Diffie–Hellman reductions

Lorenz Panny

Technische Universiteit Eindhoven

 Ei/Ψ seminar, Eindhoven, 29 April 2019

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):

- ▶ Private key: two big prime numbers *p*, *q*.
- Public key: their product n = pq.
- Encrypt: compute $c = m^{65537} \mod n$.
- Decrypt: compute $m = c^{65537^{-1} \mod \operatorname{lcm}(p-1, q-1)} \mod pq$.

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):

- ▶ Private key: two big prime numbers *p*, *q*.
- Public key: their product n = pq.
- Encrypt: compute $c = m^{65537} \mod n$.
- Decrypt: compute $m = c^{65537^{-1} \mod \operatorname{lcm}(p-1, q-1)} \mod pq$.

Clearly, anyone who can factor *n* can decrypt.

Q: Can everyone capable of decrypting also factor *n*?

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):

- ▶ Private key: two big prime numbers *p*, *q*.
- Public key: their product n = pq.
- Encrypt: compute $c = m^{65537} \mod n$.
- Decrypt: compute $m = c^{65537^{-1} \mod \operatorname{lcm}(p-1, q-1)} \mod pq$.

Clearly, anyone who can factor *n* can decrypt. **Q: Can everyone capable of decrypting also factor** *n***?**

If yes:

No point attacking RSA specifically; just focus on factoring.

Parameters: a finite set *X*, a fixed element $x \in X$.

• <u>Private</u> keys: efficient functions $\mathfrak{a}, \mathfrak{b} \colon X \to X$.

Parameters: a finite set *X*, a fixed element $x \in X$.

- <u>Private</u> keys: efficient functions $\mathfrak{a}, \mathfrak{b} \colon X \to X$.
- <u>Public</u> keys: the elements $\mathfrak{a}(x), \mathfrak{b}(x) \in X$.

Parameters: a finite set *X*, a fixed element $x \in X$.

- ▶ <u>Private</u> keys: efficient functions $\mathfrak{a}, \mathfrak{b} : X \to X$ such that $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$.
- <u>Public</u> keys: the elements $\mathfrak{a}(x), \mathfrak{b}(x) \in X$.
- <u>Shared</u> secret: the element $\mathfrak{a}(\mathfrak{b}(x)) = \mathfrak{b}(\mathfrak{a}(x))$.

This talk

Is computing $\mathfrak{a}(\mathfrak{b}(x))$ as hard as recovering \mathfrak{a} or \mathfrak{b} ?

<u>This talk</u>

Is computing $\mathfrak{a}(\mathfrak{b}(x))$ as hard as recovering \mathfrak{a} or \mathfrak{b} ?

<u>Standard proof technique:</u>
 Use a black-box 'oracle'

$$\mathcal{O}\colon (x,\mathfrak{a}(x),\mathfrak{b}(x))\,\longmapsto\,\mathfrak{a}(\mathfrak{b}(x))$$

to construct an efficient algorithm

 $\mathcal{A}(\mathcal{O}): \mathfrak{a}(x) \longmapsto \mathfrak{a}.$

(The oracle formalizes an attack that we don't know yet.)

Group-based Diffie-Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017: (G, \cdot) a finite group; $\mathfrak{a}, \mathfrak{b}$ exponentiations.

Group-based Diffie-Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017: (G, \cdot) a finite group; $\mathfrak{a}, \mathfrak{b}$ exponentiations.

- Private keys: $\mathfrak{a}, \mathfrak{b} \in \mathbb{Z}/\mathrm{ord}\,g$.
- Public keys: $g^{\mathfrak{a}}, g^{\mathfrak{b}}$.
- Shared secret: $(g^{\mathfrak{a}})^{\mathfrak{b}} = (g^{\mathfrak{b}})^{\mathfrak{a}} = g^{\mathfrak{a}\mathfrak{b}}$.

Group-based Diffie-Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017: (G, \cdot) a finite group; $\mathfrak{a}, \mathfrak{b}$ exponentiations.

- Private keys: $\mathfrak{a}, \mathfrak{b} \in \mathbb{Z}/\mathrm{ord}\,g$.
- Public keys: $g^{\mathfrak{a}}, g^{\mathfrak{b}}$.
- Shared secret: $(g^{\mathfrak{a}})^{\mathfrak{b}} = (g^{\mathfrak{b}})^{\mathfrak{a}} = g^{\mathfrak{a}\mathfrak{b}}$.

