
Forging tropical signatures

Lorenz Panny

Technische Universität München

AAC’24, Abu Dhabi, 8 March 2024



ePrint 2023/1475

1 / 23



This talk

How to break tropical signatures (in several different ways)

Some comments on cryptographic design methodology

2 / 23



This talk

How to break tropical signatures (in several different ways)

Some comments on cryptographic design methodology

3 / 23



Blueprint of the construction

Let S be a commutative semigroup: (ab)c = a(bc) and ab = ba.

Candidate signature scheme(?):
▶ Private key: x, y random←−− S.
▶ Public key: m = xy ∈ S.
▶ Signing: Let h ∈ S be a message hash.

Pick u, v random←−− S, return (s1, s2,n) := (hxu, hyv,uv)
▶ Verifying: Check s1s2 = hhmn.

Idea: Key recovery means recovering (x, y).
▶ Path A: Factor m into x, y.
▶ Path B: Factor n into u, v; find x, y from hxu, hu and hyv, hv.

Q: What about forgery attacks that do not recover (x, y)?
⇝ Significantly more ad-hoc problem.

4 / 23



Blueprint of the construction

Let S be a commutative semigroup: (ab)c = a(bc) and ab = ba.

Candidate signature scheme(?):
▶ Private key: x, y random←−− S.
▶ Public key: m = xy ∈ S.
▶ Signing: Let h ∈ S be a message hash.

Pick u, v random←−− S, return (s1, s2,n) := (hxu, hyv,uv)
▶ Verifying: Check s1s2 = hhmn.

Idea: Key recovery means recovering (x, y).
▶ Path A: Factor m into x, y.
▶ Path B: Factor n into u, v; find x, y from hxu, hu and hyv, hv.

Q: What about forgery attacks that do not recover (x, y)?
⇝ Significantly more ad-hoc problem.

4 / 23



Blueprint of the construction

Let S be a commutative semigroup: (ab)c = a(bc) and ab = ba.

Candidate signature scheme(?):
▶ Private key: x, y random←−− S.
▶ Public key: m = xy ∈ S.
▶ Signing: Let h ∈ S be a message hash.

Pick u, v random←−− S, return (s1, s2,n) := (hxu, hyv,uv)
▶ Verifying: Check s1s2 = hhmn.

Idea: Key recovery means recovering (x, y).
▶ Path A: Factor m into x, y.
▶ Path B: Factor n into u, v; find x, y from hxu, hu and hyv, hv.

Q: What about forgery attacks that do not recover (x, y)?
⇝ Significantly more ad-hoc problem.

4 / 23



Blueprint of the construction

Let S be a commutative semigroup: (ab)c = a(bc) and ab = ba.

Candidate signature scheme(?):
▶ Private key: x, y random←−− S.
▶ Public key: m = xy ∈ S.
▶ Signing: Let h ∈ S be a message hash.

Pick u, v random←−− S, return (s1, s2,n) := (hxu, hyv,uv)
▶ Verifying: Check s1s2 = hhmn.

Idea: Key recovery means recovering (x, y).
▶ Path A: Factor m into x, y.
▶ Path B: Factor n into u, v; find x, y from hxu, hu and hyv, hv.

Q: What about forgery attacks that do not recover (x, y)?
⇝ Significantly more ad-hoc problem.

4 / 23



Tropical algebra

Core object: The tropical semiring.

It consists of the set T := R∪{∞}with two binary operations:
▶ “⊕”, which is ordinary min.
▶ “⊗”, which is ordinary +.

Some properties:
▶ (T,⊕) is a commutative monoid with neutral element∞.
▶ (T,⊗) is a commutative monoid with neutral element 0.
▶ The distributive law holds: a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c.
▶ Absorption properties: a⊕ a = a and∞⊗ a =∞.

5 / 23



Tropical algebra

Core object: The tropical semiring.

It consists of the set T := R∪{∞}with two binary operations:
▶ “⊕”, which is ordinary min.
▶ “⊗”, which is ordinary +.

Some properties:
▶ (T,⊕) is a commutative monoid with neutral element∞.
▶ (T,⊗) is a commutative monoid with neutral element 0.
▶ The distributive law holds: a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c.
▶ Absorption properties: a⊕ a = a and∞⊗ a =∞.

5 / 23



Tropical algebra

Core object: The tropical semiring.

It consists of the set T := R∪{∞}with two binary operations:
▶ “⊕”, which is ordinary min.
▶ “⊗”, which is ordinary +.

