
Elliptic Curves in Cryptography
Lecture notes from course CIT413030 at TUM in summer 2024

Lorenz Panny

Version from September 30, 2024

First lecture (April 15)

1 Public-key cryptography and the discrete-logarithm problem

Cryptography is the art and science of securing (digital) communication. It sits right at the intersection of
mathematics and computer science. The most important applications of elliptic curves in cryptography lie in
public-key cryptography.

1.1 What is public-key cryptography?

Public-key cryptography (a.k.a. asymmetric cryptography) refers to types of cryptographic constructions
where not all participants have the same capabilities. This is in contrast to symmetric cryptography (a.k.a. secret-
key cryptography), where knowledge of a previously shared secret key enables everyone to do the same things,
e.g., encrypt and decrypt. Typical public-key primitives include:

• Public-key encryption: The user “Alice” publishes a public key which allows anyone to encrypt a
message in such a way that only she can decrypt it using the associated private key. (Real-world analogy:
An open padlock.)

• Closely related: Key exchange over an insecure channel. Two parties “Alice” and “Bob” are communi-
cating, an eavesdropper “Eve” listens, yet only Alice and Bob should be able to agree on a shared secret
that Eve cannot learn.

• Digital signatures: The user “Alice” publishes a public key which allows anyone to verify signed
messages that only she can produce using the associated private key. (Real-world analogy(?): Writing
one’s name on paper.)

1.2 The Diffie–Hellman key exchange

The idea of public-key cryptography was first published by Diffie and Hellman in a 1976 paper of only 11 pages
titled “New Directions in Cryptography”. Among other things, they described the following key-exchange
method, which remains one of the most important cornerstones of modern cryptography:

• Fixed parameters: A “carefully chosen” prime p, and a primitive element g ∈ F×
p .

• Alice’s private key: Randomly chosen a ∈ {0, ..., p− 2}.

• Alice’s public key: The powerA = ga ∈ Fp.

• Bob’s key pair (b, B) is constructed identically.

• Their shared secret is gab = Ba = Ab ∈ Fp.

The idea here is that performing an exponentiation is “easier” than computing a logarithm. Indeed, for
Alice and Bob, the complexity of computing the public from the private key is only logarithmic using the
square-and-multiply algorithm:

1

1 Lemma. Let (G, ·)be a group,g ∈ G, andx ∈ Z≥0. Thengx can be computed using no more than2⌊log2(x)⌋+1
multiplications inG.

Proof. Let x = 2nxn + 2n−1xn−1 + · · ·+ x0 with all xi ∈ {0, 1}. (This is the binary expansion of x.) Then

gx =

((
· · ·

(
(gxn)2 · gxn−1

)
2 · · ·

)
2 · gx1

)
2 · gx0 .

□

On the other hand, to break the key exchange, it clearly suffices to recover x from gx. How hard is that?1

1.3 The discrete-logarithm problem

2 Definition. Let (G, ·) be a group and g ∈ G. The discrete-logarithm problem (DLP) is to find x ∈ Z
given gx ∈ G.

How can we approach this problem?

• Trivial brute force: Iterate through powers of g until gx is discovered. The complexity is clearlyO(|G|).

• Smarter brute force: Letm :=
⌈√
|G|

⌉
. Make a lookup table mapping gmi 7→ i for 0 ≤ i < m. Then,

iterate through elements gx · g−j for 0 ≤ j < m until it is in the table. At that point, we have i and j
such that gmi = gx · g−j , hencemi+ j is a solution to the DLP.2

This is Shanks’ baby-step giant-step algorithm (BSGS). Its complexity isO(
√
|G|).

It is known that the square-root complexity is essentially optimal for prime-order generic groups, that is,
without using any specific properties of the underlying group.

=⇒ For generic groups, there is an exponential separation between computing exponentiations and
logarithms.

3 Remark. We shall later see that there are algorithms with better complexity for generic composite-order
groups.

4 Remark. In actual reality, there are no generic groups: To compute in a group, we have to know how elements
are represented as bit strings and how the group operation is implemented. This knowledge usually enables
us to do much more than just performing the operations provided by an abstract group.

Very simple example: For the additive group (Z/p,+), solving the DLP just amounts to division modulo p.
Doing so requires “inspecting” the internals of the group element, concretely, lifting it from Z/p to Z and
running the extended Euclidean algorithm.

Key point: The complexity of computing discrete logarithms really depends on the concrete representation
of the group, not just its isomorphism class. In fact: The DLP inG ∼= Z/n can be understood precisely as computing
an isomorphismG

∼−→ (Z/n,+)!

So, how far is F×
p =

(
(Z/p)\{0}, ·

)
from a generic group?

1.4 Index calculus

Key observation: The finite field Fp = Z/p is a quotient ring of Z. Integers have many interesting features
that abstract groups don’t have: Among them are prime numbers. The core idea of index calculus is to factor
elements and then manipulate the exponents of that factorization.3

1Beware: The computational Diffie–Hellman problem (CDH), i.e., computing gab from (ga, gb), could actually be easier than
computing x from gx. We will later (in Section 4.9) discuss techniques to argue in specific cases that breaking the key exchange is
indeed equivalent to computing logarithms.

2Here, essentially, (i, j) is a base-m representation of x, and the algorithm enumerates both digits separately in order to “meet
in the middle”.

3The word “index” here is old-fashioned terminology for “discrete logarithm”.

2

To illustrate the idea, consider the following basic example: Let’s say we are trying to solve the DLP
instance g = 27, gx = 243 in the finite field F257. By staring at the numbers intently, we notice that in fact
g = 3

3 and gx = 3
5. Hence, we can take a shortcut: The solution is just x = 5 · 3−1 mod 256 = 87. Now,

of course, it is extremely unlikely that a given DLP instance will be of this form. In general, however, we may
try to search for powers of g and gx that are powers of 3, but this essentially amounts to simply brute-forcing
two logarithms to base 3, which is probably worse than solving the given DLP directly. However, the very
same idea actually works if we consider product decompositions into a larger set of bases than just 3!

Concretely, consider a fixed factor base of distinct “small” primes q1, ..., qk ̸= p. By a relation modulo p
with respect to that factor base, we refer to any vector in the kernel of the group homomorphism

φ : (Zk,+) −→ (F×
p , ·), v⃗ 7−→

k∏
i=1

qi
vi ,

i.e., any vector v⃗ ∈ Zk such that
∏k

i=1 q
vi
i ≡ 1 (mod p). The set of all relations kerφ is the relation latticeR;

it is generated by k linearly independent vectors. Now, to solve a DLP (g, gx), we may proceed as follows:

(1) Find a basis ofR by repeatedly taking random products of the factor base and hoping that the result,
after reduction modulo p, splits over the factor base again. In that case, we have found two (usually
distinct) preimages underφ of the same element in F×

p , hence their difference must lie inR.
(Note: This depends only on p, hence can be precomputed.)

(2) Find a decomposition g = φ(v⃗) by computing random products of g with the factor base and hoping
that the result, after reduction modulo p, splits over the factor base. Similarly, find a decomposition
gx = φ(w⃗).

(3) Using linear algebra modulo p− 1, compute x ∈ Z such that xv⃗ − w⃗ ∈ R. Output x as the solution.

Using results on smoothness probabilities, one can show that the total cost of the index-calculus algorithm is
minimized for k ≈ exp(const ·

√
log(p) log log(p)), leading to an overall complexity of

exp
(
O(

√
log(p) log log(p)

)
.

This is subexponential (but still superpolynomial!) complexity.

5 Remark. The discussion above is optimized for ease of understanding; it is a very crude way of doing index
calculus. Proceeding in a much more clever way, as in the Number Field Sieve, leads to a heuristic runtime of
exp

(
Õ(log(p)1/3)

)
.

(The notation Õ(f(x)) is shorthand for f(x) · log(f(x))O(1): Linear in f(x), possibly with additional logarithmic factors.)

6 Remark. The approach readily generalizes to arbitrary number fields by factoring elements into prime
ideals rather than irreducible elements. This is why simply replacing Fp by a non-prime finite field does not
thwart the attack.

Some numbers. Index calculus is the most effective attack for the DLP in finite fields. Its impact is that the
sizes required for p are pretty huge nowadays: BSI’s 2024 recommendation says “the length of p should be at
least 3000 bits”. There is also something called “RSA”, which relies on integer factorization being hard-ish; it
is equally big and slow.

By comparison, the recommended size for something that behaves more like a generic group is only 250
bits, leading to much faster and much more compact cryptographic constructions. But what could such a
“more generic” group be?

3

1.5 Enter elliptic curves!

At last, now that we’ve successfully badmouthed the competition, here’s the sales pitch:

• Well1-chosen elliptic curves are as close to generic groups as it gets, in terms of known attacks.

• Well2-chosen elliptic curves provide bilinear pairings, which are very unique and extremely useful.

• Well3-chosen elliptic curves can be used (in a different way) to construct post-quantum primitives.

1.6 The “Q”-word...

Sad future: Large-scale quantum computers are expected to break all DLP-type problems, once they are
actually built. However, that doesn’t seem to have happened thus far, and elliptic curves remain the number-
one industry standard.

Second lecture (April 22)

2 Elliptic curves, concretely

High-brow version for those who know: An elliptic curve is a smooth projective curveE of genus one with
a chosen rational point O. By the Riemann–Roch theorem, the map E → Pic0(E), P 7→ [P] − [O] is
bijective, and we can pull back explicit algebraic formulas for the group law from Pic0(E) toE, thereforeE
is an abelian variety. Done.

Rest of this lecture: Pretty much just that, but using significantly less heavy machinery, and with formulas!

Throughout, letK be a field.

7 Definition. The projective spacePn(K) of dimensionn overK is the set of nonzero points inKn+1 modulo
scaling by nonzero elements ofK . (The base fieldK is sometimes omitted when it is clear from context or
insignificant.) We writeP = (X0 : X1 : ... : Xn) for a point in Pn.

The special casesn=1 andn=2 are known as the projective line and projective plane respectively. Notation:
For n = 1 we use the variables (U, V) and for n = 2 we use the variables (X,Y, Z). Points withZ = 0 are
“at infinity”.

8 Example. The “point” (0 : 0 : ... : 0) is not a valid projective point. For all P = (X0 : X1 : ... : Xn)
and all λ ̸= 0 we have P = (λX0 : λX1 : ... : λXn). For example, (0 : 1 : 0) = (0 : −1 : 0) and
(1 : 2 : 3) = (3 : 6 : 9).

9 Example. One of the reasons for considering projective space is that it gets rid of “annoying special cases”
in geometry: For example, on a projective plane, any pair of lines intersects in exactly one point, and this is
true even for parallel lines! We will see a generalized statement of this sort below when discussing Bézout’s
theorem.

10 Definition. A polynomial f ∈K[X0, ..., Xn] is homogeneous if all monomials in f have the same degree.
The data of a projective plane curveC consists of a nonconstant homogeneous polynomialF ∈ K[X,Y, Z].
Points onC are exactly thoseP = (X : Y : Z) ∈ P2(K) whereF (X,Y, Z) = 0.

11 Lemma. Let f ∈ K[X1, ..., Xn] of degree d ≥ 0. Then there exists a unique homogeneous polynomial
F ∈ K[X0, ..., Xn] of degree d such that F (1, X1, ..., Xn) = f . (This polynomial F is referred to as the
homogenization of f .)

Proof. Multiply each monomial in f by an appropriate power ofX0 to make the degree equal d. □

This lemma allows us to specify a projective plane curve by a bivariate (not necessarily homogeneous)
polynomial inK[x, y] rather than a trivariate homogeneous polynomial inK[X,Y, Z]. We will often do this
for ease of notation.

When working with elliptic curves concretely, it is extremely convenient to restrict to a particular shape
of equation:

4

12 Definition. A (short) Weierstraß curve is a projective plane curve given by an equation of the form

y2 = x3 + ax+ b

where a, b ∈ K .
Similarly, a long Weierstraß curve is a projective plane curve given by an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K .

13 Lemma. If the characteristic of the base field is /∈ {2, 3}, every long Weierstraß curve is isomorphic to a short
Weierstraß curve.

14 Lemma. LetE be a (short or long) Weierstraß curve. ThenE has exactly one point at infinity, and it is given by
∞ := (0 : 1 : 0).

Proof. The homogenization isY 2Z + a1XY Z + a3Y Z
2 = X3+ a2X

2Z + a4XZ
2+ a6Z

3. Substituting
Z = 0 leaves us withX3 = 0, henceX = 0, and no condition onY . Therefore (0 : 1 : 0) ∈ P2 is the unique
solution. □

15 Definition. LetC be a projective plane curve defined byF ∈ K[X,Y, Z]. We say thatC is nonsingular at
P ∈ C if

(
∂F
∂X (P), ∂F∂Y (P), ∂F∂Z (P)

)
̸= (0, 0, 0). IfC is nonsingular at all points, it is called nonsingular or

smooth.

16 Example. The point∞ = (0 : 1 : 0) on a Weierstraß curve is always nonsingular.
The Weierstraß curves y2 = x3 and y2 = x3 − x2 both have a singularity (only) at the point (0 : 0 : 1).

17 Theorem. Any elliptic curve in the “high-brow” sense (smooth projective curve of genus one with a rational point)
is isomorphic to a long Weierstraß curve. Conversely, every smooth (short or long) Weierstraß curve is an elliptic curve.

18 Lemma. A short Weierstraß curve is nonsingular if and only if the discriminant−16(4a3 + 27b2) is nonzero.
(The corresponding formula for long Weierstraß curves exists, but is omitted here for its bulkiness.)

19 Remark. In cryptography, we often use more specialized curve forms for speed or other beneficial proper-
ties: There will be examples of this later. Still, the Weierstraß equation remains a very useful “standard form”
for elliptic curves.

