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1 Elliptic curves

Modern cryptography would not be the same without elliptic curves: Compactness and speed make
them extremely attractive from an engineering perspective, while at the same time their cryptanalytic
hardness is very close to optimal. More recently, they have also been proposed as a foundation for post-
quantum cryptography, and in particular they give rise to the only known post-quantum non-interactive
key-exchange scheme, which is very cool.

The following material is based on chapter 2 of my thesis [3], but I am taking a slightly more informal
and hands-on approach here. I am honestly unsure if it is more helpful to read this or simply read my
thesis. I suggest you try switching to the respective other whenever things become confusing. Also note
that my thesis is probably the more reliable source when in doubt.

1.1 The bigger picture

Finding an algorithm that’s hard to invert is not very difficult (in fact, a sufficiently long sequence of
random bit operations is likely to work). Performing mathematically meaningful computations is also
not hard: it’s the very purpose computers were invented for in the first place.

What’s significantly less obvious is how to combine these two features: Efficient algorithms having
useful mathematical properties while making some other, related computations practically impossible.
These kinds of structures are at the heart of public-key cryptography. The traditional main examples:

• Computing a third power modulo an integer of unknown factorization is easy, but taking a cube
root seems a lot harder. (RSA)

• Computing exponentiations in a finite field is easy, but taking logarithms seems a lot harder. (DH)

Somewhat amusingly, most of those enrolled in a high-school mathematics curriculum would agree
with the sentiment that powers are easier than roots or logarithms. In cryptography, we sprinkle some
modular arithmetic on top and this vague sense of one-wayness becomes true in a much stricter sense.

Note to non-cryptographers: I say “seems harder” above because we can only very rarely prove that a cryptographic construc-
tion is secure. “Provable security” can reduce attack surface, but at the bottom of the argument there usually lies an unproven
hardness assumption whose validity is often supported only by the extent that smart people have tried and failed to break it.

Elliptic curves are another one of several ways of obtaining such structures: Currently, the analogue
of exponentiation on an elliptic curve is used as a fundamental building block for securing pretty much
everything on the internet. In a future with large-scale quantum computers, these systems will all be
broken, but we can build another kind of computationally useful structure from the theory of elliptic
curves, and that is precisely what this entire school is about: Isogeny-based cryptography.

Without further ado, let’s get started with the math background.
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1.2 Weierstraß curves

The traditional, and still extremely useful, way of representing elliptic curves are Weierstraß equations.
They are bivariate polynomial equations of the form

y2 = x3 + ax+ b , (1)

where a, b are constants in a field and x, y are symbolic variables. Elliptic curves are typically denoted
by the letter E. When a, b are elements of a field k, we say that E is “defined over k” and write “E/k”.

Almost all Weierstraß equations are elliptic curves, but there are a few exceptions: When the discriminant ∆ = −16(4a3+27b2)

is zero, the curve is singular, which makes it behave quite differently, hence this case is excluded from the theory of elliptic curves.

Every elliptic curve over a field of characteristic /∈ {2, 3} can be written as a short Weierstraß curve
using coordinate transformations (i.e., isomorphisms).

The equation above defines a short Weierstraß curve. Slightly more complicated long Weierstraß equations also exist, but they
are only required for fields of characteristic 2 and 3, which don’t appear to be very interesting for isogeny-based cryptography.

A point on an elliptic curve E is a solution (ξ, η) of the defining equation (1), or another, distinct
“point at infinity” ∞. For this to make sense, ξ and η must necessarily lie in some extension of the
curve’s base field.

Example. Points on the curve y2 = x3 + x− 1 include (1,−1) and (−1,
√
−3) and of course∞.

The notion of a “point” without further qualification refers to points over the algebraic closure, which
is computationally inconvenient. In practice, we thus want to distinguish where the coordinates of a
point actually live and what kinds of roots we need to adjoin to be able to write them down.

Example. The point (1,−1) above is defined over any field, while the point (−1,
√
−3) is only defined

over fields containing a square root of −3, which in particular includes algebraically closed fields such
as C or prime finite fields Fp with p ≡ 1 (mod 3).

