Isogenies I \& II

Lorenz Panny

Technische Universiteit Eindhoven

Executive School on Post-Quantum Cryptography,
Eindhoven, 2 July 2019

Please ask me anything!

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: ${ }^{a}$ and ${ }^{b}$ are commutative!

Diffie-Hellman: Bob vs. Eve

Bob

1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.
$b-2$. Set $t \leftarrow t \cdot g$.
$b-1$. Set $t \leftarrow t \cdot g$.
b. Publish $B \leftarrow t \cdot g$.

Diffie-Hellman: Bob vs. Eve

$$
\begin{aligned}
& \underline{\mathrm{Bob}} \\
& \text { 1. Set } t \leftarrow g . \\
& \text { 2. Set } t \leftarrow t \cdot g . \\
& \text { 3. Set } t \leftarrow t \cdot g . \\
& \text { 4. Set } t \leftarrow t \cdot g . \\
& \text {.. } \\
& b-2 . \\
& \text { 2et } t \leftarrow t \cdot g . \\
& b-1 . \\
& \text { Set } t \leftarrow t \cdot g . \\
& \text { b. Publish } B \leftarrow t \cdot g .
\end{aligned}
$$

Is this a good idea?

Diffie-Hellman: Bob vs. Eve

Bob

1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.
$b-2$. Set $t \leftarrow t \cdot g$.
$b-1$. Set $t \leftarrow t \cdot g$.
b. Publish $B \leftarrow t \cdot g$.

Attacker Eve

1. Set $t \leftarrow g$. If $t=B$ return 1 .
2. Set $t \leftarrow t \cdot g$. If $t=B$ return 2 .
3. Set $t \leftarrow t \cdot g$. If $t=B$ return 3 .
4. Set $t \leftarrow t \cdot g$. If $t=B$ return 3 .
$b-2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-1$.
b. Set $t \leftarrow t \cdot g$. If $t=B$ return b.
$b+1$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b+1$.
$b+2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b+2$.

Diffie-Hellman: Bob vs. Eve

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t=B$ return 1 .
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t$. g. If $t=B$ return 2 .
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t=B$ return 3 .
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t=B$ return 3 .
...	...
$b-2 . \operatorname{Set} t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-1$.
b. Publish $B \leftarrow t \cdot g$.	b. Set $t \leftarrow t \cdot g$. If $t=B$ return b.
	$b+1 \text {. Set } t \leftarrow t \cdot g \text {. If } t=B \text { return } b+1$
	$b+2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b+2$.
	...

Effort for both: $O(\# G)$. Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn't matter for my point here.)

multiply

Square-and-multiply

Square-and-multiply-and-square-and-multiply

Square-and-multiply-and-square-and-multiply-and-squ

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as a graph

Square-and-multiply as a graph

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, applying b takes $\Theta(\log \# G)$.
For well-chosen groups, recovering b takes $\Theta(\sqrt{\# G})$.
\rightsquigarrow Exponential separation!

With square-and-multiply, applying b takes $\Theta(\log \# G)$.
For well-chosen groups, recovering b takes $\Theta(\sqrt{\# G})$.
\rightsquigarrow Exponential separation!
...and they lived happily ever after?

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.

New plan: Get rid of the group, keep the graph.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

Big picture $\Theta \ominus$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these not enough for crypto!

Upshot

Isogenies give rise to
'post-quantum Diffie-Hellman'.
(and more!)

Slightly smaller picture Θ

- Isogenies are well-behaved maps between elliptic curves.

Slightly smaller picture Θ

- Isogenies are well-behaved maps between elliptic curves.
\rightsquigarrow Isogeny graph: Nodes are curves, edges are isogenies. (We usually care about subgraphs with certain properties.)

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

The beauty and the beast

At this time, there are two distinct families of systems:

CSIDH ['sii;saad]

3

(Castryck, Lange, Martindale, Panny, Renes; 2018)

?