2.1 The group law

The low-brow version of the elliptic-curve group law is to write down explicit “addition formulas” which
were figured out by someone else at some point, then prove in a tedious case-by-case analysis that they
define an abelian group onE. In the following, we will consider an intermediate viewpoint, motivating the
group law by its inherent geometric meaning, while still staying away from advanced, more general notions
of algebraic geometry.

The starting point is the following classical result:

20 Bézout’s Theorem. LetC1 andC2 be projective plane curves defined byF1, F2 ∈ K[X,Y, Z] of degrees
d1, d2. IfF1 andF2 have no nonconstant common factor, then there are exactly d1 · d2 intersection points
ofC1 andC2, counted with multiplicities.

One key consequence of this theorem for cubics is that given two pointsP,Q on a cubic curve, one can find a
third pointR by drawing a straight line (a degree-one curve) throughP andQ and computing the last point
of intersection. This is indeed what lies at the heart of the elliptic-curve group law for Weierstraß curves. To
make this precise for special cases such asP = Q, we need some definitions:

5

21 Lemma. Every lineL in P2 can be given in parametric form by an embedding

P1(K) ↪−→ P2(K),

(U : V) 7−→ (HX(U, V), HY (U, V), HZ(U, V))

whereHX , HY , HZ are homogeneous polynomials of degree one.

Proof. Lines are projective plane curves of degree one, so L is given by a nonzero polynomial of the form
aX + bY + cZ . Suppose (w.l.o.g.) that a ̸= 0. Then (HX , HY , HZ) = (−b/a · U − c/a · V,U, V) is a
valid parameterization. □

22 Definition. LetC be a projective plane curve defined by a homogeneous polynomialF ∈ K[X,Y, Z].
Let L be a line given in parametric form (HX , HY , HZ) as in the lemma. For a point P ∈ C ∩ L, pick
u0, v0 ∈ K such that P = (HX(u0, v0) : HY (u0, v0) : HZ(u0, v0)). The intersection multiplicity (or
order of intersection) of C and L at P is the largest positive integer k such that (v0U − u0V)k divides
F (HX , HY , HZ) ∈ K[U, V].

23 Remark. This definition generalizes the usual concept of the multiplicity of a polynomial root, but the
latter hardcodes the lineL to be the x-axis. In the more general setting considered here, we allow arbitrary
lines, and we work projectively to also allow apparent special cases like vertical lines (slope∞).

24 Definition. For a projective plane curveC , a tangent atP ∈ C is a line intersectingC atP with multi-
plicity≥ 2.

25 Lemma. The tangent of a Weierstraß curveE at∞ is the “line at infinity” defined byZ = 0. It intersects with
multiplicity 3.

Proof. The tangent can be parameterized by P1 as (U : V : 0), and∞ is reached at (u0 : v0) = (0 : 1).
Substituting into the Weierstraß equation, we get−U3, which is clearly divisible by (v0U − u0V) = U
exactly three times. □

26 Definition. LetE be a Weierstraß elliptic curve. Ad-hoc notation: For two pointsP,Q ∈ E, letP ∗Q be
the third point of intersection of a line throughP andQwithE. Now, define a binary operation + onE as
follows:

P +Q :=∞∗ (P ∗Q) .

27 Sublemma. For all pointsP,Q ∈ E, we haveP ∗ (P ∗Q) = Q.

Proof. The lineL throughP andQ intersects atP ,Q, andP ∗Q. The lineL′ throughP andP ∗Q intersects
atP ,P ∗Q, and a third pointR. However, any two lines sharing two points must be identical, henceL = L′,
and it follows thatR = Q. □

28 Lemma. This + is a commutative binary operation with neutral element∞. Moreover,P + (∞∗ P) =∞ for
allP ∈ E.

Proof. Commutativity is obvious: The line throughP andQ clearly equals the line throughQ andP , hence
P ∗Q = Q ∗ P , and all the other steps only depend onP ∗Q.

For the neutral element, the sublemma implies∞+ P =∞∗ (∞∗ P) = P .
Similarly, for the inverse elements, the sublemma yieldsP + (∞∗P) =∞∗ (P ∗ (∞∗P)) =∞∗∞,

which equals∞ since the tangent line at∞ intersectsE with multiplicity 3. □

29 Remark. Associativity is significantly less obvious. (But it does hold!)

6

2.1.1 Explicit formulas

To summarize, we have the following result:

30 Theorem. LetE be a Weierstraß elliptic curve. There exists a unique group law +: E × E → E with neutral
element∞ and defined by the property thatP +Q+R =∞ holds if and only ifP,Q,R lie on a line intersectingE
atP,Q,R with the correct multiplicities.

From this general definition, we can derive concrete formulas, which we shall do now. Note that we
commonly write points (X : Y : Z) ̸=∞ using their affine coordinates (x, y), which are given by x = X/Z
and y = Y/Z .

31 Lemma. For simplicity, consider the case ofE being a short Weierstraß curve over a field of “large” characteristic,
i.e.,≥ 5. (Everything works similarly for long Weierstraß curves and general characteristic.)

(1) The negative of a point (x, y) is (x,−y).

(2) The sum of two pointsP = (x1, y1) andQ = (x2, y2) withQ ̸= −P is the point (x3, y3) where

x3 = λ2 − x1 − x2 ;

y3 = λ(x1 − x3)− y1 .

Here λ is the slope of the line through P andQ; it is given by λ = y2−y1
x2−x1

when x2 ̸= x1 and λ =
3x2

1+a
2y1

otherwise.

Proof. (Homework.) □

Third lecture (April 29)

3 The number of points on an elliptic curve

Last time, we’ve seen how to construct a group structure on the group of points on an elliptic curveE over a
fieldK . Since the explicit formulas are rational maps, it is immediately clear thatE(L) forms a subgroup
ofE for any fieldL ⊇ K .

In the following, we will consider the case thatL is a finite field Fq : Then, since |P2(Fq)| = q2 + 1 is
finite, the groupE(Fq) ⊆ P2(Fq) is clearly finite as well. Notation: In this context, it is common to write
#E(Fq) for |E(Fq)|.

Question for the coming lectures: What is the group structure ofE(Fq), how does it impact the difficulty
of the elliptic-curve discrete logarithm problem (ECDLP), and how can we make sure to choose a secure one?

3.1 The Pohlig–Hellman algorithm

Recall (first lecture):

• The baby-step giant-step algorithm solves the DLP in any group of order n inO(
√
n) steps.

• One can prove that this is essentially optimal for generic prime-order groups.

⇝ What about generic composite-order groups? Those are where the Pohlig–Hellman algorithm is advantageous.

First, notice that the ECDLP (P, [x]P) only “lives” in the cyclic subgroup ⟨P ⟩ anyway, hence we may im-
mediately restrict our attention to cyclic groups. The algorithm crucially relies on the following decomposition,
which allows us to reduce DLP instances to the case of cyclic groups of prime-power order:

32 Lemma. LetE be a cyclic group of order n ∈ Z≥1. Factorize n = ℓm1
1 · · · ℓmr

r . Define the “projection maps”

πi : E → E, P 7→ [n/ℓmi
i]P .

The imageGi of eachπi is a (necessarily cyclic) subgroup of order ℓmi
i , and the collection of allπi defines an isomorphism

E
∼−→ E1 × · · · × Er .

7

Proof. Clearly the πi are group homomorphisms. Domain and codomain have the same cardinality, hence it
is enough to prove injectivity: LetP ∈ E with all πi(P) =∞. For a generatorG ∈ E, there exists a k ∈ Z
with P = [k]G. Hence all πi([k]G) = [n/ℓmi

i][k]G = [nk/ℓmi
i]G = ∞, implying that n divides nk/ℓmi

i

sinceG has ordern. But this implies ℓmi
i | k. Since the ℓmi

i are coprime, their least common multiple equalsn,
which must thus divide k as well. Hence n | k andP = [k]G =∞. □

To simplify a composite-order DLP (P,Q) using this, all we have to do is to (for all i) compute πi, solve
the DLP inEi, and finally combine the results by solving a system of congruences modulo the ℓmi

i using the
explicit Chinese Remainder Theorem (CRT): The congruences are x ≡ xi (mod ℓmi

i) where xi is a solution
to the DLP (πi(P), πi(Q)).

33 Remark. In fact, the CRT is itself very similar to the isomorphism from the lemma when applied to Z/n:
The only difference lies in some normalization factors applied to each projection map to turn the isomorphism
into a ring isomorphism rather than just a group isomorphism.

What’s left to do is solving the DLPs in prime-power-order groups, which we’ll do efficiently using a recursive
method:

34 Subroutine (prime-power DLP): Given a DLP instance (P,Q)whereP has order ℓk , proceed as follows:
Solve the order-ℓ DLP with input

(
[ℓk−1]P, [ℓk−1]Q

)
, yielding a result x0 ∈ {0, ..., ℓ− 1}. Set P ′ :=

[ℓ]P and Q′ := Q − [x0]P . Compute the solution x1 ∈ {0, ..., ℓk−1− 1} of the order-ℓk−1 DLP with
input (P ′, Q′). Finally output x0 + ℓx1.

35 Lemma. The prime-power DLP routine above is correct and runs in timeO(k
√
ℓ+ k2 log ℓ).

Proof. Consider the base-ℓ expansion s =
∑k−1

i=0 siℓ
i of the actual solution s ∈ {0, ..., ℓk− 1}. Then

[ℓk−1]Q = [ℓk−1][s]P = [ℓk−1s0]P

since the “exponents” in brackets can be taken modulo ℓk , so x0 = s0. Thus, we also get

Q′ = [s]P − [s0]P =
[k∑

i=1

siℓ
i
]
P =

[k∑
i=1

siℓ
i−1

]
P ′ .

Hence x1 =
∑k

i=1 siℓ
i−1 and we conclude x0 + ℓx1 = s.

For the runtime, observe that every order-ℓDLP takes timeO(
√
ℓ) using BSGS. The scalar multiplications

take timeO(k log ℓ) each. Since there are k recursive calls in total, the runtime isO
(
k(
√
ℓ+ k2 log ℓ)

)
as

claimed. □

36 Remark. Whenn is a product of a fixed set of primes, the runtime is therefore onlyO((log n)2): Exponen-
tially faster than running BSGS on the same DLP instance, which costsO(

√
n). However, the Pohlig–Hellman

algorithm helps reduce the cost essentially always when n is composite, even if the prime factors are big.

Key takeaway: The hardness of DLP for generic-group algorithms comes from the largest prime factor of the
order.

3.2 Baseline: Counting points by literal counting

As a first step, let’s find an estimate for the number of points: Morally, since curves are one-dimensonal, the
number of points ought to be on the order of q. We will see later that this is indeed true in a strict sense, but
first, here’s a heuristic:

8

37 Lemma. LetE : y2 = x3 + ax+ b. Then

#E(Fq) = 1 +
∑
x∈Fq

(
1 + χ(x3 + ax+ b)

)
whereχ is the quadratic character defined by

χ(α) =

+1 ifα is a nonzero square in Fq ;

−1 ifα is not a square in Fq ;

0 ifα = 0.

Proof. Every xwhere x3 + ax+ b is a nonzero square y2 gives rise to two points (x,±y) ∈ E(Fq), every x
where x3 + ax+ b is a non-square gives rise to zero points inE(Fq), and every xwhere x3 + ax+ b is zero
gives rise to the single point (x, 0) ∈ E(Fq). □

38 Remark. This can easily be generalized to long Weierstraß curves, and hence to arbitrary characteristic,
by considering the discriminant of the quadratic equation in y resulting from fixing x.

39 Corollary. The number of points is bounded by 1 ≤ #E(Fq) ≤ 2q + 1.

40 Heuristic. Assume that q is odd. Since the squaring mapα 7→ α2 is two-to-one on F×
q , there are exactly

(q−1)/2 squares in Fq . Hence, if every x3 + ax+ b value was uniformly random in Fq , the expected value of
the sum would amount to 1 + q ·

(
1 + q−1

2q · 1 +
1
q · 0 +

q−1
2q · (−1)

)
= q + 1, in line with the fact that

curves are one-dimensional.
In reality, the values x3 + ax + b are of course not entirely random, but this reasoning still gives a

reasonable approximation for the number of points. We will give a precise result in Section 3.7.

41 Remark. Simply evaluating the sum in the lemma takes time Õ(q). We can do much better than that.

3.3 Counting points using generic-group algorithms

In this section, we will approach the counting problem from the angle of generic-group algorithms. For this
purpose, assume for the moment that the group in question is cyclic of order n. Elliptic-curve groups are
generally not cyclic, but there are good reasons for considering this special case first: (1) it is easier, (2) it often
suffices for cryptography, and (3) the resulting insights are needed for the general case, anyway.

42 Remark. Since the ECDLP (P, [x]P) only “lives” in the cyclic subgroup ⟨P ⟩ anyway, it is useful to consider
the problem of computing the order of a given element instead: We have to find the smallest k ∈ Z≥1 such
that [k]P =∞.

43 Remark. By Lagrange’s theorem, element orders must be divisors of the group order. Hence, for cyclic
groups, the exact order can be found with high confidence by repeatedly computing the order of a random
element and outputting the least common multiple of the found orders. (For general abelian groups, the
same procedure computes the exponent instead of the order.)

• If nothing is known about the actual order of the group, this is a “Monte Carlo” algorithm: Deterministic
runtime, but there is a nonzero chance that the result is wrong.

• If sufficiently restrictive a priori bounds on the group order are known, it turns into a “Las Vegas”
algorithm: Probabilistic runtime, but the result is guaranteed to be correct.

Now, notice how computing the order of an element is essentially solving the ECDLP (P,∞) with the
additional constraint that the smallest positive solution is required. We can thus start with the baby-step
giant-step algorithm:4

4Historical detail: This application is in fact the original use case for the BSGS algorithm. Shanks used it in 1971 to compute class
numbers.

9

44 Subroutine (BSGS): Given a point P ∈ E(Fq), set m := ⌈
√
2q + 1⌉, make a table which maps

[i][m]P 7→ i for all i ∈ {0, ...,m−1}, and search for j ∈ {1, ...,m} such that−[j]P is in the table, giving
an integer i. Then returnmi+ j.