Some properties:
▶ (T,⊕) is a commutative monoid with neutral element∞.
▶ (T,⊗) is a commutative monoid with neutral element 0.
▶ The distributive law holds: a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c.
▶ Absorption properties: a⊕ a = a and∞⊗ a =∞.

5 / 23



Tropical polynomials

Consider symbolic polynomials over T:

F(x) = c0 ⊕ (c1 ⊗ x)⊕ (c2 ⊗ x⊗ x)⊕ · · · ⊕ (cn ⊗ x⊗n) .

with all ci ∈ T.

In more conventional notation:

F(x) = min{c0, c1 + x, c2 + 2x, ..., cn + nx} .

(Note: “Missing” coefficients are ∞, not 0!)

Arithmetic works as usual, but with (⊕,⊗) instead of (+, ·).
▶ Example:

(
1⊕ (3⊗ x)

)
⊗

(
−1⊕ (2⊗ x)

)
= 0⊕ (2⊗ x)⊕ (5⊗ x⊗2)

6 / 23



Tropical polynomials

Consider symbolic polynomials over T:

F(x) = c0 ⊕ (c1 ⊗ x)⊕ (c2 ⊗ x⊗ x)⊕ · · · ⊕ (cn ⊗ x⊗n) .

with all ci ∈ T. In more conventional notation:

F(x) = min{c0, c1 + x, c2 + 2x, ..., cn + nx} .

(Note: “Missing” coefficients are ∞, not 0!)

Arithmetic works as usual, but with (⊕,⊗) instead of (+, ·).
▶ Example:

(
1⊕ (3⊗ x)

)
⊗

(
−1⊕ (2⊗ x)

)
= 0⊕ (2⊗ x)⊕ (5⊗ x⊗2)

6 / 23



Tropical polynomials

Consider symbolic polynomials over T:

F(x) = c0 ⊕ (c1 ⊗ x)⊕ (c2 ⊗ x⊗ x)⊕ · · · ⊕ (cn ⊗ x⊗n) .

with all ci ∈ T. In more conventional notation:

F(x) = min{c0, c1 + x, c2 + 2x, ..., cn + nx} .

(Note: “Missing” coefficients are ∞, not 0!)

Arithmetic works as usual, but with (⊕,⊗) instead of (+, ·).
▶ Example:

(
1⊕ (3⊗ x)

)
⊗

(
−1⊕ (2⊗ x)

)
= 0⊕ (2⊗ x)⊕ (5⊗ x⊗2)

6 / 23



NP-hardness of tropical polynomial factorization

▶ Kim–Roush (2005, arXiv:math/0501167):
Factoring tropical polynomials is NP-hard.
Here “factoring” really means “splitting into a nontrivial product”.

7 / 23



Proposed tropical signatures

Idea: As before, but now with multiplication of tropical
polynomials, since factoring them is supposedly hard.

▶ Parameters: Two integers d, r. (Paper: d = 150 and r = 127.)

▶ Let Td,r denote the set of tropical polynomials of degree d
with all coefficients in {0, ..., r} and let H : {0, 1}∗ → Td,r.

▶ Private key: Two tropical polynomials X,Y random←−− Td,r.
▶ Public key: The tropical product M := X ⊗ Y.

▶ Signature: Three tropical polynomials S1,S2,N such that
▶ S1,S2 ∈ T3d,3r and N ∈ T2d,2r.
▶ S1 ⊗ S2 = P⊗ P⊗M⊗N where P = H(message).
▶ S1,S2 are not constant tropical multiples of P⊗M or P⊗N.

▶ Honest signature: Sample U,V random←−− Td,r and let
N = U ⊗ V, S1 = P⊗ X ⊗U, and S2 = P⊗ Y⊗ V.

8 / 23



Proposed tropical signatures

Idea: As before, but now with multiplication of tropical
polynomials, since factoring them is supposedly hard.

▶ Parameters: Two integers d, r. (Paper: d = 150 and r = 127.)

▶ Let Td,r denote the set of tropical polynomials of degree d
with all coefficients in {0, ..., r} and let H : {0, 1}∗ → Td,r.

▶ Private key: Two tropical polynomials X,Y random←−− Td,r.
▶ Public key: The tropical product M := X ⊗ Y.

▶ Signature: Three tropical polynomials S1,S2,N such that
▶ S1,S2 ∈ T3d,3r and N ∈ T2d,2r.
▶ S1 ⊗ S2 = P⊗ P⊗M⊗N where P = H(message).
▶ S1,S2 are not constant tropical multiples of P⊗M or P⊗N.

▶ Honest signature: Sample U,V random←−− Td,r and let
N = U ⊗ V, S1 = P⊗ X ⊗U, and S2 = P⊗ Y⊗ V.

