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Two kinds of cryptography

“Classical” cryptography (for thousands of years):

▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric or secret-key.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, public-key or asymmetric.
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Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.
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Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.
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Hard problems
▶ By design, asymmetric cryptography is always breakable

— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.
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A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?
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Diffie–Hellman key exchange (1976)

Public parameters: A finite group G and an element g∈G of (prime) order q.

Typical choices include G ≤ (Fp\{0}, · ) and groups of elliptic-curve points over finite fields.

Alice public Bob

Ba = (gb)a = gab = (ga)b = Ab.
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Schnorr’s identification protocol (1990ish / predecessor: ElGamal 1985)

▶ KeyGen(): Like Diffie–Hellman. Key pair is (a,A) where A = ga.

Prover(a,A) Verifier(A)

r← {0, ..., q−1}

“commitment” R := gr

“challenge” c← {0, ..., q−1}

“response” s := (r− a · c) mod q

check R ?
= gs · Ac

Correctness: gs · Ac = gr−a·c · ga·c = gr = R.

This can be transformed into a signature scheme.
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RSA (1978)

▶ Private key: Two large primes p, q.
The modular inverse d = e−1 mod φ where φ = (p−1)(q−1).

▶ Public key: The product n = p · q, an integer e.
▶ “Encryption”: m 7→ me mod n.
▶ “Decryption”: c 7→ cd mod n.

Inverting m 7→ me mod n seems as hard as factoring n. :)

This is Textbook RSA, which is wildly insecure.
Proceed with caution, or do not proceed at all.
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Enter quantum.
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What are computers, really?

▶ Computing essentially means manipulating and exploiting real-world
physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.
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Quantum computing: Principle

▶ “Normal” computer: Every bit always holds a value of either 0 or 1.

▶ Quantum computer: “Qubits” can in a certain well-defined way
hold a “mixture” of the values 0 and 1.

|0⟩

|1⟩

It is not true that “quantum computers can simply try all keys in parallel”.
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Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.

Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.
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Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1} such that
∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→ S, find (a description of)
the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S such that ∃! s∈G
with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O
(√

log|G|
)

.
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Shor’s quantum algorithm

...can solve DLP (in any group) and factor integers in polynomial time.

Main idea (+ plenty of technical complications and optimization tricks):
Quantum period finding using the quantum Fourier transform (QFT).

Shor can (among other things) compute the kernel of a map of the form
f : (Zr,+)↠ (G, · ), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, · ) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).
Then ker(f ) contains the vector (x,−1).

▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
Then ker(f ) = ord(α)Z. (Exercise: With Pr ≥ 1/2, we get gcd(n, αord(α)/2 − 1) ∈ {p, q)}.)
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f : (Zr,+)↠ (G, · ), (x1, ..., xr) 7→ gx1

1 · · · gxr
r ,

where (G, · ) is a finite abelian group and g1, ..., gr ∈ G.

▶ Solving DLP (g, h= gx): Let r = 2 and (g1, g2) = (g, h).

Then ker(f ) contains the vector (x,−1).
▶ Factoring n = pq: Let r = 1 and g1 = α be chosen at random from (Z/n)×.
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Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage from quantum
attacks (due to Shor) than symmetric cryptography does (due to Grover).

(For symmetric cryptography, doubling sizes is usually good enough (even conservative).)
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Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography
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Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.
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Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!
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The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.
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Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptographic functionality.

The bad news: PQC is typically slower, bigger, less flexible, or all of these things.
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NISTPQC
Since 2016, the USA’s National Institute for Standards and Technology has been
running a standardization effort for post-quantum cryptography.

▶ Two tracks: Key exchange & signatures.

▶ Five target security levels, defined as “at least as hard to break as
AES-128/SHA256/AES-192/SHA384/AES-256”, respectively.

▶ In 2024, four algorithms selected:
▶ “ML-KEM”, a.k.a. “Kyber”. Lattice-based key exchange.
▶ “ML-DSA”, a.k.a. “Dilithium”. Lattice-based signature.
▶ “SLH-DSA”, a.k.a. “SPHINCS”. (Stateless) hash-based signature.
▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)
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▶ “FN-DSA”, a.k.a. “Falcon”. Another lattice-based signature.

▶ In 2025, another algorithm selected:
▶ “HQC”. Code-based key exchange.