When a point has coordinates in a field k, we say that it is k-rational. The set of all k-rational points on
an elliptic curveE is denoted byE(k). Note that by definition, the point at infinity∞ is always included
in E(k). When E is used as a set, for instance in notation like P ∈ E, it refers to the set of points E(k)

over the closure.
In cryptography, we work almost exclusively with elliptic curves defined over finite fields Fq . (Curves

over characteristic-zero fields usually only show up in proofs.)

1.3 The j-invariant

Writing down equations for an elliptic curves involves some choices. Even when restricting to Weier-
straß curves, the equation is generally not unique. Thus, it is convenient to have a simple means of
determining when two curves are really “the same” in different coordinate systems, i.e., when they
are isomorphic. (Isomorphisms are formally defined in Section 2.1.) The standard way of labelling
isomorphism classes of elliptic curves is the j-invariant: For (short) Weierstraß curves, it is given by
j = 1728 · 4a3/(4a3 + 27b2). As desired, two elliptic curves are isomorphic (over the algebraic closure!)
if and only if their j-invariants are the same.

1.4 The group law

The primary reason elliptic curves are interesting is because their set of points carries an algebraic group
structure. What this means is that we can add and subtract points, such that these operations behave as
expected, and the sum of two points can be written using rational functions (i.e., fractions of polynomials)
of their coordinates.

This group law has a very intuitive geometric characterization: Any straight line intersects the curve
in exactly three points (counted with multiplicities), and the sum of three points on the curve with
respect to the group law equals the point at infinity if and only if they lie on such a straight line. (The
point at infinity is declared to lie on all vertical lines.) See Figure 1.

Writing down these conditions in terms of polynomials and performing some manipulations yields
the following explicit formulas for the group law on a short Weierstraß curve y2 = x3 + ax+ b:
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Figure 1: Illustration of the group law on a Weierstraß elliptic curve (pictured over R).

• The neutral element is∞.
• The inverse of (x, y) is (x,−y).
• The sum of (x1, y1) and (x2, y2) is(

λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1
)

where λ = (y2 − y1)/(x2 − x1) if x1 6= x2 and λ = (3x21 + a)/(2y1) otherwise.

It’s not hard to see that applying negations or additions to k-rational points yields a result that is
again k-rational, hence E(k) forms a subgroup of the group of points of E.

1.4.1 Scalar multiplication

Any integer n defines a group homomorphism [n] from an(y) elliptic curve E to itself. It consists of
simply summing up n copies of an input point using the group law defined above:

[n]P = P + · · ·+ P︸ ︷︷ ︸
n times

This scalar multiplication is the elliptic-curve analogue of exponentiation in the finite-field setting,
and it is the basis of pre-quantum elliptic-curve cryptography: Computing the inverse map, that is,
recovering n ∈ Z from [n]P , is the elliptic-curve discrete logarithm problem (ECDLP). For points P of prime
order q and not particularly badly chosen curves, the best known classical algorithm for this problem
takes time Θ(

√
q), which is asymptotically optimal in the sense that this complexity is achievable by an

attacker for any group of order q; in other words, noone has found a way for an attacker to make use of
the specific algebraic structure of elliptic curves to accelerate ECDLP solvers.

Also note that we don’t really perform n−1 individual point additions to compute [n]P , which would
be slower than the attacker. Instead, we use the relations [2k]P = [k][2]P and [2k + 1]P = [k][2]P + P

to reduce a scalar multiplication to at most a doubling and an addition plus a scalar multiplication
by an integer of one bit less. Hence this method (known as “double-and-add”) takes time Θ(log n),
exponentially faster than the naïve method.

The n-torsion subgroup of E is the kernel of [n], i.e., the set of points which are mapped to∞ under
multiplication by n. It is denoted by E[n].

