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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g
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Public parameters:
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
gl:><>gl7
s:= (") s:=(g")

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«+t-g.
b—2. Sett<t-g.

b—1. Sett«+t-g.
b. PublishB «t-g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«t-g.

: .2

b2 Sette t.g Is this a good idea
b—1. Sett<+t-g.

b. PublishB «t-g.

3/33



Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett«+ g. Ift=Breturnl.

2. Sett<t-g. 2. Sett«t-g. Ift = Breturn2.

3. Sett<+t-g. 3. Sett < t-g. Ift = Breturn 3.

4. Sett«+t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett « t-g. If t = B return b—2.
b—1. Sett <« t-g. b—1. Sett < t-g. If t = B return b—1.

b. Publish B «t-g. b. Sett <« t-g. If t = B return b.

b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.
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Diffie-Hellman: Bob vs. Eve

b-2.
b—1.
. PublishB «t-g.

L A .

Bob
Sett < g.
Sett«t-g.
Sett<t-g.
Sett<«+t-g.

Sett«t-g.
Sett<t-g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift =Breturn2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett <« t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = B return b.
b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Square-and-multiply

0
i g g. ¢
g .47 . 821
g A/\,z &
¢ qv
P, . gt
g8 - g2 < gV
J * g6
° g
.g14
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Square-and-multiply-and-square-and-multiply

1 g 2
—"* . 821
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Square-and-multiply-and-square-and-multiply-and-squ
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Square-and-multiply as graphs

gl g° g2

g ./- —\.\.g21
s ) \. e
¢ ./ \. P
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Square-and-multiply as graphs

1 g 2
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Square-and-multiply as graphs

22

g % g
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Square-and-multiply as graphs
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Square-and-multiply as a graph
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Square-and-multiply as a graph

Fast mixing: paths of length log(# nodes) to everywhere.
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With square-and-multiply, applying b takes ©(log #G).
For well-chosen groups, recovering b takes ©(/#G).

~+ Exponential separation!
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With square-and-multiply, applying b takes ©(log #G).
For well-chosen groups, recovering b takes ©(/#G).

~+ Exponential separation!

...and they lived happily ever after?
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Shor’s algorithm quantumly computes x from g*
in any group in polynomial time.
T

.
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Shor’s algorithm quantumly computes x from g*
in any group in polynomial time.
T




Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
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(Both classical and quantum!)
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That is: some well-behaved ‘directions’ to describe paths. More later.

6/33



Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Upshot

Isogenies give rise to

‘post-quantum Diffie-Hellman’.

(and more!)
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Slightly smaller picture 2

» Isogenies are well-behaved maps between elliptic curves.
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Slightly smaller picture 2

» Isogenies are well-behaved maps between elliptic curves.

~+ Isogeny graph: Nodes are curves, edges are isogenies.

(We usually care about subgraphs with certain properties.)
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:

AN

9/33



The beauty and the beast

Components of well-chosen isogeny graphs look like this:

s H
SSSE

L IOSKALIA
LA T
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N SAS. ¢

Which of these is good for crypto?
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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Which of these is good for crypto? Both.
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The beauty and the beast

At this time, there are two distinct families of systems:

S 3 AN
Alhéﬁbxis9[:!ﬂ2§i!¥%ﬁ?i$§§§4g&,
VAN Y, \ LA I
v A e O = - NN\
N~ VA S AN

LA R LA S
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AL

AN

q=pr q9=r
CSIDH (’sizsaid] SIDH

https://csidh.isogeny.org https://sike.org
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SIDH [ siz said]




Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH.
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Why CSIDH?

v

Drop-in post-quantum replacement for (EC)DH.

v

Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

v

Small keys: starts at 64 bytes.*

v

Competitive speed: ~ 55ms / full key exchange.* (skylake)
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Why CSIDH?

v

Drop-in post-quantum replacement for (EC)DH.

v

Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly. (w/ reasonable speed)

v

Small keys: starts at 64 bytes.*

v

Competitive speed: ~ 55ms / full key exchange.* (skylake)

v

Flexible: compatible with O-RTT protocols such as QUIC;
yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
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Stand back!

.%

We’re going to do math.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” and “subtract’ points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y).

e 0
» The sum of (x1,y1) and (x2,¥2) is e 4)‘;6;),%6
(2785
()\2 — X1 — X7, )\(le —+ X7 — )\2) — y]) sz
Sx%—i—u

where A = 2% if x; £ x; and A =

o otherwise.

2]/1
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each m # 0, the multiplication-by-m map
[m: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

E[m| = Z/m x Z/m.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
(P =x>4ax+b} — {y* =x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

(P =x>4+x} — {P=x>-3x+3}
over Fy;. Its kernel is {(2,9), (2, —9), co}.
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CSIDH in one slide
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CSIDH in one slide

» Choose some small odd primes 41, ..., {;.

