
Diffie–Hellman reductions

Lorenz Panny

Technische Universiteit Eindhoven

COSIC seminar, Leuven, 2 August 2019

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 17

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 17

Hardness reductions in cryptography

Recall RSA encryption (simplified special case):
▶ Private key: two big prime numbers p, q.
▶ Public key: their product n = pq.
▶ Encrypt: compute c = m65537 mod n.
▶ Decrypt: compute m = c65537−1 mod lcm(p−1, q−1) mod pq.

Clearly, anyone who can factor n can decrypt.
Q: Can everyone capable of decrypting also factor n?

If yes:
No point attacking RSA specifically; just focus on factoring.

1 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.
▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)

???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X.

such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.

▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

Diffie–Hellman key exchange (very big picture)

Parameters: a finite set X, a fixed element x ∈ X.

evil eavesdropper Eve!

The magic words are Squeami
sh Ossifrage

???

a b

a(x) b(x)???
a(b(x)) b(a(x))

▶ Private keys:
efficient functions a, b : X → X such that a ◦ b = b ◦ a.

▶ Public keys: the elements a(x), b(x) ∈ X.
▶ Shared secret: the element a(b(x)) = b(a(x)).

2 / 17

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

Intuition: Every efficient O leads to an efficient A(O).

3 / 17

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

Intuition: Every efficient O leads to an efficient A(O).

3 / 17

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

Intuition: Every efficient O leads to an efficient A(O).

3 / 17

This talk
Is computing a(b(x)) as hard as recovering a or b?

▶ Standard proof technique:
Use a black-box ‘oracle’

O : (x, a(x), b(x)) 7−→ a(b(x))

to construct an efficient algorithm

A(O) : a(x) 7−→ a .

Intuition: Every efficient O leads to an efficient A(O).

3 / 17

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 17

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 17

Group-based Diffie–Hellman

The only reasonable Diffie–Hellman instantiations 1976–2017:
(G, ·) a finite group; a, b exponentiations.

▶ Private keys: a, b ∈ Z/ord g.
▶ Public keys: ga, gb.
▶ Shared secret: (ga)b = (gb)a = gab.

Examples:
▶ Multiplicative groups of finite fields (F∗

q , ·).
▶ Elliptic curves E : y2 = x3 + Ax2 + x with ‘weird’ addition.

4 / 17

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 17

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 17

Problems from Diffie–Hellman

▶ Discrete-logarithm problem (DLP)
Compute a from g, ga.

g

ga

a

▶ Computational Diffie–Hellman problem (CDH)
Compute gab from g, ga, gb.

g

ga

gb

gab

5 / 17

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O

(∑r
i=1 ei · (log |G|+√pi)

)
group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

▶ This is a generic-group algorithm.
It is irrelevant how G is represented or what · does.
The algorithm only requires subroutines that compute · and −1.

! Shoup 1997: This is essentially optimal for generic groups.

!! There are many groups where one can solve DLP faster.

6 / 17

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O

(∑r
i=1 ei · (log |G|+√pi)

)
group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

▶ This is a generic-group algorithm.
It is irrelevant how G is represented or what · does.
The algorithm only requires subroutines that compute · and −1.

! Shoup 1997: This is essentially optimal for generic groups.

!! There are many groups where one can solve DLP faster.

6 / 17

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O

(∑r
i=1 ei · (log |G|+√pi)

)
group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

▶ This is a generic-group algorithm.
It is irrelevant how G is represented or what · does.
The algorithm only requires subroutines that compute · and −1.

! Shoup 1997: This is essentially optimal for generic groups.

!! There are many groups where one can solve DLP faster.

6 / 17

Generic complexity of DLP (Pohlig–Hellman 1978)

▶ Upshot: If the factorization of |G| is pe1
1 · · · per

r , then one can
solve DLP in O

(∑r
i=1 ei · (log |G|+√pi)

)
group operations.

=⇒ Cost dominated by the biggest prime factor of |G|.