8 / 23



Proposed tropical signatures

Idea: As before, but now with multiplication of tropical
polynomials, since factoring them is supposedly hard.

▶ Parameters: Two integers d, r. (Paper: d = 150 and r = 127.)

▶ Let Td,r denote the set of tropical polynomials of degree d
with all coefficients in {0, ..., r} and let H : {0, 1}∗ → Td,r.

▶ Private key: Two tropical polynomials X,Y random←−− Td,r.
▶ Public key: The tropical product M := X ⊗ Y.

▶ Signature: Three tropical polynomials S1,S2,N such that
▶ S1,S2 ∈ T3d,3r and N ∈ T2d,2r.
▶ S1 ⊗ S2 = P⊗ P⊗M⊗N where P = H(message).
▶ S1,S2 are not constant tropical multiples of P⊗M or P⊗N.

▶ Honest signature: Sample U,V random←−− Td,r and let
N = U ⊗ V, S1 = P⊗ X ⊗U, and S2 = P⊗ Y⊗ V.

8 / 23



Proposed tropical signatures

Idea: As before, but now with multiplication of tropical
polynomials, since factoring them is supposedly hard.

▶ Parameters: Two integers d, r. (Paper: d = 150 and r = 127.)

▶ Let Td,r denote the set of tropical polynomials of degree d
with all coefficients in {0, ..., r} and let H : {0, 1}∗ → Td,r.

▶ Private key: Two tropical polynomials X,Y random←−− Td,r.
▶ Public key: The tropical product M := X ⊗ Y.

▶ Signature: Three tropical polynomials S1,S2,N such that
▶ S1,S2 ∈ T3d,3r and N ∈ T2d,2r.
▶ S1 ⊗ S2 = P⊗ P⊗M⊗N where P = H(message).
▶ S1,S2 are not constant tropical multiples of P⊗M or P⊗N.

▶ Honest signature: Sample U,V random←−− Td,r and let
N = U ⊗ V, S1 = P⊗ X ⊗U, and S2 = P⊗ Y⊗ V.

8 / 23



Proposed tropical signatures

Idea: As before, but now with multiplication of tropical
polynomials, since factoring them is supposedly hard.

▶ Parameters: Two integers d, r. (Paper: d = 150 and r = 127.)

▶ Let Td,r denote the set of tropical polynomials of degree d
with all coefficients in {0, ..., r} and let H : {0, 1}∗ → Td,r.

▶ Private key: Two tropical polynomials X,Y random←−− Td,r.
▶ Public key: The tropical product M := X ⊗ Y.

▶ Signature: Three tropical polynomials S1,S2,N such that
▶ S1,S2 ∈ T3d,3r and N ∈ T2d,2r.
▶ S1 ⊗ S2 = P⊗ P⊗M⊗N where P = H(message).
▶ S1,S2 are not constant tropical multiples of P⊗M or P⊗N.

▶ Honest signature: Sample U,V random←−− Td,r and let
N = U ⊗ V, S1 = P⊗ X ⊗U, and S2 = P⊗ Y⊗ V.

8 / 23



Warmup: “Trivial forgeries”

Recall: We require S1 ⊗ S2 = P⊗ P⊗M⊗N,
such that S1,S2 ∈ T3d,3r. (Recall P ∈ Td,r and M,N ∈ T2d,2r.)

Easy: S1 = P⊗M = P⊗X⊗Y and S2 = P⊗N = P⊗U⊗V.
Compare honest signature: S1 = P ⊗ X ⊗ U and S2 = P ⊗ Y ⊗ V.

Also, can scale (S1,S2,N) by (c1, c2, c1⊗ c2) where c1, c2 ∈ T.

These “trivial forgeries” are why the verifier checks
that S1,S2 aren’t constant multiples of P⊗M, P⊗N.

9 / 23



Warmup: “Trivial forgeries”

Recall: We require S1 ⊗ S2 = P⊗ P⊗M⊗N,
such that S1,S2 ∈ T3d,3r. (Recall P ∈ Td,r and M,N ∈ T2d,2r.)

Easy: S1 = P⊗M = P⊗X⊗Y and S2 = P⊗N = P⊗U⊗V.
Compare honest signature: S1 = P ⊗ X ⊗ U and S2 = P ⊗ Y ⊗ V.

Also, can scale (S1,S2,N) by (c1, c2, c1⊗ c2) where c1, c2 ∈ T.

These “trivial forgeries” are why the verifier checks
that S1,S2 aren’t constant multiples of P⊗M, P⊗N.

