Post-quantum cryptography

y7 | Lorenz Panny

Technische Universitdt Miinchen

muCCC, Munich, 18 July 2025



Big picture: Cryptography

1/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric or secret-key.

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric or secret-key.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric or secret-key.
Public-key cryptography (since ~1976):

» Keys are now pairs: a private key and a public key.
» They give the respective owners different capabilities.

2/46



Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric or secret-key.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.
» They give the respective owners different capabilities.

» Hence, public-key or asymmetric.

2/46



Example: Digital signatures

—= CE:E?::—
A %

3/46



Example: Digital signatures

» Alice uses her private key to sign a (digital) document.

3/46



Example: Digital signatures

» Alice uses her private key to sign a (digital) document.

» Anyone can verify the signature using Alice’s public key.

3/46



Example: Digital signatures

» Alice uses her private key to sign a (digital) document.

» Anyone can verify the signature using Alice’s public key.

@% This mimics the intended properties of a “real” signature.

3/46



Example: Public-key encryption

E_i»i




Example: Public-key encryption

i.i?,:—

» Anyone can use Bob’s public key to encrypt a message

4/46



Example: Public-key encryption

i.i?,:—

» Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

4/46



Example: Public-key encryption

i.i?,:—

» Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

@% Analogy: An open padlock for which Bob has the key.

4/46



Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

5/46



Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

5/46



Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

» Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

5/46



Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

» Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

» Key feature: These objects have a lot of useful structure.
» Sweet spot: just enough to make things functional but secure.

5/46



A cryptanalyst’s life

Have: Supposedly hard computational problem.

6/46



A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

6/46



A cryptanalyst’s life

Have: Supposedly hard computational problem.

search found
R
attack one?

yes
V
oops!
broken!

6/46



A cryptanalyst’s life

Have: Supposedly hard computational problem.

search found did we
R

- no - try very
k ?
attac one hard?
I
yes
oops!

broken!

6/46



A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

yes

v

oops!
broken!

did we
try very
hard?

— yes —>

seems
secure

6/46



Important public-key systems

7 /46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob
a<+{0,....q—1} b+ {0,...,q9-1}

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob
a<+{0,....q—1} b+ {0,...,q9-1}

A:=g" B::g[’

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob
a<+{0,....q—1} b+ {0,...,q9-1}

B :=

A:=g" g
P———

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob
a<+{0,....q—1} b+ {0,...,q9-1}

A:=g" B::g[’
P———

s:= B* s:= AP

8/46



Diffie-Hellman key exchange (1976)

Public parameters: A finite group G and an element g € G of (prime) order .

Typical choices include G < (F,\{0}, ) and groups of elliptic-curve points over finite fields.

Alice public Bob
a<+{0,....q—1} b+ {0,...,q9-1}
A ::sgﬂ>_<8:: g
s:= B* s:= A"

£ b= (@) =g = () = A"

8/46



Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)
» KeyGen(): Like Diffie-Hellman. Key pair is (1, A) where A = g“.

Prover(a, A) Verifier(A)
r<+{0,...,g—1}

“commitment” R := ¢’

-

“challenge” ¢ + {0, ...,q—1}
R

“response” s := (r —a-c) mod ¢q
-

check R £ g -A°

9/46



Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)
» KeyGen(): Like Diffie-Hellman. Key pair is (1, A) where A = g“.

Prover(a, A) Verifier(A)
r<+{0,...,g—1}

“commitment” R := ¢’

-—
“challenge” ¢ + {0, ...,q—1}
R

“response” s := (r —a-c) mod ¢q
-

check R = g -A°

Correctness: ¢°- A" =¢ " . ¢"“ =¢ =R.

9/46



Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)

» KeyGen(): Like Diffie-Hellman. Key pair is (1, A) where A = g“.

Prover(a, A) Verifier(A)
r<+{0,...,g—1}
“commitment” R := ¢’

-

“challenge” ¢ + {0, ...,q—1}
R

“response” s := (r —a-c) mod ¢q
-

check R = g -A°

Correctness: ¢°- A" =¢ " . ¢"“ =¢ =R.
{Jg This can be transformed into a signature scheme.

