—855. issn: 0030-6126.

Jean Kieffer. “Etude et accélération du protocole d’échange de clés de Couveignes—
Rostovtsev—Stolbunov”. Mémoire du Master 2. Université Paris VI, 2017.
url: https://arxiv.org/abs/1804.10128.

Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem”. In:
Electronic Colloquium on Computational Complexity (ECCC) 3.3 (1996).
url: https://eccc.hpi-web.de/eccc- reports/1996/TR96-003.

https://ia.cr/2014/592
https://sike.org
https://sike.org
https://ia.cr/2011/506
https://arxiv.org/abs/0811.0647
https://ia.cr/2019/103
https://ia.cr/2020/424
https://arxiv.org/abs/1804.10128
https://eccc.hpi-web.de/eccc-reports/1996/TR96-003

[KLPT14]

[Knigs]

[Knu81]
[KO63]

[Kohg6]

[KS15]

[Kupos]

[Kup13]

[Kut+20]

[Lan87]

[LB20]

[Lefos]

[Leng6]

[LLL82]

[LST64]

BIBLIOGRAPHY 215

David Kohel, Kristin Lauter, Christophe Petit and Jean-Pierre Tignol. “On the qua-
ternion ¢-isogeny path problem”. In: LMS Journal of Computation and Mathematics
17 (2014), pp. 418—432. url: https://ia.cr/2014/505.

Emanuel Knill. An analysis of Bennett’s pebble game. 1995. arXiv: math/9508218. url:
https://arxiv.org/abs/math/9508218.

Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms. 2nd ed. Addison-Wesley, 1981. isbn: 0-201-03822-6.

Anatoly A. Karatsuba and Y. Ofman. “Multiplication of multidigit numbers on auto-
mata”. In: Soviet Physics Doklady 7 (1963), pp. 595-596.

David Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis.
University of California at Berkeley, 1996.
url: http://iml.univ-mrs. fr/~kohel/pub/thesis.pdf.

Shane Kepley and Rainer Steinwandt. “Quantum circuits for Fon -multiplication
with subquadratic gate count”. In: Quantum Information Processing 14.7 (2015),
pp. 2373—2386.

Greg Kuperberg. “A Subexponential-Time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem”. In: SIAM Journal on Computing 35.1 (2005), pp. 170—-188.
url: https://arxiv.org/abs/quant-ph/0302112.

Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for the Di-
hedral Hidden Subgroup Problem”. In: TQC. Vol. 22. LIPIcs. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2013, pp. 20-34.

url: https://arxiv.org/abs/1112.3333.

Péter Kutas, Chloe Martindale, Lorenz Panny, Christophe Petit and Katherine E.
Stange. Weak instances of SIDH variants under improved torsion-point attacks. IACR
Cryptology ePrint Archive 2020/633. 2020. url: https://ia.cr/2020/633.

Serge Lang. Elliptic functions. 2nd ed. Vol. 112. Graduate Texts in Mathematics. With
an appendix by John Tate. Springer, 1987, pp. xii+326.

Jonathan Love and Dan Boneh. “Supersingular Curves With Small Non-integer En-
domorphisms”. In: ANTS XIV: Proceedings of the fourteenth algorithmic number theory
symposium. Ed. by Steven Galbraith. Auckland, 2020.

url: https://arxiv.org/abs/1910.03180.

Vincent Lefévre. “Multiplication by an Integer Constant: Lower Bounds on the
Code Length”. In: 5th Conference on Real Numbers and Computers 2003 — RNCs. Lyon,
France, 2003, pp. 131—146. url: https://hal.inria.fr/inria-00099684.

Hendrik W. Lenstra, Jr. “Complex Multiplication Structure of Elliptic Curves”. In:
Journal of Number Theory 56.2 (1996), pp. 227—241. issn: 0022-314X.

Hendrik W. Lenstra, Jr., Arjen K. Lenstra and Laszlo Lovasz. “Factoring Polynomials
with Rational Coefficients.” In: Mathematische Annalen 261 (1982), pp. 515-534- url:
http://eudml.org/doc/182903.

