Diffie—Hellman reductions

Lorenz Panny

Technische Universiteit Eindhoven

Ei/ V¥ seminar, Eindhoven, 29 April 2019



Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
» Private key: two big prime numbers p, g.
» Public key: their product n = pq.

65537 mod n.

655371 mod lem(p—1,9—1)

» Encrypt: computec =m

» Decrypt: compute m = ¢ mod pg.

1/16



Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
» Private key: two big prime numbers p, q.

» Public key: their product n = pq.

65537

» Encrypt: computec =m mod n.

—1 . o o
> Decrypt: compute m = C65537 mod lem(p—1,g—1

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

) mod pq.

1/16



Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
» Private key: two big prime numbers p, q.

» Public key: their product n = pq.

65537

» Encrypt: computec =m mod n.

6553771 mod lem(p—1,9—1

» Decrypt: compute m = ¢ ) mod pg.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:

No point attacking RSA specifically; just focus on factoring.

1/16



Diffie-Hellman key exchange (very big picture)

The magic words are squea“\'ls"‘ 0ssifrage a

2/16



Diffie-Hellman key exchange (very big picture)

evil eavesdropper Eve!

2/16



Diffie-Hellman key exchange (very big picture)

evil eavesdropper Eve!

2/16



Diffie-Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x € X.

[a]

» Private keys:
efficient functions a,b: X — X.

2/16



Diffie-Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x € X.

/\
w = om =

© 0 )

| ‘ |
) 3 | [

» Private keys:
efficient functions a,b: X — X.

» Public keys: the elements a(x), b(x) € X.

2/16



Diffie-Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x € X.

@D )

Ty 7

» Private keys:
efficient functions a,b: X — X suchthataob =boa.

» Public keys: the elements a(x), b(x) € X.
» Shared secret: the element a(b(x)) = b(a(x)).

2/16



This talk

Is computing a(b(x)) as hard as recovering a or b?

3/16



This talk

Is computing a(b(x)) as hard as recovering a or b?

» Standard proof technique:

Use a black-box “oracle’
O: (x,a(x),b(x)) — a(b(x))
to construct an efficient algorithm
A(O): a(x) —> a.

(The oracle formalizes an attack that we don’t know yet.)

3/16



Group-based Diffie-Hellman

The only reasonable Diffie-Hellman instantiations 1976-2017:
(G, -) a finite group; a, b exponentiations.

4/16



Group-based Diffie-Hellman

The only reasonable Diffie-Hellman instantiations 1976-2017:
(G, -) a finite group; a, b exponentiations.

» Private keys: a,b € Z/ord g.

» Public keys: g%, ¢".

» Shared secret: (g°)" = (g°)* = ¢®.

4/16



Group-based Diffie-Hellman

The only reasonable Diffie-Hellman instantiations 1976-2017:
(G, -) a finite group; a, b exponentiations.

» Private keys: a,b € Z/ord g.

» Public keys: g%, ¢".

» Shared secret: (g°)" = (g°)* = ¢®.

Examples:

> Multiplicative groups of finite fields (Fy, -).

» Elliptic curves E: y? = x> + Ax? + x with ‘weird’ addition.

4/16



Problems from Diffie-Hellman

5/16



Problems from Diffie-Hellman

» Discrete-logarithm problem (DLP)
Compute a from g, g%

5/16



Problems from Diffie-Hellman

» Discrete-logarithm problem (DLP)
Compute a from g, g%

» Computational Diffie-Hellman problem (CDH)
Compute g% from g, g% ¢°.

8
o-...
2 AR >| ,ab
Seo....... .
e
gb

5/16



Generic complexity of DLP (Pohlig-Hellman 1978)

» Upshot: If the factorization of |G| is py' - - - py’, then one can
solve DLP in O(>";_; ¢; - (log |G| + 1/pi)) group operations.
— Cost dominated by the biggest prime factor of |G]|.

= DLP is easy if |G| is smooth (i.e., no big prime factors).

6/16



Generic complexity of DLP (Pohlig-Hellman 1978)

» Upshot: If the factorization of |G| is py' - - - py’, then one can
solve DLP in O(>";_; ¢; - (log |G| + 1/pi)) group operations.
— Cost dominated by the biggest prime factor of |G]|.

= DLP is easy if |G| is smooth (i.e., no big prime factors).

!!' There are many groups where one can solve DLP faster.

6/16



Diffie-Hellman’s algebraic properties

Anyone can...

» encode numbers x in the exponents: compute g*.

7/16



Diffie-Hellman’s algebraic properties

Anyone can...
» encode numbers x in the exponents: compute g*.
» add in the exponents: ¢*™% = ¢% - ¢,

» negate exponents: g% = (¢%)~L.

7/16



Diffie-Hellman’s algebraic properties

Anyone can...
» encode numbers x in the exponents: compute g*.
» add in the exponents: ¢*™% = ¢% - ¢,

» negate exponents: g% = (¢%)~L.