This procedure returns some positive integer k such that [k]P =∞. However, this kmay not be minimal,
which would lead to wrong conclusions later. To fix the issue, we can use the following algorithm:

45 Subroutine (order finding): Given a point P and k ∈ Z≥1 such that [k]P = ∞, compute the prime
factorization ℓm1

1 · · · ℓmr
r of k. For each i ∈ {1, ..., r}, find the largest integer fi such that

[
k/ℓfii

]
P =∞.

Output k/
∏r

i=1 ℓ
fi
i .

46 Lemma. The order-finding routine above is correct. Its runtime is the cost of factoring k plus polylog(k) group
operations.

Proof. The actual element order divides all k/ℓfii by construction. The output k/
∏
ℓfii is their greatest

common divisor. If any ℓi could be divided out more times, then fi would have had to be larger since k/ℓfii is
a multiple of k/

∏
ℓfii . □

Combining the algorithms, we therefore have a fully generic order-computation algorithm for cyclic groups.
Its runtime in group operations scales as the square root of the group size.

47 Remark. There is a major issue when trying to use this approach in the context of elliptic-curve cryp-
tography: The expected runtime is essentially the same as the effort to break the ECDLP using BSGS even
if the curve turns out to be a worst-case choice for BSGS. We therefore need a signicicantly faster way to
count points, similar to how users require a way of computing [x]Gmuch faster than simply addingG to
itselfx times (see Section 1.2). This approach will have to go beyond generic groups and use a lot more specific
knowledge about elliptic curves.

3.4 Division polynomials

LetK be a field of characteristic 0 and suppose the short Weierstraß curve y2 = x3 + ax+ bwith a, b ∈ K
is an elliptic curve, i.e., that 4a3 + 27b2 ̸= 0. Consider the weighted polynomial ringK[x, y]w with weights
deg(x) = 2 and deg(y) = 3 and define polynomialsψm ∈ K[x, y]w recursively by

ψ1 = 1 ;
ψ2 = 2y ;

ψ3 = 3x4 + 6ax2 + 12bx− a2 ;

ψ4 = 4y · (x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3) ;

ψm = ψk+2ψ
3
k − ψk−1ψ

3
k+1 form = 2k + 1 ≥ 5 ;

ψ2ψm = (ψ2
k−1ψk+2 − ψk−2ψ

2
k+1)ψk form = 2k + 0 ≥ 6 .

The significance of the division polynomials lies in the fact that they manage to essentially pinpoint the
kernel of the multiplication-by-mmap on the elliptic curve:

48 Theorem. LetP ∈ E. Then [m]P =∞ if and only ifP =∞ orP = (x, y) andψm(x, y) = 0.

Proof sketch. There are essentially two strategies:

• Lifting the elliptic curve to the complex numbers and parameterizing it by the Weierstraß℘ function,
with which these identities are more easily verified.

• Painfully calculating everything algebraically using the addition formulas for the elliptic curve. The
advantage is that this will work in any characteristic (using long Weierstraß curves).

10

49 Lemma. We haveψm ∈ K[x, y2] ifm is odd andψm ∈ yK[x, y2] ifm is even.

Proof. (Homework.) □

50 Remark. This means we can substitutey2 byx3+ax+b in these polynomials and obtain polynomials inx
only, possibly multiplied by a single power of y. In the following, we will use the convention thatψm ∈ K[x]
orψm ∈ yK[x].

51 Remark. This also reveals the motivation behind the (a priori perhaps strange-looking) choice of weights:
It implies deg(y2) = deg(x3 + ax+ b).

52 Lemma. Recall deg(x)= 2 and deg(y)= 3. Then deg(ψm) = m2 − 1 and the leading coefficient5 of ψm

equalsm.

Proof. (Homework.) □

53 Remark. Since the recursive formulas are purely algebraic, one can also keep the values a, b symbolic
and thus obtain “generic” division polynomials which will be valid for any short Weierstraß curve after
substituting the coefficients.

Fourth lecture (May 6)
In addition to characterizing them-torsion points, division polynomials actually allow us to easily express

the scalar-multiplication maps as morphisms of algebraic curves:

54 Theorem. LetE : y2 = x3 + ax+ b be an elliptic curve over a fieldK of characteristic /∈ {2, 3}. Define

ϕm := xψ2
m − ψm+1ψm−1 ;

4yωm := ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1 .

where we again substitute y2 by x3 + ax+ b in ϕm andωm. Then, for allP = (x, y) ∈ E,

[m]P =

(
ϕm
ψ2
m

(x),
ωm

ψ3
m

(x, y)

)
.

3.5 The group structure

55 Definition. LetE be an elliptic curve and n ≥ 1. The n-torsion subgroup ofE is

E[n] = ker [n] = {P ∈ E : [n]P =∞} .

Similarly, the Fq-rational n-torsion subgroup is simply

E(Fq)[n] := E(Fq) ∩ E[n] .

As a simple corollary to the main theorem about division polynomials, we get two structure results:

56 Corollary. LetE be an elliptic curve over a field. Then |E[n]| ≤ n2.

Proof. As usual, only for short Weierstraß curves: It suffices to show that there are no more than n2 − 1
distinct pairs (x, y) ∈ E such that ψn(x, y) = 0. From Section 3.4, we have degψn = n2 − 1 and either
ψn ∈ K[x, y2] or ψn ∈ yK[x, y2]. To unify the two cases and simplify notation we consider ψ2

n as a
univariate polynomial in x: On the curveE, this polynomial vanishes at the same inputs as ψn, but with
double multiplicity each time. The unweighted degree of ψ2

n is precisely n2 − 1, hence there are at most
(n2 − 1)/2 distinct roots over the closure, and every one of them gives rise to at most two points. □

5In principle, the concept of leading coefficient is not well-defined in multivariate polynomial rings. To us, here, it refers to the
coefficient attached to the unique monomial of maximal degree after replacing all occurrences of y2 by x3 + ax+ b. Equivalently,
this value equals the sum of all coefficients attached to monomials of maximal degree.

11

57 Corollary. Let E be an elliptic curve over a field K of characteristic ̸= {2, 3} and let n ≥ 1. Then there are
positive integers n1 | n2 | n such that

E[n] ∼= Z/n1 × Z/n2 .

Proof. By the classification of finite abelian groups, the only thing to prove is that the rank cannot be greater
than two. But if there exists an injective group homomorphism Z/n1 × Z/n2 × Z/n3 ↪→ E[n] with
2 ≤ n1 | n2 | n3 | n, then with ℓ := gcd(n1, n2, n3) ≥ 2 we get (Z/ℓ)3 ↪→ E[ℓ], which contradicts the
fact that |E[ℓ]| ≤ ℓ2. □

In fact, a much stronger result is known about the structure of n-torsion subgroups on elliptic curves:

58 Theorem. LetE be an elliptic curve over a fieldK and letm ≥ 1. If char(K) = p > 0, writem = pr ·m′

with p ∤ m′; otherwise, letm′ = m. Then

E[m] ∼= Z/m× Z/m′ or E[m] ∼= Z/m′ × Z/m′ .

Proof sketch. It suffices to prove this for prime powersm: The general case follows from it using the classifi-
cation of finite abelian groups. Form = ℓk > 1, the a priori possible group structures are Z/ℓk1 × Z/ℓk2
where 0 ≤ k1 ≤ k2 ≤ k. Then, two cases are distinguished:

• If ℓ = p, then the (weighted) degree ofψm modulo p becomes smaller thanm2 − 1 since the leading
coefficient of ψm was shown to be pk ≡ 0 (mod p). Hence k1 = k2 = k is impossible. Since this
also holds true for k = 1, there cannot be a subgroup ofE[pk] isomorphic to Z/p× Z/p and we must
have k1 = 0. Now, the tricky part is to prove that k2 ∈ {0, k}: This follows from the (non-obvious
and rather technical) fact thatψp ∈ K[x, y] is either a nonzero constant inK or of the form h(xp, yp)
where h has distinct roots.

• In the other case ℓ ̸= p, the (weighted) degree ofψm remainsm2 − 1 modulo p. Here the entire proof
rests on the (again non-obvious but technical) fact that the roots of them-division polynomial are all
distinct ifm ̸= 0 ∈ K .

59 Definition. An elliptic curveE over a field of characteristic p>0 is called supersingular6 ifE[p] = {∞},
else ordinary.

3.6 Isogenies and endomorphisms

All(?) efficient point-counting algorithms rely heavily on properties of the Frobenius endomorphism, a special
type of elliptic-curve morphism.

60 Definition. Let E,E′ be two elliptic curves over a field K . An elliptic-curve homomorphism is a map
φ : E → E′ which is (1) given by rational maps, and (2) a group homomorphism. As usual, an isomorphism is
an invertible homomorphism, and an endomorphism ofE is a homomorphism fromE to itself. An isogeny is a
non-constant elliptic-curve homomorphism.

Concretely, for a Weierstraß equation in P2(K), the data of a homomorphism consists of nonzero homoge-
neous polynomialsF,G,H ∈ K[X,Y, Z] of the same degree, such that the map

(x : y : z) 7→ (F (x, y, z) : G(x, y, z) : H(x, y, z))

takes points on E to points on E′. Note that it can happen that F,G,H vanish simultaneously at some
pointsP . In that case, it is always possible to replaceF,G,H by another set of defining polynomials which
do not all vanish atP , while producing the same map wherever defined. (Thus, the map defined byF,G,H
extends uniquely to all ofE.)

6Beware: The word “supersingular” is an old-fashioned way of saying “very special”, referring to the fact that these curves are
relatively rare. It has nothing to do with singular points — all elliptic curves are nonsingular by definition.

12

61 Example. An example are the homogenizations of the polynomials F = ϕmψm, G = ωm, H = ψ3
m

from Section 3.4.

62 Definition. LetE be an elliptic curve over a finite field Fq of characteristic p> 0. Its (p-power) Frobenius
isogeny is

πp : E → E(p), (x, y) 7→ (xp, yp)

whereE(p) is the curve defined by applying the map a 7→ ap to all coefficients of the equations definingE.
The (q-power) Frobenius endomorphism is

πq : E → E, (x, y) 7→ (xq, yq) .

63 Definition. We say that an isogeny φ : E → E′ is separable if it does not factor through a Frobenius
isogeny. Otherwise, it is inseparable. An isogeny that consists of only a Frobenius composed with isomorphisms
is purely inseparable.

64 Definition. We define the degree of an elliptic-curve homomorphism as follows:
• The constant zero map has degree 0.
• For a separable isogeny, the degree is cardinality of its kernel.
• The degree of a pr-power Frobenius isogeny is pr .
• Composing isogenies multiplies the degrees.

65 Remark. The “correct” definition of the degree is the degree as a morphism of varieties. For algorithmic
applications, the explicit version here is often more convenient.

66 Theorem. For every elliptic-curve homomorphismφ : E → E′, there exists a unique dual φ̂ : E′ → E defined
by the property

φ̂ ◦ φ = [degφ] : E → E and φ ◦ φ̂ = [degφ] : E′ → E′ .

67 Remark. Homomorphisms running between the same pair of elliptic curves can be added and subtracted
pointwise.7 We let Hom(E,E′) denote the group of elliptic-curve homomorphisms E → E′. Similarly,
End(E) := Hom(E,E) forms a (not necessarily commutative) ring with composition of homomorphisms
as multiplication.

68 Lemma. The mapZ→ End(E) given by sending an integerm to the multiplication-by-mmap [m] : E → E
is an injective ring homomorphism.

69 Lemma. For any elliptic-curve homomorphismsφ,ψ : E → E′ we have the following properties:

• ̂̂φ = φ.

• φ̂+ ψ = φ̂+ ψ̂.

• φ̂ ◦ ψ = ψ̂ ◦ φ̂.

70 Definition. For an elliptic-curve endomorphism ϑ, let the trace of ϑ be the unique integer t satisfying
ϑ+ ϑ̂ = [t].

71 Lemma. Every elliptic-curve endomorphism ϑ satisfies its characteristic polynomial

ϑ2 − [trϑ]ϑ+ [deg ϑ] = [0] .

Proof. (Homework.) □
7It follows from the addition formulas that this is well-defined.

13

3.7 Frobenius & the Hasse bound

Using the machinery just introduced, we will now relate the Frobenius endomorphism to the number of
points on an elliptic curve over a finite field and use it to deduce a much tighter bound than the obvious
1 ≤ #E(Fq) ≤ 2q + 1.

72 Lemma. LetE be an elliptic curve defined over Fq . ThenE(Fq) = ker
(
πq − [1]

)
.

Proof. An element α ∈ Fq satisfies αq = α if and only if α ∈ Fq . Hence, for P = (x, y) ∈ E, we get
(πq − [1])(P) =∞ if and only if πq(P) = P if and only if (xq, yq) = (x, y) if and only ifP ∈ E(Fq). □

In order to use the fact thatE(Fq) = ker(πq − [1]) to count points, we need a tiny technical lemma:

73 Lemma. ForE/Fq , the endomorphism πq − [1] is separable.

74 Corollary. ForE/Fq , we have #E(Fq) = q + 1− trπq .

Proof. By the two lemmata, we have #E(Fq) = |ker(πq − [1])| = deg(πq − [1]). This quantity equals

deg(πq − [1]) = (π̂q − [1])(πq − [1]) = π̂qπq − π̂q − πq + 1 = [deg πq + 1− trπq] . □

75 Hasse’s Theorem. LetE be an elliptic curve defined over a finite field Fq . Then

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q .

Proof. It remains to show that |tr(πq)| ≤ 2
√
q. To do so, we write t := trπq and compute the (necessarily

non-negative) degree of the endomorphism [2q]− [t]πq :

0 ≤ deg([2q]− [t]πq) = ([2q]− [t]π̂q)([2q]− [t]πq) = [4q2]− [2qt](π̂q + πq) + [t2q] = [4q2 − t2q] .