Jonathan Lubin, Jean-Pierre Serre and John Tate. Elliptic Curves and Formal Groups.
Lecture notes. 1964. url: https://ma.utexas.edu/users/voloch/lst.html.

https://ia.cr/2014/505
https://arxiv.org/abs/math/9508218
https://arxiv.org/abs/math/9508218
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/1112.3333
https://ia.cr/2020/633
https://arxiv.org/abs/1910.03180
https://hal.inria.fr/inria-00099684
http://eudml.org/doc/182903
https://ma.utexas.edu/users/voloch/lst.html

216 ‘

[Lyuog]

[Magma]
[Mar18a]

[Mar18b]

[Maug4]

[McM14]

[MCR19]

[Mes72]

[Mico1]

[Mil8s]

[Mon8s]

[Mon87]
[Mor61]
[MP19]

[MR18]

[MS16]

BIBLIOGRAPHY

Vadim Lyubashevsky. “Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures”. In: International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer. 2009, pp. 598-616.

Wieb Bosma, John Cannon and Catherine Playoust. “The Magma algebra system I:
The user language”. In: Journal of Symbolic Computation 24.3-4 (1997), pp- 235—265.

Daniel A. Marcus. Number fields. 2nd ed. Universitext. With a foreword by Barry
Mazur. Springer, 2018, pp. xviii+203.

Chloe Martindale. “Isogeny graphs, modular polynomials, and applications”. PhD
thesis. Universiteit Leiden and Université de Bordeaux, 2018.
url: https://martindale.info/research/Thesis.pdf.

Ueli M. Maurer. “Towards the Equivalence of Breaking the Diffie—Hellman Protocol
and Computing Discrete Logarithms”. In: CRYPTO. Vol. 839. Lecture Notes in Com-
puter Science. Springer, 1994, pp. 271—281.

Ken McMurdy. Explicit representation of the endomorphism rings of supersingular elliptic
curves. Preprint. 2014. url: https://phobos . ramapo.edu/~kmcmurdy/research/
McMurdy- ssendoRings.pdf.

Michael Meyer, Fabio Campos and Steffen Reith. “On Lions and Elligators: An Effi-
cient Constant-Time Implementation of CSIDH”. In: PQCrypto. Vol. 11505. Lecture
Notes in Computer Science. Springer, 2019, pp. 307—325.

url: https://ia.cr/2018/1198.

William Messing. The crystals associated to Barsotti—Tate groups: with applications to
abelian schemes. Vol. 26 4. Lecture Notes in Mathematics. Springer, 1972, pp. ili+190.

Daniele Micciancio. “Improving Lattice Based Cryptosystems Using the Hermite
Normal Form”. In: CaLC. Vol. 2146. Lecture Notes in Computer Science. Springer,
2001, pp. 126—145.

url: https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html.

Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: CRYPTO. Vol. 218. Lec-
ture Notes in Computer Science. Springer, 1985, pp. 417—426.

Peter L. Montgomery. “Modular multiplication without trial division”. In: Mathem-
atics of Computation 44 (1985), pp. 519—521. url: http://www.ams.org/journals/
mcom/1985-44-170/50025-5718-1985-0777282-X/home. html.

Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods of factoriz-
ation”. In: Mathematics of Computation 48.177 (1987), pp. 243—264.

Louis J. Mordell. “The congruence (p — 1/2)! = £1 mod p”. In: American Mathem-
atical Monthly 68.2 (1961), pp. 145-146.

Chloe Martindale and Lorenz Panny. “How to not break SIDH”. In: CFAIL 2019. New
York, 2019. url: https://ia.cr/2019/558.

Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: INDOCRYPT.
Vol. 11356. Lecture Notes in Computer Science. Springer, 2018, pp. 137-152. url:
https://ia.cr/2018/782.

Dustin Moody and Daniel Shumow. “Analogues of Vélu’s formulas for isogenies on
alternate models of elliptic curves”. In: Mathematics of Computation 85.300 (2016),
pp-1929—1951. url: https://ia.cr/2011/436.

https://martindale.info/research/Thesis.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://ia.cr/2018/1198
https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
https://ia.cr/2019/558
https://ia.cr/2018/782
https://ia.cr/2011/430

[MWg6]
[NCi1]
[Nic71]

[NIST16]

[NVi0]

[OAYT19]

[Onu20]

[Oor74]

[OT20]

[Pan20]

[Pari]

[Peir4]

[Pei2o0]

[Pet17]

[Pizgo]

[PL17]

BIBLIOGRAPHY 217

Ueli M. Maurer and Stefan Wolf. “Diffie-Hellman Oracles”. In: CRYPTO. Vol. 1109.
Lecture Notes in Computer Science. Springer, 1996, pp. 268—282.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. 1oth ed. USA: Cambridge University Press, 2011. isbn: 1107002176.