1.5 Projective coordinates

The formulas above involve a division, which is not great from a computational perspective as divisions
are usually significantly more expensive than other arithmetic operations. One possible fix for this is
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to defer divisions until the end: Instead of performing a division a/b, we may simply store this fraction
as is, i.e., as a tuple (a, b), and remember that a is a numerator and b is a denominator. Additions and
multiplications can be performed on this representation using the familiar arithmetic rules for fractions
a
b · cd = ac

bd and a
b + c

d = ad+bc
bd , again storing the result as a pair of numerator and denominator instead

of evaluating the division.
This reasoning is one way to arrive at projective coordinates for elliptic curves from a very concrete

perspective: Points are represented projectively as [x : y : z], where the z-coordinate is understood as a
common denominator for x and y. Hence, (x, y) turns into [x :y : 1], and conversely [x :y :z] corresponds
to (x/z, y/z) when z is non-zero. Just how expanding fractions does not change the value, [x′ : y′ : z′] is
defined to be equal to [x :y :z] whenever (x′, y′, z′) = (λx, λy, λz) for some non-zero scalar λ.

The other way to get to projective coordinates is that it’s really the right way of viewing elliptic
curves mathematically: Among other things, it gets rid of the special handling of the point at infinity,
which did not have (x, y) coordinates, but in the projective representation simply equals [0 : 1 : 0].

1.6 x-only arithmetic

Notice that there are at most two points for a given x-coordinate. Hence, most of the information about
a point is actually contained in the x-coordinate: Just one bit is encoded in the additional y-coordinate,
while it doubles the representation size of the point. This might leave one wondering if we can get rid of
the y-coordinate, and in many cases the answer is yes, using the following two observations:

• Negation changes only the y-coordinate. (Hence, y encodes a “sign bit”.)
• Scalar multiplication commutes with negation (because it does in any group).

Combining these two facts implies that there exists an induced map xMULn on x-coordinates that has
the same effect on an x-coordinate as a scalar multiplication [n] on any of the two points (x, y) with
that x-coordinate. (Quotienting E by ± yields the “Kummer variety” or “Kummer line” of E.) Since
discarding the y-coordinate saves space on the wire without incurring significant extra computation, we
tend throw away y whenever possible and work with x exclusively.

1.7 Point counting and structure

Lots of things in cryptography depend on the number of points on an elliptic curve (e.g., the hardness
of ECDLP, as mentioned in Section 1.4.1). Therefore, determining these group orders is very important
in practice (it’s also interesting to theoreticians for other reasons). Recall that E(Fq) is the subgroup of
Fq-rational points on E. One commonly writes #E(Fq) for its cardinality |E(Fq)|.

An elliptic curve E is a 1-dimensional object, hence we would expect that there are about q points
defined over Fq on E. Hasse’s theorem shows that this is indeed more or less true, with a square-root
error term:

Theorem. Let E/Fq . Then #E(Fq) = q + 1− t where |t| ≤ 2
√
q.

Of course, this bound doesn’t help much in figuring out the exact count: The search space is smaller,
but still exponentially-sized in log(q). Luckily, there is a beautiful algorithm due to Schoof (with later
improved, even more beautiful variants by Atkin and Elkies) that counts points in polynomial time:

Theorem. There is an explicit algorithm which, given the coefficients of a Weierstraß curve defined over
Fq , computes the number of Fq-rational points on E in time polynomial in log(q).

For more details on the ideas behind this algorithm, see for example my B.Sc. thesis [4].
Point counting can be used to construct curves with properties that are not too rare. For example,

finding curves with a large prime-order subgroup is easy by iterating through a bunch of curves (either
deterministically or at random) and running a point-counting algorithm until the order has the desired
factorization properties. Other properties cannot realistically be enforced using this method: For ex-
ample, curves with very smooth1 order are sparse, hence random sampling is not going to work here.
This is a bit sad since isogeny-based cryptography relies heavily on smooth-order curves for efficiency
reasons, but luckily, there’s a workaround: see Section 1.8.

