
Diffie–Hellman reductions

Lorenz Panny

Technische Universiteit Eindhoven

Ei/Ψ seminar, Eindhoven, 29 April 2019

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 16

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 16

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeam
ish Ossifrage

???

a b

a(x) b(x)???

a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.
▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)

???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.

▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 16

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

(The oracle formalizes an attack that we don’t know yet.)

3 / 16

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

(The oracle formalizes an attack that we don’t know yet.)

3 / 16

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 16

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 16

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 16

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 16

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 16

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 16

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O(

∑r
i=1 ei · (log |G|+√pi)) group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

!! There are many groups where one can solve DLP faster.

6 / 16

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O(

∑r
i=1 ei · (log |G|+√pi)) group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

!! There are many groups where one can solve DLP faster.

6 / 16

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.

▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 16

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 16

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).

▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 16

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.

▶ invert exponents: g1/a = gaφ(|G|)−1
if gcd(a, |G|) = 1 using

↶

.

7 / 16

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 16

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 16

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 16

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 16

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈g⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic and find a generator g.
▶ Encode g to a black-box element ⌈g⌋ of R.
▶ Solve the DLP (⌈g⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ggk
.

▶ Simply compute a as the power gk ∈ R∗.

9 / 16

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈g⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic and find a generator g.
▶ Encode g to a black-box element ⌈g⌋ of R.
▶ Solve the DLP (⌈g⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ggk
.

▶ Simply compute a as the power gk ∈ R∗.

9 / 16

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈g⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic and find a generator g.
▶ Encode g to a black-box element ⌈g⌋ of R.
▶ Solve the DLP (⌈g⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ggk
.

▶ Simply compute a as the power gk ∈ R∗.

9 / 16

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

Example: For |G| = p with pd − 1 smooth, we can use F∗
pd .

10 / 16

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

Example: For |G| = p with pd − 1 smooth, we can use F∗
pd .

10 / 16

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

Example: For |G| = p with pd − 1 smooth, we can use F∗
pd .

10 / 16

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

11 / 16

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Proof:
▶ Find a generator point G on E.
▶ Hope that a is an x-coordinate on the curve (Pr ≈ 1/2).

Compute (black-box) the corresponding y-coordinate ⌈y⌋,
giving a black-box elliptic-curve point ⌈P⌋ = (⌈a⌋, ⌈y⌋).
(If ⌈y⌋2 ̸= ⌈a⌋3 + ⌈A⌋⌈a⌋2 + ⌈a⌋, then randomize ⌈a⌋ as ⌈a′⌋ = ⌈a⌋+ ⌈δ⌋ and retry.)

▶ Solve the (black-box) DLP (⌈G⌋, ⌈P⌋) via Pohlig–Hellman.
We get k ∈ Z such that (a, y) = [k]G.

▶ Simply compute a as the x-coordinate of [k]G.

11 / 16

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Are there always such E?
Unknown in general, but likely.
People have constructed some for many ‘common’ groups G.

=⇒ For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

11 / 16

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Are there always such E?
Unknown in general, but likely.
People have constructed some for many ‘common’ groups G.

=⇒ For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

11 / 16

Shor’s algorithm (1994)

Shor’s algorithm breaks all group-based DH instantiations.

12 / 16

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

12 / 16

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

12 / 16

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

12 / 16

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Application:

For a DLP instance (g, h= gk) in a cyclic group G of order q,
the (publicly computable) function

f : Z2 −→ G
(x, y) 7−→ gx · hy

has period Λ = ⟨(k,−1), (q, 0)⟩ ⊆ Z2, which Shor can recover.

12 / 16

And now...
For something totally different.

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an evident Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not broken in general by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

13 / 16

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an evident Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not broken in general by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

13 / 16

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an evident Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not broken in general by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

13 / 16

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an evident Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not broken in general by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

13 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).

▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.

▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the ‘pairing’ gx · gy = gx+y is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

14 / 16

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
▶ Compute a set of generators g1, ..., gr ∈ G.
▶ Apply Shor’s algorithm to the map

f : Zr × Z −→ X
(x1, ..., xr, y) 7−→ (gx1

1 · · · gxr
r) ∗ ⌈a⌋y .

▶ Any period vector of the form (x1, ..., xr, 1) yields the
desired element a = g−x1

1 · · · g−xr
r .

15 / 16

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
▶ Compute a set of generators g1, ..., gr ∈ G.
▶ Apply Shor’s algorithm to the map

f : Zr × Z −→ X
(x1, ..., xr, y) 7−→ (gx1

1 · · · gxr
r) ∗ ⌈a⌋y .

▶ Any period vector of the form (x1, ..., xr, 1) yields the
desired element a = g−x1

1 · · · g−xr
r .

15 / 16

An open question

▶ Can we get similar results if the CDH oracle
(x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

Thank you!

16 / 16

An open question

▶ Can we get similar results if the CDH oracle
(x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

Thank you!

16 / 16