Peter]. Nicholson. “Algebraic Theory of Finite Fourier Transforms”. In: Journal of
Computer and System Sciences 5.5 (1971), Pp- 524—547.

National Institute of Standards and Technology. Post-Quantum Cryptography Stand-
ardization. Dec. 2016. url: https://csrc.nist.gov/Projects/Post - Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization.

Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm. Survey and Applications.
Springer, 2010. isbn: 978-3-642-02295-1.

Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki and Tsuyoshi Takagi. “(Short
Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points”. In:
IWSEC. Vol. 11689. Lecture Notes in Computer Science. Springer, 2019, pp. 23-33.
url: https://ia.cr/2019/353.

Hiroshi Onuki. On oriented supersingular elliptic curves. 2020. arXiv: 2002 .09894. url:
https://arxiv.org/abs/2002.09894.

Frans Oort. “Subvarieties of moduli spaces”. In: Inventiones Mathematicae 24 (1974),
Pp- 95-119.

Hiroshi Onuki and Tsuyoshi Takagi. On Collisions Related to an Ideal Class of Order 3
in CSIDH. 2020. url: https://ia.cr/2019/1209.

Lorenz Panny. “Guess what?! On the impossibility of unconditionally secure
public-key encryption”. In: Mathematical Cryptology 1 (2020), pp. 1—7.
url: https://ia.cr/2019/1228.

Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen and Michel
Olivier. User’s Guide to PARI-GP. Université de Bordeaux I.

Chris Peikert. “Lattice Cryptography for the Internet”. In: PQCrypto. Vol. 8772. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 197—219.

Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT (2). Vol. 12106.
Lecture Notes in Computer Science. Springer, 2020, pp. 463—492.
url: https://ia.cr/2019/725.

Christophe Petit. “Faster Algorithms for Isogeny Problems Using Torsion Point Im-
ages”. In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Computer Science. Springer,
2017, pp. 330—353. url: https://ia.cr/2017/571.

Arnold K. Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin of the Amer-
ican Mathematical Society 23.1 (1990), pp. 127-137.
url: https://projecteuclid.org/euclid.bams/1183555725.

Christophe Petit and Kristin E. Lauter. Hard and Easy Problems for Supersingular Iso-
geny Graphs. IACR Cryptology ePrint Archive 2017/962. 2017.
url: https://ia.cr/2017/962.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://ia.cr/2019/353
https://arxiv.org/abs/2002.09894
https://arxiv.org/abs/2002.09894
https://ia.cr/2019/1209
https://ia.cr/2019/1228
https://ia.cr/2019/725
https://ia.cr/2017/571
https://projecteuclid.org/euclid.bams/1183555725
https://ia.cr/2017/962

218 ‘

[Pol71]

[PR15]

[PRM17]

[Rego4]

[Reni8]

[RNSL17]

[RSo6]

[Saai7a]

[Saai7b]

[Sage]

[Satoo]

[Sch77]

[Sch8s]

[Sch87]

BIBLIOGRAPHY

John M. Pollard. “The fast Fourier transform in a finite field”. In: Mathematics of Com-
putation 25 (1971), pp- 365—374. utl: https: //www.ams.org/journals/mcom/1971-
25-114/50025-5718-1971-0301966-0/.

Julia Pieltant and Hugues Randriam. “New uniform and asymptotic upper bounds
on the tensor rank of multiplication in extensions of finite fields”. In: Mathematics
of Computation 84.294 (2015), pp. 2023—2045.

url: https://arxiv.org/abs/1305.5166.

Alex Parent, Martin Roetteler and Michele Mosca. “Improved reversible and
quantum circuits for Karatsuba-based integer multiplication”. In: TQC. Vol. 73.
LIPIcs. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2017, 7:1—7:15. url:
https://arxiv.org/abs/1706.034109.

Oded Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Prob-
lem with Polynomial Space. 2004. arXiv: quant - ph/0406151.
url: https://arxiv.org/abs/quant-ph/0406151.

