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Words are hard

“So... How’s it going with your isonegies?”
— a lattice-based crypto researcher

...I mean, a carbon-based researcher who works on lattice-based crypto

Mnemonic:

“I so genius!”
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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!
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Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

4 / 28



There are several more-or-less equivalent viewpoints.
I will focus on one of them, hence omit many fun details.

Please ask me about stuff!
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Stand back!

We’re going to do math.

(worry not: only 4 tough exciting slides ahead!)
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.
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An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.
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An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.

8 / 28



Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′

I given by rational functions
I that is a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.
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Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Math slide #4: Supersingular isogeny graphs

Let p be a prime, q a power of p, and ` a positive integer /∈ pZ.

An elliptic curve E/Fq is supersingular if p | q + 1−#E(Fq).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of positive, pairwise coprime integers.

The supersingular S-isogeny graph over Fq consists of...
I isomorphism classes of supersingular elliptic curves
I with equivalence classes1 of `-isogenies (` ∈ S) as edges;

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.
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The beauty and the beast

Components of the isogeny graphs look as follows:

S = {3, 5, 7}, q = 419 S = {2, 3}, q = 4312
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The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

11 / 28
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["si:­saId]

12 / 28



CSIDH

I Let p = 4
∏n

i=1 `i − 1 be a prime; the `i distinct odd primes.

I Let X = {supersingular y2 = x3 + Ax2 + x defined over Fp}.
I We consider the graph of {`1, ..., `n}-isogenies on X.

m
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s!

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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Has anyone seen my class group action?

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

This action is transitive (for big enough n), but not free.
Obviously∗, quotienting out vectors which act trivially yields
a group isomorphic to the ideal-class group cl(Z[

√−p]).

(This is because the curves in X have Fp-endomorphism ring Z[π] ∼= Z[√−p].
A prime ideal in Z[π] of norm ` corresponds to one of two eigenspaces of the
Frobenius endomorphism π on the `-torsion, which correspond to horizontal
`-isogenies that preserve the endomorphism ring.)
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Cryptographic group actions

Previous slide: Free, transitive group action of cl(Z[
√−p]) on X.

Like in the CSIDH example before, we generally get a DH-like
key exchange from a group action G× S→ S:

Alice public Bob

a random←−−− G b random←−−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) key := b ∗ (a ∗ s)
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Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·
↑

hy

For general group actions, we cannot compose a ∗ s and b ∗ s!

17 / 28



Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.
Given E,E′ ∈ X, find a smooth ideal a of Z[

√−p] with [a]E = E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).
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Solving abelian hidden shift breaks CSIDH.

 quantum subexponential attack (Kuperberg’s algorithm).

18 / 28



Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice&Bob’s walks commute.
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Math slide #5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is called E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
20 / 28
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Now:
SIDH

(...whose name doesn’t allow for nice pictures of beaches...)
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie–Hellman key
exchange or its elliptic curve variant. [...]

Setup.
1. A prime of the form p = w

eA
A · w

eB
B · f ± 1.

2. A supersingular elliptic curve E over Fp2 .

3. Fixed elliptic points PA,QA, PB,QB on E.
4. The order of PA and QA is (wA)

eA .
5. The order of PB and QB is (wB)

eB .

Key exchange. [...]
1A. A generates two random integers mA, nA < (wA)

eA .
2A. A generates RA := mA · (PA) + nA · (QA).
3A. A uses the point RA to create an isogeny mapping φA : E→ EA and curve EA isogenous to E.
4A. A applies φA to PB and QB to form two points on EA : φA(PB) and φA(QB).
5A. A sends to B EA, φA(PB), and φA(QB).

1B–4B. Same as A1 through A4, but with A and B subscripts swapped.
5B. B sends to A EB, φB(PA), and φB(QA).
6A. A has mA, nA, φB(PA), and φB(QA) and forms SBA := mA(φB(PA)) + nA(φB(QA)).
7A. A uses SBA to create an isogeny mapping ψBA .
8A. A uses ψBA to create an elliptic curve EBA which is isogenous to E.
9A. A computes K := j-invariant (jBA) of the curve EBA .
6B. Similarly, B has mB, nB, φA(PB), and φA(QB) and forms SAB = mB(φA(PB)) + nB(φA(QB)).
7B. B uses SAB to create an isogeny mapping ψAB .
8B. B uses ψAB to create an elliptic curve EAB which is isogenous to Ek
9B. B computes K := j-invariant (jAB) of the curve EAB .

The curves EAB and EBA are guaranteed to have the same j-invariant.”
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SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.

I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.

I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

23 / 28



SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB
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SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
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Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
(Alice & Bob can choose from about

√p secret keys each.)

Classical attacks:
I Cannot reuse keys without extra caution.
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). New paper1 says Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

1
https://ia.cr/2019/103
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Open and half-open questions

CSIDH:

How costly is breaking CSIDH with Kuperberg’s algorithm?

Is Kuperberg’s algorithm optimal for abelian hidden shift?

Are there any non-generic quantum attacks?

SIDH:

Do the points ϕB(P), ϕB(Q) reveal too much information?

Can we phrase SIDH as a hidden-subgroup problem?

Are there any non-generic quantum attacks?
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Thank you!
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