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Words are hard

“So... How's it going with your isonegies?”
— a lattice-based crypto researcher
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Words are hard

“So... How's it going with your isonegies?”
— a lattice-based crypto researcher

...I mean, a carbon-based researcher who works on lattice-based crypto

Mnemonic:

“I so genius!”
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
gl:><>gl7
s:= (") s:=(g")
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
gl:><>gl7
s:= (") s:=(g")

Fundamental reason this works: -% and -’ are commutative!
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Graph walking Diffie-Hellman?
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Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

v

Isogenies are a source of exponentially-sized graphs.

v

We can walk efficiently on these graphs.

v

Fast mixing: short paths to (almost) all nodes.
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No efficient* algorithms to recover paths from endpoints.

v

Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.
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Big picture 2

v

Isogenies are a source of exponentially-sized graphs.

v

We can walk efficiently on these graphs.

v

Fast mixing: short paths to (almost) all nodes.

v

No efficient* algorithms to recover paths from endpoints.

v

Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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There are several more-or-less equivalent viewpoints.
I will focus on one of them, hence omit many fun details.
Please ask me about stuff!
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Stand back!

We’re going to do math.

(worry not: only 4 tetigh exciting slides ahead!)
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y).

e 0
» The sum of (x1,y1) and (x2,¥2) is e 4)‘;6;),%6
(2785
()\2 — X1 — X7, )\(le —+ X7 — )\2) — y]) sz
Sx%—i—u

where A = 2% if x; £ x; and A =

o otherwise.

2]/1
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each m # 0, the multiplication-by-m map
[m: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Em] = Z/m x Z/m.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
(P =x>4ax+b} — {y* =x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’
» given by rational functions

» that is a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

(P =x>4+x} — {P=x>-3x+3}
over Fy. Its kernel is {(2,9), (2, -9), co}.
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Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.
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Math slide #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Math slide #4: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F, is supersingular if p | q + 1 — #E(F;).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)*.
~~ easy way to control the group structure by choosing p!
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Math slide #4: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F, is supersingular if p | q + 1 — #E(F;).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)*.
~+ easy way to control the group structure by choosing p!

Let S # p denote a set of positive, pairwise coprime integers.
The supersingular S-isogeny graph over F, consists of...

» isomorphism classes of supersingular elliptic curves

» with equivalence classes! of -isogenies (¢ € S) as edges;
both defined over F,.

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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The beauty and the beast

Components of the isogeny graphs look as follows:
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The beauty and the beast

Components of the isogeny graphs look as follows:

LK
'.""."?39‘3““

S={3,57}, q=419 S =1{2,3}, g = 4312
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The beauty and the beast

At this time, there are two distinct families of systems:
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CSIDH ['sizsaid] SIDH

https://csidh.isogeny.org https://sike.org
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CSIDH

> Letp=4 H?:l /; — 1 be a prime; the /; distinct odd primes.
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CSIDH
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CSIDH

» Letp =4[]iL, i — 1 be a prime; the ¢; distinct odd primes.
» Let X = {supersingular y* = x> + Ax? + x defined over F,}.
» We consider the graph of {/1, ..., ¢, }-isogenies on X.

» Walking ‘left” and ‘right” on any /;-subgraph is efficient.
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange

Alice
[+5 +, -
T
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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Has anyone seen my class group action?
Cycles are compatible: [right then left] = [left then right]

~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—, —,+,—,—] just becomes (+1, 0,-3) € Z5.
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Has anyone seen my class group action?

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—, —,+,—,—] just becomes (+1, 0,-3) € Z5.

There is a group action of (Z", +) on our set of curves X!

This action is transitive (for big enough 1), but not free.
Obviously*, quotienting out vectors which act trivially yields

a group isomorphic to the ideal-class group cl(Z[,/=p]).

(This is because the curves in X have F,-endomorphism ring Z[n] = Z[,/—p].
A prime ideal in Z[r] of norm ¢ corresponds to one of two eigenspaces of the

Frobenius endomorphism 7 on the ¢-torsion, which correspond to horizontal
{-isogenies that preserve the endomorphism ring.)
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Cryptographic group actions

Previous slide: Free, transitive group action of cl(Z[,/—p]) on X.

Like in the CSIDH example before, we generally get a DH-like
key exchange from a group action G x S — S:

Alice public Bob
a random G b random G
ax*s bxs

—

key :=ax (bxs) key := b x (axs)
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Why no Shor?

Shor computes « from I = g* by finding the kernel of the map
f: 7?2 =G, (x,y) '—>g"+hy

For general group actions, we cannot compose a * s and b * s!
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

Given E, E’ € X, find a smooth ideal a of Z[,/—p] with [a]E = E'.
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

Given E, E’ € X, find a smooth ideal a of Z[,/—p] with [a]E = E'.

The size of Xis #cl(Z[,/=p]) = /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Solving abelian hidden shift breaks CSIDH. ‘

~» quantum subexponential attack (Kuperberg’s algorithm).
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Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

19/28



Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over F» has less structure.