» Makesurep =4-/(;---{, —1is prime.
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» Choose some small odd primes 41, ..., {;.
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CSIDH in one slide
» Choose some small odd primes 41, ..., {;.
» Makesurep =4-/(;---{, —1is prime.
> Let X = {y* =x*+Ax*+x over F, with p+1 points}.

» Look at the /;-isogenies defined over [F, within X.
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4 -/;--- £, — 1is prime.

Let X = {y*> =x>+Ax?>+x over F, with p+1 points}.

vV v vy

Look at the /;-isogenies defined over I, within X.

p =419
(=3
0 =

03=7

15/33



CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4 -/;--- £, — 1is prime.

Let X = {y*> =x>+Ax?>+x over F, with p+1 points}.

vV v vy

Look at the /;-isogenies defined over I, within X.

p =419
(=3
6 =

=7

» Walking ‘left” and ‘right” on any /;-subgraph is efficient.
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4 -/;--- £, — 1is prime.

Let X = {y*> =x>+Ax?>+x over F, with p+1 points}.

vV v vy

Look at the /;-isogenies defined over I, within X.

p =419
=3
b =

b3 =7

» Walking ‘left” and ‘right” on any /;-subgraph is efficient.
» We can represent E € X as a single coefficient A € F).
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Walking in the CSIDH graph

Taking a ‘positive” step on the /;-subgraph.

1. Find a point (x,y) € E of order /; with x,y € [F,.
This uses scalar multiplication by (p + 1) /¢;.

2. Compute the isogeny with kernel ((x,y)) (see next slide).
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Taking a ‘positive” step on the /;-subgraph.

1. Find a point (x,y) € E of order /; with x,y € [F,.
This uses scalar multiplication by (p + 1) /¢;.

2. Compute the isogeny with kernel ((x,y)) (see next slide).

Taking a ‘negative’ step on the /;-subgraph.

1. Find a point (x,y) € E of order /; with x € F, buty ¢ [F,..
This uses scalar multiplication by (p + 1) /4.

2. Compute the isogeny with kernel ((x,v)) (see next slide).
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Walking in the CSIDH graph

Taking a ‘positive” step on the /;-subgraph.

1. Find a point (x,y) € E of order /; with x,y € [F,.
This uses scalar multiplication by (p + 1) /¢;.

2. Compute the isogeny with kernel ((x,y)) (see next slide).

Taking a ‘negative’ step on the /;-subgraph.

1. Find a point (x,y) € E of order /; with x € F, buty ¢ [F,..
This uses scalar multiplication by (p + 1) /4.

2. Compute the isogeny with kernel ((x,v)) (see next slide).

Upshot: With “x-only arithmetic” everything happens over F,.
= Efficient to implement!
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Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny g : E — E’ with kernel G.

The curve E’ is called E/G. (= quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny g : E — E’ with kernel G.

The curve E’ is called E/G. (= quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use special p and curves with p + 1 points!

!(up to isomorphism of E’)
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CSIDH key exchange
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CSIDH key exchange

Alice
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CSIDH key exchange

Alice
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CSIDH key exchange

Alice Bob
[+7+7_7_] [_7+a_a_
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CSIDH key exchange
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CSIDH key exchange

Alice Bob
[+7 +,- _]
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CSIDH key exchange
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CSIDH key exchange

Alice Bob
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CSIDH key exchange

Alice Bob
[+,+,—, -] [ Fa
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CSIDH key exchange

Alice Bob

18/33



CSIDH key exchange
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Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”
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Has anyone seen my group action?

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

Many paths are “useless’. Fun fact: Quotienting out trivial
actions yields the ideal-class group cl(Z[\,/—p]).

19/33



Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key
exchange from a commutative group action G x S — S:

Alice public Bob
a random G b random G
ax*s bxs

—

key :=a* (b xs) key := b * (a xs)

20/33



Why no Shor?

Recall from Dan’s talk:

Shor computes « from I = g* by finding the kernel of the map
f: 7?2 =G, (x,y) '—>g"+hy

For general group actions, we cannot compose a * s and b * s!

21/33



Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.
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Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/—p]) = /P-

~ best known classical attack: meet-in-the-middle, O(p'/4).
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Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/—p]) = /P-

~ best known classical attack: meet-in-the-middle, O(p'/4).

Solving abelian hidden shift breaks CSIDH. ‘

~+ quantum subexponential attack (Kuperberg’s algorithm).

22/33



CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)

2. Combine the results in a certain way. (‘sieving’)
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)

2. Combine the results in a certain way. (‘sieving’)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

= It is still rather unclear how to choose CSIDH parameters.

..but all known attacks cost exp ((log p)'/2+°))!
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Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.
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Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over F» has less structure.

> SIDH uses the full F»-isogeny graph. No group action!

» Problem: also no more intrinsic sense of direction.
“It all blOOdy looks the same!” — a famous isogeny cryptographer

~+ need extra information to let Alice & Bob’s walks commute.

24/33



77

Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie-Hellman key
exchange or its elliptic curve variant. [...]
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie-Hellman key
exchange or its elliptic curve variant. [...]