9 / 23



Warmup: “Trivial forgeries”

Recall: We require S1 ⊗ S2 = P⊗ P⊗M⊗N,
such that S1,S2 ∈ T3d,3r. (Recall P ∈ Td,r and M,N ∈ T2d,2r.)

Easy: S1 = P⊗M = P⊗X⊗Y and S2 = P⊗N = P⊗U⊗V.
Compare honest signature: S1 = P ⊗ X ⊗ U and S2 = P ⊗ Y ⊗ V.

Also, can scale (S1,S2,N) by (c1, c2, c1⊗ c2) where c1, c2 ∈ T.

These “trivial forgeries” are why the verifier checks
that S1,S2 aren’t constant multiples of P⊗M, P⊗N.

9 / 23



Warmup: “Trivial forgeries”

Recall: We require S1 ⊗ S2 = P⊗ P⊗M⊗N,
such that S1,S2 ∈ T3d,3r. (Recall P ∈ Td,r and M,N ∈ T2d,2r.)

Easy: S1 = P⊗M = P⊗X⊗Y and S2 = P⊗N = P⊗U⊗V.
Compare honest signature: S1 = P ⊗ X ⊗ U and S2 = P ⊗ Y ⊗ V.

Also, can scale (S1,S2,N) by (c1, c2, c1⊗ c2) where c1, c2 ∈ T.

These “trivial forgeries” are why the verifier checks
that S1,S2 aren’t constant multiples of P⊗M, P⊗N.

9 / 23



Attack #1: Morphing products

▶ Observation:
Tropical polynomial arithmetic is highly non-cancellable.

▶ Example: Let F(x) :=
⊕

i ci ⊗ x⊗i and G(x) =
⊕

i c′i ⊗ x⊗i.
Then the nth coefficient dk of F(x)⊗ G(x) looks like

min{ci + c′k−i : i ∈ {0, ..., k}} .

⇝ For most dk, the largest ci and c′j don’t come into play!

▶ Attack:
▶ Start from “trivial forgery” (S1,S2) = (P⊗M,P⊗N).
▶ Find positions i and j of S1 and S2 that can be changed

(e.g., ±1) without affecting the value of S1 ⊗ S2.

10 / 23



Attack #1: Morphing products

▶ Observation:
Tropical polynomial arithmetic is highly non-cancellable.

▶ Example: Let F(x) :=
⊕

i ci ⊗ x⊗i and G(x) =
⊕

i c′i ⊗ x⊗i.
Then the nth coefficient dk of F(x)⊗ G(x) looks like

min{ci + c′k−i : i ∈ {0, ..., k}} .

⇝ For most dk, the largest ci and c′j don’t come into play!

▶ Attack:
▶ Start from “trivial forgery” (S1,S2) = (P⊗M,P⊗N).
▶ Find positions i and j of S1 and S2 that can be changed

(e.g., ±1) without affecting the value of S1 ⊗ S2.

10 / 23



Attack #1: Morphing products

▶ Observation:
Tropical polynomial arithmetic is highly non-cancellable.

▶ Example: Let F(x) :=
⊕

i ci ⊗ x⊗i and G(x) =
⊕

i c′i ⊗ x⊗i.
Then the nth coefficient dk of F(x)⊗ G(x) looks like

min{ci + c′k−i : i ∈ {0, ..., k}} .

⇝ For most dk, the largest ci and c′j don’t come into play!

▶ Attack:
▶ Start from “trivial forgery” (S1,S2) = (P⊗M,P⊗N).
▶ Find positions i and j of S1 and S2 that can be changed

(e.g., ±1) without affecting the value of S1 ⊗ S2.

10 / 23



Attack #1: Morphing products

U, V = one_v_poly(d, r), one_v_poly(d, r)
N = pol_times_pol2(U, V)
PN = pol_times_pol2(P, N)

rhs = pol_times_pol2(PM, PN)

for s,i in itertools.product ((+1,-1), range(len(PM))):
S1 = copy.deepcopy(PM)
S1[i][0] += s
if pol_times_pol2(S1, PN) == rhs:

break

for s,i in itertools.product ((+1,-1), range(len(PN))):
S2 = copy.deepcopy(PN)
S2[i][0] += s
if pol_times_pol2(S1, S2) == rhs:

break

11 / 23



Attack #2: Swapping divisors

▶ Observation: It is not necessary to fully factor M (or N).

▶ We already have S1 ⊗ S2 = P⊗ P⊗M⊗N.
Wanted: Some different factorization of this value.

(satisfying constraints on degrees and coefficient sizes).