9/46



RSA (1978)

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).
» Public key: The product 7 = p - g, an integer e.

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).
» Public key: The product 7 = p - g, an integer e.

» “Encryption”: m + m‘ mod 7.

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).
» Public key: The product 7 = p - g, an integer e.
» “Encryption”: m + m‘ mod 7.

/

» “Decryption”: ¢ ¢ mod 7.

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).
» Public key: The product 7 = p - g, an integer e.

/

» “Encryption”: m + m‘ mod 7.
» “Decryption”: ¢ ¢ mod 7.

é Inverting m — m® mod 1 seems as hard as factoring n. =

10/ 46



RSA (1978)

» Private key: Two large primes p, g.

The modular inverse d = ¢~}

mod ¢ where ¢ = (p—1)(q—1).
» Public key: The product 7 = p - g, an integer e.

/

» “Encryption”: m + m‘ mod 7.
» “Decryption”: ¢ ¢ mod 7.

é Inverting m ~ m® mod n seems as hard as factoring n. =

This is Textbook RSA, which is wildly insecure.
= Proceed with caution, or do not proceed at all.

10/ 46



The impending(?) quantum apocalypse

11/46



Enter quantum.

Have: Supposedly hard computational problem.

search found
—_—
attack one?

12/46



Enter quantum.

Have: Supposedly hard computational problem.

search
attack

yes, if you have a quantum computer

found
one?

s

oops!
broken!

12/46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.
» Mechanical calculation device: Classical mechanics — gears etc.

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.
» Mechanical calculation device: Classical mechanics — gears etc.
» Pocket calculator/laptop: Electronics of silicon-based semiconductors.

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

Calculation “by hand”: Interaction between brain and pen and paper.
Mechanical calculation device: Classical mechanics — gears etc.
Pocket calculator/laptop: Electronics of silicon-based semiconductors.
Quantum computer: Quantum-mechanical properties of particles.

vyvyyy

13 /46



What are computers, really?

» Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

Calculation “by hand”: Interaction between brain and pen and paper.
Mechanical calculation device: Classical mechanics — gears etc.
Pocket calculator/laptop: Electronics of silicon-based semiconductors.
Quantum computer: Quantum-mechanical properties of particles.

vyvyyy

~+ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

13 /46



14 /46



Quantum computing: Principle

» “Normal” computer: Every bit always holds a value of either 0 or 1.

15/46



Quantum computing: Principle

» “Normal” computer: Every bit always holds a value of either 0 or 1.

» Quantum computer: “Qubits” can in a certain well-defined way
hold a “mixture” of the values 0 and 1.

15/46



Quantum computing: Principle

» “Normal” computer: Every bit always holds a value of either 0 or 1.

» Quantum computer: “Qubits” can in a certain well-defined way
hold a “mixture” of the values 0 and 1.

0)

15/46



Quantum computing: Principle

» “Normal” computer: Every bit always holds a value of either 0 or 1.

» Quantum computer: “Qubits” can in a certain well-defined way
hold a “mixture” of the values 0 and 1.

0)

Ry
! It is not true that “quantum computers can simply try all keys in parallel”.

15/46



Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.

16/ 46



Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

16/ 46



Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!

Quantum computers struggle with plenty of tasks.

‘ii

16/ 46



Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

16 / 46



Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

16/ 46



Quantum cryptanalysis
Of primary relevance to cryptography are three algorithms:
» Grover’s algorithm: Given a function f: {0,1}" — {0, 1} such that

d'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

16/ 46



Quantum cryptanalysis
Of primary relevance to cryptography are three algorithms:
» Grover’s algorithm: Given a function f: {0,1}" — {0, 1} such that

d'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

» Shor’s algorithm: Given a periodic function f: Z" — S, find (a description of)
the set of period vectors.

1] Polynomial—time complexity. (More on the next slide.)