Anyone who can solve CDH can...

» multiply exponents: ¢*° = shared_secret(g, g%, ¢°).

7/16



Diffie-Hellman’s algebraic properties

Anyone can...
» encode numbers x in the exponents: compute g*.
» add in the exponents: ¢*™% = ¢% - ¢,

» negate exponents: g% = (¢%)~L.

Anyone who can solve CDH can...

» multiply exponents: ¢*° = shared_secret(g, g%, ¢°).

» exponentiate exponents: square-and-multiply using 5 .

7/16



Diffie-Hellman’s algebraic properties

Anyone can...
» encode numbers x in the exponents: compute g*.
» add in the exponents: ¢*™% = ¢% - ¢,
» negate exponents: ¢~® = (¢%) 7.
Anyone who can solve CDH can...
» multiply exponents: ¢*° = shared_secret(g, g%, ¢°).
» exponentiate exponents: square-and-multiply using 5 .

ae(lah—1

> invert exponents: ¢/% = ¢ if ged(a,|G|) = 1 using

7/16



Black-box rings

» We interpret ¢* as labels for the hidden elements a.

» With a CDH oracle we can perform arbitrary ring
operations (+,—, -, /) on these hidden representations.

» Notation: Write [a| for the hidden element g°.

8/16



Black-box rings

» We interpret ¢* as labels for the hidden elements a.

» With a CDH oracle we can perform arbitrary ring
operations (+,—, -, /) on these hidden representations.

» Notation: Write [a| for the hidden element g°.

The elements ¢® form a black-box ring isomorphic to Z/ord g. ‘

8/16



Black-box rings

» We interpret ¢* as labels for the hidden elements a.

» With a CDH oracle we can perform arbitrary ring
operations (+,—, -, /) on these hidden representations.

» Notation: Write [a| for the hidden element g°.

The elements ¢® form a black-box ring isomorphic to Z/ord g. ‘

We mostly care about black-box fields:
For discrete logarithmes, it’s sufficient to consider prime-order g.

8/16



First result: den Boer (1988)

Let G =F,, writeR=Z/|G| =Z/(p - 1),
and suppose |[R*| = ¢(p — 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in IF}.

9/16



First result: den Boer (1988)

Let G =F,, writeR=Z/|G| =Z/(p - 1),
and suppose |[R*| = ¢(p — 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in IF}.

Proof idea:
Solve a DLP in the exponents R* to find a representation of [a|
as a power of some known [g], then recompute a in the clear.

9/16



First result: den Boer (1988)

Let G =F,, writeR=Z/|G| =Z/(p - 1),
and suppose |[R*| = ¢(p — 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in IF}.

Proof idea:
Solve a DLP in the exponents R* to find a representation of [a|
as a power of some known [g], then recompute a in the clear.

Proof:
» Suppose (for simplicity) that R* is cyclic and find a generator g.

» Encode g to a black-box element [g] of R.

» Solve the DLP ([g], [a]) in the hidden version of R* using
Pohlig-Hellman. We get k € Z such that ¢" = ggk.
» Simply compute a as the power gt € R*.

9/16



Observation:
There is nothing special about using R* in the exponents;
in principle anything expressible as field operations works.

10/ 16



Observation:
There is nothing special about using R* in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

10/ 16



Observation:
There is nothing special about using R* in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

Example: For |G| = p with p? — 1 smooth, we can use F;d.

10/ 16



Second result: Maurer (1994)

Let G be of prime order p, write R = F,
and suppose E: y? = x> + Ax? + x /F, has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

11/16



Second result: Maurer (1994)

Let G be of prime order p, write R = F,
and suppose E: y? = x> + Ax? + x /F, has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Proof:

>

>

Find a generator point G on E.

Hope that a is an x-coordinate on the curve (Pr ~ 1/2).
Compute (black-box) the corresponding y-coordinate [1],
giving a black-box elliptic-curve point [P] = ([a], [9]).

(I [y]* # [a]® + [A][a]? + [a], then randomize [a] as [a’] = [a] + [6] and retry)
Solve the (black-box) DLP ([G|, [P|) via Pohlig-Hellman.
We get k € Z such that (a,9) = [k]|G.

Simply compute a as the x-coordinate of [k|G.

11/16



Second result: Maurer (1994)

Let G be of prime order p, write R = F,
and suppose E: y? = x> + Ax? + x /F, has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Ave there always such E?
Unknown in general, but likely.
People have constructed some for many ‘common’ groups G.

= For all practical purposes, DLP is equivalent to CDH.

11/16



Second result: Maurer (1994)

Let G be of prime order p, write R = F,
and suppose E: y? = x> + Ax? + x /F, has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Ave there always such E?
Unknown in general, but likely.
People have constructed some for many ‘common’ groups G.