Dividing by q on both sides then reveals t2 ≤ 4q, which was to be shown. □

When we are dealing with a curve defined over a small field but are interested in the point count over a
larger field, there is a neat shortcut:

76 Lemma. LetE be an elliptic curve over a finite field Fq and suppose #E(Fq) = q + 1− t. Define the recursive
sequence t0 := 2, t1 := t, and tk = t · tk−1 − q · tk−2 for k ≥ 2. Then #E(Fqk) = qk + 1− tk for all k ≥ 1.

Proof. (Homework.) □

Fourth lecture (May 13)

77 Remark. Given the preceding result, it may seem tempting to use elliptic curves defined over fields of very
small characteristic but with points over some extension field that’s large enough for cryptography. Such
curves are known as “subfield curves”. Example: CurveE/F2, points inE(F2256). There are two issues with
this — one minor, one major:

• Any curve as in the lemma necessarily has a composite number of points, since E(Fq) ≤ E(Fqk).
However, there may still be a subgroup ofE(Fqk) which does not contain points from any subfield
and has large prime order, which is good enough for cryptography.

• Curves in high-degree finite fields (and subfield curves in particular) are generally considered risky,
since it appears possible that index-calculus techniques may apply to such curves after all, which
would reduce the security level very significantly when compared to prime fields of similar sizes.

14

3.8 Counting points in polynomial time (Schoof/SEA)

Finally, we can discuss the big ideas behind Schoof’s celebrated 1985 algorithm to count points over finite
fields of large characteristic in polynomial time. There are two key ideas:

• The functional equation π2q − [trπq]πq + [deg πq] = [0] can be tested by substituting points into it.

• Points of any given sufficiently small order can be constructed with the help of the division polynomials.

78 Lemma. LetE be an elliptic curve defined over a finite field Fq and letP ∈ E be a point of some order ℓ ∈ Z≥1.
Then π2q (P)− [k]πq(P) + [q]P =∞ holds if and only if k ≡ trπq (mod ℓ).

Proof. The “if” part is clear since π2q − [trπq]πq + [deg πq] = [0] as maps. For the other direction, suppose
given a point P and integer k with π2q (P) = [k]πq(P)− [deg πq]P . Subtracting the correct functional
equation yields∞ = [k − trπq]πq(P), hence ord(πq(P)) = ord(P) = ℓmust be a divisor of k − trπq .□

A very simple point-counting algorithm would now iterate over small primes ℓ, construct a field extension
where the division polynomial has a root so that a point of order ℓ can be constructed, iterate over all the ℓ
possible choices of k until the value of tr(πq) mod ℓwas recovered, then finally compute tr(πq) as an integer
using CRT. This is already randomized polynomial-time, but there is a neat trick that renders the algorithm
deterministic polynomial-time and practically saves plenty of time on factoring polynomials and building
field extensions:

79 Lemma. LetE : y2 = x3 + ax+ b be an elliptic curve over a fieldK and ℓ ∈ Z≥2. Consider the quotient ring

R := K[X,Y]/(Y 2−X3−aX−b, ψℓ(X,Y)) .

LetP = (x, y) ∈ E be a point of order ℓ defined over some extension fieldL/K . Then the map

f : R→ L, X 7→ x, Y 7→ y

is a ring homomorphism.

Proof. This is because y2 = x3 + ax+ b andψℓ(x, y) = 0. □

What this means in practice is that we can take any algebraic computation inL that works only with elements
in the image of f , such as the “finding the trace modulo ℓ subroutine” of Schoof’s algorithm, and pull it back
toR. In fact, we can simply perform the entire computation overRwithout even fixingL orP a priori. This
is the neat trick!

80 Remark. Instead of computing modulo ψℓ(X,Y), we may compute modulo ψℓ(X,X
3 + aX + b),

which has the same roots (albeit not necessarily with the same multiplicities) but is always univariate. Some
sources go as far as callingψℓ(X,X

3 + aX + b) ∈ K[X] “the” division polynomial.

81 Remark. Computing in R = K[X,Y]/(Y 2−X3−aX−b, h(X)) for some nonconstant polynomial
h∈K[X] is best viewed as working in the isomorphic ring

RY := RX [Y]/(Y 2 − (X3 + aX + b))

where
RX := K[X]/(h(X))

instead. Concretely, this means doing arithmetic inK[X,Y] orK[X][Y] while (e.g. after each operation)
replacing each occurrence of Y 2k by (X3 + aX + b)k , then reducing the result g0(X) + g1(X) · Y to

(g0 mod h)(X) + (g1 mod h)(X) · Y .

This keeps the size of an element ofR in terms of the number of coefficients inK bounded by 2 deg(h).

15

82 Remark. Beware: The ring R does have zero divisors, so the elliptic-curve addition formulas can fail
when trying to divide by nonzero nonunits. While treating this properly in theory causes quite a bit of
trouble, there is a very easy practical solution (also known as a “really cool hack”) for it: Finding a zero divisor
basically means accidentally stumbling upon a proper divisor ofψℓ. But then we can simply continue with
one of the factors in place ofψℓ and by construction it is still guaranteed that there is a ring homomorphism
which maps (X,Y) to a point of order ℓ onE, which is all we need for Schoof’s algorithm. We refer to the
point (X,Y) ∈ E(R) and its multiples as symbolic points.

83 Schoof’s algorithm.
Input: The coefficients in the Weierstraß equation of an elliptic curveE/Fq .
Output: The trace of Frobenius tr(πq).

(1) InitializeA := 1 and S := {} and ℓ := 1.

(2) WhileA < 4
√
q: (Recall the Hasse bound: |tr(πq)| ≤ 2

√
q.)

(a) Update ℓ to the next prime after ℓ.

(b) Find k ∈ {0, ..., ℓ−1} such that k ≡ πq (mod ℓ) by evaluating the equationπ2q +[q mod ℓ]
?
=

[k]πq at a (possibly symbolic) point of order ℓ.
(c) SetA := ℓA and S := S ∪ {(k, ℓ)}.

(3) Using the Chinese Remainder Theorem (CRT), compute an integer t ∈ [−A/2;A/2] such that t ≡ k
(mod ℓ) for all (k, ℓ) ∈ S. Return t.

After how many primes ℓ does the outer loop terminate?

84 Theorem. There exists a constant k0 such that for all k≥ k0, the product of the first k primes is bounded below
by exp(k ln k).

In particular, this bound implies that the algorithm finishes with ℓ ∈ O(log q).

Complexity: Testing each possible value of k consists ofO(log q) arithmetic operations in the quotient

K[X,Y]/(Y 2−X3−aX−B, ψℓ(X,Y))

where arithmetic takes O((log q · degψℓ)
2) = O((log qℓ2)2) ⊆ O((log q)6) bit operations using naïve

multiplication and Õ(log q · degψℓ) = Õ((log q)ℓ2) ⊆ Õ((log q)3) bit operations using asymptotically
fast multiplication. There are O(ℓ) = O(log q) such k to try for each ℓ, and there are O(log q) different
choices of ℓ.

=⇒ The complexity of a naïve version of Schoof’s algorithm isO((log q)8) bit operations; fast arithmetic
reduces this to Õ((log q)5).

85 Remark. After Schoof published his original algorithm, Elkies and Atkin proposed optimizations, among
which Elkies’ in particular makes a huge difference in practice: Instead of working with division polynomials,
which represent the entire subgroupE[ℓ], he directly constructs a degree-ℓ divisor ofψℓ which represents a
cyclic order-ℓ subgroup ofE[ℓ].

With this improvement, and by using asymptotically fast multiplication, the complexity of the Schoof–
Elkies–Atkin algorithm becomes Õ((log q)4).

As promised earlier, Schoof’s algorithm is exponentially better at counting points than the baby-step
giant-step algorithm, which is definitely a cause for celebration.

86 Remark. As discussed earlier, working with a large prime-order group is necessary for the hardness of
the discrete-logarithm problem, but it is by no means sufficient, even on an elliptic curve. We will see some
examples of totally insecure curves and curves with degraded security (in spite of having large prime-order
subgroups) later.

16

4 Efficient & secure elliptic-curve cryptography

Most of the time, for simplicity, we’ve been working with affine coordinates (x, y) ∈ E on a (short or long)
Weierstraß curve. This is convenient for toy examples and for general mathematical algorithms due to its
generality and ease of implementation, but it is not optimal for fast and secure, “serious” cryptographic
implementations. We will now discuss some ways in which elliptic curves can fail to provide security for
entirely practical reasons, and show how to hopefully prevent many of those issues.

4.1 Efficiency: Eliminating inversions

Generally speaking, computing an inverse in a finite field is significantly more costly than computing a
multiplication. Simple example: Computing x−1 ∈ Fp using Fermat’s little theorem amounts to computing
xp−2 ∈ Fp. Using basic square-and-multiply, this takes Θ(log(p)) multiplications in Fp. For large p,
inversions can thus incur a very large cost. Hence, in the interest of efficiency, it makes sense to trade off an
inversion for a few multiplications whenever possible.

The standard way of doing are projective coordinates: Instead of storing an elementx inFp as (say) an integer
in {0, ..., p−1}, store it as a pair of two integers (x0, x1) with x0 ∈ {0, ..., p−1} and x1 ∈ {1, ..., p−1},
which is understood to represent the element x0/x1 ∈ Fp. To compute with this representation, we may
simply use the calculation rules for fractions: The product of two elements (x0, x1) and (y0, y1) becomes
(x0y0, x1y1), and similarly the sum becomes (x0y1 + x1y0, x1y1).

87 Remark. Given the name and nature of this technique, one may be inclined to assume it is restricted to
projective varieties (such as elliptic curves and other abelian varieties). However, the same idea works in full
generality for any kind of algebraic computation!8 As such, the connection to projective space is almost a
coincidence.

The main purpose of projective coordinates is speed, but in fact, it also helps quite a bit with side-channel
resistance (to be discussed soon): The reason is that inversions are “naturally” tricky to harden against
physical attacks.

4.2 Efficiency: Eliminating the y

Another, much less obvious, trick used in elliptic-curve cryptography for efficiency is based on the simple
observation that almost all of the information in an elliptic-curve point is contained in the x-coordinate. From this,
the idea follows naturally to transmit only the x-coordinate instead of full points when performing (say) a
key exchange à la Diffie–Hellman. However, does it work? (Spoiler: Yes!)

88 Lemma. Let P be a point on a (long) Weierstraß elliptic curveE and n ∈ Z. Then [n](−P) = [−n]P =
−[n]P . Ad-hoc notation: Write κ : E → P1, (x : y : z) 7→ (x : z). Then κ([n]P) = κ([n](−P)).

Proof. The equality [n](−P) = [−n]P = −[n]P holds true in any group. For the second claim, recall the
negation formula−(X : Y : Z) = (X : −Y − a1X − a3 : Z) for (long) Weierstraß curves. □

Fifth lecture (May 27)

89 Corollary. LetE/K be a (long) Weierstraß curve over a fieldK . For any n ∈ Z and (X : Z) ∈ P1(K), there
exists a unique (X ′ : Z ′) ∈ P1(K) such that for allQ ∈ E withκ(Q) = (X : Z)we haveκ([n]Q) = (X ′ : Z ′).

Proof. All preimages of (X : Z) under κ are negatives of one another. Hence the claim follows from the
lemma. □

8“Algebraic” here means: A sequence of operations in some ring.

17

90 Remark. The imageK of κ is known as the Kummer line ofE; it is defined as the quotient ofE by the
negation map P 7→ −P .9 We’ll use the notation ±P for the equivalence class of a point P ∈E on the
Kummer lineK.

Note that cryptographers usually speak of “x-only arithmetic” when referring to computations on the
Kummer line.

91 Definition. Let xMULn : K → K be the map that takes each (X : Z) to the associated (X ′ : Z ′) from
the corollary.

In practice, one often works withZ,Z ′ ̸= 0 and (by some slight abuse of notation) views xMULn as a
map on affine x-coordinates only (hence the name).

From the theorem at the end of Section 3.4 about the representation of [n] in terms of polynomials, it is
evident that xMULn is algebraic. (It can be written as a rational function.) However, this representation is not
very useful for cryptography, as its size is Θ(n2) field elements, which totally negates the advantage that
users gain over attackers by using double-and-add. So, we need a version of double-and-add that works on
the Kummer line only: This is not automatic since the Kummer line no longer carries a group structure after
identifying each point with its negative.

• Clearly, doublings are no problem on the Kummer line: The doubling formula is dependent on x only,
anyway.

• Additions are trickier: They really do require the sign of the input points, as there is otherwise no way
to distinguish±(P +Q) ∈ K and±(P −Q) ∈ K. The solution for this is “differential addition”:

92 Lemma. LetP,Q ∈ E. The three Kummer points±P,±Q,±(P −Q) uniquely determine±(P +Q) ∈ K.
For (long) Weierstraß curves,10 there exist algebraic formulas to calculate±(P+Q) from±P,±Q,±(P−Q).

Proof. (Homework.) □

93 Definition. Write xDBL : K → K for “x-only doubling”, i.e., mapping±P ∈ K to±[2]P . (In other
words, xDBL = xMUL2.) Write xADD for “x-only (differential) addition”, which maps triples of the form
(±P,±Q,±(P−Q)) ∈ K3 to±(P+Q).

Now, how do we compute xMULn using xDBL and xADD?

94 The Montgomery ladder.
Input: Integer n ∈ Z, Kummer line point±P ∈ K.
Output: The Kummer line point xMULn(±P) = ±[n]P .

(1) If n < 0, set n := −n.

(2) Compute the binary expansion n =
∑ℓ− 1

i=0 bi2
i with each bi ∈ {0, 1}.

(3) Initialize±R0 := (1 : 0) ∈ K and±R1 := ±P ∈ K.

(4) For k ranging from ℓ− 1 down to 0:

(a) Set±R1−bk := xADD(±R0,±R1,±P).