Joost Renes. “Computing Isogenies Between Montgomery Curves Using the Action
of (0,0)”. In: PQCrypto. Vol. 10786. Lecture Notes in Computer Science. Springer,
2018, pp. 229—247. url: https://ia.cr/2017/1198.

Martin Roetteler, Michael Naehrig, Krysta M. Svore and Kristin E. Lauter.
“Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms”.
In: ASIACRYPT (2). Vol. 10625. Lecture Notes in Computer Science. Springer, 2017,
Pp. 241—270. url: https://ia.cr/2017/598.

Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based on Iso-
genies. IACR Cryptology ePrint Archive 2006 /145. 2006.
url: https://ia.cr/2006/145.

Markku-Juhani O. Saarinen. HILAg: Key Encapsulation Mechanism (KEM) and Public
Key Encryption Algorithm. Submission to [NIST16]. 2017.

url: https://github. com/mjosaarinen/hila5/blob/master/Supporting_
Documentation/hila5spec.pdf.

Markku-Juhani O. Saarinen. “HILAg: On Reliability, Reconciliation, and Error Cor-
rection for Ring-LWE Encryption”. In: Selected Areas in Cryptography — SAC 2017. Ed.
by Carlisle Adams and Jan Camenisch. Vol. 10719. Lecture Notes in Computer Sci-
ence. Ottawa: Springer, 2017, pp. 192—212. isbn: 978-3-319-72564-2.

The Sage Developers. SageMath, the Sage Mathematics Software System.

url: https://sagemath.org.

Takakazu Satoh. “The canonical lift of an ordinary elliptic curve over a finite field
and its point counting”. In: Journal of the Ramanujan Mathematical Society 15.4
(2000), pp. 247-270.

Arnold Schénhage. “Schnelle Multiplikation von Polynomen tber Korpern der
Charakteristik 2”. In: Acta Informatica 7 (1977), pp- 395-398.

René Schoof. “Elliptic curves over finite fields and the computation of square roots
mod p”. In: Mathematics of Computation 44.170 (May 1985), pp. 483—483.

René Schoof. “Nonsingular plane cubic curves over finite fields”. In: Journal of Com-
binatorial Theory, Series A 46.2 (1987), pp. 183—211.

https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://arxiv.org/abs/1305.5166
https://arxiv.org/abs/1706.03419
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://ia.cr/2017/1198
https://ia.cr/2017/598
https://ia.cr/2006/145
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://sagemath.org

[SE94]

[SGP19]

[Sha71]

[Shog4]

[Shog7a]

[Shog7b]

[Sie3s]
[Silog]
[Silig]

[Simos]
[SKPS19]

[Smi18]

[Smiz2o]

[SS71]

[Stoo4]

[Sto1o]

[Sto12]

BIBLIOGRAPHY 219

Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Mathematical Programming 66
(1994), pp- 181-199.

Rajeev Anand Sahu, Agnese Gini and Ankan Pal. Supersingular Isogeny-Based Desig-
nated Verifier Blind Signature. IACR Cryptology ePrint Archive 2019/1498. 2019. url:
https://ia.cr/2019/1498.

Daniel Shanks. “Class number, a theory of factorization, and genera”. In: Proceedings
of Symposia in Pure Mathematics. Vol. 20. 1971, pp. 415—440.

Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science. SFCS’94. USA: IEEE Computer Society, 1994, pp. 124—134. isbn: 0818665807.

Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (1997),
Pp- 1484—1509. url: https://arxiv.org/abs/quant-ph/9508027.

Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In:
EUROCRYPT. Vol. 1233. Lecture Notes in Computer Science. Springer, 1997, pp. 256—
266.

Carl Siegel. “Uber die Classenzahl quadratischer Zahlkérper”. In: Acta Arithmetica
1.1 (1935), pp- 83-86.

Joseph H. Silverman. The arithmetic of elliptic curves. 2nd ed. Graduate Texts in Math-
ematics 106. Errata: [Silig]. Springer, 2009. isbn: 978-0-387-09493-9.

Joseph H. Silverman. Errata and Corrections to The Arithmetic of Elliptic Curves, 2nd
Edition. Apr. 2015. url: https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf.

Denis Simon. Quadratic equations in dimensions 4, § and more. Preprint. 2005,

Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit and Javier Silva.
SETA: Supersingular Encryption from Torsion Attacks. IACR Cryptology ePrint Archive
2019/1291. 2019. url: https://ia.cr/2019/1291.