1An integer is smooth if it has only small prime factors, for some notion of “small”.
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1.7.1 The `-torsion structure

Elliptic curves over C “are” basically the same thing as complex tori. (This fact is entirely non-obvious
and relies on the so-called Weierstraß ℘ function.) One down-to-earth consequence of this is that the
possible group structures of `-torsion subgroups of an elliptic curve are very limited: They are always
modules of rank at most two over Z/`, and in many cases they are actually just a torus over Z/`:
Theorem. Let E/k be an elliptic curve and ` a non-zero integer. If char(k) = p > 0, factor ` as m ·pr with
m /∈ pZ; otherwise, let m = `. Then E[`] ∼= Z/m× Z/` or E[`] ∼= Z/m× Z/m as groups.

In particular, either E[p] ∼= Z/p or E[p] ∼= {0}, and if char(k) 6 | ` then E[`] ∼= Z/`× Z/`.
Recall that these torsion subgroups are over the algebraic closure. By mere counting, it’s clear that
not all of these subgroups can be k-rational when k is finite. To gain more insight into the rational
torsion structure of an elliptic curve than just the point count (which however already implies a lot
about the possible structures), we can apply a very useful result of Lenstra [2] which allows us to view
the subgroup of rational points as a quotient of the curve’s endomorphism ring (see Section 2.3).

1.8 Supersingularity

An elliptic curve E defined over a finite field Fq of characteristic p is supersingular if and only if p divides
#E(Fq) − q − 1. Section 2.3 will show one way in which these curves have a much more complicated
underlying theory, but for now, let’s observe (by applying Hasse’s theorem!) that the defining condition
simplifies to #E(Fp) = p + 1 in the important special case that q = p and p ≥ 5. What this means
that using supersingular curves allows us to pretty much choose exactly what the group order will be
assuming there exists a convenient base-field prime, a fact that is tremendously useful when trying to
construct efficient cryptosystems. The opposite of supersingular is ordinary.

The word “supersingular” is entirely unrelated to singularities (all elliptic curves are nonsingular by definition). It simply
means something like “very special”.

1.9 Honorable mention: Pairings

Pairings of elliptic curves are another large topic on their own, and they mostly play a support role in
post-quantum isogeny-based cryptography, but I suppose I should at least briefly explain what’s going
on so people have heard of this.

In a nutshell, every elliptic curve admits a non-degenerate, alternating, bilinear map from E[`] to the
multiplicative group of (the algebraic closure of) the underlying field called the Weil pairing. It is usually
written e` : E[`]× E[`]→ µ`.

One way of understanding this pairing is to fix a basis P,Q of E[`], see Section 1.7.1, and see how the
pairing acts on points expressed in terms of this basis: Using the defining properties of e`, we get

e`([a]P + [b]Q, [c]P + [d]Q) = e`(P,Q)ad−bc .

Note that ad − bc is just the determinant of
(
a b
c d

)
. However, the magic is that the data is “hidden in

the exponents” of the groups E[`] resp. µ`, and yet we can evaluate the pairing efficiently without first
recovering the exponents “in the clear”.2

Also note that there are other pairings in use in cryptography, which are however fundamentally
still derived from the Weil pairing. Of course, there are important practical differences.

1.10 Alternate curve models

For implementations, we often prefer curve representations other than the Weierstraß form of a curve.
The most common choices are the Montgomery form By2 = x3 +Ax2 + x, which admits very fast x-only
arithmetic, and the (twisted) Edwards form ax2 +y2 = 1+dx2y2, which in well-chosen cases has complete

2The standard algorithm is due to Miller and requires Θ(log `) operations in the field of definition of the input points. The
trouble is that generic high-order points are usually defined over huge extension fields, so even though the complexity is low
in terms of base-field operations, it may still blow up exponentially when representing the base field requires huge extensions.
“Pairing-friendly curves” are constructed such that the respective groups are defined over relatively small fields, hence they admit
fairly efficient pairings.
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addition formulas without case distinctions like the special case of doublings in Section 1.4. Perhaps the
only drawback of these two curve shapes is that not all elliptic curves can be written in these forms:
For example, every Montgomery curve has the rational point (0, 0) of order two, while clearly not all
elliptic curves have rational points of order two. In particular, no prime-order curves can be converted
into Montgomery or Edwards form, which some people dislike because it incurs extra validation effort
(hence potential for human error) in protocols.