16/ 46



Quantum cryptanalysis
Of primary relevance to cryptography are three algorithms:
» Grover’s algorithm: Given a function f: {0,1}" — {0, 1} such that

d'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

» Shor’s algorithm: Given a periodic function f: Z" — S, find (a description of)
the set of period vectors.

1] Polynomial—time complexity‘ (More on the next slide.)

» Kuperberg’s algorithm: Given two functions f;,f,: G — S such that 3ls€ G
with fo(x) = fi(x + s) for all x, find that s.

I Subexponential complexity: from |G|OM) to 2© (1ez[G1) :

16/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

é Shor can (among other things) compute the kernel of a map of the form

f: (Zr’_’_)_»(Gv')a (xla-”,xr)f—)gjlcl'--gfr,
where (G, -) is a finite abelian group and g1, ...,gr € G.

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

é Shor can (among other things) compute the kernel of a map of the form

f: (Zr’_’_)_)é(G?')a (xla-”,xr)f—)gjlcl'--gfr,
where (G, -) is a finite abelian group and g1, ...,gr € G.

» Solving DLP (¢.h=¢"): Letr =2 and (g1,%2) = (g, h).

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

é Shor can (among other things) compute the kernel of a map of the form

f: (Zr’_’_)_)é(G?')a (xla-”,xr)f—)gjlcl'--gfr,
where (G, -) is a finite abelian group and g1, ...,gr € G.

» Solving DLP (¢.h=¢"): Letr =2 and (g1,%2) = (g, h).
Then ker(f) contains the vector (x, —1).

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

é Shor can (among other things) compute the kernel of a map of the form

f: (Zr’_’_)_)é(G?')a (xla-”,xr)f—)gjlcl'--gfr,
where (G, -) is a finite abelian group and g1, ...,gr € G.

» Solving DLP (¢.h=¢"): Letr =2 and (g1,%2) = (g, h).
Then ker(f) contains the vector (x, —1).

» Factoring n = pg: Letr =1 and g; = o be chosen at random from (Z/n)*.

17/ 46



Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time. %

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

é Shor can (among other things) compute the kernel of a map of the form

f: (Zr’_’_)_)é(G?')a (xla-”,xr)f—)gjlcl'--gfr,
where (G, -) is a finite abelian group and g1, ...,gr € G.

» Solving DLP (¢.h=¢"): Letr =2 and (g1,%2) = (g, h).
Then ker(f) contains the vector (x, —1).

» Factoring n = pg: Letr =1 and g; = o be chosen at random from (Z/n)*.
Then ker(f) = ord(«)Z. (Exercise: With Pr >1/2, we get ged(n, 0" “//2 = 1) € {p,q)}.)

17/ 46



Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

18 /46



Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
QUANTUM
COMPUTERS ARE
PARTICULARLY
GOOD AT

18 /46



Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
STUFF THAT R,
QUANTUM CR%LnggAPHY
COMPUTERS ARE RELIES ON
PARTICULARLY
600D AT

18 /46



Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
STUFF THAT R,
QUANTUM GR%LnggAPHY
COMPUTERS ARE RELIES ON
PARTICULARLY
GOOD AT

18 /46



Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT

STUFF THAT Lol
QUANTUM ot
CRYPTOGRAPHY
COMPUTERS ARE RELIES ON
PARTICULARLY
GOOD AT

» Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).
(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)
18 /46



Post-quantum cryptography (PQC)

19 /46



Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.

20/ 46



Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

21/46



Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

21/46



Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

» In quantum cryptography, all users need quantum devices!

21/46



Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

» In quantum cryptography, all users need quantum devices!

