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Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.
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Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).
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This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

Intuition: Every efficient O leads to an efficient A(O).
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Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.
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Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab
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Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O

(∑r
i=1 ei · (log |G|+√pi)

)
group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

▶ This is a generic-group algorithm.
It is irrelevant how G is represented or what · does.
The algorithm only requires subroutines that compute · and −1.

! Shoup 1997: This is essentially optimal for generic groups.

!! There are many groups where one can solve DLP faster.
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Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.

▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.
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Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.
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First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.
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Auxiliary groups

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.
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Slightly late ‘about me’ slide

I played too many hacking competitions in [2013; +∞).

11 / 17



Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

p = 2**48 - 5297 # |G| = p
mul = lambda x,y: (x+y)%p # g^x * g^y = g^(x+y)
inv = lambda x: (-x)%p # (g^x)^-1 = g^(-x)
dhp = lambda x,y: x*y%p # enjoy your oracle!

aes = AES.new(os.urandom(16), AES.MODE_ECB)
enc = lambda x: aes.encrypt(x.to_bytes(16, 'big')).hex()
dec = lambda y: int.from_bytes(aes.decrypt(bytes.fromhex(y)), 'big')

g, a = 1, random.randrange(p)
print(enc(g), enc(y))

for _ in range(2**14):
q = input().strip().split()
if q[0] == 'mul': print(enc(mul(dec(q[1]), dec(q[2]))))
if q[0] == 'inv': print(enc(inv(dec(q[1]))))
if q[0] == 'dhp': print(enc(dhp(dec(q[1]), dec(q[2]))))

if int(input()) % p == a: print(open('flag.txt').read())
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Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)
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Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

12 / 17



Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Proof:
▶ Find a generator point G on E.
▶ Hope that a is an x-coordinate on the curve (Pr ≈ 1/2).

Compute (black-box) the corresponding y-coordinate ⌈y⌋,
giving a black-box elliptic-curve point ⌈P⌋ = (⌈a⌋, ⌈y⌋).
(If ⌈y⌋2 ̸= ⌈a⌋3 + ⌈A⌋⌈a⌋2 + ⌈a⌋, then randomize ⌈a⌋ as ⌈a′⌋ = ⌈a⌋+ ⌈δ⌋ and retry.)

▶ Solve the (black-box) DLP (⌈G⌋, ⌈P⌋) via Pohlig–Hellman.
We get k ∈ Z such that (a, y) = [k]G.

▶ Simply compute a as the x-coordinate of [k]G.
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Then CDH is polynomial-time equivalent to DLP in G.

Are there always such E?
Unknown in general, but likely.
People have constructed some for ‘common’ groups G.

=⇒ For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??
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Shor’s algorithm (1994)

Shor’s algorithm breaks all group-based DH instantiations.
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Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.
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Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Application:

For a DLP instance (g, h= ga) in a cyclic group G of order q,
the (publicly computable) function

f : Z2 −→ G
(x, y) 7−→ gx · hy

has period Λ = ⟨(a,−1), (q, 0)⟩ ⊆ Z2, which Shor can recover.
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And now...
For something totally different.



Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an obvious Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not in general broken by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]
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The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.
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Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
▶ Compute a set of generators g1, ..., gr ∈ G.
▶ Apply Shor’s algorithm to the map

f : Zr × Z −→ X
(x1, ..., xr, y) 7−→ (gx1

1 · · · gxr
r ) ∗ ⌈a⌋y .

▶ Any period vector of the form (x1, ..., xr, 1) yields the
desired element a = g−x1

1 · · · g−xr
r .
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Work in “progress”

▶ Can we get similar results in the group-action setting
if the CDH oracle (x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

Thank you!
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And it might turn out to be impossible.

So probably it’s best if you forget about it.
At least for the time being.

Until we’ve worked it out.
Hopefully soon.
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