CSIDH ['sii;said]

2 为娄

(Castryck, Lange, Martindale, Panny, Renes; 2018)

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)
- Small keys: starts at 64 bytes.*

[^0]
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)
- Small keys: starts at 64 bytes.*
- Competitive speed: $\approx 55 \mathrm{~ms}$ / full key exchange.* (Skylake)

[^1]
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)
- Small keys: starts at 64 bytes.*
- Competitive speed: $\approx 55 \mathrm{~ms} /$ full key exchange.* (Skylake)
- Flexible: compatible with 0-RTT protocols such as QUIC; yields signatures, (pre-quantum) VDFs, etc.

[^2]
Stand back!

We're going to do math.

Math slide \#1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.

Math slide \#1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.
E is an abelian group: we can 'add' and 'subtract' points.

- The neutral element is ∞.
- The inverse of (x, y) is $(x,-y)$.
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(2 x_{1}+x_{2}-\lambda^{2}\right)-y_{1}\right)
$$

where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ if $x_{1} \neq x_{2}$ and $\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}$ otherwise.

Math slide \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Math slide \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#1: For each $m \neq 0$, the multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is a degree- m^{2} isogeny. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \times \mathbb{Z} / m
$$

Math slide \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#2: For any a and b, the map $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$ defines a degree- 1 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+a x+b\right\} \longrightarrow\left\{y^{2}=x^{3}+a x-b\right\}
$$

It is an isomorphism; its kernel is $\{\infty\}$.

Math slide \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#3: $(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \longrightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \infty\}$.

CSIDH in one slide

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

- Walking 'left' and 'right' on any ℓ_{i}-subgraph is efficient.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

- Walking 'left' and 'right' on any ℓ_{i}-subgraph is efficient.
- We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_{p}$.

Walking in the CSIDH graph

Taking a 'positive' step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

This uses scalar multiplication by $(p+1) / \ell_{i}$.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ (see next slide).

Walking in the CSIDH graph

Taking a 'positive' step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$. This uses scalar multiplication by $(p+1) / \ell_{i}$.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ (see next slide).

Taking a 'negative' step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$. This uses scalar multiplication by $(p+1) / \ell_{i}$.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ (see next slide).

Walking in the CSIDH graph

Taking a 'positive' step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$. This uses scalar multiplication by $(p+1) / \ell_{i}$.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ (see next slide).

Taking a 'negative' step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$. This uses scalar multiplication by $(p+1) / \ell_{i}$.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ (see next slide).

Upshot: With ' x-only arithmetic' everything happens over \mathbb{F}_{p}. \Longrightarrow Efficient to implement!

Math slide \#3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.

The curve E^{\prime} is called E / G. (\approx quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.

Math slide \#3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is called E / G. (\approx quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.

Math slide \#3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is called E / G. (\approx quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.
Vélu operates in the field where the points in G live.
\rightsquigarrow need to make sure extensions stay small for desired \#G
\rightsquigarrow this is why we use special p and curves with $p+1$ points!
${ }^{1}$ (up to isomorphism of E^{\prime})

CSIDH key exchange

Alice
$$
[+,+,-,-]
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-,]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+\underset{\uparrow}{+-,-]}}
\end{gathered}
$$

CSIDH key exchange

Alice
$[+,+,-,-$]

$$
\begin{gathered}
\text { Bob } \\
{\left[-,+,-\frac{-}{\uparrow},-\right]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[-,+,-,-\frac{-1}{\uparrow}\right.}
\end{gathered}
$$

CSIDH key exchange

Alice	Bob
$[+,+,-,-]$	$[-,+,-,-]$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-,]}
\end{gathered}
$$

CSIDH key exchange

Alice
$[+,+,-,-$]

$$
\begin{gathered}
\text { Bob } \\
{\left[-,+,-\frac{-}{\uparrow},-\right]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{\left[+,+,-,-\frac{1}{\uparrow}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-,]}
\end{gathered}
$$

CSIDH key exchange

Alice
$$
[+,+,-,-]
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-]}
\end{gathered}
$$

Has anyone seen my group action?

"CSIDH: an efficient post-quantum commutative group action"

Has anyone seen my group action?

"CSIDH: an efficient post-quantum commutative group action"

Cycles are compatible: [right then left] $=$ [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.

Has anyone seen my group action?

"CSIDH: an efficient post-quantum commutative group action"

Cycles are compatible: [right then left] $=$ [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.

