
Isogenies I & II

Lorenz Panny
Technische Universiteit Eindhoven

Executive School on Post-Quantum Cryptography,
Eindhoven, 2 July 2019

Please ask me anything!

1 / 33

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 33

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 33

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 33

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 33

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 33

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 33

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 33

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

4 / 33

With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?

5 / 33

With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?

5 / 33

5 / 33

Shor’s algorithm quantumly computes x from gx

in any group in polynomial time.

New plan: Get rid of the group, keep the graph.

5 / 33

Shor’s algorithm quantumly computes x from gx

in any group in polynomial time.

New plan: Get rid of the group, keep the graph.

5 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

6 / 33

Upshot

Isogenies give rise to

‘post-quantum Diffie–Hellman’.

(and more!)

7 / 33

Slightly smaller picture

I Isogenies are well-behaved maps between elliptic curves.

 Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)

8 / 33

Slightly smaller picture

I Isogenies are well-behaved maps between elliptic curves.

 Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)

8 / 33

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

9 / 33

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

9 / 33

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

9 / 33

The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

9 / 33

https://csidh.isogeny.org
https://sike.org

CSIDH ["si:saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)

10 / 33

CSIDH ["si:saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)

10 / 33

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.

11 / 33

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.

11 / 33

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
11 / 33

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
11 / 33

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

I Small keys: starts at 64 bytes.*

I Competitive speed: ≈ 55 ms / full key exchange.* (Skylake)

I Flexible: compatible with 0-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
11 / 33

Stand back!

We’re going to do math.

12 / 33

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ and ‘subtract’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.

13 / 33

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ and ‘subtract’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.

13 / 33

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

14 / 33

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.

14 / 33

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.

14 / 33

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

14 / 33

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.

I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.

I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

CSIDH in one slide
I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

15 / 33

Walking in the CSIDH graph

Taking a ‘positive’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Taking a ‘negative’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over Fp.
=⇒ Efficient to implement!

16 / 33

Walking in the CSIDH graph

Taking a ‘positive’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Taking a ‘negative’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over Fp.
=⇒ Efficient to implement!

16 / 33

Walking in the CSIDH graph

Taking a ‘positive’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Taking a ‘negative’ step on the `i-subgraph.
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i.

2. Compute the isogeny with kernel 〈(x, y)〉 (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over Fp.
=⇒ Efficient to implement!

16 / 33

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (≈ quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

1(up to isomorphism of E′)
17 / 33

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

18 / 33

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

18 / 33

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

18 / 33

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

18 / 33

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

18 / 33

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

18 / 33

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

18 / 33

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

18 / 33

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

18 / 33

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

18 / 33

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

18 / 33

Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

Many paths are ‘useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[

√−p]).

19 / 33

Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

Many paths are ‘useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[

√−p]).

19 / 33

Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

Many paths are ‘useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[

√−p]).

19 / 33

Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

Many paths are ‘useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[

√−p]).

19 / 33

Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key
exchange from a commutative group action G× S→ S:

Alice public Bob

a random←−−− G b random←−−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) key := b ∗ (a ∗ s)

20 / 33

Why no Shor?

Recall from Dan’s talk:
Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·
↑

hy

For general group actions, we cannot compose a ∗ s and b ∗ s!

21 / 33

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).

22 / 33

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).

22 / 33

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).

22 / 33

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1))!

23 / 33

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1))!

23 / 33

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1))!

23 / 33

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1))!

23 / 33

Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

24 / 33

Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

24 / 33

Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

24 / 33

Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)

25 / 33

Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie–Hellman key
exchange or its elliptic curve variant. [...]

Setup.
1. A prime of the form p = w

eA
A · w

eB
B · f ± 1.

2. A supersingular elliptic curve E over Fp2 .

3. Fixed elliptic points PA,QA, PB,QB on E.
4. The order of PA and QA is (wA)

eA .
5. The order of PB and QB is (wB)

eB .