» SIDH uses the full F ,-isogeny graph. No group action!

19/28



Can we avoid Kuperberg’s algorithm?

With great commutative group action
comes great subexponential attack.

The supersingular isogeny graph over F» has less structure.

» SIDH uses the full F ,-isogeny graph. No group action!

» Problem: also no more intrinsic sense of direction.
“It all blOOdy looks the same!” — a famous isogeny cryptographer

~+ need extra information to let Alice&Bob’s walks commute.

19/28



Math slide #5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E' is called E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Math slide #5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E' is called E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Now:

SIDH

(...whose name doesn’t allow for nice pictures of beaches...)
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie-Hellman key
exchange or its elliptic curve variant. [...]
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Wikipedia about SIDH...

“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH
for parties A and B is straightforward for those familiar with a Diffie-Hellman key
exchange or its elliptic curve variant. [...]

Setup.

Gk » N

. e €]
A prime ?f the forn}p}: wAA . wBB SfEL
A supersingular elliptic curve E over ]sz.
Fixed elliptic points P4, Q4, Pp, Qg on E.
The order of P4 and Qg is (w4 ).
The order of Py and Qg is (wp)“B.

Key exchange. [...]

1A.
2A.
3A.
4A.
5A.
1B—4B.
5B.
6A.
7A.
8A.
9A.
6B.
7B.
8B.
9B.

A generates two random integers 4, 14 < (wa)A.

A generates Ry :=my - (Py) + 1y - (Qa)-

A uses the point Ry to create an isogeny mapping ¢4 : E — E4 and curve E4 isogenous to E.
A applies ¢4 to Pg and Qp to form two points on E4 : ¢4 (Pg) and ¢4 (Qp)-
AsendstoBE4, ¢4 (Pp),and ¢4(Qp).

Same as Al through A4, but with A and B subscripts swapped.

Bsends to A Eg, ¢p(P4), and ¢p(Q4).-

Ahasmg,ng, p(Pa), and ¢p(Qa) and forms Sps := ma(pp(Pa)) + na(¢p(Qa))-

A uses Spy to create an isogeny mapping g .

A uses 1y to create an elliptic curve Eg4 which is isogenous to E.

A computes K := j-invariant (jg) of the curve Egy4.

Similarly, B has mpg, ng, ¢4 (Pg), and ¢4 (Qp) and forms Syp = mp (4 (Pg)) + ng(04(Qp))-
B uses S4p to create an isogeny mapping v 4p.

B uses 14 to create an elliptic curve E g which is isogenous to Ek

B computes K := j-invariant (j4p) of the curve E4p.

The curves E4p and Epy are guaranteed to have the same j-invariant.”
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SIDH: High-level view

E s s E/A
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SIDH: High-level view

E L E/A
¥B 2%
E/B ————— E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.
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E L E/A
B Pp/
E/B — E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.

» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
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» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the values E/A and E/B.
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SIDH: High-level view

E L E/A
B Pp/
E/B — E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

v

v
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SIDH: High-level view

E L E/A
B Pp/
E/B — E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A"= E/(A,B) = (E/A)/B.
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SIDH’s auxiliary points

77

Previous slide: “Alice somehow obtains A’ := @p(A).

Alice knows only A, Bob knows only ¢g. Hm.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A" := pp(A).”

Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!
» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 3 (P) and ¢3(Q) in his public key.
—> Now Alice can compute A" as (pp(P) + [a]vp(Q))!

Q v5(Q)

A ,,,,, ()DB”*” A/

24/28



SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P, Q) and (R, S) of E[2"] and E[3"]

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Security of SIDH

The SIDH graph has size [p/12] + ¢.

Each secret isogeny ¢4, ¢p is a walk of about log p/2 steps.
(Alice & Bob can choose from about ,/p secret keys each.)

Yhttps://ia.cr/2019/103
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Security of SIDH

The SIDH graph has size [p/12] + ¢.

Each secret isogeny ¢4, ¢p is a walk of about log p/2 steps.
(Alice & Bob can choose from about ,/p secret keys each.)

Classical attacks:
» Cannot reuse keys without extra caution.
» Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p*/ 8 /,/memiory /cores).

Quantum attacks:
» Claw finding: claimed O(p'/®). New paper! says O(p'/*):
“An adversary with enough quantum memory to run Tani’s algorithm

with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot-Wiener.”

Ihttps://ia.cr/2019/103
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Open and half-open questions

CSIDH:

’ How costly is breaking CSIDH with Kuperberg’s algorithm? ‘

’ Is Kuperberg’s algorithm optimal for abelian hidden shift? ‘

’ Are there any non-generic quantum attacks? ‘

SIDH:

’ Do the points g(P), ¢p(Q) reveal too much information? ‘

’ Can we phrase SIDH as a hidden-subgroup problem? ‘

’ Are there any non-generic quantum attacks? ‘
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Thank you!
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