There is a group action of $\left(\mathbb{Z}^{n},+\right)$ on our set of curves $X!$

Has anyone seen my group action?

"CSIDH: an efficient post-quantum commutative group action"

Cycles are compatible: [right then left] $=$ [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_{i}. Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.

There is a group action of $\left(\mathbb{Z}^{n},+\right)$ on our set of curves $X!$
Many paths are 'useless'. Fun fact: Quotienting out trivial actions yields the ideal-class group $\mathrm{cl}(\mathbb{Z}[\sqrt{-p}])$.

Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key exchange from a commutative group action $G \times S \rightarrow S$:

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }} G & b \stackrel{\text { random }}{ } \\
a * s & b * s \\
k e y:=a *(b * s) & k e y:=b *(a * s)
\end{array}
$$

Why no Shor?

Recall from Dan's talk:
Shor computes α from $h=g^{\alpha}$ by finding the kernel of the map

$$
f: \mathbb{Z}^{2} \rightarrow G,(x, y) \mapsto g^{x}{ }_{\uparrow} h^{y}
$$

For general group actions, we cannot compose $a * s$ and $b * s$!

Security of CSIDH

Core problem:

Given $E, E^{\prime} \in X$, find a smooth-degree isogeny $E \rightarrow E^{\prime}$.

Security of CSIDH

Core problem:
 Given $E, E^{\prime} \in X$, find a smooth-degree isogeny $E \rightarrow E^{\prime}$.

The size of X is $\# \operatorname{cl}(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.
\rightsquigarrow best known classical attack: meet-in-the-middle, $\tilde{\mathcal{O}}\left(p^{1 / 4}\right)$.

Security of CSIDH

> | Core problem: |
| :--- |
| Given $E, E^{\prime} \in X$, find a smooth-degree isogeny $E \rightarrow E^{\prime}$. |

The size of X is $\# \mathrm{cl}(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.
\rightsquigarrow best known classical attack: meet-in-the-middle, $\tilde{\mathcal{O}}\left(p^{1 / 4}\right)$.

Solving abelian hidden shift breaks CSIDH.
\rightsquigarrow quantum subexponential attack (Kuperberg's algorithm).

CSIDH vs. Kuperberg

Kuperberg's algorithm consists of two components:

1. Evaluate the group action many times. ('oracle calls')
2. Combine the results in a certain way. ('sieving')

CSIDH vs. Kuperberg

Kuperberg's algorithm consists of two components:

1. Evaluate the group action many times. ('oracle calls')
2. Combine the results in a certain way. ('sieving')

- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical and quantum operations.

CSIDH vs. Kuperberg

Kuperberg's algorithm consists of two components:

1. Evaluate the group action many times. ('oracle calls')
2. Combine the results in a certain way. ('sieving')

- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical and quantum operations. How to compare costs?
(Is one qubit operation \approx one bit operation? a hundred? millions?)

CSIDH vs. Kuperberg

Kuperberg's algorithm consists of two components:

1. Evaluate the group action many times. ('oracle calls')
2. Combine the results in a certain way. ('sieving')

- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical and quantum operations. How to compare costs?
(Is one qubit operation \approx one bit operation? a hundred? millions?)
\Longrightarrow It is still rather unclear how to choose CSIDH parameters.
...but all known attacks cost $\exp \left((\log p)^{1 / 2+o(1)}\right)$!

Can we avoid Kuperberg's algorithm?

With great commutative group action
comes great subexponential attack.

Can we avoid Kuperberg's algorithm?

> With great commutative group action comes great subexponential attack.

The supersingular isogeny graph over $\mathbb{F}_{p^{2}}$ has less structure.

- SIDH uses the full $\mathbb{F}_{p^{2}}$-isogeny graph. No group action!

Can we avoid Kuperberg's algorithm?

> With great commutative group action comes great subexponential attack.

The supersingular isogeny graph over $\mathbb{F}_{p^{2}}$ has less structure.

- SIDH uses the full $\mathbb{F}_{p^{2}}$-isogeny graph. No group action!
- Problem: also no more intrinsic sense of direction.
"It all bloody looks the same!" - a famous isogeny cryptographer
\rightsquigarrow need extra information to let Alice \& Bob's walks commute.