N

NN EN
EHEN

H H |

21/46



Note on “quantum cryptography”

Ex * Federal Office
REPUBLIQUE 7% | for Information Security
FRANCAISE

Literté

Egalité
Fraternte

n
M General Intelligence and & SWEDISH ARMED FORCES
Security Service
Ministry of th Interior and
Kingdom Relations

Position Paper on
Quantum Key Distribution

French Cybersecurity Agency (ANSSI)
Federal Office for Information Security (BSI)
Netherlands National Communications Security Agency (NLNCSA)

Swedish National Communications Security Authority, Swedish Armed Forces

21/46



Note on “quantum cryptography”

Executive summary

Quantum Key Distribution (QKD) seeks to leverage quantum effects in order for two remote parties to agree
on a secret key via an insecure quantum channel. This technology has received significant attention,
sometimes claiming unprecedented levels of security against attacks by both classical and quantum
computers.

Due to current and inherent limitations, QKD can however currently only be used in practice in some niche
use cases. For the vast majority of use cases where classical key agreement schemes are currently used it is
not possible to use QKD in practice. Furthermore, QKD is not yet sufficiently mature from a security
perspective. In light of the urgent need to stop relying only on quantum-vulnerable public-key
cryptography for key establishment, the clear priorities should therefore be the migration to post-quantum
cryptography and/or the adoption of symmetric keying.

This paper is aimed at a general audience. Technical details have therefore been left out to the extent
possible. Technical terms that require a definition are printed in italics and are explained in a glossary at the
end of the document.

21/46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

22 /46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Hash-based signatures

Hash functions are random-looking functions that compress arbitrary data to short
bitstrings. They should be hard to invert.

really hard

An individual can tie a hash value to their identity and later identify themself by
revealing the corresponding input.

Selectively revealing inputs depending on a message leads to a signature scheme.

22/46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Code-based crypto

Main application: Encryption.
Underlying problem: Correct errors in a codeword of a random-looking code.

error

secret nessad® —| Encoder |— 0101101101110010 — ) — 0100101111110110

e o
harq Without secret decod®

Oldest proposal: McEliece 1978. Still essentially unbroken.

22/46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Lattice-based crypto

Main applications: Encryption, signatures, and beyond.

Underlying problem: Find short vectors in a discrete additive subgroup of R™.

.
short!
3

j//./..//../'. .long = )

22/46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Multivariate crypto

Main application: Signatures.

Underlying problem: Solve systems of quadratic equations over a finite field.

1022 + 1522 + 192y + Twz + 27yz + 20z +y = 14 (mod 31)
2522 + 30y* + 1722 + 302y + 2372 + 2Tyz + 152 + 4y + 162 =5 (mod 31)
1527 + 9y? + 112% + 18zy + 242z + 16yz + 282 + 9y +32 =6 (mod 31)
272% + 10y® + 1722 + Tz + 28yz + 4o + 13y + 272 = 12 (mod 31)

22/46



The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Isogeny-based crypto

Main applications: Key exchange, signatures.

Underlying problem: Find an isogeny between two elliptic curves.
An isogeny is a surjective group homomorphism given by rational functions.

22/46



Shortcomings of PQC

23/46



Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptographic functionality.

23 /46



Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

23 /46



Shortcomings of PQC
The good news:

There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.

pre-quantum post-quantum
. . : ;eez; d34ch 6! b59c51a8552
cf 7d3153e460f4 ca318862d6a5’

5479a006012d82f7212b40284d310e01bcb11e122¢1fd303e441807849a7ead7
976a99abb7ccc4b674ad66f68ecal 95789b277d23c3d67bcd18ca7c908b21e53
1363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d829549569f 10827c423
cddff82aae@1a90111395487b9c82b7b5a7978d789679e66b75087bfbf FO569F

493531b72131592638843 122362070 b437c58641d4560
873829813091 1dsfe
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb4a1727699ebb315¢43
7b210d42626ebc66c916af 1£3515374314e4f40309ca7289c7be51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9F03bb3954236ec422bedc8e991a79af2
86b6a7c459a95ed44868ed8052f 2dbof 3741710228979507cF961564882b5ea
19515e€00d657c7141e9b05f9a24136a2f915620b664404b5397cC 7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e 294

da7b68b7a99 7371

1d83 3790149487
73a9695¢1 745c1308af 354¢10595F3682a
4dc26d9d: 7594384 bca348330ac1791fab14190
99cf128828, 3b12739c! 1dfebcbs

807aabaa8cbect4d749a947f851¢47c6537e196f 1 fecdd63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaab4edc119488531e8a651a3175014

8e174 f:
4718674ca708e436d5¢] 5ee1d95367c623512653¢83b27b41cb308F8c2929b19
401ec27a1605f8: 27e 4b8

23 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

24 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

» Two tracks: Key exchange & signatures.