2 Isogenies of elliptic curves

Shor’s quantum algorithm solves discrete-logarithm problems in any group, including elliptic curves,
in polynomial time. Hence for a couple of decades it seemed like elliptic curves in cryptography were a
fad that would only last until large-scale quantum computers are constructed. Luckily, the more recent
field of isogeny-based cryptography demonstrates that this is (probably) not true, which allows us to
continue playing with elliptic curves even after the quantum apocalypse.

2.1 Definition & examples

“Isogeny” is a fancy word, but they might just as well have been called “nice maps”. As explained above,
the two main characteristics of elliptic curves is that they are algebraic curves carrying an algebraic group
structure. Now an isogeny is simply a non-zero3 map between two elliptic curves that respects both of
these structural properties, i.e., the map is given by rational functions and it is a group homomorphism.

Example. The map (x, y) 7→
(
x3−4x2+30x−12

(x−2)2 , y · x3−6x2−14x+35
(x−2)3

)
is an isogeny from y2 = x3 + x to

y2 = x3 − 3x+ 3 over F71.

More generally, an isogeny ϕ : E → E′ between two Weierstraß curves E,E′ defined over k can
always be written in the form

ϕ((x, y)) =
( f
h2

(x), y · g
h3

(x)
)

,

where f, g, h are polynomials in k[x] and poles of f/h2 and g/h3 signify that the result is∞. The degree
of the isogeny equals the smallest possible degree of a rational function expressing the isogeny; it is
therefore a measure for the algebraic (and, as discussed below, computational) complexity of an isogeny.
Degrees are multiplicative: deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ).

Example. The isogeny from the previous example has degree 3.

Example. Scalar multiplication [m] has degree m2. (This follows from the structure of the m-torsion
given in Section 1.7.1.)

Special names are given to special isogenies:

• Isogenies of degree 1 are isomorphisms. (This matches the intuitive notion of a coordinate change.)
• Isogenies from a curve to itself, together with the zero map [0], are endomorphisms. (See Section 2.3.)
• Endomorphisms that are also isomorphisms are automorphisms.

Just like for points, an isogeny is defined over k whenever the coefficients in its formula all lie in k.

2.1.1 Dual isogenies

Every isogeny ϕ : E → E′ comes with a unique isogeny ϕ̂ : E′ → E in the opposite direction, defined
by the property that ϕ̂ ◦ ϕ = [deg(ϕ)] and ϕ ◦ ϕ̂ = [deg(ϕ)]. In this sense, the dual is almost an inverse,
except that one would need to divide by the degree to get there.

This shows that being isogenous is an equivalence relation. Isogenous curves over a finite field have
the same number of points, and remarkably, the converse holds as well (this is Tate’s isogeny theorem):

Theorem. Two elliptic curves defined over a finite field k are isogenous over k if and only if they have
the same number of k-rational points.

3The zero map P 7→ ∞ is usually excluded because it is an annoying outlier that would be an exception for most theorems
dealing with isogenies. (Some authors do include the zero map, but let’s not.)
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Remembering that point counting is efficient, this shows that the property of being isogenous can
easily be decided. Finding an isogeny is dramatically harder for all we know (as will be discussed in
weeks 6 and 8).

2.1.2 Frobenius isogenies

For any elliptic curve E defined over a field of characteristic p, let E(pr) denote the curve obtained by
raising all coefficients of the defining equation to the prth power. The isogeny

π : E → E(pr), (x, y) 7→ (xp
r

, yp
r

)

is the pr-power Frobenius isogeny of E. It has degree pr. In the important special case E/Fpr , we have
E(pr) = E and π is the Frobenius endomorphism.

Due to its intimate connection with the Galois group of the underlying field, the Frobenius endomorphism is related to the
structure of rational points of the curve. In particular, what Schoof’s algorithm actually does to count points is computing the
characteristic polynomial of the Frobenius endomorphism: It equals X2 − tX + pr where #E(Fpr ) = pr + 1− t.