Now: S] (Jao, De Feo; 2011)
(...whose name doesn't allow for nice pictures of beaches...)

Wikipedia about SIDH...

"While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH for parties A and B is straightforward for those familiar with a Diffie-Hellman key exchange or its elliptic curve variant. [...]

Wikipedia about SIDH...

"While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH for parties A and B is straightforward for those familiar with a Diffie-Hellman key exchange or its elliptic curve variant. [...]
Setup.

1. A prime of the form $p=w_{A}^{e} A \cdot w_{B}^{e_{B}} \cdot f \pm 1$.
2. A supersingular elliptic curve E over $\mathbb{F}_{p^{2}}$.
3. Fixed elliptic points $P_{A}, Q_{A}, P_{B}, Q_{B}$ on E.
4. The order of P_{A} and Q_{A} is $\left(w_{A}\right)^{e} A$.
5. The order of P_{B} and Q_{B} is $\left(w_{B}\right)^{{ }^{e} B}$.

Key exchange. [...]
1A. A generates two random integers $m_{A}, n_{A}<\left(w_{A}\right)^{e} A$.
2A. A generates $R_{A}:=m_{A} \cdot\left(P_{A}\right)+n_{A} \cdot\left(Q_{A}\right)$.
3A. A uses the point R_{A} to create an isogeny mapping $\phi_{A}: E \rightarrow E_{A}$ and curve E_{A} isogenous to E.
4A. A applies ϕ_{A} to P_{B} and Q_{B} to form two points on $E_{A}: \phi_{A}\left(P_{B}\right)$ and $\phi_{A}\left(Q_{B}\right)$.
5A. A sends to $\mathrm{B} E_{A}, \phi_{A}\left(P_{B}\right)$, and $\phi_{A}\left(Q_{B}\right)$.
$1 B-4 B$. Same as A1 through A4, but with A and B subscripts swapped.
5B. B sends to $\mathrm{A} E_{B}, \phi_{B}\left(P_{A}\right)$, and $\phi_{B}\left(Q_{A}\right)$.
6A. A has $m_{A}, n_{A}, \phi_{B}\left(P_{A}\right)$, and $\phi_{B}\left(Q_{A}\right)$ and forms $S_{B A}:=m_{A}\left(\phi_{B}\left(P_{A}\right)\right)+n_{A}\left(\phi_{B}\left(Q_{A}\right)\right)$.
7A. A uses $S_{B A}$ to create an isogeny mapping $\psi_{B A}$.
8A. A uses $\psi_{B A}$ to create an elliptic curve $E_{B A}$ which is isogenous to E.
9A. A computes $K:=\mathrm{j}$-invariant $\left(j_{B A}\right)$ of the curve $E_{B A}$.
6B. Similarly, B has $m_{B}, n_{B}, \phi_{A}\left(P_{B}\right)$, and $\phi_{A}\left(Q_{B}\right)$ and forms $S_{A B}=m_{B}\left(\phi_{A}\left(P_{B}\right)\right)+n_{B}\left(\phi_{A}\left(Q_{B}\right)\right)$.
7B. B uses $S_{A B}$ to create an isogeny mapping $\psi_{A B}$.
8B. B uses $\psi_{A B}$ to create an elliptic curve $E_{A B}$ which is isogenous to $E \mathrm{k}$
9 B. B computes $K:=\mathrm{j}$-invariant $\left(j_{A B}\right)$ of the curve $E_{A B}$.
The curves $E_{A B}$ and $E_{B A}$ are guaranteed to have the same j -invariant."

SIDH: High-level view

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$. (These isogenies correspond to walking on the isogeny graph.)

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E / A and E / B.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)
- They both compute the shared secret

$$
(E / B) / A^{\prime} \cong E /\langle A, B\rangle \cong(E / A) / B^{\prime}
$$

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.

- Alice picks A as $\langle P+[a] Q\rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_{B}(P)$ and $\varphi_{B}(Q)$ in his public key.

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.
Solution: φ_{B} is a group homomorphism!