24 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

» Two tracks: Key exchange & signatures.

» Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/ AES-192 /SHA384 / AES-256", respectively.

24 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

» Two tracks: Key exchange & signatures.

» Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/ AES-192 /SHA384 / AES-256", respectively.

» In 2024, four algorithms selected:
» “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
» “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
» “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
» “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

24 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

» Two tracks: Key exchange & signatures.

» Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/ AES-192 /SHA384 / AES-256", respectively.

» In 2024, four algorithms selected:

» “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.

» “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.

» “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
» “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

» In 2025, another algorithm selected:
» “HQC”. Code-based key exchange.

24 /46



NISTPQC

Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

v

Two tracks: Key exchange & signatures.

v

Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/ AES-192 /SHA384 / AES-256", respectively.

In 2024, four algorithms selected:

» “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.

» “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.

» “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
» “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

v

v

In 2025, another algorithm selected:
» “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).
(In particular, “key exchange” does not provide the interface of pre-quantum DH.)

24 /46



Kyber: Numbers

Kyber-512
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)
sk: 1632 gen: 122684 gen: 33856
pk: 800 enc: 154524 enc: 45200
ct: 768 dec: 187960 dec: 34572
Kyber-1024
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)
sk: 3168 gen: 307148 gen: 73544
pk: 1568 enc: 346648 enc: 97324
ct: 1568 dec: 396584 dec: 79128

Source: https://pg-crystals.org/kyber/

25/46


https://pq-crystals.org/kyber/

Dilithium: Numbers

Dilithium?2
Sizes (in bytes) Skylake cycles (ref) Skylake cycles (avx2)
gen: 300751 gen: 124031
pk: 1312 sign: 1355434 sign: 333013
sig: 2420 verify: 327362 verify: 118412
Dilithium5
Sizes (in bytes) Skylake cycles (ref) Skylake cycles (avx2)
sk: gen: 819475 gen: 298050
pk: 2592 sign: 2856803 sign: 642192
sig: 4595 verify: 871609 verify: 279936

Source: https://pq-crystals.org/dilithium/

26 /46


https://pq-crystals.org/dilithium/

SPHINCS: Sizes

public key size

secret, key size

signature size

SPHINCS™*-128s
SPHINCS™-128f
SPHINCS™-192s
SPHINCS™*-192f
SPHINCS™-256s
SPHINCS*-256f

32
32
48
48
64
64

64
64
96
96
128
128

7856
17088
16224
35664
29792
49 856

Table 8: Key and signature sizes in bytes

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip

27 /46


https://sphincs.org/data/sphincs+-round3-submission-nist.zip

SPHINCS: Speed

key generation signing  verification
SPHINCST-SHA-256-128s-simple 84964 790 644740 090 861478
SPHINCST-SHA-256-128s-robust 175257460 1328848352 1827104
SPHINCST-SHA-256-128f-simple 1334220 33651 546 2150290
SPHINCST-SHA-256-128f-robust 2748026 68 541 846 4801338
SPHINCST-SHA-256-192s-simple 125310788 1246378 060 1444030
SPHINCST-SHA-256-192s-robust 260903972 2517396 082 3103732
SPHINCS™-SHA-256-192f-simple 1928970 55320742 3492210
SPHINCST-SHA-256-192f-robust 4063 066 113484 456 7552358
SPHINCST-SHA-256-256s-simple 80943202 1025721040 1986974
SPHINCST-SHA-256-256s-robust 339101780 3912132754 8294732
SPHINCST-SHA-256-256f-simple 5067 546 109104 452 3559052
SPHINCST-SHA-256-256f-robust 21327470 435984 168 14938510

Table 6: Runtime benchmarks for SPHINCST-SHA-256 on AVX2

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip

28 /46


https://sphincs.org/data/sphincs+-round3-submission-nist.zip

Summary

Cryptography will be okay,
but more expensive than before.