= For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

11/16



Shor’s algorithm (1994)

Shor’s algorithm breaks all group-based DH instantiations.

12/16



Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

12/16



Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and
f7"— S
a map with an unknown period lattice A C Z", such that
flo+7)=f(v)
if and only if 7 € A.

12/16



Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and
f7"— S
a map with an unknown period lattice A C Z", such that

flo+7)=f(0)
if and only if 7 € A.

Given such f and some size constraints on A,
Shor’s algorithm recovers a basis of A in polynomial time.

12/16



Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Application:

For a DLP instance (g, h =g*) in a cyclic group G of order g,
the (publicly computable) function

f: 72 — G
(x,y)— g -1

has period A = {(k, —1), (g,0)) C Z?, which Shor can recover.

12/16



And now...
For something totally different.




Diffie-Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map
x: Gx X — X
such that id*x =xand (g-h)*xx=gx* (h*x).

13 /16



Diffie-Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map
x: Gx X — X
such that id*x =xand (g-h)*xx=gx* (h*x).

This suggests an evident Diffie-Hellman scheme:

Let G be finite and commutative and fix x € X.
» Private keys: group elements a,b € G.
» Public keys: the elements a * x, b x € X.
» Shared secret: the element a * (b *x) = b * (a*x).

13 /16



Diffie-Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map
x: Gx X — X
such that id*x =xand (g-h)*xx=gx* (h*x).

This suggests an evident Diffie-Hellman scheme:

Let G be finite and commutative and fix x € X.
» Private keys: group elements a,b € G.
» Public keys: the elements a * x, b x € X.
» Shared secret: the element a * (b *x) = b * (a*x).

This is not broken in general by Shor!

13 /16



Diffie-Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map
x: Gx X — X
such that id*x =xand (g-h)*xx=gx* (h*x).

This suggests an evident Diffie-Hellman scheme:

Let G be finite and commutative and fix x € X.
» Private keys: group elements a,b € G.
» Public keys: the elements a * x, b x € X.
» Shared secret: the element a * (b *x) = b * (a*x).

This is not broken in general by Shor!

Example: CSIDH ['Sillsald] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

13 /16



The implicit group

Just like before, we get an implicit structure on the public keys.

14 /16



The implicit group

Just like before, we get an implicit structure on the public keys.
However, crucially, the ‘pairing’ ¢* - g = ¢**¥ is lost.

= We only get a black-box group rather than a ring or field.

14 /16



The implicit group

Just like before, we get an implicit structure on the public keys.
However, crucially, the ‘pairing’ ¢* - g = ¢**¥ is lost.

= We only get a black-box group rather than a ring or field.

Anyone can...

» encode elements a: compute [a] = a * x.

» translate by cleartext elements: a* [b] = [a-b].

14 /16



The implicit group

Just like before, we get an implicit structure on the public keys.
However, crucially, the ‘pairing’ ¢* - g = ¢**¥ is lost.

= We only get a black-box group rather than a ring or field.

Anyone can...

» encode elements a: compute [a] = a * x.

» translate by cleartext elements: a* [b] = [a-b].

Anyone who can solve CDH can...

» compose: [a| - [b| = shared_secret(x,a % x,b * x).

14 /16



The implicit group

Just like before, we get an implicit structure on the public keys.
However, crucially, the ‘pairing’ ¢* - g = ¢**¥ is lost.

= We only get a black-box group rather than a ring or field.

Anyone can...

» encode elements a: compute [a] = a * x.

» translate by cleartext elements: a* [b] = [a-b].

Anyone who can solve CDH can...
» compose: [a| - [b| = shared_secret(x,a % x,b x x).
» exponentiate: square-and-multiply using §

14 /16



The implicit group

Just like before, we get an implicit structure on the public keys.
However, crucially, the ‘pairing’ ¢* - g = ¢**¥ is lost.

= We only get a black-box group rather than a ring or field.

Anyone can...

» encode elements a: compute [a] = a * x.

» translate by cleartext elements: a* [b] = [a-b].

Anyone who can solve CDH can...
» compose: [a| - [b| = shared_secret(x,a % x,b x x).
» exponentiate: square-and-multiply using §
» invert: [a7!] = [a]l¢~1 using .

14 /16



Our I'eSLIlt (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence

between the CDH and DLP problems for group actions.

15/16



Our reSUIt (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
» Compute a set of generators g1, ..., g, € G.

» Apply Shor’s algorithm to the map
fi Z'xZ — X
(X1, s Xr y) — (07" g7) * [a)?

» Any period vector of the form (xq, ..., x;, 1) yields the
desired elementa = g; ™' --- g, .

15/16



An open question

» Can we get similar results if the CDH oracle
(x,a%x,bx*x)— ab*x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

16 /16



An open question

» Can we get similar results if the CDH oracle
(x,a%x,bx*x)— ab*x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

Thank you!

16 /16