- Alice picks A as $\langle P+[a] Q\rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_{B}(P)$ and $\varphi_{B}(Q)$ in his public key.
\Longrightarrow Now Alice can compute A^{\prime} as $\left\langle\varphi_{B}(P)+[a] \varphi_{B}(Q)\right\rangle$!

SIDH in one slide

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases (P, Q) and (R, S) of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$ (recall $\left.E[k] \cong \mathbb{Z} / k \times \mathbb{Z} / k\right)$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftarrow}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\langle P+[a] Q\rangle & B:=\langle R+[b] S\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}(R), \varphi_{A}(S) & E / B, \varphi_{B}(P), \varphi_{B}(Q) \\
A^{\prime}:=\left\langle\varphi_{B}(P)+[a] \varphi_{B}(Q)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}(R)+[b] \varphi_{A}(S)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

Decomposing smooth isogenies

- In SIDH, $\# A=2^{n}$ and $\# B=3^{m}$ are 'crypto-sized'.

Vélu's formulas take $\Theta(\# G)$ to compute $\varphi_{G}: E \rightarrow E / G$.

Decomposing smooth isogenies

- In SIDH, $\# A=2^{n}$ and $\# B=3^{m}$ are 'crypto-sized'. Vélu's formulas take $\Theta(\# G)$ to compute $\varphi_{G}: E \rightarrow E / G$.
!! Evaluate φ_{G} as a chain of small-degree isogenies: For $G \cong \mathbb{Z} / \ell^{k}$, set ker $\psi_{i}:=\left[\ell^{k-i}\right]\left(\psi_{i-1} \circ \cdots \circ \psi_{1}\right)(G)$.

$$
E \xrightarrow[\varphi_{G}]{\stackrel{\psi_{1}}{\longrightarrow} E_{1} \xrightarrow{\psi_{2}} \ldots \xrightarrow{\psi_{k-1}} E_{k-1} \xrightarrow{\psi_{k}}} E / G
$$

Decomposing smooth isogenies

- In SIDH, $\# A=2^{n}$ and $\# B=3^{m}$ are 'crypto-sized'. Vélu's formulas take $\Theta(\# G)$ to compute $\varphi_{G}: E \rightarrow E / G$.
!! Evaluate φ_{G} as a chain of small-degree isogenies: For $G \cong \mathbb{Z} / \ell^{k}$, set ker $\psi_{i}:=\left[\ell^{k-i}\right]\left(\psi_{i-1} \circ \cdots \circ \psi_{1}\right)(G)$.

\rightsquigarrow Complexity: $O\left(k^{2} \cdot \ell\right)$. Exponentially smaller than $\ell^{k}!$ 'Optimal strategy' improves this to $O(k \log k \cdot \ell)$.

Decomposing smooth isogenies

- In SIDH, $\# A=2^{n}$ and $\# B=3^{m}$ are 'crypto-sized'.

Vélu's formulas take $\Theta(\# G)$ to compute $\varphi_{G}: E \rightarrow E / G$.
!! Evaluate φ_{G} as a chain of small-degree isogenies: For $G \cong \mathbb{Z} / \ell^{k}$, set $\operatorname{ker} \psi_{i}:=\left[\ell^{k-i}\right]\left(\psi_{i-1} \circ \cdots \circ \psi_{1}\right)(G)$.

\rightsquigarrow Complexity: $O\left(k^{2} \cdot \ell\right)$. Exponentially smaller than ℓ^{k} ! 'Optimal strategy' improves this to $O(k \log k \cdot \ell)$.

- BTW: The choice of p makes sure everything stays over $\mathbb{F}_{p^{2}}$.

Security of SIDH

The SIDH graph has size $\lfloor p / 12\rfloor+\varepsilon$.
Each secret isogeny φ_{A}, φ_{B} is a walk of about $\log p / 2$ steps. (Alice \& Bob can choose from about \sqrt{p} secret keys each.)

Security of SIDH

The SIDH graph has size $\lfloor p / 12\rfloor+\varepsilon$.
Each secret isogeny φ_{A}, φ_{B} is a walk of about $\log p / 2$ steps. (Alice \& Bob can choose from about \sqrt{p} secret keys each.)