29 /46



Summary

Cryptography will be okay,
but more expensive than before.

General theme: You can have speeds ~ comparable to pre-quantum ECC,
or sizes ~ comparable to pre-quantum ECC, but not at the same time. ~

29 /46



Cryptography from lattices

30/46



(Euclidean) lattices

NG

31/46



(Euclidean) lattices

A (Euclidean) lattice of dimension 7 is a subset of R™ of the form
A={v-B ’ veZ'},
where B € R™*™ ig a full-rank matrix. We call B a basis matrix of A.

(In other words, A is the set of Z-linear combinations of the rows of B.)

31/46



Essential lattice problems

32/46



Essential lattice problems

The approximate shortest-vector problem SVP. (A) is:

Given a basis matrix B of A and an “approximation factor” v > 1,
find a vector s € A such that ||s|| < 7 - minycp\ (o3 [|o]]-

Throughout, let A\1(A) = min,c\ 10y [|7|| denote the length of a shortest (nonzero) vector in A.

32/46



Essential lattice problems

The approximate shortest-vector problem SVP. (A) is:

Given a basis matrix B of A and an “approximation factor” v > 1,
find a vector s € A such that ||s|| < 7 - minycp\ (o3 [|o]]-

Throughout, let A\1(A) = min,c\ 10y [|7|| denote the length of a shortest (nonzero) vector in A.

The approximate closest-vector problem CVP, (A, t) is:

Given a basis matrix B of A, a vector t € R" and an “approximation factor” > 1,
find a vector s € A such that ||s — t|| < 7 - minyep||v — |

32/46



Essential lattice problems

The approximate shortest-vector problem SVP. (A) is:

Given a basis matrix B of A and an “approximation factor” v > 1,
find a vector s € A such that ||s|| < 7 - minycp\ (o3 [|o]]-

Throughout, let A1 (A) = mingea\ f01|/7|| denote the length of a shortest (nonzero) vector in A.

The approximate closest-vector problem CVP, (A, ) is:

Given a basis matrix B of A, a vector f € R and an “approximation factor” v > 1,
find a vector s € A such that ||s — t|| < 7 - minyep||v — |

For random lattices and “small-ish” -, these problems are hard as n — oc.

32/46



Essential lattice problems

The approximate shortest-vector problem SVP. (A) is:

Given a basis matrix B of A and an “approximation factor” v > 1,
find a vector s € A such that ||s|| < 7 - minycp\ (o3 [|o]]-

Throughout, let A1 (A) = mingea\ f01|/7|| denote the length of a shortest (nonzero) vector in A.

The approximate closest-vector problem CVP, (A, ) is:

Given a basis matrix B of A, a vector f € R and an “approximation factor” v > 1,
find a vector s € A such that ||s — t|| < 7 - minyep||v — |

For random lattices and “small-ish” -, these problems are hard as n — oc.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP — uSVP/BDD) guarantee that an unusually short/close solution exists.

32/46



Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

33 /46



Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

33 /46



Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

General theme: The (1) shorter and (2) closer to orthogonal a basis is, the better.

33 /46



The blueprint

...for lattice-based cryptography is as follows:

34 /46



The blueprint

...for lattice-based cryptography is as follows:
» The private key is a “good” basis of a lattice A.

34 /46



The blueprint

...for lattice-based cryptography is as follows:
» The private key is a “good” basis of a lattice A.
» The public key is a “bad” basis of A.

34 /46



The blueprint

...for lattice-based cryptography is as follows:
» The private key is a “good” basis of a lattice A.
» The public key is a “bad” basis of A.

» The goal for an attacker is to solve a hard lattice problem in A.