▶ Attack:
▶ Find equal-degree divisors D1 of P⊗M and D2 of P⊗N.
▶ Swap them.

In some more detail: Decompose P ⊗ M = D1 ⊗ R1 and P ⊗ N = D2 ⊗ R2.
Then set S1 := D1 ⊗ R2 and S2 := D2 ⊗ R1.

▶ Finding (small-degree) divisors: Write P⊗M = D1 ⊗ R1
as a system of inequalities; feed them to a generic solver.

I’ve had great success with the z3 SMT solver.

12 / 23



Attack #2: Swapping divisors

▶ Observation: It is not necessary to fully factor M (or N).

▶ We already have S1 ⊗ S2 = P⊗ P⊗M⊗N.
Wanted: Some different factorization of this value.

(satisfying constraints on degrees and coefficient sizes).

▶ Attack:
▶ Find equal-degree divisors D1 of P⊗M and D2 of P⊗N.
▶ Swap them.

In some more detail: Decompose P ⊗ M = D1 ⊗ R1 and P ⊗ N = D2 ⊗ R2.
Then set S1 := D1 ⊗ R2 and S2 := D2 ⊗ R1.

▶ Finding (small-degree) divisors: Write P⊗M = D1 ⊗ R1
as a system of inequalities; feed them to a generic solver.

I’ve had great success with the z3 SMT solver.

12 / 23



Attack #2: Swapping divisors

▶ Observation: It is not necessary to fully factor M (or N).

▶ We already have S1 ⊗ S2 = P⊗ P⊗M⊗N.
Wanted: Some different factorization of this value.

(satisfying constraints on degrees and coefficient sizes).

▶ Attack:
▶ Find equal-degree divisors D1 of P⊗M and D2 of P⊗N.
▶ Swap them.

In some more detail: Decompose P ⊗ M = D1 ⊗ R1 and P ⊗ N = D2 ⊗ R2.
Then set S1 := D1 ⊗ R2 and S2 := D2 ⊗ R1.

▶ Finding (small-degree) divisors: Write P⊗M = D1 ⊗ R1
as a system of inequalities; feed them to a generic solver.

I’ve had great success with the z3 SMT solver.

12 / 23



Attack #2: Swapping divisors

▶ Observation: It is not necessary to fully factor M (or N).

▶ We already have S1 ⊗ S2 = P⊗ P⊗M⊗N.
Wanted: Some different factorization of this value.

(satisfying constraints on degrees and coefficient sizes).

▶ Attack:
▶ Find equal-degree divisors D1 of P⊗M and D2 of P⊗N.
▶ Swap them.

In some more detail: Decompose P ⊗ M = D1 ⊗ R1 and P ⊗ N = D2 ⊗ R2.
Then set S1 := D1 ⊗ R2 and S2 := D2 ⊗ R1.

▶ Finding (small-degree) divisors: Write P⊗M = D1 ⊗ R1
as a system of inequalities; feed them to a generic solver.

I’ve had great success with the z3 SMT solver.

12 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.
▶ Compute S′

1 := R⊘ S2 and subsequently S′
2 := R⊘ S′

1.
▶ The forged signature is (S′

1,S′
2,N).

13 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.
▶ Compute S′

1 := R⊘ S2 and subsequently S′
2 := R⊘ S′

1.
▶ The forged signature is (S′

1,S′
2,N).

13 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.

▶ Compute S′
1 := R⊘ S2 and subsequently S′

2 := R⊘ S′
1.

▶ The forged signature is (S′
1,S′

2,N).

13 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.
▶ Compute S′

1 := R⊘ S2

and subsequently S′
2 := R⊘ S′

1.
▶ The forged signature is (S′

1,S′
2,N).

13 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.
▶ Compute S′

1 := R⊘ S2 and subsequently S′
2 := R⊘ S′

1.

▶ The forged signature is (S′
1,S′

2,N).

13 / 23



Brown–Monico’s attacks

▶ ePrint 2023/1837: Several new attack variants.
▶ One example: “double dividing”.

Core idea: Tropical division of tropical polynomials.
▶ Defining property: (F⊘ G)⊗ G = F.
▶ Quotient does not always exist.
▶ However, (F⊗ G)⊘ G always exists, but is usually ̸= F.

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R := S1⊗S2.
▶ Compute S′

1 := R⊘ S2 and subsequently S′
2 := R⊘ S′

1.
▶ The forged signature is (S′

1,S′
2,N).

13 / 23



The updated ePrint (January 17, 2024)

▶ Degrees of X and Y are now distinct (U,V accordingly).
I’m not sure what attack this is supposed to fix.