Frobenius isogenies are very special (as will become clear for instance in Section 2.2), hence their
appearance is again emphasized by a name: An isogeny ϕ : E → E′ is called inseparable if it factors
through a Frobenius isogeny, otherwise it is separable. Moreover, ϕ is purely inseparable if it equals a
Frobenius isogeny composed with an isomorphism.

(All this terminology, including the degree, is borrowed from the extension of function fields corresponding to the isogeny.)

2.2 Isogenies from kernels

Perhaps the most important object when doing isogeny-based cryptography is the kernel of an isogeny,
i.e., the set of points mapped to∞. It is not hard to see from the general form of a Weierstraß isogeny
that the kernel is a finite set. It is also a subgroup, because it is for any group homomorphism.

(Sometimes, in particular for higher-dimensional abelian varieties, finite kernels are part of the definition of an isogeny.)

Example. The kernel of the isogeny over F71 from the example in Section 2.1 is {∞, (2, 9), (2, 62)} since
these are the points where the denominator vanishes.

Example. Purely inseparable isogenies have trivial kernel. (To see this, observe that x 7→ xp is injective
in any field of characteristic p.)

The significance of the kernel is that it defines an isogeny almost uniquely. The only disturbance
is inseparability, since purely inseparable isogenies have trivial kernel despite being more than just
an isomorphism: If ϕ : E → E′ and ψ : E → E′′ have the same kernel, then ψ = α ◦ ϕ for some
purely inseparable α : E′ → E′′. (Recall that purely inseparable isogenies are a composition of Frobenius
isogenies and isomorphisms. The Frobenius part is often trivial, so that α is just an isomorphism.)

Morever, every finite subgroup is the kernel of an isogeny!4 This can be seen, for instance, by simply
writing down formulas that construct an isogeny with prescribed kernel (see Section 2.2.1). Hence, and
I like to think of this as the main theorem underlying isogeny-based cryptography:

Theorem. There is a one-to-one correspondence from finite subgroups of an elliptic curve to separable
isogenies from said curve, up to post-composition with isomorphisms.

This (almost unique) isogeny with kernel H is often denoted by ϕH or similar, and the codomain (or
rather, one particular representative of the unique isomorphism class) is denoted by E/H in analogy to
quotients of groups.

We always have degϕH = |H|. (More generally, the cardinality of the kernel of an isogeny equals the
degree of its separable part.)

2.2.1 Vélu’s formulas

Let E/k. In 1971, Vélu found a nice trick to write down an isogeny with a given kernel H ≤ E: The
basic idea is to exploiting the existing Weierstraß coordinate projections x, y : E \ {∞} → k to construct

4This is reminiscent of how every subgroup of an abelian group is the kernel of a homomorphism. The result here is stronger
in that the codomain can be chosen to be another elliptic curve, and the homomorphism can be realized as an algebraic map.
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algebraic projection maps fx, fy : E \ H → k which are invariant under translations by elements of H .
These functions are then well-defined on the curve E/H (which thus far exists only abstractly) and can
be used to set up an embedding of E/H into the plane, which finally yields an equation.

Concretely, for γ ∈ {x, y} (the Weierstraß coordinate projections) and a point P ∈ E, Vélu defines

fγ(P ) := γ(P ) +
∑
Q∈H
Q6=∞

(
γ(P +Q)− γ(Q)

)
.

Then the map
ϕ : E → E/H, P 7→

(
fx(P ), fy(P )

)
,

where poles of fx, fy get mapped to the point at infinity, is a separable isogeny with kernel H . The
codomain is again a Weierstraß curve whose equation can be recovered using some extra steps.

2.2.2 x-only isogenies

Noting that groups are closed under inversion, we observe that the y-coordinate of the points in a kernel
subgroup should be irrelevant (just like for scalar multiplications). This is indeed true, and we can
compute isogenies using x-only arithmetic.

2.2.3 Smooth-degree isogenies

The complexity of Vélu grows linearly with the subgroup size. However, for cryptographic purposes,
we need to do better, similar to how computing a scalar multiplication naïvely is not good enough to
beat attackers trying to solve ECDLP. Hence, we use subgroupsH of smooth order (i.e., only small prime
factors, often large powers of a small prime) and decompose the isogeny ϕH into a sequence of many
small-prime-degree isogenies.