Classical attacks:

- Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}\left(p^{1 / 4}\right)$ time \& space.
- Collision finding: $\tilde{\mathcal{O}}\left(p^{3 / 8} / \sqrt{\text { memory }} /\right.$ cores $)$.

Security of SIDH

The SIDH graph has size $\lfloor p / 12\rfloor+\varepsilon$.
Each secret isogeny φ_{A}, φ_{B} is a walk of about $\log p / 2$ steps.
(Alice \& Bob can choose from about \sqrt{p} secret keys each.)
Classical attacks:

- Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}\left(p^{1 / 4}\right)$ time \& space.
- Collision finding: $\tilde{\mathcal{O}}\left(p^{3 / 8} / \sqrt{\text { memory }} /\right.$ cores $)$.

Quantum attacks:

- Claw finding: claimed $\tilde{\mathcal{O}}\left(p^{1 / 6}\right)$. Newer paper says $\tilde{\mathcal{O}}\left(p^{1 / 4}\right)$: "An adversary with enough quantum memory to run Tani's algorithm with the query-optimal parameters could break SIKE faster by using the classical control hardware to run van Oorschot-Wiener."

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.
- Bob cheats and sends $Q^{\prime \prime}:=Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$ instead of Q^{\prime}. Alice computes $A^{\prime \prime}=\left\langle P^{\prime}+[a] Q^{\prime \prime}\right\rangle$.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.
- Bob cheats and sends $Q^{\prime \prime}:=Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$ instead of Q^{\prime}.

Alice computes $A^{\prime \prime}=\left\langle P^{\prime}+[a] Q^{\prime \prime}\right\rangle$.

$$
\begin{aligned}
& \text { If } a=2 u:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime} \quad=[a] Q^{\prime} . \\
& \text { If } a=2 u+1:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime}+\left[2^{n-1}\right] P^{\prime}=[a] Q^{\prime}+\left[2^{n-1}\right] P^{\prime} .
\end{aligned}
$$

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.
- Bob cheats and sends $Q^{\prime \prime}:=Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$ instead of Q^{\prime}.

Alice computes $A^{\prime \prime}=\left\langle P^{\prime}+[a] Q^{\prime \prime}\right\rangle$.
If $a=2 u \quad:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime} \quad=[a] Q^{\prime}$.
If $a=2 u+1:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime}+\left[2^{n-1}\right] P^{\prime}=[a] Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$.
\Longrightarrow Bob learns the parity of a.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.
- Bob cheats and sends $Q^{\prime \prime}:=Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$ instead of Q^{\prime}.

Alice computes $A^{\prime \prime}=\left\langle P^{\prime}+[a] Q^{\prime \prime}\right\rangle$.
If $a=2 u \quad:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime} \quad=[a] Q^{\prime}$.
If $a=2 u+1:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime}+\left[2^{n-1}\right] P^{\prime}=[a] Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$.
\Longrightarrow Bob learns the parity of a.
Similarly, he can completely recover a in $O(n)$ queries.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P^{\prime}:=\varphi_{B}(P)$ and $Q^{\prime}:=\varphi_{B}(Q)$ to Alice. She computes $A^{\prime}=\left\langle P^{\prime}+[a] Q^{\prime}\right\rangle$ and, from that, obtains s.
- Bob cheats and sends $Q^{\prime \prime}:=Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$ instead of Q^{\prime}.

Alice computes $A^{\prime \prime}=\left\langle P^{\prime}+[a] Q^{\prime \prime}\right\rangle$.
If $a=2 u \quad:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime} \quad=[a] Q^{\prime}$.
If $a=2 u+1:[a] Q^{\prime \prime}=[a] Q^{\prime}+[u]\left[2^{n}\right] P^{\prime}+\left[2^{n-1}\right] P^{\prime}=[a] Q^{\prime}+\left[2^{n-1}\right] P^{\prime}$.
\Longrightarrow Bob learns the parity of a.
Similarly, he can completely recover a in $O(n)$ queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.
\Longrightarrow only usable with ephemeral keys or as a KEM 'SIKE'.

为者

[^0]: * Security evaluation is complicated, might get bigger \& slower.

[^1]: * Security evaluation is complicated, might get bigger \& slower.

[^2]: * Security evaluation is complicated, might get bigger \& slower.