▶ First and last coefficients of X,Y are being forced to 0 ∈ T.
⇝ irreducible a lot of the time⇝ finding small factors allegedly fails.

▶ Countermeasure from Brown–Monico:
Check that P | S1,S2 and M ∤ S1,S2 and N ∤ S1,S2.

Strangely, not included in updated ePrint 2023/1475.
=⇒ “Double dividing” still works!

▶ (The “rehashing” attack from Brown–Monico also remains unfixed.)

14 / 23



The updated ePrint (January 17, 2024)

▶ Degrees of X and Y are now distinct (U,V accordingly).
I’m not sure what attack this is supposed to fix.

▶ First and last coefficients of X,Y are being forced to 0 ∈ T.
⇝ irreducible a lot of the time⇝ finding small factors allegedly fails.

▶ Countermeasure from Brown–Monico:
Check that P | S1,S2 and M ∤ S1,S2 and N ∤ S1,S2.

Strangely, not included in updated ePrint 2023/1475.
=⇒ “Double dividing” still works!

▶ (The “rehashing” attack from Brown–Monico also remains unfixed.)

14 / 23



The updated ePrint (January 17, 2024)

▶ Degrees of X and Y are now distinct (U,V accordingly).
I’m not sure what attack this is supposed to fix.

▶ First and last coefficients of X,Y are being forced to 0 ∈ T.
⇝ irreducible a lot of the time⇝ finding small factors allegedly fails.

▶ Countermeasure from Brown–Monico:
Check that P | S1,S2 and M ∤ S1,S2 and N ∤ S1,S2.

Strangely, not included in updated ePrint 2023/1475.
=⇒ “Double dividing” still works!

▶ (The “rehashing” attack from Brown–Monico also remains unfixed.)

14 / 23



The updated ePrint (January 17, 2024)

▶ Degrees of X and Y are now distinct (U,V accordingly).
I’m not sure what attack this is supposed to fix.

▶ First and last coefficients of X,Y are being forced to 0 ∈ T.
⇝ irreducible a lot of the time⇝ finding small factors allegedly fails.

▶ Countermeasure from Brown–Monico:
Check that P | S1,S2 and M ∤ S1,S2 and N ∤ S1,S2.

Strangely, not included in updated ePrint 2023/1475.
=⇒ “Double dividing” still works!

▶ (The “rehashing” attack from Brown–Monico also remains unfixed.)

14 / 23



김민순’s attack

Yet another break, found while solving a CTF challenge:
https://soon.haari.me/2023-christmas-ctf/#tropical-santa

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R = S1⊗S2.
▶ Compute S′

1 := (R⊘ (P⊗ S2))⊗ P.
▶ Compute S′

2 := (R⊘ (P⊗ S′
1))⊗ P.

▶ The signature is (S′
1,S′

2,N).
(Check: We have S′

1 ⊗ S2 = (R ⊘ (P ⊗ S2))⊗ P ⊗ S2 = R. Similarly S′
1 ⊗ S′

2 = R.)

!! This variant bypasses all proposed countermeasures.

15 / 23

https://soon.haari.me/2023-christmas-ctf/#tropical-santa


김민순’s attack

Yet another break, found while solving a CTF challenge:
https://soon.haari.me/2023-christmas-ctf/#tropical-santa

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R = S1⊗S2.
▶ Compute S′

1 := (R⊘ (P⊗ S2))⊗ P.
▶ Compute S′

2 := (R⊘ (P⊗ S′
1))⊗ P.

▶ The signature is (S′
1,S′

2,N).

(Check: We have S′
1 ⊗ S2 = (R ⊘ (P ⊗ S2))⊗ P ⊗ S2 = R. Similarly S′

1 ⊗ S′
2 = R.)

!! This variant bypasses all proposed countermeasures.

15 / 23

https://soon.haari.me/2023-christmas-ctf/#tropical-santa


김민순’s attack

Yet another break, found while solving a CTF challenge:
https://soon.haari.me/2023-christmas-ctf/#tropical-santa

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R = S1⊗S2.
▶ Compute S′

1 := (R⊘ (P⊗ S2))⊗ P.
▶ Compute S′

2 := (R⊘ (P⊗ S′
1))⊗ P.

▶ The signature is (S′
1,S′

2,N).
(Check: We have S′

1 ⊗ S2 = (R ⊘ (P ⊗ S2))⊗ P ⊗ S2 = R. Similarly S′
1 ⊗ S′

2 = R.)

!! This variant bypasses all proposed countermeasures.

