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Please ask me anything!
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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!
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Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Square-and-multiply as graphs
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With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?
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Shor’s algorithm quantumly computes x from gx

in any group in polynomial time.

New plan: Get rid of the group, keep the graph.
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Upshot

Isogenies give rise to

‘post-quantum Diffie–Hellman’.

(and more!)
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Slightly smaller picture

I Isogenies are well-behaved maps between elliptic curves.

 Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.
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The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org
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CSIDH ["si:saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)
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CSIDH ["si:saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)
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Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
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Stand back!

We’re going to do math.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ and ‘subtract’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.
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An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.

14 / 33



Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.
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CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.
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Walking in the CSIDH graph

Taking a ‘positive’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Taking a ‘negative’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over Fp.
=⇒ Efficient to implement!
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Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33



Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33



Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33



CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]

18 / 33



CSIDH key exchange

Alice Bob
[
↑
, , , ] [

↑
, , , ]

18 / 33



CSIDH key exchange

Alice Bob
[ ,

↑
, , ] [ ,

↑
, , ]

18 / 33



CSIDH key exchange

Alice Bob
[ , ,

↑
, ] [ , ,

↑
, ]

18 / 33



CSIDH key exchange

Alice Bob
[ , , ,

↑
] [ , , ,

↑
]

18 / 33



CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]

18 / 33



CSIDH key exchange

Alice Bob
[
↑
, , , ] [

↑
, , , ]

18 / 33



CSIDH key exchange

Alice Bob
[ ,

↑
, , ] [ ,

↑
, , ]

18 / 33



CSIDH key exchange

Alice Bob
[ , ,

↑
, ] [ , ,

↑
, ]

18 / 33



CSIDH key exchange

Alice Bob
[ , , ,

↑
] [ , , ,

↑
]

18 / 33



CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]

18 / 33



Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

Many paths are ‘useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[

√−p]).

19 / 33
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Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key
exchange from a commutative group action G× S→ S:

Alice public Bob

a random←−−− G b random←−−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) key := b ∗ (a ∗ s)
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Why no Shor?

Recall from Dan’s talk:
Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·
↑

hy

For general group actions, we cannot compose a ∗ s and b ∗ s!
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Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1))!
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Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.
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Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie–Hellman key
exchange or its elliptic curve variant. [...]

Setup.
1. A prime of the form p = w

eA
A · w

eB
B · f ± 1.

2. A supersingular elliptic curve E over Fp2 .

3. Fixed elliptic points PA,QA, PB,QB on E.
4. The order of PA and QA is (wA)

eA .
5. The order of PB and QB is (wB)

eB .

Key exchange. [...]
1A. A generates two random integers mA, nA < (wA)

eA .
2A. A generates RA := mA · (PA) + nA · (QA).
3A. A uses the point RA to create an isogeny mapping φA : E→ EA and curve EA isogenous to E.
4A. A applies φA to PB and QB to form two points on EA : φA(PB) and φA(QB).
5A. A sends to B EA, φA(PB), and φA(QB).

1B–4B. Same as A1 through A4, but with A and B subscripts swapped.
5B. B sends to A EB, φB(PA), and φB(QA).
6A. A has mA, nA, φB(PA), and φB(QA) and forms SBA := mA(φB(PA)) + nA(φB(QA)).
7A. A uses SBA to create an isogeny mapping ψBA .
8A. A uses ψBA to create an elliptic curve EBA which is isogenous to E.
9A. A computes K := j-invariant (jBA) of the curve EBA .
6B. Similarly, B has mB, nB, φA(PB), and φA(QB) and forms SAB = mB(φA(PB)) + nB(φA(QB)).
7B. B uses SAB to create an isogeny mapping ψAB .
8B. B uses ψAB to create an elliptic curve EAB which is isogenous to Ek
9B. B computes K := j-invariant (jAB) of the curve EAB .

The curves EAB and EBA are guaranteed to have the same j-invariant.”
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SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB
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SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
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Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are ‘crypto-sized’.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .
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 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .
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Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
(Alice & Bob can choose from about

√p secret keys each.)

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). Newer paper says Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”
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Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.
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Questions?