(b) Set±Rbk := xDBL(±Rbk).

(5) Return±R0.

95 Lemma. The Montgomery ladder is correct.
9As an algebraic variety, the Kummer line is simply P1(K); however, it inherits additional structure from E.

10Actually, this holds in utmost generality, but we cannot prove this, nor need it, here.

18

Proof. First, notice that ⌊n/2j⌋ =
∑ℓ−1

i=j bi2
i−j for all j ≥ 0.

We claim that the following invariant holds: At the beginning of the main loop, forw ∈ {0, 1},

±Rw = xMUL⌊n/2k+1⌋+w(±P) .

(In particular, this implies that the inputs to xADD are valid.) To verify the loop invariant, let (±R′
0,±R′

1)
denote the values of the±Rw at the end of the main loop for some given k. Hence

±R′
1−bk

= xADD(±R0,±R1,±P) = xMUL2⌊n/2k+1⌋+1(±P) ;

±R′
bk

= xDBL(±Rbk) = xMUL2⌊n/2k+1⌋+2bk
(±P)

by assumption. Now, from

2⌊n/2k+1⌋ = 2
ℓ−1∑

i=k+1

bi2
i−k−1 =

ℓ−1∑
i=k+1

bi2
i−k = ⌊n/2k⌋ − bk ,

it follows that

±R′
1−bk

= xMUL⌊n/2k⌋−bk+1(±P) ;

±R′
bk

= xMUL⌊n/2k⌋−bk+2bk
(±P) .

Substituting in bk =0 and bk =1 yields ±R′
0 = xMUL⌊n/2k⌋(±P) and ±R′

1 = xMUL⌊n/2k⌋+1(±P), as
claimed. □

96 Remark. A major benefit of the Montgomery ladder, besides saving the y-coordinate, is that it is compar-
atively easy to harden against side-channel attacks: This is the topic of Sections 4.4 and 4.5.

97 Remark. There exist other cryptographic protocols where x-only arithmetic is not advantageous: One
prominent example where this typically happens are digital-signature algorithms, which we’ll discuss later.

4.3 Invalid-curve attacks

Generally, high-level descriptions of cryptosystems tend to specify that certain mathematical objects be
transmitted, but do not necessarily say how these things are represented as bit strings and how the implemen-
tation could detect it when invalid data is received. Depending on context, implementations may explicitly
check the validity of the received data and abort if something is wrong,11 or not check anything and simply
perform possibly ill-defined or dangerous computations on the received data, anyway.

98 Example. Suppose Alice and Bob are doing a Diffie–Hellman key exchange in the group (F×
p , ·). The most

obvious way to represent elements of F×
p is as elements of Fp, which are in turn represented as as integers

between 0 and p−1. However, 0 ∈ Fp \ F×
p !

Hence, if Bob12 transmits 0 ∈ Fp as his public key, he is technically sending a “thing” that lies outside
the valid public-key space. In this particular case the shared secret would always end up being zero. This is
not catastrophic since all Bob achieves is to simply void the security of the key exchange, which he could do
anyway by simply broadcasting the shared secret to the world, but it is an example of an invalid input and
there are other settings where Bob can learn information about Alice’s private key(!) using the same kind of
trick.

The example illustrates how the idealized view of the Diffie–Hellman protocol assumes that the received
group elements are actually valid: The public keys should be elements of F×

q or points on a particular elliptic
curve. In this section, we investigate what happens in the context of elliptic-curve Diffie–Hellman when this
(often implicit) assumption is violated.

11We note in passing that there are cryptographic schemes where checking the validity of a message received from another
participant is provably as hard as breaking the scheme, hence there really is no way to perform this check. In such cases, resilience
against maliciously crafted invalid inputs must be built using a careful workaround.

12Note that Bob may very well be malicious, and that “Bob” may in fact be someone else entirely. “On the Internet, nobody knows
you’re a dog.”

19

4.3.1 Small-subgroup attacks

Suppose Bob is performing an ECDH key exchange with Alice, who uses the same key pair (α, [α]G) every
time. After the shared secret is established, they are to communicate securely using the shared secret and
symmetric cryptography.

Standard example: Bob is an internet user who connects to a webserver Alice. After the initial TLS
handshake, the first thing that happens is that Bob’s browser sends an encrypted HTTP request using the
shared secret, and Alice should respond with the requested data (i.e., typically a cute photo of a cat).

Now, in the case that Bob for some reason gets the wrong shared secret, he can clearly distinguish this
from the normal behaviour: Since Alice cannot even decrypt Bob’s request, she cannot possibly respond the
same way as before.

The bottom line is that Bob (in typical deployments of ECDH) has access to an oracle which takes a
public-key pointP from Bob, computes a shared secret on Alice’s side with Alice’s private key, and Bob gets
to test whether his own alleged shared secret matches the one Alice actually obtained.

99 Remark. In cryptography, an oracle is an idealized black box which takes a well-defined set of inputs
and returns the result of a particular specified operation on it, possibly involving secret key material.

They are often used in the context of attacks (construct an attack given some oracle coming from imple-
mentation mistakes) and “provable” security (construct a solver for some claimed hard problem assuming
there exists an attack).

If the curveE being used has a pointP of “small” order ℓ ≥ 2, then this oracle can in fact be used to learn
information about Alice’s private key a: Bob will keep sending that pointP as his public key and iteratively
guess [0]P , [1]P , ..., [ℓ−1]P as the shared secret. With some point [k]P , the connection will succeed: then
Bob has learned that Alice’s shared secret [α]P equals [k]P , thereforeα ≡ k (mod ℓ).

Now, of course, the curves actually used for ECDH are designed to have large prime order (or perhaps
order very close to a large prime with a small “cofactor”), so this attack does not teach Bob very much about
Alice’s private key: Guessing Θ(q) many points (over the wire!) will certainly not be more efficient than a
straightforward BSGS attack on Alice’s public key, which takes timeO(

√
q) and does not require interaction

with the oracle, i.e., Alice.
However, when things go wrong, the same technique can apply!

4.3.2 Invalid curve points

We will now assume Alice has a fixed ECDH key pair (α, [α]G) and we assume access to the following oracle:
Given two pointsP = (x, y) ∈ F2

q and S ∈ F2
q , compute the elliptic-curve scalar multiplication [α]P using

the standard short Weierstraß addition formulas and return yes if [α]P = S, otherwise no.
Crucially, no test is performed whether the point P actually lies on the curve E : y2 = x3 + ax + b.

In order to determine what happens toP in this case, we recall the addition formulas for short Weierstraß
curves from Section 2.1.1:

• The negative of (x, y) is (x,−y).

• The sum of (x1, y1) and (x2, y2) is either equal to∞ or (x3, y3) where x3 = λ2 − x1 − x2 and
y3 = λ(x1 − x3)− y1. Here λ = y2−y1

x2−x1
or λ =

3x2
1+a
2y1

.

The key point to notice is that none of these formulas involves the curve coefficient b. Thus, the exact same
elliptic-curve addition formulas will work on any other elliptic curveE′ : y2 = x3 + ax+ b′ with b′ ∈ Fq!

This is useful because there exists, for any P = (x, y) ∈ F2
q , such a b′: It is readily determined by

b′ = y2 − x3 − ax with the given values of x and y substituted in. Therefore, we can reinterpret Alice’s
computation of a scalar multiplication onE with an invalid point as a scalar multiplication onE′.

100 Remark. Notice how sending a point outsideE totally breaks the idealized view where a public key can
only be a point onE, and that what happens if this is violated is very much implementation-dependent. The
fact that the formulas still “work” and do something meaningful — computing onE′ — is somewhat natural
here, but nothing of the sort can be expected to occur in other types of cryptographic constructions in general.

20

Either way, the big issue is thatE′ may be a much weaker curve thanE in the context of ECDH! The
primary reason for this to happen is when the number of points onE′ contains a small prime factor, since we
can then simply run a small-subgroup attack as described above.

101 Remark. One may be tempted to think that a fully smooth-order curve E′ is the best for an attacker:
However, it is crucial to note that Alice computes her public key with the real base point and so her public key will
remain as strong as ever.

Given a much stronger oracle that does not only answer yes or no but actually returns the shared se-
cret [α]P obtained by Alice, we may however use a fully smooth curve and solve forα after a single oracle
query using Pohlig–Hellman.

This type of oracle does not make sense in pure DH key exchange, but can appear in more complicated
protocols. It is also natural in fault attacks (to be discussed later).

Finding weak curves. For this attack, finding weak curves is extremely straightforward: We simply brute-
force search for b′ such that #E′(Fq) has a small (not necessarily prime) divisor ℓ.

Running the attack. After enough curvesE′ with varying such ℓ have been obtained, we may run the
small-subgroup attack for all those curves E′ with their corresponding ℓ to learn congruence conditions
on Alice’s private key α. As usual, enough such conditions allow us to recover α ∈ Z using the Chinese
remainder theorem.

Number of queries. For simplicity, assume that the ℓ are all prime. Let’s say #E(Fq) = n, so that
α ∈ {0, ..., n−1}. Then we need

∏r
i=1 ℓi ≥ n, where ℓi are the distinct small prime factors for the invalid

curvesE′. For each invalid curve, we expect to requireΘ(ℓi) oracle queries. Hence the total number of queries
is inO((log n)2), which takes exponentially less time than a brute-force attack on the ECDLP (α, [α]G).

Practical example: For a 256-bit n, it is enough to take primes≤ 200 for the ℓi, which results in a worst-
case workload of about 4200 queries and about half of that on average.

Sixth lecture (June 3)

4.3.3 Twist security

At first sight, invalid-curve attacks no longer apply when x-only coordinates are used (as one should), since
the y-coordinate is a big part of what allowed us to force a point onto a different curve with particular
properties. However, as it turns out, there is still one “other” curve on which we can send invalid points!

The starting point is that not all x ∈ Fq are valid x-coordinates for points defined over Fq : For about half
of all x ∈ Fq , the corresponding y-coordinate must lie in a quadratic extension Fq2 . Thus, by sending invalid
x-coordinates, we still land outside the intended Diffie–Hellman groupE(Fq).

What is this group? Write #E(Fq) = q + 1− t as usual.13 From Lemma 76, we get

#E(Fq2) = q2 + 1− (t · t− q · 2) = (q + 1)2 − t2

= (q + 1− t)(q + 1 + t) = #E(Fq) · (q + 1 + t) .

This suggests that the order of points with x ∈ Fq but y /∈ Fq should divide the “new” part q + 1 + t.
Recalling that the setE(Fq) of Fq-rational points was ker(π − 1), we can prove this by looking at the action
of Frobenius:

102 Lemma. LetE be a short Weierstraß elliptic curve defined over Fq . Then all pointsP = (x, y) with x ∈ Fq

and y /∈ Fq lie in ker(πq + 1).

Proof. Since xq = x, the image πq(P) must be either P or −P . If it was P , then yq = y, which would
contradict the assumption that y /∈ Fq . Hence πq(P) = −P and the claim follows. □

13The integer t is the trace of the q-power Frobenius.

21

103 Remark. The inclusion from the lemma is not an equality: Points with y = 0 lie in ker(πq +1) but don’t
satisfy y /∈ Fq . There is also the point at infinity in ker(πq + 1).

104 Remark. The subgroup ker(πq + 1) is sometimes called the trace-zero subgroup ofE(Fq2).

Using this characterization, we can find a multiple of the orders of points with x ∈ Fq but y /∈ Fq :

105 Lemma. LetE/Fq with #E(Fq) = q + 1− t. Then #ker(πq + 1) = q + 1 + t.

Proof. We have

deg(πq + 1) = (πq + 1)(π̂q + 1) = πqπ̂q + 1 + πq + π̂q = deg πq + 1 + trπq = q + 1 + t . □

Points in the trace-zero subgroup are also often referred to as “points on the twist” since they be-
come Fq-rational after taking an isomorphism to the quadratic twist — hence the name “twist (in)security”.

106 Definition. LetE : y2 = f(x) be an elliptic curve overK with f(x) a cubic polynomial and let τ be a
nonsquare inK . The quadratic twist ofE, sometimes writtenEt or Ẽ, is the elliptic curve y2 = τf(x).

(There is a coordinate transform to convert this curve form into a standard Weierstraß equation.)

107 Lemma. Let E/Fq be given by y2 = f(x) and consider its quadratic twist Et : y2 = τf(x) where τ is a
nonsquare in Fq . Let πq and πtq denote the q-power Frobenius endomorphisms ofE andEt respectively.

Consider the isomorphism
ι : E → Et, (x, y) 7→ (x,

√
τy)

where
√
τ is a fixed square root of τ in Fq2 . Then ι(ker(πq + 1)) = ker(πtq − 1) = Et(Fq).

Proof. Note that πtq ◦ ι = −ι ◦πq by an explicit calculation using the fact that
√
τ
q
= −
√
τ as before. Hence,

ker(πtq − 1) = ker(−ιπqι−1 − 1) = − ker(ι(πq + 1)ι−1) = −ι(ker(πq + 1))

since ι is an isomorphism. Note that we can drop the sign since−G = G for any (sub)groupG. □

Twist attacks. All of this suggests an invalid-curve attack forx-only coordinates in case the “actual” group
order q + 1− t is safe but the “twist” order q + 1 + t is not (i.e., has only small prime divisors). The attack
works exactly as before, except that we can no longer choose the insecure curveE′ freely; rather, we must live
with what is given (the quadratic twist).

Twist security. Since checking whether a given x-coordinate is valid may be fairly expensive, and since
implementers may not always remember to perform safety checks which aren’t necessary for the system to
“work”, it has become standard to prevent all such issues from the beginning by using curves where both the
curveE(Fq) as well as its quadratic twistEt(Fq) have a large prime factor in the order. These are known as
twist-secure curves.