=⇒ DLP is easy if |G| is smooth (i.e., no big prime factors).

▶ This is a generic-group algorithm.
It is irrelevant how G is represented or what · does.
The algorithm only requires subroutines that compute · and −1.

! Shoup 1997: This is essentially optimal for generic groups.

!! There are many groups where one can solve DLP faster.

6 / 17

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.

▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 17

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 17

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).

▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 17

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.

▶ invert exponents: g1/a = gaφ(|G|)−1
if gcd(a, |G|) = 1 using

↶

.

7 / 17

Diffie–Hellman’s algebraic properties

Anyone can...
▶ encode numbers x in the exponents: compute gx.
▶ add in the exponents: ga+b = ga · gb.
▶ negate exponents: g−a = (ga)−1.

Anyone who can solve CDH can...
▶ multiply exponents: ga·b = shared_secret(g, ga, gb).
▶ exponentiate exponents: square-and-multiply using

↶

.
▶ invert exponents: g1/a = gaφ(|G|)−1

if gcd(a, |G|) = 1 using

↶

.

7 / 17

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 17

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 17

Black-box rings

▶ We interpret ga as labels for the hidden elements a.
▶ With a CDH oracle we can perform arbitrary ring

operations (+,−, · , /) on these hidden representations.
▶ Notation: Write ⌈a⌋ for the hidden element ga.

The elements ga form a black-box ring isomorphic to Z/ord g.

We mostly care about black-box fields:
For discrete logarithms, it’s sufficient to consider prime-order g.

8 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.

9 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.

9 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.

▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.

9 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.

▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using
Pohlig–Hellman. We get k ∈ Z such that ga = ghk

.
▶ Simply compute a as the power hk ∈ R∗.

9 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.

9 / 17

First result: den Boer (1988)

Let G = F∗
p, write R = Z/|G| = Z/(p − 1),

and suppose |R∗| = φ(p − 1) is smooth.
Then CDH is polynomial-time equivalent to DLP in F∗

p.

Proof idea:
Solve a DLP in the exponents R∗ to find a representation of ⌈a⌋
as a power of some known ⌈h⌋, then recompute a in the clear.

Proof:
▶ Suppose (for simplicity) that R∗ is cyclic with a generator h.
▶ Encode h to a black-box element ⌈h⌋ of R.
▶ Solve the DLP (⌈h⌋, ⌈a⌋) in the hidden version of R∗ using

Pohlig–Hellman. We get k ∈ Z such that ga = ghk
.

▶ Simply compute a as the power hk ∈ R∗.

9 / 17

Auxiliary groups

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

10 / 17

Auxiliary groups

Observation:
There is nothing special about using R∗ in the exponents;
in principle anything expressible as field operations works.

This is known as an auxiliary group:
A smooth-order algebraic group over the black-box field.

10 / 17

Slightly late ‘about me’ slide

I played too many hacking competitions in [2013; +∞).

11 / 17

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

p = 2**48 - 5297 # |G| = p
mul = lambda x,y: (x+y)%p # g^x * g^y = g^(x+y)
inv = lambda x: (-x)%p # (g^x)^-1 = g^(-x)
dhp = lambda x,y: x*y%p # enjoy your oracle!

aes = AES.new(os.urandom(16), AES.MODE_ECB)
enc = lambda x: aes.encrypt(x.to_bytes(16, 'big')).hex()
dec = lambda y: int.from_bytes(aes.decrypt(bytes.fromhex(y)), 'big')

g, a = 1, random.randrange(p)
print(enc(g), enc(y))

for _ in range(2**14):
q = input().strip().split()
if q[0] == 'mul': print(enc(mul(dec(q[1]), dec(q[2]))))
if q[0] == 'inv': print(enc(inv(dec(q[1]))))
if q[0] == 'dhp': print(enc(dhp(dec(q[1]), dec(q[2]))))

if int(input()) % p == a: print(open('flag.txt').read())