Examples:

- Multiplicative groups of finite fields (\mathbb{F}_q^*, \cdot) .
- Elliptic curves $E: y^2 = x^3 + Ax^2 + x$ with 'weird' addition.

Problems from Diffie-Hellman

Problems from Diffie-Hellman

 ► <u>Discrete-logarithm problem (DLP)</u> Compute a from g, g^a.

Problems from Diffie-Hellman

 ► <u>Discrete-logarithm problem (DLP)</u> Compute a from g, g^a.

<u>Computational Diffie-Hellman problem (CDH)</u>
 Compute g^{ab} from g, g^a, g^b.

Generic complexity of DLP (Pohlig-Hellman 1978)

- ► Upshot: If the factorization of |G| is $p_1^{e_1} \cdots p_r^{e_r}$, then one can solve DLP in $O(\sum_{i=1}^r e_i \cdot (\log |G| + \sqrt{p_i}))$ group operations.
 - \implies Cost dominated by the biggest prime factor of |G|.
 - \implies DLP is easy if |G| is smooth (i.e., no big prime factors).

Generic complexity of DLP (Pohlig–Hellman 1978)

- ► Upshot: If the factorization of |G| is $p_1^{e_1} \cdots p_r^{e_r}$, then one can solve DLP in $O(\sum_{i=1}^r e_i \cdot (\log |G| + \sqrt{p_i}))$ group operations.
 - \implies Cost dominated by the biggest prime factor of |G|.
 - \implies DLP is easy if |G| is smooth (i.e., no big prime factors).
- **!!** There are many groups where one can solve DLP faster.

Anyone can...

• encode numbers *x* in the exponents: compute g^x .

Anyone can...

- encode numbers x in the exponents: compute g^x .
- add in the exponents: $g^{a+b} = g^a \cdot g^b$.
- negate exponents: $g^{-\mathfrak{a}} = (g^{\mathfrak{a}})^{-1}$.

Anyone can...

- encode numbers *x* in the exponents: compute g^x .
- add in the exponents: $g^{a+b} = g^a \cdot g^b$.
- negate exponents: $g^{-\mathfrak{a}} = (g^{\mathfrak{a}})^{-1}$.

Anyone who can solve CDH can...

• multiply exponents: $g^{\mathfrak{a}\cdot\mathfrak{b}} = shared_secret(g, g^{\mathfrak{a}}, g^{\mathfrak{b}})$.

Anyone can...

- encode numbers *x* in the exponents: compute g^x .
- add in the exponents: $g^{a+b} = g^a \cdot g^b$.
- negate exponents: $g^{-\mathfrak{a}} = (g^{\mathfrak{a}})^{-1}$.

Anyone who can solve CDH can...

- multiply exponents: $g^{\mathfrak{a}\cdot\mathfrak{b}} = shared_secret(g, g^{\mathfrak{a}}, g^{\mathfrak{b}}).$
- exponentiate exponents: square-and-multiply using \mathcal{D} .

Anyone can...

- encode numbers x in the exponents: compute g^x .
- add in the exponents: $g^{a+b} = g^a \cdot g^b$.
- negate exponents: $g^{-\mathfrak{a}} = (g^{\mathfrak{a}})^{-1}$.

Anyone who can solve CDH can...

- multiply exponents: $g^{a \cdot b} = shared_secret(g, g^a, g^b)$.
- ▶ exponentiate exponents: square-and-multiply using ⁽¹⁾.
 ▶ invert exponents: g^{1/a} = g^{a^{φ(|G|)-1}} if gcd(a, |G|) = 1 using ⁽¹⁾.

Black-box rings

- We interpret *g*^a as labels for the hidden elements a.
- ► With a CDH oracle we can perform arbitrary ring operations (+,-, · , /) on these hidden representations.
- Notation: Write $\lceil \mathfrak{a} \rfloor$ for the hidden element $g^{\mathfrak{a}}$.

Black-box rings

- ► We interpret *g*^a as labels for the hidden elements a.
- ► With a CDH oracle we can perform arbitrary ring operations (+,-, · , /) on these hidden representations.
- Notation: Write $\lceil \mathfrak{a} \rceil$ for the hidden element $g^{\mathfrak{a}}$.

The elements $g^{\mathfrak{a}}$ form a <u>black-box ring</u> isomorphic to $\mathbb{Z}/\operatorname{ord} g$.

Black-box rings

- We interpret *g*^a as labels for the hidden elements a.
- ► With a CDH oracle we can perform arbitrary ring operations (+,-, · , /) on these hidden representations.
- Notation: Write $\lceil \mathfrak{a} \rfloor$ for the hidden element $g^{\mathfrak{a}}$.