Benjamin Smith. “Pre- and Post-quantum Diffie-Hellman from Groups, Actions,
and Isogenies”. In: WAIFI. Vol. 11321. Lecture Notes in Computer Science. Springer,
2018, pp. 3—40. url: https://ia.cr/2018/882.

Benjamin Smith. Isogenies: what now, and what next? Invited talk at PQCrypto 2020.
Sept. 2020. url: https://youtu.be/HfmvNenGyok?t=3190.

Arnold Schonhage and Volker Strassen. “Schnelle Multiplikation grofser Zahlen”.
In: Computing 7.3-4 (1971), pp. 281—292.

Anton Stolbunov. “Public-key encryption based on cycles of isogenous elliptic
curves”. In Russian. MA thesis. Saint-Petersburg State Polytechnical University,
2004.

Anton Stolbunov. “Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves”. In: Advances in Mathematics of
Communications 4.2 (2010), pp. 215—235.

Anton Stolbunov. “Cryptographic Schemes Based on Isogenies”. PhD thesis. Nor-
wegian University of Science and Technology, 2012.

https://ia.cr/2019/1498
https://arxiv.org/abs/quant-ph/9508027
https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf
https://ia.cr/2019/1291
https://ia.cr/2018/882
https://youtu.be/HfmvNenGyok?t=3190

220 ‘

[Str83]
[Suto7]

[Suti2a]

[Suti2b]

[Tano7]

[Tat66]

[Tib14]

[Too063]

[Unriz2]

[VDTo2]

[Vél71]

[Voi3]

[Voi18]

[Wal64]

[Waso8]

[Wat69)]

BIBLIOGRAPHY

Volker Strassen. “The computational complexity of continued fractions”. In: SIAM
Journal on Computing 12 (1983), pp. 1—27.

Andrew V. Sutherland. “Order computations in generic groups”. PhD thesis. Mas-
sachusetts Institute of Technology, 2007.

Andrew V. Sutherland. “Identifying supersingular elliptic curves”. In: LMS Journal
of Computation and Mathematics 15 (2012), pp. 317—325.
url: https://arxiv.org/abs/1107.1140.

Andrew V. Sutherland. “Isogeny volcanoes”. In: ANTS X. Vol. 1. The Open Book
Series. Mathematical Sciences Publishers, 2012, pp. 507-530.
url: https://arxiv.org/abs/1208.5370.

Seiichiro Tani. “An Improved Claw Finding Algorithm Using Quantum Walk”. In:
MFCS. Vol. 4708. Lecture Notes in Computer Science. Springer, 2007, pp. 536—547.
url: https://arxiv.org/abs/0708.2584.

John Tate. “Endomorphisms of abelian varieties over finite fields”. In: Inventiones
mathematicae 2.2 (1966), pp. 134—144.

Mehdi Tibouchi. “Elligator Squared: Uniform Points on Elliptic Curves of Prime
Order as Uniform Random Strings”. In: Financial Cryptography. Vol. 8437. Lecture
Notes in Computer Science. Springer, 2014, pp. 139—156.

url: https://ia.cr/2014/043.

Andrei L. Toom. “The complexity of a scheme of functional elements realizing the
multiplication of integers”. In: Soviet Mathematics Doklady 3 (1963), pp- 714—716. url:
http://toomandre.com/my-articles/engmat/MULT-E.PDF.

Dominique Unruh. “Quantum Proofs of Knowledge”. In: EUROCRYPT. Vol. 7237.
Lecture Notes in Computer Science. Springer, 2012, pp. 135—152.
url: https://ia.cr/2010/212.

Eric R. Verheul, Jeroen M. Doumen and Henk C. A. van Tilborg. “Sloppy Alice at-
tacks! Adaptive chosen ciphertext attacks on the McEliece public-key cryptosys-
tem”. In: Information, Coding and Mathematics: Proceedings of Workshop honoring Prof.
Bob McEliece on his 6oth birthday. Springer, 2002, pp. 99—119.

Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de ’Académie
des Sciences de Paris 2773 (1971), pp. 238—241.

John Voight. “Identifying the matrix ring: algorithms for quaternion algebras and
quadratic forms”. In: Quadratic and higher degree forms. Springer, 2013, pp. 255-298.