11 / 17

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

p = 2**48 - 5297 # |G| = p
mul = lambda x,y: (x+y)%p # g^x * g^y = g^(x+y)
inv = lambda x: (-x)%p # (g^x)^-1 = g^(-x)
dhp = lambda x,y: x*y%p # enjoy your oracle!

aes = AES.new(os.urandom(16), AES.MODE_ECB)
enc = lambda x: aes.encrypt(x.to_bytes(16, 'big')).hex()
dec = lambda y: int.from_bytes(aes.decrypt(bytes.fromhex(y)), 'big')

g, a = 1, random.randrange(p)
print(enc(g), enc(y))

for _ in range(2**14):
q = input().strip().split()
if q[0] == 'mul': print(enc(mul(dec(q[1]), dec(q[2]))))
if q[0] == 'inv': print(enc(inv(dec(q[1]))))
if q[0] == 'dhp': print(enc(dhp(dec(q[1]), dec(q[2]))))

if int(input()) % p == a: print(open('flag.txt').read())

11 / 17

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.

▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗
p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Example auxiliary group: F∗
p2

A challenge I made for a CTF last year:

Solve a DLP (g, ga) in a black-box group of order p = 248 − 5297
using at most 214 queries to mul, inv, and dhp.

Intended solution: next slide.

Better solution: [https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/]

▶ Notice p + 1 = 24 · 3 · 5 · 59 · 281 · 3037 · 23293 is smooth.
▶ Write Fp2 = {x + iy : x, y ∈ Fp} and fix a generator h of F∗

p2 .

▶ Recover k = log⌈h⌋(⌈a+ i⌋) mod (p + 1) using the oracle.
Thus hk = (a+ i) · hr(p+1) for some r ∈ Z.

▶ Observe that hp+1 ∈ F∗
p, so hk = ca+ ci for some c ∈ F∗

p.
=⇒ Divide hk by its i-coefficient to obtain a+ i, hence a!

(This uses only ∼ 4500 queries. Intended solution ∼ 3 times as many.)

11 / 17

https://sasdf.cf/ctf/writeup/2018/hxp/crypto/blinder_v2/

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

12 / 17

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Proof:
▶ Find a generator point G on E.
▶ Hope that a is an x-coordinate on the curve (Pr ≈ 1/2).

Compute (black-box) the corresponding y-coordinate ⌈y⌋,
giving a black-box elliptic-curve point ⌈P⌋ = (⌈a⌋, ⌈y⌋).
(If ⌈y⌋2 ̸= ⌈a⌋3 + ⌈A⌋⌈a⌋2 + ⌈a⌋, then randomize ⌈a⌋ as ⌈a′⌋ = ⌈a⌋+ ⌈δ⌋ and retry.)

▶ Solve the (black-box) DLP (⌈G⌋, ⌈P⌋) via Pohlig–Hellman.
We get k ∈ Z such that (a, y) = [k]G.

▶ Simply compute a as the x-coordinate of [k]G.

12 / 17

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Are there always such E?
Unknown in general, but likely.
People have constructed some for ‘common’ groups G.

=⇒ For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

12 / 17

Second result: Maurer (1994)

Let G be of prime order p, write R = Fp,
and suppose E : y2 = x3 + Ax2 + x /Fp has smooth order.
Then CDH is polynomial-time equivalent to DLP in G.

Are there always such E?
Unknown in general, but likely.
People have constructed some for ‘common’ groups G.

=⇒ For all practical purposes, DLP is equivalent to CDH.

...and they lived happily ever after??

12 / 17

Shor’s algorithm (1994)

Shor’s algorithm breaks all group-based DH instantiations.

13 / 17

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

13 / 17

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

13 / 17

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Let S be some finite set and

f : Zn −→ S

a map with an unknown period lattice Λ ⊆ Zn, such that

f (v + τ) = f (v)

if and only if τ ∈ Λ.

Given such f and some size constraints on Λ,
Shor’s algorithm recovers a basis of Λ in polynomial time.

13 / 17

Shor’s algorithm (1994)

...is a quantum algorithm for period finding.