The elements $g^{\mathfrak{a}}$ form a <u>black-box ring</u> isomorphic to $\mathbb{Z}/\operatorname{ord} g$.

We mostly care about black-box <u>fields</u>: For discrete logarithms, it's sufficient to consider prime-order *g*.

First result: den Boer (1988)

Let $G = \mathbb{F}_{p}^{*}$, write $R = \mathbb{Z}/|G| = \mathbb{Z}/(p-1)$, and suppose $|R^{*}| = \varphi(p-1)$ is smooth. Then CDH is polynomial-time equivalent to DLP in \mathbb{F}_{p}^{*} .

First result: den Boer (1988)

Let $G = \mathbb{F}_p^*$, write $R = \mathbb{Z}/|G| = \mathbb{Z}/(p-1)$, and suppose $|R^*| = \varphi(p-1)$ is smooth. Then CDH is polynomial-time equivalent to DLP in \mathbb{F}_p^* .

Proof idea: Solve a DLP in the exponents R^* to find a representation of $\lceil \mathfrak{a} \rfloor$ as a power of some known $\lceil \mathfrak{g} \rfloor$, then recompute \mathfrak{a} in the clear.

First result: den Boer (1988)

Let $G = \mathbb{F}_p^*$, write $R = \mathbb{Z}/|G| = \mathbb{Z}/(p-1)$, and suppose $|R^*| = \varphi(p-1)$ is smooth. Then CDH is polynomial-time equivalent to DLP in \mathbb{F}_p^* .

Proof idea:

Solve a DLP in the exponents R^* to find a representation of $\lceil \mathfrak{a} \rfloor$ as a power of some known $\lceil \mathfrak{g} \rfloor$, then recompute \mathfrak{a} in the clear.

Proof:

- ► Suppose (for simplicity) that *R*^{*} is cyclic and find a generator g.
- Encode \mathfrak{g} to a black-box element $\lceil \mathfrak{g} \rfloor$ of *R*.
- ► Solve the DLP ($\lceil \mathfrak{g} \rfloor$, $\lceil \mathfrak{a} \rfloor$) in the hidden version of R^* using Pohlig–Hellman. We get $k \in \mathbb{Z}$ such that $g^{\mathfrak{a}} = g^{\mathfrak{g}^k}$.
- Simply compute \mathfrak{a} as the power $\mathfrak{g}^k \in \mathbb{R}^*$.

Observation: There is nothing special about using R^* in the exponents; in principle anything expressible as field operations works. Observation: There is nothing special about using R^* in the exponents; in principle anything expressible as field operations works.

This is known as an auxiliary group: A smooth-order algebraic group over the black-box field. Observation: There is nothing special about using R^* in the exponents; in principle anything expressible as field operations works.

This is known as an auxiliary group: A smooth-order algebraic group over the black-box field.

Example: For |G| = p with $p^d - 1$ smooth, we can use $\mathbb{F}_{p^d}^*$.

Let *G* be of prime order *p*, write $R = \mathbb{F}_p$, and suppose $E: y^2 = x^3 + Ax^2 + x / \mathbb{F}_p$ has smooth order. Then CDH is polynomial-time equivalent to DLP in *G*.

Let *G* be of prime order *p*, write $R = \mathbb{F}_p$, and suppose $E: y^2 = x^3 + Ax^2 + x / \mathbb{F}_p$ has smooth order. Then CDH is polynomial-time equivalent to DLP in *G*.

Proof:

- ► Find a generator point *G* on *E*.
- Hope that a is an *x*-coordinate on the curve (Pr ≈ 1/2). Compute (black-box) the corresponding *y*-coordinate [ŋ], giving a black-box elliptic-curve point [P] = ([a], [ŋ]). (If [ŋ]² ≠ [a]³ + [A][a]² + [a], then randomize [a] as [a'] = [a] + [δ] and retry.)
- ► Solve the (black-box) DLP ($\lceil G \rfloor$, $\lceil P \rfloor$) via Pohlig–Hellman. We get $k \in \mathbb{Z}$ such that $(\mathfrak{a}, \mathfrak{y}) = [k]G$.
- ► Simply compute a as the *x*-coordinate of [*k*]*G*.

Let *G* be of prime order *p*, write $R = \mathbb{F}_p$, and suppose $E: y^2 = x^3 + Ax^2 + x / \mathbb{F}_p$ has smooth order. Then CDH is polynomial-time equivalent to DLP in *G*.