For example, for H ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(H); then each ψi has degree `.

E E1 . . . Ek−1 E/H
ψ1

ϕH

ψ2 ψk−1 ψk

This reduces the complexity from Θ(`k) down to Θ(k2 · `) base-field operations when the `-isogenies ψi
are computed using Vélu’s original formulas5, representing an exponential speedup.

2.3 The endomorphism ring

The set of endomorphisms of an elliptic curve carries an algebraic structure itself: We can add endo-
morphisms pointwise (in fact, addition works for isogenies between a fixed pair of curves in general),
and we can “multiply” them by composing them. It is not very hard to check that these two operations
turn the set of endomorphisms into a well-defined (not necessarily commutative) ring, which is denoted
by End(E). (For every field k the curve is defined over, the endomorphism ring has a subring Endk(E)

consisting of just the k-rational endomorphisms. We’ll focus on End(E) for now.)
In general, for elliptic curves over finite fields Fq , the endomorphism ring contains at least:

• All scalar multiplications. In other words, Z is a subring of End(E).
• The q-power Frobenius endomorphism π.

For ordinary elliptic curves, one can show that this is already very close to the entirety of the ring:
Their endomorphism ring is of the form Z[(π + m)/f ], where m and f are non-zero integers.6 In more
complicated words: The endomorphism ring is an order containing Z[π] inside the imaginary quadratic
field Q(π).

5Since 2020, there exists the
√

élu (“square-root Vélu”) algorithm [1] to compute isogenies of prime degree ` in time Õ(
√
`)

rather than Θ(`).
6Those wondering what dividing an endomorphism by an integer is even supposed to mean have a point: This is only possible

in special cases, namely (here) when π+m kills the entire f -torsion of the curve, and then the kernel of (π+m)/f can be recovered
as the image of the kernel of π +m under [f ].
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For supersingular elliptic curves, the story is much more complicated: Their endomorphism rings are
maximal orders in a quaternion algebra. That quaternion algebra is Bp,∞, which has a technical meaning,
but the most important thing to know is that Bp,∞ basically consists of two quadratic fields “glued
together” in a non-commuting way: There exist elements i, j ∈ Bp,∞ such that

Bp,∞ = Q + Qi + Qj + Qij

obeying the multiplication rules

i2 = −q , j2 = −p , and ji = −ij ,

where q is a positive integer with some specific properties depending on p. An order in Bp,∞ is a subring
that has full rank (i.e., rank 4) as an abelian group, and a maximal order is an order that is not properly
contained in any other order.

Example. Let p ≡ 3 (mod 4). The elliptic curve E : y2 = x3 + x over Fp2 is supersingular. Its en-
domorphism ring contains both the p-power Frobenius endomorphism π : (x, y) 7→ (xp, yp) and the
automorphism ι : (x, y) 7→ (−x,

√
−1 · y). By the congruence condition on p, the square root of −1 lies in

Fp2 \ Fp, hence πι = −ιπ. Thus, an embedding of End(E) into Bp,∞ is given by ι 7→ i and π 7→ j. In fact,
it is not extremely hard to show starting from this point that End(E) = Z + Zι+ Z ι+π

2 + Z 1+ιπ
2 .

Warning. The identification of End(E) with a subring of Bp,∞ is in general highly non-unique. Do
not assume any kind of compatibility unless there is a good reason to do so.

2.4 Kernel ideals

In this final section, we briefly discuss an important connection between the set of isogenies attached to
a curve and the structure of its endomorphism ring.

Let I be a left ideal7 of End(E). Any such ideal defines a finite subgroup, namely the intersection of
the kernels of all endomorphisms in the ideal (and note that it suffices to use a set of generators of the
ideal). Hence, we get a mapping from left ideals of End(E) to isogenies emanating from E.

If I is principal, the kernel of the corresponding isogeny is just the kernel of the endomorphism gen-
erating the ideal. Hence, the isogeny equals that endomorphism (up to isomorphism), and in particular
multiplying an ideal by a principal ideal does not change the codomain of the corresponding isogeny.