Application:

For a DLP instance (g, h= ga) in a cyclic group G of order q,
the (publicly computable) function

f : Z2 −→ G
(x, y) 7−→ gx · hy

has period Λ = ⟨(a,−1), (q, 0)⟩ ⊆ Z2, which Shor can recover.

13 / 17

And now...
For something totally different.

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an obvious Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not in general broken by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

14 / 17

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an obvious Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not in general broken by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

14 / 17

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an obvious Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not in general broken by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

14 / 17

Diffie–Hellman from group actions (2006)

Let G be a group, X a set. A group action of G on X is a map

∗ : G × X −→ X

such that id ∗ x = x and (g · h) ∗ x = g ∗ (h ∗ x).

This suggests an obvious Diffie–Hellman scheme:
Let G be finite and commutative and fix x ∈ X.

▶ Private keys: group elements a, b ∈ G.
▶ Public keys: the elements a ∗ x, b ∗ x ∈ X.
▶ Shared secret: the element a ∗ (b ∗ x) = b ∗ (a ∗ x).

This is not in general broken by Shor!

Example: CSIDH ["si:­saId] (2018) [joint w/ Castryck, Lange, Martindale, Renes]

14 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).

▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.

▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

The implicit group

Just like before, we get an implicit structure on the public keys.

However, crucially, the operation ga · gb = ga+b is lost.

=⇒ We only get a black-box group rather than a ring or field.

Anyone can...
▶ encode elements a: compute ⌈a⌋ = a ∗ x.
▶ translate by cleartext elements: a ∗ ⌈b⌋ = ⌈a · b⌋.

Anyone who can solve CDH can...
▶ compose: ⌈a⌋ · ⌈b⌋ = shared_secret(x, a ∗ x, b ∗ x).
▶ exponentiate: square-and-multiply using

↶

.
▶ invert: ⌈a−1⌋ = ⌈a⌋|G|−1 using

↶

.

15 / 17

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
▶ Compute a set of generators g1, ..., gr ∈ G.
▶ Apply Shor’s algorithm to the map

f : Zr × Z −→ X
(x1, ..., xr, y) 7−→ (gx1

1 · · · gxr
r) ∗ ⌈a⌋y .

▶ Any period vector of the form (x1, ..., xr, 1) yields the
desired element a = g−x1

1 · · · g−xr
r .

16 / 17

Our result (2018) [joint w/ Galbraith, Smith, Vercauteren]

Theorem. There is a polynomial-time quantum equivalence
between the CDH and DLP problems for group actions.

Proof:
▶ Compute a set of generators g1, ..., gr ∈ G.
▶ Apply Shor’s algorithm to the map

f : Zr × Z −→ X
(x1, ..., xr, y) 7−→ (gx1

1 · · · gxr
r) ∗ ⌈a⌋y .

▶ Any period vector of the form (x1, ..., xr, 1) yields the
desired element a = g−x1

1 · · · g−xr
r .

16 / 17

Work in “progress”

▶ Can we get similar results in the group-action setting
if the CDH oracle (x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Classical case: Yes, by repeatedly blinding the inputs,
unblinding the outputs, and using majority vote.

Here: Exponentially many queries in superposition;
do we need all of them to be correct?

Thank you!

17 / 17

Work in “progress”

▶ Can we get similar results in the group-action setting
if the CDH oracle (x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Likely. But we haven’t worked this out yet.
And it might turn out to be impossible.

So probably it’s best if you forget about it.
At least for the time being.

Until we’ve worked it out.
Hopefully soon.

Thank you!

17 / 17

Work in “progress”

▶ Can we get similar results in the group-action setting
if the CDH oracle (x, a ∗ x, b ∗ x) 7→ ab ∗ x is unreliable?

Likely. But we haven’t worked this out yet.
And it might turn out to be impossible.

So probably it’s best if you forget about it.
At least for the time being.

Until we’ve worked it out.
Hopefully soon.

Thank you!

17 / 17

