
Post-quantum cryptography

y7 | Lorenz Panny

Technische Universität München

muCCC, Munich, 18 July 2025

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

1 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.

▶ All users have the same capabilities.
For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.

▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.

▶ Hence, public-key or asymmetric.

2 / 46

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.

2 / 46

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

3 / 46

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

3 / 46

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

3 / 46

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

3 / 46

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

4 / 46

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

4 / 46

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

4 / 46

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

4 / 46

Hard problems
▶ By design, asymmetric cryptography is always breakable

— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

5 / 46

Hard problems
▶ By design, asymmetric cryptography is always breakable

— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

5 / 46

Hard problems
▶ By design, asymmetric cryptography is always breakable

— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

5 / 46

Hard problems
▶ By design, asymmetric cryptography is always breakable

— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

5 / 46

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

6 / 46

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

6 / 46

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

6 / 46

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

6 / 46

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

6 / 46

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

7 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.

Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

a← {0, ..., q−1} b← {0, ..., q−1}

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

a← {0, ..., q−1} b← {0, ..., q−1}

A := ga B := gb

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

a← {0, ..., q−1} b← {0, ..., q−1}

A := ga B := gb

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

a← {0, ..., q−1} b← {0, ..., q−1}

A := ga B := gb

s := Ba s := Ab

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.
Typical choices include G ≤ (Fp\{0}, ·) and groups of elliptic-curve points over finite fields.

Alice public Bob

a← {0, ..., q−1} b← {0, ..., q−1}

A := ga B := gb

s := Ba s := Ab

Ba = (gb)a = gab = (ga)b = Ab.

8 / 46

Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)

▶ KeyGen(): Like Diffie–Hellman. Key pair is (a,A) where A = ga.

Prover(a,A) Verifier(A)

r← {0, ..., q−1}

“commitment” R := gr

“challenge” c← {0, ..., q−1}

“response” s := (r− a · c) mod q

check R ?
= gs · Ac

Correctness: gs · Ac = gr−a·c · ga·c = gr = R.

This can be transformed into a signature scheme.

9 / 46

Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)

▶ KeyGen(): Like Diffie–Hellman. Key pair is (a,A) where A = ga.

Prover(a,A) Verifier(A)

r← {0, ..., q−1}

“commitment” R := gr

“challenge” c← {0, ..., q−1}

“response” s := (r− a · c) mod q

check R ?
= gs · Ac

Correctness: gs · Ac = gr−a·c · ga·c = gr = R.

This can be transformed into a signature scheme.

9 / 46

Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)

▶ KeyGen(): Like Diffie–Hellman. Key pair is (a,A) where A = ga.

Prover(a,A) Verifier(A)

r← {0, ..., q−1}

“commitment” R := gr

“challenge” c← {0, ..., q−1}

“response” s := (r− a · c) mod q

check R ?
= gs · Ac

Correctness: gs · Ac = gr−a·c · ga·c = gr = R.

This can be transformed into a signature scheme.
9 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.

▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.

▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.

10 / 46

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

11 / 46

Enter quantum.

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

yes, if you have a quantum computer

12 / 46

Enter quantum.

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

yes, if you have a quantum computer

12 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.

▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.

▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

13 / 46

What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

13 / 46

14 / 46

Quantum computing: Principle

▶ “Normal” computer: Every bit always holds a value of either 0 or 1.

▶ Quantum computer: “Qubits” can in a certain well-defined way
hold a “mixture” of the values 0 and 1.

|0⟩

|1⟩

It is not true that “quantum computers can simply try all keys in parallel”.

15 / 46

Quantum computing: Principle

▶ “Normal” computer: Every bit always holds a value of either 0 or 1.
▶ Quantum computer: “Qubits” can in a certain well-defined way

hold a “mixture” of the values 0 and 1.

|0⟩

|1⟩

It is not true that “quantum computers can simply try all keys in parallel”.

15 / 46

Quantum computing: Principle

▶ “Normal” computer: Every bit always holds a value of either 0 or 1.
▶ Quantum computer: “Qubits” can in a certain well-defined way

hold a “mixture” of the values 0 and 1.

|0⟩

|1⟩

It is not true that “quantum computers can simply try all keys in parallel”.

15 / 46

Quantum computing: Principle

▶ “Normal” computer: Every bit always holds a value of either 0 or 1.
▶ Quantum computer: “Qubits” can in a certain well-defined way

hold a “mixture” of the values 0 and 1.

|0⟩

|1⟩

It is not true that “quantum computers can simply try all keys in parallel”.

15 / 46

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.

Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

16 / 46

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

16 / 46

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

16 / 46

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

16 / 46

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1} such that
∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→ S, find (a description of)
the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S such that ∃! s∈G
with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O
(√

log|G|
)

.

16 / 46

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1} such that
∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→ S, find (a description of)
the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S such that ∃! s∈G
with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O
(√

log|G|
)

.