Curve25519. Perhaps the most prominent representative of this family, and the example that seems to
have moved the concept into mainstream cryptography, is the curve Curve25519 given by

y2 = x3 + 486662x2 + x

over the prime field Fp with p = 2255 − 19. It satisfies

#E(Fp) = 8 · 7237005577332262213973186563042994240857116359379907606001950938285454250989 ;
#Et(Fp) = 4 · 14474011154664524427946373126085988481603263447650325797860494125407373907997 .

22

4.4 Physical security and side-channel attacks

The previous section is an instance of something that happens in cryptography, everywhere, all the time:

108 Law of Leaky Abstractions. All non-trivial abstractions, to some degree, are leaky.
— Joel Spolsky (cofounder of Stack Overflow)

Earlier it was the abstraction that “curve points” can be sent over the wire, when in fact the wire transmits
zeroes and ones (if you’re lucky). As a matter of fact, the real world is scary: Physics itself causes quite a few
difficulties when trying to deploy a-priori-flawless cryptography in a secure manner. First, we will survey the
most important types of side-channel attacks.

4.4.1 Power consumption and emissions

Scenario: Smartcards, which includes things like bank cards or the electronic portion of some types of travel
documents. These cards contain a tiny computer processor as well as a private key which is used to authorize
transactions. Ideally, the cards should be uncloneable; in particular, it must not be possible to extract the
private key.

However, for such cards, the environment (such as a manipulated payment terminal) can observe plenty
of physical side effects of the computation the card is performing while it authorizes a transaction. One of
them is power consumption: In a nutshell, in typical digital computers, storing a 0 requires an amount
of power that’s different from storing a 1. Another physical effect, in a sense the second side of the same
coin, is electromagnetic radiation: Any time a current flows through a wire or circuit, this changes the
electromagnetic field around the various parts of the chip.

In both cases, the resulting leakage correlates to some extent with the secret data being processed, and
more often than not some very careful measurements and post-processing of the data can reveal information
about the secret.

4.4.2 Fault attacks

Scenario: Similar types of applications as above. However, in addition to passively measuring physical
side effects of the computation, the attacker may now also actively tamper with the device to cause it to
misbehave in a way that makes it spit out secrets or skip crucial checks.

Common techniques to artificially trigger faults include playing around with the power supply (“voltage
glitching”), manipulating the timing of the signal flow inside the chip (“clock glitching”), or injecting an
electromagnetic or laser pulse in some part of the chip to induce spurious currents and thus flip bits.14

A very basic example are loop-abort faults: Imagine that an attacker manages to change the conditional
jump back to the start of the main loop in Algorithm 94 so that the loop is terminated after only ℓ′ instead of
the intended ℓ iterations. Then, according to the proof of Lemma 95, the returned value is the scalar multiple
of the top ℓ′ bits of the private key with the given point. Timing the loop abort carefully will thus allow an
attacker to solve a much smaller DLP. Repeatedly aborting at later points of the calculation and keeping the
current known bits of the private key updated thus allows an attacker attacker to fully recover the private key
with only a few successful fault injections.

4.4.3 Timing attacks

Scenario: Servers on a local or remote network.

Cryptosystems often take slightly different amounts of time to process different inputs. Reasons
include performance optimizations to bypass unnecessary operations, branching and conditional
statements, RAM cache hits, processor instructions (such as multiplication and division) that
run in non-fixed time, and a wide variety of other causes.

14In fact, very similar kinds of faults can occur naturally due to cosmic radiation: Engineers have to minimize the risk of such
events when designing things like computers that go to space, or other critical control hardware (even here on Earth).

23

Performance characteristics typically depend on both the encryption key and the input data
(e.g., plaintext or ciphertext).

While it is known that timing channels can leak data or keys across a controlled perimeter,
intuition might suggest that unintentional timing characteristics would only reveal a small
amount of information from a cryptosystem (such as the Hamming weight of the key).

However, attacks are presented which can exploit timing measurements from vulnerable
systems to find the entire secret key.

— Paul C. Kocher, “Timing Attacks on Implementations of Diffie–Hellman, RSA, DSS, and Other Systems”, 1996

The way timing attacks generally work is by repeatedly sending carefully chosen inputs to the target system,
which then leaks some information about its secrets via timing differences inside the processor resulting
from various things.

Timing attacks are, among the classes of side-channel attacks I discuss here, the easiest to mitigate when
writing software: That is the topic of Section 4.5.

4.4.4 Microarchitectural side channels

Scenario: Web browsers (which execute code from the internet on your machine), cloud computing (which
runs virtual computers belonging to separate users on one physical computer).

Modern computers are extremely complex devices: Even if you program in assembly language, the
machine model exposed to assembly is essentially “fake”: It is emulated by a bunch of even more low-level
controllers (instruction decoder, memory-management unit, ...) that have a number of arithmetic/logic units
(ALUs) and different kinds of memory (including registers) and various other components available to them.
Using these resources, the processor is designed to execute a given program as efficiently as possible on the
available hardware.

In particular: “Memory” actually contains many different types of memory. As a rule of thumb, the closer
to the actual processing core some data lies, the faster it is to access, but the amount of very fast memory is
limited by chip design considerations as well as (fundamentally) the speed of light.

Hence, modern CPUs employ multiple layers of caching to automatically detect data that is needed
frequently and keep it in a fast memory location close to the processing core. However, when combined with
the fact that malicious processes may run in parallel on the same machine, these caches may leak information
if one is not careful: They can reveal to other processes which memory locations have been accessed,
based on how long they take to load.

There are plenty of other microarchitectural side channels like this: “Spectre” and “Meltdown” refer to entire
classes of attacks that exploit advanced CPU optimizations (in this case, speculative execution) to access data
that “should” be hidden if the CPU was not trying to be clever.

4.4.5 There’s more!

Imagination is almost endless when it comes to side-channel attacks.
See for example Genkin–Shamir–Tromer, “Acoustic Cryptanalysis” (2016), where they record the sound

made by a laptop while running RSA decryption “using a plain mobile phone placed next to the computer”
and recover the private key using the acoustic emissions.

Seventh lecture (June 10)

4.5 “Constant-time” software

In a nutshell, “constant-time” means that the execution time of an algorithm is independent of some of its
inputs (which are marked as secrets).15

15Note how this does not at all imply that the time taken must actually be constant. It is also distinct from the complexity-theoretic
meaning O(1).

24

In practice, this means we must not use any (1) branches conditional on secrets, and (2) instructions with
input-dependent timings if the input is a secret. The most important subclass of the latter are (3) memory
accesses with secret-dependent locations.

Are the cryptographic algorithm we’ve seen so far “constant-time”?

• The square-and-multiply or double-and-add algorithm very much isn’t: Every branch in the main loop
depends on one bit of the private key.

• The standard elliptic-curve addition formulas aren’t: They involve a case distinction based on whether
P

?
= Q or not.

• The Montgomery ladder (Algorithm 94) is not as stated since the memory accesses for loading and
storing eitherRbk orR1−bk depend on the secret bit. We can however fix this using a constant-time
conditional swap.

109 Constant-time conditional swap.
Input: Secret bit c ∈ {0,1}, two “objects” x[0..l-1] and y[0..l-1] of the same size (l bytes).
Effect: Swap x and y if m is set to 1, nothing otherwise — in constant time.

(1) Set byte m := 0 - c. (This value either has all bits set to 0 or all bits set to 1.)

(2) For i from 0 to l-1:

(a) Set byte t := m AND (x[i] XOR y[i]). (These logic operations are performed bitwise.)

(b) Set x[i] := x[i] XOR t.

(c) Set y[i] := y[i] XOR t.

110 Remark. It is clear that the algorithm as written has control flow and memory accesses that is indepen-
dent of c.

Note however that (depending on the particular programming language) nothing may stop a compiler
from replacing the constant-time version by an “optimized” version that is totally vulnerable against side
channels. From a cryptographic-engineering perspective, this is a shortcoming of traditional compiler design,
which focuses on preserving semantic equivalence only (but not on side-channel safety).

With this conditional swap plugged into the Montgomery ladder (main loop: CSWAP, xDBL, xADD, CSWAP), it
is automatically constant-time assuming the x-only formulas are. We have seen in homework set 4, exercise 1
(cf. set 6, exercise 2, part 1) that there are x-only formulas which require case distinctions only for special
cases that are easily avoided, which implies that the Montgomery ladder can be implemented in an entirely
branch-free manner using such formulas.

Constant-time “if”s... work very similarly: We simply compute the result of both branches, then apply
a conditional assignment (using bit operations) of the result we want, as selected by a boolean variable
converted to a bitmask.

111 Remark. There are fixes and workarounds for all of the issues described earlier. Power or EM leakage is
usually hidden using “masking”: Using randomized redundant representations for all the secrets internally
so that the leakage is hidden by the unknown randomness inside the representation. Fault attacks can
be prevented from succeeding in various algorithmic ad-hoc ways, or by hardening the hardware itself.
Microarchitectural side channels are mitigated using a combination of software fixes in compilers, operating
systems, and CPU microcode updates. (CPU manufacturers, however, typically choose to only mitigate those
issues where it is easy to do so without too much of a performance impact: Their #1 marketing argument is
performing well in benchmarks, not security.)

25

4.6 Montgomery curves

For performance, it is very common to divert from the short Weierstraß form in cryptographic practice:

112 Definition. LetK be a field. A Montgomery (elliptic) curve is a projective plane curve of the form

By2 = x3 +Ax2 + x

withA,B ∈ K withB ̸= 0 andA /∈ {±2}. (I call the caseB=1 “untwisted”, but this is not yet standard.)

One advantage of Montgomery curves is that they always exhibit the point (0, 0) of order 2 which makes
some things very nice computationally.

113 Lemma. LetE be a Montgomery curve andP = (x, y) ∈ E with x ̸= 0. Writing T = (0, 0) ∈ E, we have

P + T = (1/x,−y/x2) .

Proof. (Homework.) □

114 Lemma. Let E be a Montgomery curve. Consider points P = (x1, y1) and Q = (x2, y2) on E such that
0 /∈ {x1, x2, x1 − x2}. WriteP +Q = (x3, y3) andP −Q = (x4, y4). Then

x3x4(x1 − x2)2 = (x1x2 − 1)2 .

Proof. Omitted: This works the same as homework set 4, exercise 1, part 2. □

As a consequence, there are very nice combined and streamlined x-only doubling-and-addition formulas:

115 Lemma. Consider the Montgomery curve y2 = x3 + Ax2 + x over a field K and suppose given the value
a24 = (A+2)/4. Let±P = (X2 : Z2) ∈ K,±Q = (X3 : Z3) ∈ K, and±(P −Q) = (X1 : 1) ∈ K, such
thatX1 ̸= 0. The following sequence of operations16 computes±[2]P = (X4 : Z4) and±(P +Q) = (X5 : Z5)
using 5 multiplications, 4 squarings, 1 multiplication by a24, and 8 additions or subtractions.

(A1) A = X2 + Z2

(S1) AA = A2

(A2) B = X2 − Z2

(S2) BB = B2

(A3) E = AA− BB

(A4) C = X3 + Z3

(A5) D = X3 − Z3

(M1) DA = D · A
(M2) CB = C · B
(A6) t0 = DA+ CB

(S3) X5 = t20
(A7) t1 = DA− CB

(S4) t2 = t21
(M3) Z5 = X1 · t2
(M4) X4 = AA · BB
(a24) t3 = a24 · E
(A8) t4 = BB+ t3

(M5) Z4 = E · t4

Proof. Omitted. □

16Source: https://hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3

26

https://hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3

As a consequence, this “ladder step” can be used inside a Montgomery ladder with no case distinctions,
at least if the generator is not the point (0, 0) of order two.17

116 Remark. Some notes on the notation for the cost of these operations:

• Typically, the cost of algebraic computations is dominated by the cost of the multiplicative operations:
This effect is so extreme that people often assume additions to be “free”.

• According to conventional wisdom, the cost of a squaring is about 80% of the cost of a multiplication.
That is why squarings are counted separately.

• Similarly, the cost of the multiplication by a24 depends a lot on the value of this constant. Extreme
example: If a24 equals, say, 5, then this multiplication can be replaced by five additions, which are
(usually) much cheaper.

We may now perform a simple cost estimate: For each bit of the input scalar, the Montgomery ladder
performs 5 or 6 multiplications and 4 squarings, for a total of ≈ 10multiplication equivalents per bit. Looking
at these numbers informs the expected performance difference between 250-bit ECDH and 3000-bit finite-
field Diffie–Hellman (recall that the resulting security levels are comparable; cf. the remark at the end of
Section 1.4): With elliptic curves we are performing about 10 times more base-field operations, but the field
can be about 10 times smaller. If schoolbook multiplication is used, the cost of a ℓ-bit multiplication scales as
Θ(ℓ2), hence in this case we might expect elliptic curves to be about

30002

10 · 2502
≈ 14.4

times faster. And indeed, a quick experiment with openssl gets very close to this number:

$ openssl speed -seconds 1 ecdh

Doing 256 bits ecdh ops for 1s: 25812 256-bits ECDH ops in 0.99s

$ openssl speed -seconds 1 ffdh

Doing 3072 bits ffdh ops for 1s: 1930 3072-bits FFDH ops in 1.00s

Note that 25812/1930 ≈ 13.37.
There are more factors affecting the performance difference between elliptic curves and finite fields: The

most important one is not the speed of arithmetic, but the cost of attacks. Indeed, key lengths for finite-field
Diffie–Hellman scale as a cubic function of the security level, while for elliptic curves the scaling is linear.

4.7 Edwards curves

As we’ve seen above, one way to avoid the case distinction in the formulas is to make sure they won’t appear
in the cryptographic protocol we are implementing. This is more difficult for full point arithmetic than for
x-only arithmetic: In all formulas we’ve seen so far, doublings and adding a point and its negative are special.

117 Remark. This discussion begs the question if there need to be exceptional cases at all. The answer is
yes: It has been proved that every single addition formula for an elliptic curve must have special cases that
mandate the use of a different formula.