John Voight. Quaternion algebras. Book in preparation; version vo.9.14. July 2018. url:
https://math.dartmouth.edu/~jvoight/quat-book.pdf.

Christopher S. Wallace. “A suggestion for a fast multiplier”. In: IEEE Transactions on
electronic Computers 1 (1964), pp. 14—17.

Lawrence C. Washington. Elliptic curves: Number theory and cryptography. 2nd ed.
Discrete Mathematics and its Applications. Chapman & Hall/CRC, 2008. isbn: 978-
1-4200-7146-7.

William C. Waterhouse. “Abelian varieties over finite fields”. In: Annales scientifiques
de I’Ecole Normale Supérieure 2 (4 1969), pp. 521-560.

https://arxiv.org/abs/1107.1140
https://arxiv.org/abs/1208.5370
https://arxiv.org/abs/0708.2584
https://ia.cr/2014/043
http://toomandre.com/my-articles/engmat/MULT-E.PDF
https://ia.cr/2010/212
https://math.dartmouth.edu/~jvoight/quat-book.pdf

[Wilg4]

[Yoo+17]

[Zan+18]

BIBLIOGRAPHY 221

Herbert S. Wilf. generatingfunctionology. Academic Press, 1994.
url: https://www.math.upenn.edu/~wilf/DownldGF.html.

Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao and Vladimir Soukharev.
“A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies”. In:
Financial Cryptography and Data Security. Vol. 10322. Lecture Notes in Computer Sci-
ence. Springer, 2017, pp. 163—181. url: https://ia.cr/2017/186.

Gustavo Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira, Javad Doliskani
and Paulo S. L. M. Barreto. “Faster Isogeny-Based Compressed Key Agreement”. In:
PQCrypto. Vol. 10786. Lecture Notes in Computer Science. Springer, 2018, pp. 248—
268. url: https://ia.cr/2017/1143.

https://www.math.upenn.edu/~wilf/DownldGF.html
https://ia.cr/2017/186
https://ia.cr/2017/1143

	Official title page
	Thanks
	Contents
	Introduction
	Outline of the thesis

	Mathematical preliminaries
	Cryptographic constructions
	Elliptic curves
	Isogenies of elliptic curves
	Endomorphisms, quadratic fields, and quaternion algebras
	Isogeny graphs
	Quantum algorithms

	CSIDH: An efficient post-quantum group action
	Introduction
	Isogeny graphs
	The class-group action
	Construction and design choices
	Representing and validating Fp-isomorphism classes
	Non-interactive key exchange
	Security
	Implementation

	Faster SeaSign signatures through improved rejection sampling
	Introduction
	Preliminaries
	The improved signature scheme
	Analysis and results

	Rational isogenies from irrational endomorphisms
	Introduction
	Preliminaries
	Twisting endomorphisms
	Isogenies from known endomorphisms
	Vectorizing CM curves

	Quantum equivalence of DLP and CDH for group actions
	Introduction
	The reduction
	Implications for CSIDH

	Weak instances of SIDH variants from improved torsion-point attacks
	Introduction
	Preliminaries
	Improved torsion-point attacks
	Trapdoor instances
	Implementation
	Additional examples of trapdoored primes

	How to not break SIDH
	Introduction
	Preliminaries
	Failed attempts to attack the pure isogeny problem
	Failed attack attempts that use the auxiliary points

	Quantum circuits for CSIDH
	Introduction
	Overview of the computation
	Scalar multiplication on an elliptic curve
	Generating points on an elliptic curve
	Computing an -isogenous curve
	Computing the action: basic algorithms
	Reducing the top nonzero exponent
	Pushing points through isogenies
	Computing -isogenies using division polynomials
	Computing -isogenies using modular polynomials
	Cost metrics for quantum computation
	Basic integer arithmetic
	Modular arithmetic

	CCA security of lattice-based encryption with error correction
	Introduction
	Data flow in the attack
	Preliminaries
	Chosen-ciphertext attack on HILA5
	HILA5 security claims

	Recent developments
	CSIDH is not an ideal group action
	CSI-FiSh: Canonical exponent vectors
	Slow isogenies may be a good thing
	Quantum attacks on CSIDH
	The DDH problem for CM actions
	Faster isogeny evaluation: élu
	Hardened CSIDH implementations
	Repeated isogenies from radicals

	Summary
	Curriculum Vitae
	Bibliography