Setup.

Gk » N

. e €]
A prime ?f the forn}p}: wAA . wBB SfEL
A supersingular elliptic curve E over ]sz.
Fixed elliptic points P4, Q4, Pp, Qg on E.
The order of P4 and Qg is (w4 ).
The order of Py and Qg is (wp)“B.

Key exchange. [...]

1A.
2A.
3A.
4A.
5A.
1B—4B.
5B.
6A.
7A.
8A.
9A.
6B.
7B.
8B.
9B.

A generates two random integers 4, 14 < (wa)A.

A generates Ry :=my - (Py) + 1y - (Qa)-

A uses the point Ry to create an isogeny mapping ¢4 : E — E4 and curve E4 isogenous to E.
A applies ¢4 to Pg and Qp to form two points on E4 : ¢4 (Pg) and ¢4 (Qp)-
AsendstoBE4, ¢4 (Pp),and ¢4(Qp).

Same as Al through A4, but with A and B subscripts swapped.

Bsends to A Eg, ¢p(P4), and ¢p(Q4).-

Ahasmg,ng, p(Pa), and ¢p(Qa) and forms Sps := ma(pp(Pa)) + na(¢p(Qa))-

A uses Spy to create an isogeny mapping g .

A uses 1y to create an elliptic curve Eg4 which is isogenous to E.

A computes K := j-invariant (jg) of the curve Egy4.

Similarly, B has mpg, ng, ¢4 (Pg), and ¢4 (Qp) and forms Syp = mp (4 (Pg)) + ng(04(Qp))-
B uses S4p to create an isogeny mapping v 4p.

B uses 14 to create an elliptic curve E g which is isogenous to Ek

B computes K := j-invariant (j4p) of the curve E4p.

The curves E4p and Epy are guaranteed to have the same j-invariant.”
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Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
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SIDH: High-level view

E L E/A
¥B Pp/
E/B ————— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A’ = E/{A, B) = (E/A)/B'
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := ¢p(A).

Alice knows only A, Bob knows only ¢. Hm.

Solution: ¢p is a group homomorphism!
» Alice picks A as (P + [a]Q) for fixed public P,Q € E.
» Bob includes 5 (P) and ¢5(Q) in his public key.
—> Now Alice can compute A as (¢p(P) + [a]os(Q))!

Q v5(Q)

,,,,, @B””’ A/
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SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,

» bases (P, Q) and (R, S) of E[2"] and E[3™] (recall E[k] = Z/k x Z/k)

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Decomposing smooth isogenies

» In SIDH, #A = 2" and #B = 3" are ‘crypto-sized’.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.
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Decomposing smooth isogenies

» In SIDH, #A = 2" and #B = 3" are ‘crypto-sized’.

Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*~¥](;_1 0 - -- 0 91)(G).

Pr—1

E B =5 255 By 5 E/G

D

¥G

~~ Complexity: O(k? - /). Exponentially smaller than ¢!
‘Optimal strategy” improves this to O(klogk - ¢).
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Decomposing smooth isogenies

"

In SIDH, #A = 2" and #B = 3" are ‘crypto-sized’.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

! Evaluate ¢ as a chain of small-degree isogenies:

For G = Z/(*, set ker ; := [(*~|(1hi_1 o - - 0 1) (G).

Pr—1

E B =5 255 By 5 E/G

\/’

¥G

Complexity: O(k? - /). Exponentially smaller than ¢!
‘Optimal strategy” improves this to O(klogk - ¢).

BTW: The choice of p makes sure everything stays over F ..
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Security of SIDH

The SIDH graph has size [p/12] + ¢.

Each secret isogeny ¢4, ¢p is a walk of about log p/2 steps.
(Alice & Bob can choose from about ,/p secret keys each.)
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Security of SIDH

The SIDH graph has size [p/12] + ¢.

Each secret isogeny ¢4, ¢p is a walk of about log p/2 steps.
(Alice & Bob can choose from about ,/p secret keys each.)

Classical attacks:
» Cannot reuse keys without extra caution. (nextslide)
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p*/8), /memory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®). Newer paper says O(p'/*):
“An adversary with enough quantum memory to run Tani’s algorithm

with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot-Wiener.”
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Thou shalt not reuse SIDH keys

» Recall: Bob sends P’ := pp(P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.
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Thou shalt not reuse SIDH keys

» Recall: Bob sends P’ := pp(P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.

» Bob cheats and sends Q" := Q' + [2"~ 1P’ instead of Q'.
Alice computes A” = (P’ + [a]Q").
fo=2u :[a]Q"=1[aQ + [u][2"]P = [a]Q".
Ifa =2u+1: [a]Q" = [a]Q + [W][2"|P' + 2" '|P' = [9]Q" + [2"']P".
— Bob learns the parity of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ~ as hard as breaking SIDH. ‘

= only usable with ephemeral keys or as a KEM “SIKE’.
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