34 /46



The blueprint

...for lattice-based cryptography is as follows:
» The private key is a “good” basis of a lattice A.
» The public key is a “bad” basis of A.

» The goal for an attacker is to solve a hard lattice problem in A.

» The private-key holder can solve those problems using the good basis.

34 /46



An encryption scheme (ala GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

35/46



An encryption scheme (ala GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Encrypt(m, B'): View m as a vector in Z" and define the ciphertext as
¢ := mB’ + ¢, where ¢ is a small “error vector”.

35/46



An encryption scheme (ala GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Encrypt(m, B'): View m as a vector in Z" and define the ciphertext as
¢ := mB’ + ¢, where ¢ is a small “error vector”.

» Decrypt(c, B): Using B, find the vector ¢ — ¢ = mB’ € A. Compute
m:= (c—e)B'7L.

35/46



An encryption scheme (ala GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Encrypt(m, B'): View m as a vector in Z" and define the ciphertext as
¢ := mB’ + ¢, where ¢ is a small “error vector”.

» Decrypt(c, B): Using B, find the vector ¢ — ¢ = mB’ € A. Compute
m:= (c—e)B'7L.

This scheme can really only encrypt random messages, and great care
= . must be taken when sampling B’ and ¢, else this is totally broken.

35/46



A signature scheme (a la GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

36 /46



A signature scheme (a la GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Sign(m, B): Let ! := H(m) € R™ and compute the signature s € A as a lattice
vector close to the hash . Example: If m =n one could set s := |{B~1]B, but this is very broken. =

36 /46



A signature scheme (a la GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Sign(m, B): Let ! := H(m) € R™ and compute the signature s € A as a lattice
vector close to the hash . Example: If m =n one could set s := |{B~1]B, but this is very broken. =

» Verify(m,s,B’): Ensure s € A. Let f := H(m) and check that ||s — {|| is small.

36 /46



A signature scheme (a la GGH'97)

» KeyGen(): Sample a “good” basis B, defining a lattice A, and compute a
“bad” basis B’ of the same lattice. The private key is B, the public key is B'.

» Sign(m, B): Let ! := H(m) € R™ and compute the signature s € A as a lattice
vector close to the hash . Example: If m =n one could set s := |{B~1]B, but this is very broken. =

» Verify(m,s,B’): Ensure s € A. Let f := H(m) and check that ||s — {|| is small.

I Great care must be taken when sampling s, else this is totally broken.

36 /46



Real-world lattice-based cryptography

...works with lattices defined by linear systems of equations over Z/q.

37/46



Real-world lattice-based cryptography

...works with lattices defined by linear systems of equations over Z/q.

They are a convenient choice for cryptography since they are easy to generate
and allow us to work with integers of bounded size.

37/46



Post-quantum elliptic-curve cryptography

38/46



Isogenies of elliptic curves

» ..are essentially just s2ice I’Z/?j& between elliptic curves.

39 /46



Isogenies of elliptic curves

» ...are essentially just r2zce rz%js between elliptic curves.

» They are a source of exponentially large graphs. @

39 /46



Isogenies of elliptic curves

» ...are essentially just r2zce rz%js between elliptic curves.

» They are a source of exponentially large graphs. @

» ...with enough structure to navigate meaningfully!

39 /46



Graphs of elliptic curves

A 3-isogeny

Esp: y2=x3 +51%4+x ——> Eq: yz =249% 4x
97:3 1832 4 x
x2—183x497 -

1333 415422 —5v4.97
—x3465x24+128x—133

(%, 9)

M\
: e
Eq3 R -"00...
* NRE TS
ST
xavve Y

PRaw;

PRI

40/ 46



said] key exchange

v
'S

CSIDH ['si

41/46



said] key exchange

v
'S

CSIDH ['si

ob

B

Alice
[+,+,—, =]

\
N
RS

7 [ 7455
e
7

41/46



said] key exchange

v
'S

CSIDH ['si

b

Bo
=+ ==
4]

Alice
[+a +, -, _]
T

Z7 ]