Note: “Key exchange” refers to Key Encapsulation Mechanisms, essentially public-key encryption schemes that can
only encrypt symmetric secret keys (but a priori not arbitrary messages).

(In particular, “key exchange” does not provide the interface of pre-quantum DH.)
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Kyber: Numbers

...

Source: https://pq-crystals.org/kyber/
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Dilithium: Numbers

...

Source: https://pq-crystals.org/dilithium/
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https://pq-crystals.org/dilithium/


SPHINCS: Sizes

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip
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SPHINCS: Speed

Source: https://sphincs.org/data/sphincs+-round3-submission-nist.zip
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Summary

Cryptography will be okay,
but more expensive than before.

General theme: You can have speeds ≈ comparable to pre-quantum ECC,
or sizes ≈ comparable to pre-quantum ECC, but not at the same time.

:(
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Big picture: Cryptography

Important public-key systems

The impending(?) quantum apocalypse

Post-quantum cryptography (PQC)

Cryptography from lattices

Post-quantum elliptic-curve cryptography

30 / 46



(Euclidean) lattices

A (Euclidean) lattice of dimension n is a subset of Rm of the form

Λ =
{

v · B
∣∣ v ∈ Zn } ,

where B ∈ Rn×m is a full-rank matrix. We call B a basis matrix of Λ.
(In other words, Λ is the set of Z-linear combinations of the rows of B.)
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Essential lattice problems

The approximate shortest-vector problem SVPγ(Λ) is:

Given a basis matrix B of Λ and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s∥ ≤ γ ·minv∈Λ\{0}∥v∥.

Throughout, let λ1(Λ) = minv∈Λ\{0}∥v∥ denote the length of a shortest (nonzero) vector in Λ.

The approximate closest-vector problem CVPγ(Λ, t) is:

Given a basis matrix B of Λ, a vector t ∈ Rm and an “approximation factor” γ ≥ 1,
find a vector s ∈ Λ such that ∥s− t∥ ≤ γ ·minv∈Λ∥v− t∥.

For random lattices and “small-ish” γ, these problems are hard as n→∞.

There are many variants of these problems: Most importantly, “promise versions”
(SVP/CVP → uSVP/BDD) guarantee that an unusually short/close solution exists.
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Lattice(-basis) reduction

Lattice problems in practice are almost always solved using lattice reduction.

Recall:
The “quality” of the basis impacts the hardness of all kinds of lattice problems.

General theme: The (1) shorter and (2) closer to orthogonal a basis is, the better.
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The blueprint

...for lattice-based cryptography is as follows:

▶ The private key is a “good” basis of a lattice Λ.
▶ The public key is a “bad” basis of Λ.
▶ The goal for an attacker is to solve a hard lattice problem in Λ.
▶ The private-key holder can solve those problems using the good basis.
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An encryption scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Encrypt(m,B′): View m as a vector in Zn and define the ciphertext as
c := mB′ + e, where e is a small “error vector”.

▶ Decrypt(c,B): Using B, find the vector c− e = mB′ ∈ Λ. Compute
m := (c− e)B′−1.

This scheme can really only encrypt random messages, and great care
must be taken when sampling B′ and e, else this is totally broken.
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A signature scheme (à la GGH ’97)

▶ KeyGen(): Sample a “good” basis B, defining a lattice Λ, and compute a
“bad” basis B′ of the same lattice. The private key is B, the public key is B′.

▶ Sign(m,B): Let t := H(m) ∈ Rm and compute the signature s ∈ Λ as a lattice
vector close to the hash t. Example: If m= n one could set s := ⌊tB−1⌉B, but this is very broken. :)

▶ Verify(m, s,B′): Ensure s ∈ Λ. Let t := H(m) and check that ∥s− t∥ is small.

Great care must be taken when sampling s, else this is totally broken.
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Real-world lattice-based cryptography

...works with lattices defined by linear systems of equations over Z/q.

They are a convenient choice for cryptography since they are easy to generate
and allow us to work with integers of bounded size.
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Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!
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Graphs of elliptic curves
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A much more random-looking isogeny graph
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The Deuring correspondence

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain
quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction,
but exponential-time in the⇐= direction. ⇝ Cryptography!
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SQIsign

...is a signature scheme based on this one-wayness.

https://sqisign.org
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SQIsign: Numbers

Source: https://sqisign.org
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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