Are there always such E? Unknown in general, but likely. People have constructed some for many 'common' groups *G*.

 \implies For all practical purposes, DLP is equivalent to CDH.

Let *G* be of prime order *p*, write $R = \mathbb{F}_p$, and suppose $E: y^2 = x^3 + Ax^2 + x / \mathbb{F}_p$ has smooth order. Then CDH is polynomial-time equivalent to DLP in *G*.

Are there always such E? Unknown in general, but likely. People have constructed some for many 'common' groups G.

 \implies For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

Shor's algorithm breaks all group-based DH instantiations.

... is a quantum algorithm for period finding.

... is a quantum algorithm for period finding.

Let *S* be some finite set and

$$f\colon \mathbb{Z}^n \longrightarrow S$$

a map with an unknown period lattice $\Lambda \subseteq \mathbb{Z}^n$, such that $f(v+\tau) = f(v)$

if and only if $\tau \in \Lambda$.

... is a quantum algorithm for period finding.

Let *S* be some finite set and

$$f: \mathbb{Z}^n \longrightarrow S$$

a map with an unknown period lattice $\Lambda \subseteq \mathbb{Z}^n$, such that $f(v+\tau) = f(v)$

if and only if $\tau \in \Lambda$.

Given such *f* and some size constraints on Λ , Shor's algorithm recovers a basis of Λ in polynomial time.

... is a quantum algorithm for period finding.

Application:

For a DLP instance $(g, h = g^k)$ in a cyclic group *G* of order *q*, the (publicly computable) function

$$f\colon \mathbb{Z}^2 \longrightarrow G$$
$$(x,y)\longmapsto g^x \cdot h^y$$

has period $\Lambda = \langle (k, -1), (q, 0) \rangle \subseteq \mathbb{Z}^2$, which Shor can recover.

And now... For something totally different.

Let *G* be a group, *X* a set. A group action of *G* on *X* is a map $*: G \times X \longrightarrow X$

such that $\operatorname{id} * x = x$ and $(\mathfrak{g} \cdot \mathfrak{h}) * x = \mathfrak{g} * (\mathfrak{h} * x)$.

Let *G* be a group, *X* a set. A group action of *G* on *X* is a map $*: G \times X \longrightarrow X$

such that $\operatorname{id} * x = x$ and $(\mathfrak{g} \cdot \mathfrak{h}) * x = \mathfrak{g} * (\mathfrak{h} * x)$.

This suggests an evident <u>Diffie–Hellman scheme</u>: Let *G* be finite and commutative and fix $x \in X$.

- <u>Private</u> keys: group elements $\mathfrak{a}, \mathfrak{b} \in G$.
- <u>Public</u> keys: the elements $\mathfrak{a} * x$, $\mathfrak{b} * x \in X$.
- <u>Shared</u> secret: the element $\mathfrak{a} * (\mathfrak{b} * x) = \mathfrak{b} * (\mathfrak{a} * x)$.

Let *G* be a group, *X* a set. A group action of *G* on *X* is a map $*: G \times X \longrightarrow X$

such that $\operatorname{id} * x = x$ and $(\mathfrak{g} \cdot \mathfrak{h}) * x = \mathfrak{g} * (\mathfrak{h} * x)$.

This suggests an evident <u>Diffie–Hellman scheme</u>: Let *G* be finite and commutative and fix $x \in X$.

- <u>Private</u> keys: group elements $\mathfrak{a}, \mathfrak{b} \in G$.
- <u>Public</u> keys: the elements $\mathfrak{a} * x$, $\mathfrak{b} * x \in X$.
- <u>Shared</u> secret: the element $\mathfrak{a} * (\mathfrak{b} * x) = \mathfrak{b} * (\mathfrak{a} * x)$.

This is not broken in general by Shor!

Let *G* be a group, *X* a set. A group action of *G* on *X* is a map $*: G \times X \longrightarrow X$

such that $\operatorname{id} * x = x$ and $(\mathfrak{g} \cdot \mathfrak{h}) * x = \mathfrak{g} * (\mathfrak{h} * x)$.

This suggests an evident <u>Diffie–Hellman scheme</u>: Let *G* be finite and commutative and fix $x \in X$.

- <u>Private</u> keys: group elements $\mathfrak{a}, \mathfrak{b} \in G$.
- <u>Public</u> keys: the elements $\mathfrak{a} * x$, $\mathfrak{b} * x \in X$.
- <u>Shared</u> secret: the element $\mathfrak{a} * (\mathfrak{b} * x) = \mathfrak{b} * (\mathfrak{a} * x)$.