16 / 46

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1} such that
∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→ S, find (a description of)
the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S such that ∃! s∈G
with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O
(√

log|G|
)

.

16 / 46

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1} such that
∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→ S, find (a description of)
the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S such that ∃! s∈G
with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O
(√

log|G|
)

.

16 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).

Then ker(f) contains the vector (x,−1).
▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.

Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.

Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, ·), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, ·) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)

17 / 46

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)

18 / 46

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)

18 / 46

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)

18 / 46

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)

18 / 46

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)
18 / 46

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

19 / 46

Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.

20 / 46

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

21 / 46

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

21 / 46

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

21 / 46

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

21 / 46

Note on “quantum cryptography”

21 / 46

Note on “quantum cryptography”

21 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 / 46

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

23 / 46

Shortcomings of PQC
The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

23 / 46

Shortcomings of PQC
The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

23 / 46

Shortcomings of PQC
The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

23 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 / 46

NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)
24 / 46

Kyber: Numbers

...

Source: https://pq-crystals.org/kyber/

25 / 46

https://pq-crystals.org/kyber/

Dilithium: Numbers

...

Source: https://pq-crystals.org/dilithium/

26 / 46

https://pq-crystals.org/dilithium/

SPHINCS: Sizes

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip

27 / 46

https://sphincs.org/data/sphincs+-round3-submission-nist.zip

SPHINCS: Speed

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip

28 / 46

https://sphincs.org/data/sphincs+-round3-submission-nist.zip

Summary

Cryptography will be okay,
but more expensive than before.

General theme: You can have speeds ≈ comparable to pre-quantum ECC,
or sizes ≈ comparable to pre-quantum ECC, but not at the same time.

:(

29 / 46

Summary

Cryptography will be okay,
but more expensive than before.

General theme: You can have speeds ≈ comparable to pre-quantum ECC,
or sizes ≈ comparable to pre-quantum ECC, but not at the same time.

:(

29 / 46

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

30 / 46

(Euclidean) lattices

A (Euclidean) lattice of dimension n is a subset of Rm of the form

Λ =
{

v · B
∣∣ v ∈ Zn } ,

where B ∈ Rn×m is a full-rank matrix. We call B a basis matrix of Λ.
(In other words, Λ is the set of Z-linear combinations of the rows of B.)

31 / 46

(Euclidean) lattices

A (Euclidean) lattice of dimension n is a subset of Rm of the form

Λ =
{

v · B
∣∣ v ∈ Zn } ,

where B ∈ Rn×m is a full-rank matrix. We call B a basis matrix of Λ.
(In other words, Λ is the set of Z-linear combinations of the rows of B.)

31 / 46

Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.

32 / 46

Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.

32 / 46

Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.

32 / 46

Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.

32 / 46

Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.

32 / 46

Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

General theme: The (1) shorter and (2) closer to orthogonal a basis is, the better.

33 / 46

Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

General theme: The (1) shorter and (2) closer to orthogonal a basis is, the better.

33 / 46

Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

General theme: The (1) shorter and (2) closer to orthogonal a basis is, the better.

33 / 46

The blueprint

...for lattice-based cryptography is as follows:

▶ The private key is a “good” basis of a lattice Λ.
▶ The public key is a “bad” basis of Λ.
▶ The goal for an attacker is to solve a hard lattice problem in Λ.
▶ The private-key holder can solve those problems using the good basis.

34 / 46

The blueprint

...for lattice-based cryptography is as follows:
▶ The private key is a “good” basis of a lattice Λ.

▶ The public key is a “bad” basis of Λ.
▶ The goal for an attacker is to solve a hard lattice problem in Λ.
▶ The private-key holder can solve those problems using the good basis.

34 / 46

The blueprint

...for lattice-based cryptography is as follows:
▶ The private key is a “good” basis of a lattice Λ.
▶ The public key is a “bad” basis of Λ.

▶ The goal for an attacker is to solve a hard lattice problem in Λ.
▶ The private-key holder can solve those problems using the good basis.

34 / 46

The blueprint

...for lattice-based cryptography is as follows:
▶ The private key is a “good” basis of a lattice Λ.
▶ The public key is a “bad” basis of Λ.
▶ The goal for an attacker is to solve a hard lattice problem in Λ.

▶ The private-key holder can solve those problems using the good basis.

34 / 46

The blueprint

...for lattice-based cryptography is as follows:
▶ The private key is a “good” basis of a lattice Λ.
▶ The public key is a “bad” basis of Λ.
▶ The goal for an attacker is to solve a hard lattice problem in Λ.
▶ The private-key holder can solve those problems using the good basis.

34 / 46

An encryption scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Encrypt(m,B′): View m as a vector in Zn and define the ciphertext as
c := mB′ + e, where e is a small “error vector”.

▶ Decrypt(c,B): Using B, find the vector c− e = mB′ ∈ Λ. Compute
m := (c− e)B′−1.