(See Bosma and Lenstra, “Complete Systems of Two Addition Laws for Elliptic Curves”, Journal of Number Theory (1995).)

Avoiding the exceptional cases can be done on a protocol level (see above). Another way of tackling the
problem at a lower level, when choosing the curve, is to work with complete formulas: Those are set up in such a
way that the exceptional cases are all excluded because they sit in an extension field. This should in principle
be possible for all elliptic-curve shapes, but was historically first achieved for Edwards curves which also
enjoy some other nice properties.

17This is not a restriction in practice since doing cryptography in a group of order two is fairly pointless.

27

118 Definition. LetK be a field of characteristic ̸= 2. A (twisted) Edwards curve overK is a projective plane
curve

ax2 + y2 = 1 + dx2y2

where 0 /∈ {a, d, a− d}.

As written, this curve is not an elliptic curve, not even in the high-brow view of things: It is singular!

119 Lemma. LetE be a (twisted) Edwards curve. Then there are two points at infinity onE, namely (0 : 1 : 0) and
(1 : 0 : 0). Further, the points at infinity are (the only) singular points onE.

Proof. (Homework.) □

However, the curve is “essentially equivalent” to an elliptic curve, in the sense that there is an invertible
partial map to an elliptic curve that is defined almost everywhere:

120 Lemma. Let E be a twisted Edwards curve given by a, d ∈ K as above. Define the Montgomery curve
M : Bv2 = u3 +Au2 + u whereA = 2(a+ d)/(a− d) andB = 4/(a− d). Then

f : E 99KM, (x, y) 7−→
(
1 + y

1− y
,

1 + y

(1− y)x

)
is a well-defined map except at (0,−1) ∈ E and the two points at infinity onE. Conversely, the (partial) inverse

f−1 : M 99K E, (u, v) 7−→
(
u

v
,
u− 1

u+ 1

)
is a well-defined map except at the points of order two (..., 0) ∈M , as well as the point at infinity onM .

Proof. Verifying that these maps end up on the correct curve (where defined) is a straightforward computation.
We homogenize to treat the points at infinity correctly:

F =
(
(z + y)x : (z + y)z : (z − y)x

)
.

Points where this map is undefined are those where (z + y)x = (z + y)z = (z − y)x = 0. Hence

(x = 0 ∨ z = −y) ∧ (z = 0 ∨ z = −y) ∧ (x = 0 ∨ z = y)

If x ̸= 0, then z = −y ∧ z = y, implying y = z = 0 since the characteristic was not 2; hence (1 : 0 : 0) is
the only such point. The case z = 0 implies xy = 0, hence (0 : 1 : 0), (1 : 0 : 0) ∈ E are also exceptional.

The other direction works just the same. □

121 Remark. The map from Lemma 120 is a birational equivalence: This notion is very close to an isomorphism,
but it is not quite since there are exceptional points where the map is really not defined (and no amount of
rewriting the formulas into equivalent formulas can fix that).

This explains, among other things, howE can be a singular curve whileM is non-singular.

122 Lemma. Consider a (twisted) Edwards curveE : ax2 + y2 = 1 + dx2y2 over a fieldK of characteristic ̸= 2
where a is a square and d is a non-square. LetP = (x1, y1) andQ = (x2, y2) beK-rational points onE. Then

P +Q =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.

The neutral element with respect to this addition law isO = (0, 1). The negative ofP = (x, y) is (−x, y).

Proof. We’ll skip the derivation of the formulas. Proving that the formulas always work is homework. □

28

Eighth lecture (June 17)

4.8 Digital signatures from elliptic curves

We’ll now discuss signature schemes in some detail. Note that there are many digital-signature schemes
based on elliptic curves; the most popular one is probably still ECDSA.

Signature schemes. As hinted in Section 1.1, the key cryptographic requirement for digital signatures is to
be unforgeable: Given someone’s public key and an arbitrary number of existing signatures, noone should be
able to produce a signature for another message that the public-key owner did not sign.

At the heart of many (most?) signature schemes lies an (interactive) identification scheme. We’ll first discuss
these, since they are conceptually a bit simpler, and then see how to transform them into a (by definition
noninteractive) signature scheme.

4.8.1 (Interactive) identification protocols

...are a way for a prover holding a private key a for some public key [a]G to convince a verifier that they indeed
know the secreta— without revealing it, of course. Their applications in cryptography are plentiful, including
as a standalone primitive (e.g., authentication) and as a building block for other primitives (e.g., signatures)
and more complicated protocols.

The fixed public parameters for the following are an (elliptic-curve) groupE together with a “generator”
pointG ∈ E of large prime order ℓ.

123 Identification from Diffie–Hellman.
Situation: The prover has a DH key pair (a,A) whereA = [a]G.

(1) Verifier: Choose a random “nonce” r ∈ {0, ..., ℓ−1} and sendR := [r]G to the prover.

(2) Prover: Compute the Diffie–Hellman shared secret determined byA andR, i.e., the point S := [a]R,
and send it to the verifier.

(3) Verifier: Compute the Diffie–Hellman shared secret as [r]A and check that it matches the point S
sent by the verifier.

This protocol clearly works, and it is secure unless an attacker can break the Diffie–Hellman key exchange,
but it is not straightforward to turn it into a signature scheme because the verifier has to keep the value r secret.
(There is a conceptually pleasing workaround for this based on pairings, which we will also see later.)

Luckily, there are other identification protocols for Diffie–Hellman public keys that are more convenient
for the purpose of building a signature scheme:

124 Schnorr’s identification protocol (1990ish).
Situation: The prover has a DH key pair (a,A) whereA = [a]G.

(1) Prover: Choose a random “nonce” r ∈ {0, ..., ℓ−1} and sendR := [r]G to the verifier.

(2) Verifier: Pick a random challenge value c ∈ {0, ..., ℓ−1} and send it to the prover.

(3) Prover: Compute the scalar s := (r + a · c) mod ℓ and send it to the verifier.

(4) Verifier: Check that [s]G = R+ [c]A.

125 Remark. Schnorr’s identification protocol is an instance of a “Σ-protocol”.

126 Lemma. The identification protocol is correct.

Proof. This is a straightforward verification that [s]G = R+ [c]A. □

29

At the heart of the security lie two results: First, soundness, which implies that anyone who passes the
protocol must with overwhelming probability actually know a:

127 Lemma. Given two distinct challenge-response pairs (c1, s1) and (c2, s2) for the protocol with fixed a andR,
one can recover the private key a.

Proof. We have (s2 − s1) ≡ a(c1 − c2) (mod ℓ), hence a = (s2 − s1)/(c1 − c2) mod ℓ. □

128 Remark. Constructing such an extractor for the straightforward identification protocol from Diffie–
Hellman (Protocol 123) is significantly more difficult: It boils down to reducing the discrete-logarithm prob-
lem (DLP) to the computational Diffie–Hellman problem (CDH), i.e., breaking the Diffie–Hellman key exchange.
It is not known how to do this in full generality; we will however see a very interesting partial solution later.

Second, we require that the protocol can be repeated indefinitely without leaking any information abouta.
This is known as the zero-knowledge property and it is often proved by demonstrating simulatability:

129 Lemma. There is a polynomial-time algorithm which, for a fixed key pair (a,A), on input the challenge value c,
outputs a pair (R, s) such that the “transcript” (R, c, s) has the same distribution as in the protocol.

Proof. The simulator can work backwards by solving the verification equation forR: Choose s∈{0, ..., ℓ−1}
at random and letR = [s]G− [c]A.

It remains to show that the distribution of s in the real protocol is also uniform: This is because r is
uniform in {0, ..., ℓ−1}, hence s = (r + a · c) mod ℓ is. □

The moral implication is that an observer who gets to see only the public values really cannot possibly
learn anything from them: After all, the attacker could simply have generated transcripts with an identical
distribution on their own, without requiring the use of any secrets at all!

As a combination of these two results, we thus get:

130 Corollary. The identification protocol is secure assuming that computing discrete logarithms is hard.

Now, in order to turn an identification protocol into a signature scheme, the only thing left to do is to
replace the verifier by a hash function. What’s that?

4.8.2 Hash functions

An absolutely crucial ingredient for the next construction (and most cryptography!) are hash functions. They
take an arbitrary-length bit string and return a fixed-length bit string, the hash value:

H : {0, 1}∗ → {0, 1}n .

In many cases, a hash value serves as something like a random-looking “fingerprint” of the input data. Various
computational tasks are required to be difficult forH depending on the application:

• Preimage resistance: Given some hash value v ∈ {0, 1}n, it should be hard to find anym ∈ {0, 1}∗
such thatH(m) = v.

• Second-preimage resistance: Given some input m1 ∈ {0, 1}∗, it should be hard to find a different
m2 ∈ {0, 1}∗ withm2 ̸= m1 such thatH(m1) = H(m2).

• Collision resistance: It should be hard to find any pairm1,m2 ∈ {0, 1}∗ withm2 ̸= m1 such that
H(m1) = H(m2).

Well-known hash functions include MD5 (dead), SHA1 (dead), and SHA2 and SHA3 (currently alive).

131 Remark. In theory, in order for any computational task to be difficult, we should speak about families of
hash functions. The reason is that for any fixed hash function, an attacker can simply precompute a constant
amount of data (say, 21000 input-output pairs) and find collisions or preimages in timeO(1).

(This is of course not a meaningful attack — rather, it highlights a shortcoming of some of the basic
definitions of complexity theory when it comes to cryptography.18)

18See also Bernstein & Lange: “Non-uniform cracks in the concrete: the power of free precomputation”, Asiacrypt 2013.

30

4.8.3 The Fiat–Shamir transform

...is a generic way to construct a non-interactive protocol from an interactive one, in certain cases. It is part of
the design blueprint of many different families of signature schemes.

The key point in Fiat–Shamir is to replace all messages received from the verifier by a hash function which
digests as input the entire transcript of the previous interactions. That way, assuming the hash function is
“secure” in some sense (see below), the prover can execute the entire protocol on their own, and a verifier can
later check the correctness without interacting with the prover directly at all — i.e., just what we want from a
signature scheme!

132 Remark. For this, it is crucial that all the messages from the verifier can be publicly generated: Otherwise,
either too much information is revealed to the prover, rendering the proof system insecure, or the verifier
would later struggle trying to verify the correctness of the given transcript (for lack of knowing the secrets).

Protocols with the property that all messages from the verifier can be generated without requiring any
secret randomness are known as public-coin protocols.

After the Fiat–Shamir transform was applied, an attacker has more leverage: They may now retry the
identification protocol at will until their challenge comes out favorable, or they may even try to attack the
hash function directly. As such, assumptions going in the general direction of second-preimage resistance is
typically the class of requirements we ask of a hash function in this situation.

4.8.4 Two concrete signature schemes

We’ll now look at two (very similar) concrete incarnations of Schnorr’s signature protocol which are both
obtained using the Fiat–Shamir transform.

133 Remark. In both cases, the jump from a noninteractive identification scheme to a signature scheme is
made by simply incorporating the message m into the transcript: Thus, it gets fed to the hash function
together with the random valueRwhen computing the challenge.

134 Schnorr’s signature algorithm.
Key generation: Choose a random private key a← {0, ..., ℓ− 1}. The public key isA := [a]G.
Signing of a messagem: Choose a random “nonce” r ← {0, ..., ℓ− 1}. Compute the valuesR := [r]G,
h := H(R ∥m), and finally s := (r + h · a) mod ℓ. The signature is (h, s).
Verification: LetR′ := [s]G− [h]A. Recompute h′ := H(R′ ∥m). Check whether h′ = h.

It is straightforward to check that the signature scheme works. Why is it secure? The basic idea is that an
attacker cannot control the hash value h = H(R ∥m), and therefore the only way for someone who does not
know the private key a to produce a signature is to solve the verification equationR = [s]G− [h]A for the
value s, which means solving the DLP (G,R+ [h]A).

135 Remark. An actual security proof would have to model possible attacks against the various parts of
the protocol (ECDLP, the hash function, ...) and obtain a joint upper bound on the success probability of
an efficient attacker parameterized by spending a given amount of time. Such security reductions are of
paramount importance in cryptographic engineering (but would lead us somewhat astray in this course).

There are many variants of Schnorr’s signature scheme, with small differences in how the randomness
for r is generated and how the verification equation is checked at the end. For good measure, here is another
variant, which was specified to use Edwards curves for speed (hence the name).

136 The EdDSA signature algorithm.
Key generation: Choose a random scalar a← {0, ..., ℓ− 1} and a random bit string seed ∈ {0, 1}∗; these
values make up the private key. The public key isA := [a]G.
Signing: Let r := H(seed∥m) and computeR := [r]G. Leth := H(R∥A∥m) and s :=

(
r+h·a

)
mod ℓ.

The signature is (R, s).
Verification: Compute h′ := H(R ∥A ∥m). Check whether [s]G = R+ [h′]A.

31

The differences to the previous version are:

• The value r is generated deterministically from the private key and input using the hash function. This
renders the entire signature algorithm deterministic, which helps prevent catastrophic security fails
that can occur if bad randomness sources are used during signing.19

• The hash used to produce the challenge value h includes the public keyA: This is a layer of defense
against multi-target attacks, where an attacker tries to forge a signature for any of multiple keys at once.

• The verification is closer to the original (interactive) sigma protocol: It is simply given the public values
from the sigma protocol and checks that s is a solution to the challenge problem. In the previous
version, the verifier instead recomputed the pointR from the given values h and s and checked that it
matches the correct challenge for thisR.

The reason for Schnorr’s original choice is mostly historic: When done in finite fields instead of elliptic
curves, the size of a group element is significantly bigger than the size of a scalar.20 Thus, in that setting
the signature (h, s)would’ve been much smaller than (R, s). With elliptic curves, there is no difference
in size between the two.

137 Remark. The only practically used instantiation of EdDSA is Ed25519, which uses the Edwards version of
the curve Curve25519 we’ve seen before.