This is not broken in general by Shor!

Example: CSIDH ['sit,said] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

Just like before, we get an implicit structure on the public keys.

Just like before, we get an implicit structure on the public keys. However, crucially, the 'pairing' $g^x \cdot g^y = g^{x+y}$ is lost. \implies We only get a <u>black-box group</u> rather than a ring or field.

Just like before, we get an implicit structure on the public keys. However, crucially, the 'pairing' $g^x \cdot g^y = g^{x+y}$ is lost. \implies We only get a <u>black-box group</u> rather than a ring or field.

Anyone can...

- encode elements \mathfrak{a} : compute $\lceil \mathfrak{a} \rfloor = \mathfrak{a} * x$.
- translate by cleartext elements: $\mathfrak{a} * [\mathfrak{b}] = [\mathfrak{a} \cdot \mathfrak{b}].$

Just like before, we get an implicit structure on the public keys. However, crucially, the 'pairing' $g^x \cdot g^y = g^{x+y}$ is lost. \implies We only get a <u>black-box group</u> rather than a ring or field.

Anyone can...

- encode elements a: compute $\lceil a \rfloor = a * x$.
- translate by cleartext elements: $\mathfrak{a} * [\mathfrak{b}] = [\mathfrak{a} \cdot \mathfrak{b}].$

Anyone who can solve CDH can...

• compose: $\lceil \mathfrak{a} \rfloor \cdot \lceil \mathfrak{b} \rfloor = shared_secret(x, \mathfrak{a} * x, \mathfrak{b} * x).$

Just like before, we get an implicit structure on the public keys. However, crucially, the 'pairing' $g^x \cdot g^y = g^{x+y}$ is lost. \implies We only get a <u>black-box group</u> rather than a ring or field.

Anyone can...

- encode elements \mathfrak{a} : compute $\lceil \mathfrak{a} \rfloor = \mathfrak{a} * x$.
- translate by cleartext elements: $\mathfrak{a} * [\mathfrak{b}] = [\mathfrak{a} \cdot \mathfrak{b}].$

Anyone who can solve CDH can...

- compose: $[\mathfrak{a}] \cdot [\mathfrak{b}] = shared_secret(x, \mathfrak{a} * x, \mathfrak{b} * x).$
- exponentiate: square-and-multiply using \mathcal{D} .

Just like before, we get an implicit structure on the public keys. However, crucially, the 'pairing' $g^x \cdot g^y = g^{x+y}$ is lost. \implies We only get a <u>black-box group</u> rather than a ring or field.

Anyone can...

- encode elements \mathfrak{a} : compute $\lceil \mathfrak{a} \rfloor = \mathfrak{a} * x$.
- translate by cleartext elements: $\mathfrak{a} * [\mathfrak{b}] = [\mathfrak{a} \cdot \mathfrak{b}].$

Anyone who can solve CDH can...

- compose: $[\mathfrak{a}] \cdot [\mathfrak{b}] = shared_secret(x, \mathfrak{a} * x, \mathfrak{b} * x).$
- ► exponentiate: square-and-multiply using).
- invert: $\lceil \mathfrak{a}^{-1} \rfloor = \lceil \mathfrak{a} \rfloor^{|G|-1}$ using \mathcal{I} .

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time <u>quantum</u> equivalence between the CDH and DLP problems <u>for group actions</u>.

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time <u>quantum</u> equivalence between the CDH and DLP problems <u>for group actions</u>.

Proof:

- Compute a set of generators $g_1, ..., g_r \in G$.
- Apply Shor's algorithm to the map

$$f: \quad \mathbb{Z}^r \times \mathbb{Z} \longrightarrow X$$

(x₁,...,x_r,y) $\longmapsto (\mathfrak{g}_1^{x_1} \cdots \mathfrak{g}_r^{x_r}) * \lceil \mathfrak{a} \rfloor^y.$

► Any period vector of the form (x₁,...,x_r,1) yields the desired element a = g₁^{-x₁} ··· g_r^{-x_r}.

An open question

- ► Can we get similar results if the CDH oracle (x, a * x, b * x) → ab * x is unreliable?
 - Classical case: Yes, by repeatedly blinding the inputs, unblinding the outputs, and using majority vote.
 - Here: Exponentially many queries in superposition; do we need *all* of them to be correct?

An open question

► Can we get similar results if the CDH oracle (x, a * x, b * x) → ab * x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs, unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition; do we need *all* of them to be correct?

Thank you!