15 / 23

https://soon.haari.me/2023-christmas-ctf/#tropical-santa


김민순’s attack

Yet another break, found while solving a CTF challenge:
https://soon.haari.me/2023-christmas-ctf/#tropical-santa

Attack:
▶ Let N random←−− T2d,2r.
▶ Set S1 = P⊗M and S2 = P⊗N and write R = S1⊗S2.
▶ Compute S′

1 := (R⊘ (P⊗ S2))⊗ P.
▶ Compute S′

2 := (R⊘ (P⊗ S′
1))⊗ P.

▶ The signature is (S′
1,S′

2,N).
(Check: We have S′

1 ⊗ S2 = (R ⊘ (P ⊗ S2))⊗ P ⊗ S2 = R. Similarly S′
1 ⊗ S′

2 = R.)

!! This variant bypasses all proposed countermeasures.

15 / 23

https://soon.haari.me/2023-christmas-ctf/#tropical-santa


The updated ePrint (January 17, 2024)

▶ ...also proposes another new scheme to thwart the attacks.

▶ It uses tropical multiplication and addition.
Signature: (R,S,T,N,E) with some bounds.

Verification:

P⊗ (R⊕ S)⊕ E ?
= (P⊗ P)⊕ T

(R⊗ S)⊕ E ?
= (P⊗ P)⊕ T ⊕ (M⊗N)

▶ Stupid attack: Choose arbitrary R,S,N and set

T = E =
⊕

i

(0⊗ x⊗i) .

This validates for any message: Recall ∀a≥ 0. a⊕ 0 = 0.

16 / 23



The updated ePrint (January 17, 2024)

▶ ...also proposes another new scheme to thwart the attacks.

▶ It uses tropical multiplication and addition.
Signature: (R,S,T,N,E) with some bounds.

Verification:

P⊗ (R⊕ S)⊕ E ?
= (P⊗ P)⊕ T

(R⊗ S)⊕ E ?
= (P⊗ P)⊕ T ⊕ (M⊗N)

▶ Stupid attack: Choose arbitrary R,S,N and set

T = E =
⊕

i

(0⊗ x⊗i) .

This validates for any message: Recall ∀a≥ 0. a⊕ 0 = 0.

16 / 23



The updated ePrint (January 17, 2024)

▶ ...also proposes another new scheme to thwart the attacks.

▶ It uses tropical multiplication and addition.
Signature: (R,S,T,N,E) with some bounds.

Verification:

P⊗ (R⊕ S)⊕ E ?
= (P⊗ P)⊕ T

(R⊗ S)⊕ E ?
= (P⊗ P)⊕ T ⊕ (M⊗N)

▶ Stupid attack: Choose arbitrary R,S,N and set

T = E =
⊕

i

(0⊗ x⊗i) .

This validates for any message: Recall ∀a≥ 0. a⊕ 0 = 0.

16 / 23



This talk

How to break tropical signatures (in several different ways)

Some comments on cryptographic design methodology

17 / 23



Just bad luck?

▶ The “tropical signatures” construction combines
two common what-I-argue-to-be-preventible-mistakes.

(2) Focus on the NP-hardness of the underlying problem.
(1) Construction is not actually based on that problem.

18 / 23



Just bad luck?

▶ The “tropical signatures” construction combines
two common what-I-argue-to-be-preventible-mistakes.

(2) Focus on the NP-hardness of the underlying problem.
(1) Construction is not actually based on that problem.

18 / 23



Just bad luck?

▶ The “tropical signatures” construction combines
two common what-I-argue-to-be-preventible-mistakes.

(2) Focus on the NP-hardness of the underlying problem.

(1) Construction is not actually based on that problem.

18 / 23



Just bad luck?

▶ The “tropical signatures” construction combines
two common what-I-argue-to-be-preventible-mistakes.

(2) Focus on the NP-hardness of the underlying problem.
(1) Construction is not actually based on that problem.

18 / 23



(1) No reduction

:(

The tropical signatures paper argues that “security relies on
[...] hardness of factoring one-variable tropical polynomials”.

This is only true for extremely weak notions of “relies on”.
Argument (paraphrased): If you can factor, it’s definitely dead.
Essentially a case of “reduction in the wrong direction”!

Case in point:
▶ Breaking any public-key cryptosystem lies in NP,

hence “is” an instance of an(y) NP-complete problem.
▶ Stupid example: Rewrite SIKE in terms of binary circuits; now it is an

instance of Circuit-SAT, which is NP-complete. Moreover, the only
obvious way of attacking Circuit-SAT is to use a generic SAT solver,
which cannot work because Circuit-SAT is NP-hard, so we’re good!