/s
=7 ]
SSs=>

Z7

ZZ

<0

SIS

X
e

S

[Z
ZZ

41/46



said] key exchange

v
'S

CSIDH ['si

b

Bo
[_? +7 ) _]

Alice
7

[+, +,

D
=

XS
o3
[7 ‘0?2

25

=

ZZ

=

B

\
N

See
‘.v“w.v‘t,d\b.i

Vi )
T
i“ooohbhn.l“

]

‘YQ\.-

AL

A
Pryy

_
S

s
R
>

/ NS ...-‘ v ;
AT L

L X1

Pry

41/46



said] key exchange

v
'S

CSIDH ['si

ob

B

]

T

Alice
[+a +,-,

41/46



said] key exchange

v
'S

CSIDH ['si

=

RResSSS:
<]

|
\
NN

4

NN

230
LNy

X
22

L2

[ 122
7

[Z

[7

" .
#

41/46



said] key exchange

v
'S

CSIDH ['si

b

Bo
,+ = _]

T

Alice
[+a +,-, _]

¥ XL R =
A2

Sy AN Q|
NG

KH
Y%

553

ZZ7

=

SO

7 [ 7425
7\ | 71222
e

S
OSSR
XK NI

LA

A
2w
%
DAL

41/46



25

LSS\
s NN
NN
/fldlll

41/46

b

Bo
=+ ==
4]

Alice
[+a +, -, _]
T

said] key exchange

v
'S

CSIDH ['si

2250

e S

X X)
N

2>

%

[7

[ 77
wEeZ




said] key exchange

v
'S

CSIDH ['si

ob

B

Alice

7_]

T

<D

ze=

42

[ 11722
I' 7

[Z

[+, +,
[7

41/46



said] key exchange

v
'S

CSIDH ['si

Bob
[_a +,—, ?]

]

T

Alice
[+a +,-,

yZ8 XY =]
AT
| N
/lll'

R
#WMMM““III
G
N\
\

41/46



said] key exchange

v
'S

CSIDH ['si

Y28 3 =] i
s
7 I“l.iWWMMMM“i‘lII
A AN WAY
T N
- 3 WL
Q | \\
R+ S
Y
A
LSS
=N
T N\
Qo |
_..II.. -
< +
.

41/46



A much more random-looking isogeny graph

72

s

58

7

.

7,5

2

5

.
2

A

v

42 /46



The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

43 /46



The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

43 /46



The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction,
but exponential-time in the <= direction. ~~ Cryptography!

43 /46



SQIsign

...1s a signature scheme based on this one-wayness.

44 /46


https://sqisign.org

SQIsign

...1s a signature scheme based on this one-wayness.

Qs

44 /46


https://sqisign.org

SQIsign

...1s a signature scheme based on this one-wayness.

Qs

https://sqisign.org

44 /46


https://sqisign.org

SQIsign: Numbers

core properties

+ Very compact keys and signatures.
+
+ No longer slow!

- A complex signing procedure.
# The coolest team!

Confident tuning of security parameters.

-- sizes --
parameter set  public keys signatures
NIST -1 65 bytes 148 bytes
NIST - 97 bytes 224 bytes
NIST - V 129 bytes 292 bytes

-- performance --

Cycle counts for an optimized implementation using platform-specific assembly running

on an Intel Raptor Lake CPU:

parameter set keygen signing verifying
NIST -1 43.3 megacycles 101.6 megacycles 5.1 megacycles
NIST - m 134.0 megacycles 309.2 megacycles 18.6 megacycles
NIST - V 212.0 megacycles 507.5 megacycles 35.7 megacycles

Source: https://sqisign.org

45/ 46


https://sqisign.org

Questions?

(Also feel free to email me: lorenz@yx7.cc)

46 / 46



	Big picture: Cryptography
	Important public-key systems
	The impending(?) quantum apocalypse
	Post-quantum cryptography (PQC)
	Cryptography from lattices
	Post-quantum elliptic-curve cryptography