Key exchange. [...]
1A. A generates two random integers mA, nA < (wA)

eA .
2A. A generates RA := mA · (PA) + nA · (QA).
3A. A uses the point RA to create an isogeny mapping φA : E→ EA and curve EA isogenous to E.
4A. A applies φA to PB and QB to form two points on EA : φA(PB) and φA(QB).
5A. A sends to B EA, φA(PB), and φA(QB).

1B–4B. Same as A1 through A4, but with A and B subscripts swapped.
5B. B sends to A EB, φB(PA), and φB(QA).
6A. A has mA, nA, φB(PA), and φB(QA) and forms SBA := mA(φB(PA)) + nA(φB(QA)).
7A. A uses SBA to create an isogeny mapping ψBA .
8A. A uses ψBA to create an elliptic curve EBA which is isogenous to E.
9A. A computes K := j-invariant (jBA) of the curve EBA .
6B. Similarly, B has mB, nB, φA(PB), and φA(QB) and forms SAB = mB(φA(PB)) + nB(φA(QB)).
7B. B uses SAB to create an isogeny mapping ψAB .
8B. B uses ψAB to create an elliptic curve EAB which is isogenous to Ek
9B. B computes K := j-invariant (jAB) of the curve EAB .

The curves EAB and EBA are guaranteed to have the same j-invariant.”

26 / 33

Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie–Hellman key
exchange or its elliptic curve variant. [...]

Setup.
1. A prime of the form p = w

eA
A · w

eB
B · f ± 1.

2. A supersingular elliptic curve E over Fp2 .

3. Fixed elliptic points PA,QA, PB,QB on E.
4. The order of PA and QA is (wA)

eA .
5. The order of PB and QB is (wB)

eB .

Key exchange. [...]
1A. A generates two random integers mA, nA < (wA)

eA .
2A. A generates RA := mA · (PA) + nA · (QA).
3A. A uses the point RA to create an isogeny mapping φA : E→ EA and curve EA isogenous to E.
4A. A applies φA to PB and QB to form two points on EA : φA(PB) and φA(QB).
5A. A sends to B EA, φA(PB), and φA(QB).

1B–4B. Same as A1 through A4, but with A and B subscripts swapped.
5B. B sends to A EB, φB(PA), and φB(QA).
6A. A has mA, nA, φB(PA), and φB(QA) and forms SBA := mA(φB(PA)) + nA(φB(QA)).
7A. A uses SBA to create an isogeny mapping ψBA .
8A. A uses ψBA to create an elliptic curve EBA which is isogenous to E.
9A. A computes K := j-invariant (jBA) of the curve EBA .
6B. Similarly, B has mB, nB, φA(PB), and φA(QB) and forms SAB = mB(φA(PB)) + nB(φA(QB)).
7B. B uses SAB to create an isogeny mapping ψAB .
8B. B uses ψAB to create an elliptic curve EAB which is isogenous to Ek
9B. B computes K := j-invariant (jAB) of the curve EAB .

The curves EAB and EBA are guaranteed to have the same j-invariant.”

26 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.

I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.

I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

27 / 33

SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

28 / 33

SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

28 / 33

SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

28 / 33

SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
29 / 33

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are ‘crypto-sized’.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

30 / 33

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are ‘crypto-sized’.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

30 / 33

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are ‘crypto-sized’.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

30 / 33

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are ‘crypto-sized’.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
‘Optimal strategy’ improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

30 / 33

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
(Alice & Bob can choose from about

√p secret keys each.)

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). Newer paper says Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

31 / 33

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
(Alice & Bob can choose from about

√p secret keys each.)

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). Newer paper says Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

31 / 33

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
(Alice & Bob can choose from about

√p secret keys each.)

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). Newer paper says Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

31 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.

If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P′ := ϕB(P) and Q′ := ϕB(Q) to Alice.
She computes A′ = 〈P′ + [a]Q′〉 and, from that, obtains s.

I Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = 〈P′ + [a]Q′′〉.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM ‘SIKE’.

32 / 33

Questions?