This scheme can really only encrypt random messages, and great care
must be taken when sampling B′ and e, else this is totally broken.

35 / 46

An encryption scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Encrypt(m,B′): View m as a vector in Zn and define the ciphertext as
c := mB′ + e, where e is a small “error vector”.

▶ Decrypt(c,B): Using B, find the vector c− e = mB′ ∈ Λ. Compute
m := (c− e)B′−1.

This scheme can really only encrypt random messages, and great care
must be taken when sampling B′ and e, else this is totally broken.

35 / 46

An encryption scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Encrypt(m,B′): View m as a vector in Zn and define the ciphertext as
c := mB′ + e, where e is a small “error vector”.

▶ Decrypt(c,B): Using B, find the vector c− e = mB′ ∈ Λ. Compute
m := (c− e)B′−1.

This scheme can really only encrypt random messages, and great care
must be taken when sampling B′ and e, else this is totally broken.

35 / 46

An encryption scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Encrypt(m,B′): View m as a vector in Zn and define the ciphertext as
c := mB′ + e, where e is a small “error vector”.

▶ Decrypt(c,B): Using B, find the vector c− e = mB′ ∈ Λ. Compute
m := (c− e)B′−1.

This scheme can really only encrypt random messages, and great care
must be taken when sampling B′ and e, else this is totally broken.

35 / 46

A signature scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Sign(m,B): Let t := H(m) ∈ Rm and compute the signature s ∈ Λ as a lattice
vector close to the hash t. Example: If m= n one could set s := ⌊tB−1⌉B, but this is very broken. :)

▶ Verify(m, s,B′): Ensure s ∈ Λ. Let t := H(m) and check that ∥s− t∥ is small.

Great care must be taken when sampling s, else this is totally broken.

36 / 46

A signature scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Sign(m,B): Let t := H(m) ∈ Rm and compute the signature s ∈ Λ as a lattice
vector close to the hash t. Example: If m= n one could set s := ⌊tB−1⌉B, but this is very broken. :)

▶ Verify(m, s,B′): Ensure s ∈ Λ. Let t := H(m) and check that ∥s− t∥ is small.

Great care must be taken when sampling s, else this is totally broken.

36 / 46

A signature scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Sign(m,B): Let t := H(m) ∈ Rm and compute the signature s ∈ Λ as a lattice
vector close to the hash t. Example: If m= n one could set s := ⌊tB−1⌉B, but this is very broken. :)

▶ Verify(m, s,B′): Ensure s ∈ Λ. Let t := H(m) and check that ∥s− t∥ is small.

Great care must be taken when sampling s, else this is totally broken.

36 / 46

A signature scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Sign(m,B): Let t := H(m) ∈ Rm and compute the signature s ∈ Λ as a lattice
vector close to the hash t. Example: If m= n one could set s := ⌊tB−1⌉B, but this is very broken. :)

▶ Verify(m, s,B′): Ensure s ∈ Λ. Let t := H(m) and check that ∥s− t∥ is small.

Great care must be taken when sampling s, else this is totally broken.

36 / 46

Real-world lattice-based cryptography

...works with lattices defined by linear systems of equations over Z/q.

They are a convenient choice for cryptography since they are easy to generate
and allow us to work with integers of bounded size.

37 / 46

Real-world lattice-based cryptography

...works with lattices defined by linear systems of equations over Z/q.

They are a convenient choice for cryptography since they are easy to generate
and allow us to work with integers of bounded size.

37 / 46

Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

38 / 46

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

39 / 46

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

39 / 46

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

39 / 46

Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

40 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, , ,] [, , ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, , ,] [, , ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

41 / 46

CSIDH ["si:­saId] key exchange

Alice Bob
[, , ,] [, , ,]

41 / 46

A much more random-looking isogeny graph

42 / 46

The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction,
but exponential-time in the⇐= direction. ⇝ Cryptography!

43 / 46

The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction,
but exponential-time in the⇐= direction. ⇝ Cryptography!

43 / 46

The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction,
but exponential-time in the⇐= direction. ⇝ Cryptography!

43 / 46

SQIsign

...is a signature scheme based on this one-wayness.

https://sqisign.org

44 / 46

https://sqisign.org

SQIsign

...is a signature scheme based on this one-wayness.

https://sqisign.org

44 / 46

https://sqisign.org

SQIsign

...is a signature scheme based on this one-wayness.

https://sqisign.org

44 / 46

https://sqisign.org

SQIsign: Numbers

Source: https://sqisign.org

45 / 46

https://sqisign.org

Questions?

(Also feel free to email me: lorenz@yx7.cc)

46 / 46

	Big picture: Cryptography
	Important public-key systems
	The impending(?) quantum apocalypse
	Post-quantum cryptography (PQC)
	Cryptography from lattices
	Post-quantum elliptic-curve cryptography