19 / 23



(1) No reduction

:(

The tropical signatures paper argues that “security relies on
[...] hardness of factoring one-variable tropical polynomials”.

This is only true for extremely weak notions of “relies on”.
Argument (paraphrased): If you can factor, it’s definitely dead.
Essentially a case of “reduction in the wrong direction”!

Case in point:
▶ Breaking any public-key cryptosystem lies in NP,

hence “is” an instance of an(y) NP-complete problem.
▶ Stupid example: Rewrite SIKE in terms of binary circuits; now it is an

instance of Circuit-SAT, which is NP-complete. Moreover, the only
obvious way of attacking Circuit-SAT is to use a generic SAT solver,
which cannot work because Circuit-SAT is NP-hard, so we’re good!

19 / 23



(1) No reduction

:(

The tropical signatures paper argues that “security relies on
[...] hardness of factoring one-variable tropical polynomials”.

This is only true for extremely weak notions of “relies on”.
Argument (paraphrased): If you can factor, it’s definitely dead.
Essentially a case of “reduction in the wrong direction”!

Case in point:
▶ Breaking any public-key cryptosystem lies in NP,

hence “is” an instance of an(y) NP-complete problem.

▶ Stupid example: Rewrite SIKE in terms of binary circuits; now it is an
instance of Circuit-SAT, which is NP-complete. Moreover, the only
obvious way of attacking Circuit-SAT is to use a generic SAT solver,
which cannot work because Circuit-SAT is NP-hard, so we’re good!

19 / 23



(1) No reduction

:(

The tropical signatures paper argues that “security relies on
[...] hardness of factoring one-variable tropical polynomials”.

This is only true for extremely weak notions of “relies on”.
Argument (paraphrased): If you can factor, it’s definitely dead.
Essentially a case of “reduction in the wrong direction”!

Case in point:
▶ Breaking any public-key cryptosystem lies in NP,

hence “is” an instance of an(y) NP-complete problem.
▶ Stupid example: Rewrite SIKE in terms of binary circuits; now it is an

instance of Circuit-SAT, which is NP-complete. Moreover, the only
obvious way of attacking Circuit-SAT is to use a generic SAT solver,
which cannot work because Circuit-SAT is NP-hard, so we’re good!

19 / 23



(2) Cryptography does not care about NP-hardness

▶ By definition, NP-hardness is a worst-case notion.

▶ Cryptography needs random instances to be hard.

The big question:

Are we actually sampling
the hard instances?
▶ (Answer for tropical signatures: It does not seem so

:) .)
▶ This is what average-case hardness is about.

20 / 23



(2) Cryptography does not care about NP-hardness

▶ By definition, NP-hardness is a worst-case notion.
▶ Cryptography needs random instances to be hard.

The big question:

Are we actually sampling
the hard instances?
▶ (Answer for tropical signatures: It does not seem so

:) .)
▶ This is what average-case hardness is about.

20 / 23



(2) Cryptography does not care about NP-hardness

▶ By definition, NP-hardness is a worst-case notion.
▶ Cryptography needs random instances to be hard.

The big question:

Are we actually sampling
the hard instances?

▶ (Answer for tropical signatures: It does not seem so

:) .)
▶ This is what average-case hardness is about.

20 / 23



(2) Cryptography does not care about NP-hardness

▶ By definition, NP-hardness is a worst-case notion.
▶ Cryptography needs random instances to be hard.

The big question:

Are we actually sampling
the hard instances?
▶ (Answer for tropical signatures: It does not seem so

:) .)

▶ This is what average-case hardness is about.

20 / 23



(2) Cryptography does not care about NP-hardness

▶ By definition, NP-hardness is a worst-case notion.
▶ Cryptography needs random instances to be hard.

The big question:

Are we actually sampling
the hard instances?
▶ (Answer for tropical signatures: It does not seem so

:) .)
▶ This is what average-case hardness is about.

20 / 23



(2) Cryptography does not care about NP-hardness

21 / 23



(2) Cryptography does not care about NP-hardness

▶ ∄ cryptosystem which is known to be NP-hard to break.
(In fact, there exist arguments that cryptography from NP-hard
problems may be impossible for fundamental reasons.)

Papadimitriou, 1995:

22 / 23



(2) Cryptography does not care about NP-hardness

▶ ∄ cryptosystem which is known to be NP-hard to break.
(In fact, there exist arguments that cryptography from NP-hard
problems may be impossible for fundamental reasons.)

Papadimitriou, 1995:

22 / 23



Questions?

lorenz@yx7.cc

23 / 23


	How to break tropical signatures (in several different ways)
	Some comments on cryptographic design methodology