The bottom line of these observations is a famous theorem for elliptic curves with imaginary quad-
ratic endomorphism ring, which lies at the heart of the CSIDH cryptosystem (week 3): It yields a well-
behaved group action of the ideal-class group of Endk(E) on a certain set of elliptic curves. This result
is one of the main reasons for discussing class groups in this context (second half of week 1).
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3 Exercises

All of these are primarily intended to be solved with the assistance of a computer-algebra system such
as SageMath [5]. Crash course: The elliptic curve y2 = x3 + ax + b over Fq can be defined using
E = EllipticCurve(GF(q), [a,b]), and a point P = (x, y) on E can be constructed by writing
P = E(x,y). An isogenyE → E′ with kernel 〈K〉 can be constructed by writing f = E.isogeny(K),
but note that this may take effectively forever when the order ofK is big. Other functionality can usually
be found by typing the right words into a search engine or by asking people who know stuff.

3.1 The group law

Let E denote the elliptic curve y2 = x3− 7x+ 10 over Q. Let g be the straight line defined by y = 2x− 2.
Compute all points of intersection between E and g and verify that there are indeed three points as
claimed and that their sum with respect to the elliptic-curve group law is∞.

3.2 A basis of the `-torsion

Let p = 18446744073709551667. Define the elliptic curveE : y2 = x3+x over Fp2 . Compute a basis of the
4999-torsion subgroup E[4999], i.e., find two points P,Q ∈ E such that any point in E[4999] is a unique
Z/4999-linear combination of P and Q.

As 4999 is prime, Z/4999 is a field, hence things like linear (in)dependence work as you would expect from a two-dimensional
vector space. In particular, P and Q are dependent if and only if they are scalar multiples of one another.

3.2.1 Two-dimensional discrete logarithms

Devise and implement an algorithm that computes an isomorphism E[4999] → Z/4999 × Z/4999, i.e.,
takes any point R ∈ E[4999] and returns a, b ∈ Z such that R = [a]P + [b]Q, where P,Q is your basis of
the 4999-torsion from before. What’s the complexity of your method?

3.3 Verifying supersingularity

Let again p = 18446744073709551667. Check that the curve y2 = x3 + 6120164818944x + 9660707028

defined over Fp has p+ 1 rational points. Can you do it without using a point-counting algorithm?

3.4 Decomposing isogenies

Consider p = 2127−1 and E : y2 = x3 +x over Fp2 . Pick a random point P ∈ E of order 2127. Implement
the decomposition technique from Section 2.2.3 to compute the isogeny with kernel 〈P 〉. (The output of
your computation should be a list of 127 degree-2 isogenies whose composition has kernel 〈P 〉.)

(Note that SageMath does not perform this decomposition on its own and resorts to naïvely enumerating the 2127 points in
the subgroup instead. Someone who hopefully isn’t me should probably improve this behaviour in SageMath at some point.)

3.5 The kernel of the dual

Let E be an elliptic curve and P,Q be a basis of the `-torsion subgroup for some integer ` such that this
makes sense (i.e., excluding the few cases whereE[`] 6∼= Z/`×Z/`). LetK = [a]P +[b]Q for some a, b ∈ Z
and let ϕ : E → E′ be an isogeny with kernel 〈K〉. What is the kernel of the dual isogeny ϕ̂?

Verify your answer experimentally by choosing a suitable curve and trying it out on a few examples.

3.6 Quaternions!

Let p = 232 − 5 and E : y2 = x3 + 1 over Fp2 . Let ζ ∈ Fp2 be a nontrivial cube root of unity. Check
that π : (x, y) 7→ (xp, yp) and ω : (x, y) 7→ (ζ · x, y) are non-commuting endomorphisms of E. Verify that
ϑ := (1− ω + π − ωπ)/3 is a well-defined endomorphism of E.

To my knowledge, SageMath does not have any meaningful support for endomorphism rings of elliptic curves. You’ll need
to get quite a few things to work on your own. An alternative is to do the computations literally by hand like in the dark ages.
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