Ninth lecture (June 24)

4.9 The Diffie–Hellman problem

We’ve seen the Diffie–Hellman key exchange: Alice and Bob have private keys a and b and associated public
keysA = [a]G andB = [b]G; their shared secret is S = [ab]G = [a]B = [b]A.

138 Definition. Finding S given (A,B) is the computational Diffie–Hellman problem (CDH).

The obvious way for an attacker to compute S givenA andB is to break one of the DLPs (G,A) or (G,B)
to recover a or b, then compute S as [a]B or [b]A. Question: Is this the only way one could find S?

139 Remark. For both DLP and CDH, one can consider two variants of the problem depending on whetherG
is an input or a fixed constant. The two variants are actually polynomial-time equivalent, so we may drop the
distinction and work with the choice that’s more convenient for any given purpose.

4.9.1 Reducing DLP to CDH

It is not known unconditionally whether CDH is as hard as DLP. However, there are some very interesting
results in this direction, which work for special cases or under heuristic assumptions, and lead to satisfactory
conclusions in practice.

140 Theorem (den Boer). LetG be an element of a group of prime order ℓ such that ℓ− 1 is polynomially
smooth.21 Then DLP in the group ⟨G⟩ can be reduced to CDH in ⟨G⟩ in time polynomial in log(ℓ).

The key idea underlying this reduction and the more general reduction below is that we get an im-
plicit arithmetic “in the exponent” by computing in ⟨G⟩: Clearly it holds that [a]G + [b]G = [a+ b]G
for all a, b ∈ Z; this is an addition “in the exponent”. Moreover, given a CDH oracle, we may additionally
map [a]G, [b]G to the shared secret [ab]G: This is a multiplication “in the exponent”. We have a ring!

141 Definition. The black-box field Fℓ in ⟨G⟩ using a CDH oracle is given by the set ⟨G⟩with arithmetic
operations given by the group law for + and the CDH oracle for ·. We write a for the element [a]G of Fℓ .

19Fun fact: The famous 2010 hack of Sony’s PlayStation 3 was made possible because of exactly this.
20The typical choice were “Schnorr groups”: Subgroups of prime order ℓ inside an F×

p with ℓ≪ p. Example: ℓ≈ 2256, p≈ 23072.
21This means: The ℓ here comes from an infinite set of primes for which there exists some fixed polynomial f such that for all ℓ≥ 2

in the family, no prime factor of ℓ− 1 is greater than f(log(ℓ− 1)).

32

In addition to the standard operations + and · of a ring, we require some other functionality:

• Inversions in Fℓ can be computed using Fermat’s little theorem (i.e., as a −1 = a ℓ−2), which
unfortunately takes time Θ(log ℓ): a very significant overhead over the non-black-box setting.

• Squareness testing in Fℓ is similarly easy: For oddℓ the Legendre symbol moduloℓ is justx 7→ x(ℓ−1)/2,
which can be computed in time Θ(log ℓ).

• Computing a square root in Fℓ is feasible, too: If ℓ ≡ 3 (mod 4) we simply have
√
a = a (ℓ+1)/4.

If on the other hand ℓ ≡ 1 (mod 4), then Cipolla’s algorithm can be used: Sample s ∈ Fℓ at
random until s 2− a is a nonsquare; then

√
a =

(
s +X

)(ℓ+1)/2 in the polynomial quotient ring
Fℓ [X]/

(
X2 −

(
s 2− a

))
which is a black-box version of Fℓ2 . In both cases, the cost is Θ(log ℓ).

• Encoding from Fℓ to Fℓ is easy: This means computing a 7→ a = [a]G, which can be done in time
Θ(log(a mod ℓ)) ⊆ O(log ℓ) using double-and-add.

• Decoding, however, is (generally) hard: This amounts to solving the DLP (G, [a]G), for which the best
generic algorithm takes expected time Θ(

√
ℓ).

However, there is a truly amazing trick: In order to recover a from a , one may perform arbitrary algebraic
computations in the black-box group to obtain knowledge of relations that a satisfies in Fℓ with respect to
other, known elements, and recompute a from these relations “in the clear”. The reduction of den Boer is a
concrete (and the historically first) instantiation of this idea using the group F×

ℓ :

Proof of Theorem 140. We are given a DLP instance (G, [a]G) and a CDH oracle. Proceed as follows:

(1) Find a generator g of the group F×
ℓ . Using the oracle, encode g into Fℓ .

(2) Solve the DLP (g , a) in the black-box unit group Fℓ
× using generic algorithms.

(3) Let x ∈ Z/(ℓ− 1) be the solution. Recover a ∈ Z/ℓ by computing gx in Fℓ.

By the assumption that ℓ − 1 is polynomially smooth, generic DLP algorithms take polynomial time for
the black-box DLP encountered in the reduction. In particular, the number of CDH oracle queries (i.e.,
multiplications in the black-box field) is also polynomial. □

142 Remark. The primary optimization goal for the generic DLP solver here is to minimize the number of
CDH oracle calls (i.e., black-box multiplications). As such, one may happily trade a few oracle calls for huge
amounts of “offline” computation, which skews the picture of what the “best” algorithm is in this setting.

The reduction of den Boer is neat, but as stated it is inherently limited to rare special cases where ℓ− 1 is
smooth. It has been suggested to specifically choose ℓ such that this reduction works and therefore the security
of Diffie–Hellman could be proven to rest on the hardness of DLP itself, but this is by far not mainstream,
partly since a more general reduction is available!

143 Theorem (Maurer). LetG be an element of a group of prime order ℓ. Suppose given an elliptic curveE
over Fℓ such that #E(Fℓ) is polynomially smooth. Then DLP in the group ⟨G⟩ can be reduced to CDH in ⟨G⟩
in time polynomial in log(ℓ).

Proof. This works similarly as before, with some slightly tricky details:

(1) Find a generatorP ofE(Fℓ) and encode it intoE
(
Fℓ

)
, giving P .

(2) Sample r∈Fℓ randomly until a + r is the x-coordinate of a point Q inE
(
Fℓ

)
.

(3) Solve the black-box ECDLP
(
P , Q

)
inE

(
Fℓ

)
, giving a solution x ∈ Z/#E(Fℓ).

(4) RecoverQ by computing [x]P inE(Fℓ). Find a+ r as the x-coordinate ofQ, and thus a.

33

As before, the expected cost (in particular, number of CDH oracle calls) of this procedure is polynomial
in log(ℓ) since #E(Fℓ) was assumed to be polynomially smooth. □

144 Remark. Given some prime ℓ it is not generally easy to find such a curve E. As such, the asymptotic
complexity of the reduction is superpolynomial (but subexponential) whenE is not given.

145 Remark. Replacing F×
ℓ by some other algebraic group over Fℓ, with elliptic curves in particular being

a very useful choice, is a recurring theme in algebraic algorithms: It shows up in topics such as primality
proving (ECPP) and integer factorization (ECM).

146 Remark. Note that the construction of the “auxiliary curve” E for a given ℓ can be done as a once-
and-for-all precomputation. Various cryptographers have spent time on finding “good” such curves for
cryptographically relevant group orders ℓ: As a recent example, May & Schneider in 2023 computed such
auxiliary curves for a list of standard (or de-facto standard) elliptic curves, including≈ 237-smooth options
for Curve25519 and secp256k1.

By comparison, note that standard estimates for smoothness probabilities indicate that we should expect
there to exist a 700-smooth number within the Hasse interval for the 256-bit group size of these curves.

4.10 The decisional Diffie–Hellman problem

147 Definition. The decisional Diffie–Hellman problem (DDH) asks, given a “Diffie–Hellman triple” (A,B, S),
whether S is the correct shared secret for the Diffie–Hellman public keysA andB or not.

148 Remark. Decisional versions of computational problems are very common in cryptography: The prop-
erty that one cannot even tell the solution apart from a non-solution reflects the idea that learning anything at all
about the solution is supposed to be difficult. Hence, this rules out all kinds of partial attacks on secret data.

“The Decision Diffie–Hellman assumption (DDH) is a gold mine.”
— Boneh: The decision Diffie–Hellman problem (1998)

Note that the apparent hardness of DDH is what causes the failure of the basic Diffie–Hellman identifica-
tion scheme (Protocol 123) to be public-coin: If DDH was solvable, one could simply sample the challenge
from the public-key space at random without knowing the corresponding secret and solve DDH to check.
Well... There is a way to do this using pairings!

Tenth lecture (July 1)

5 Pairings

...are another cryptographic building block obtained from elliptic curves.

149 Definition. Consider three groups (G1,+), (G2,+), (GT , ·).22 For our purposes, a pairing is a map

e : G1 ×G2 −→ GT

which is:

• Bilinear: For allP, P ′ ∈ G1 andQ,Q′ ∈ G2, the identities e(P + P ′, Q) = e(P,Q) · e(P ′, Q) and
e(P,Q+Q′) = e(P,Q) · e(P,Q′) hold.

• Non-degenerate: If e(P,Q) = 1 for allQ, thenP = 0, and if e(P,Q) = 1 for allP , thenQ = 0.

For e to be a cryptographic pairing, we additionally require thatG1, G2, GT have prime order ℓ, and that...

• the pairing is efficiently computable (say, in polynomial time).
22The convention to write G1, G2 additively while GT is written multiplicatively is because G1, G2 will be subgroups of an

elliptic curve while GT will be a subgroup of (F×
q , ·) for some q.

34

• DLP in all three groupsG1, G2, GT is (conjectured to be) hard.

• inverting the pairing is (conjectured to be) hard.

The pairing inversion problem is, given z ∈ GT andP ∈ G1 (orQ ∈ G2), to findQ ∈ G2 (orP ∈ G1)
such that e(P,Q) = z is satisfied.

Note that the definition of bilinearity simplifies to e([a]P, [b]Q) = e(P,Q)ab and that of non-degeneracy
simplifies to e ̸= 1 in the case of prime-order groups.

Also note thatG1
∼= G2 since both are cyclic of order ℓ, but a priori the obvious way of evaluating such

an isomorphism would involve computing discrete logarithms, which is supposed to be hard. However, there
are cases where we can compute homomorphisms betweenG1 andG2 efficiently. Cryptographic pairings
are commonly classified according to what is possible in that regard:

150 Definition. The literature refers to the following types of pairings:

• Type 1: G1 = G2. (This is referred to as a “symmetric” pairing.)

• Type 2: G1 ̸= G2 but there is an efficiently computable group homomorphismG2 → G1.

• Type 3: G1 ̸= G2 and there are no efficiently computable group homomorphisms betweenG1 andG2.

Before we get into the mathematical and algorithmic details of pairings, let’s look at the application I
promised earlier.

5.1 Signatures from pairings

Recall that the security of the basic Diffie–Hellman identification scheme (Protocol 123) rests on the hardness
of the computational Diffie–Hellman (CDH) assumption. In Section 4.10 it was pointed out that the scheme
could be made public-coin, hence give rise to a signature scheme via Fiat–Shamir, if only DDH could be solved.

151 Definition. A gap Diffie–Hellman group is one in which CDH is (apparently) hard whereas DDH is easy.

152 Lemma. Type-1 pairings give rise to gap groups.

Proof. To solve DDH with input
(
[a]P, [b]P, S

)
, we can test the property e(P, S) ?

= e
(
[a]P, [b]P

)
. □

This resolves the issue that the verifier in Protocol 123 was required to keep a secret; the DDH solver relieves
them of this duty:

153 Boneh–Lynn–Shacham’s identification scheme.
Assumption: ⟨G⟩ has a type-1 pairing e, and we have an efficient hash functionH : {0, 1}∗ → ⟨G⟩.
Situation: The prover has a DH key pair (a,A) whereA = [a]G.

(1) Verifier: Choose a random seedm ∈ {0, 1}∗ and letR := H(m). SendR to the prover.

(2) Prover: Compute the Diffie–Hellman shared secret determined byA andR, i.e., the point S := [a]R,
and send it to the verifier.

(3) Verifier: Check that e(G,S) = e(A,R).

154 Remark. It is necessary for security thatH obtains an element of ⟨G⟩ somehow “directly”; in particular,
this can not be done by picking a random r ∈ {0, ..., ℓ−1} and computing [r]G.

Note that random sampling from ⟨G⟩ directly is not always feasible; It depends on the specifics of how
the group is realized computationally.

155 Remark. The BLS signature scheme is the result of applying the Fiat–Shamir transform to this (now
rendered public-coin) identification protocol: The only difference is thatm becomes the message to be signed,
rather than a random value.

35

5.2 Computing pairings on elliptic curves

We will now discuss how to build pairings from elliptic curves, first in theory, then in practice.

5.2.1 Divisors of functions

Note that all of the things in this section can be generalized to other types of algebraic varieties; we shall stick
to elliptic curves to keep things concrete.

156 Definition. LetE be an elliptic curve. A divisor onE is a finite formal Z-linear combination of points onE.
Concretely, its data is a function n : E → Z such that the set n−1(Z\{0}), its support, is finite. We usually
write divisors using the notationD = n1 · (P1) + · · · + nr · (Pr) where each Pi ∈ E and each ni ∈ Z.
The degree ofD is the sum n1 + · · ·+ nr .

The main purpose of divisors is to encode “signed multisets” of points. In particular, they serve as a
convenient notation for representing data like the order of vanishing of a function:

157 Definition. Let E be a (long) Weierstraß elliptic curve. Given a point P ∈ E, we call the following
functions uP onE the uniformizer atP :

• ForP =∞, we let uP = x/y.

• ForP = (x0, y0) withP ̸= −P , we let uP = x− x0.

• ForP = (x0, y0) withP = −P , we let uP = y − y0.

158 Remark. The general definition of uniformizer is non-unique, so speaking of “the” uniformizer is a slight
abuse of terminology. (Uniformizers are also called “local parameters”.)

159 Definition. Let f be a function onE, e.g., a rational expression in terms of x, y, and let P ∈ E. After
possibly replacingf by a different description (cf. Definition 60), we may assume that it mapsP to some value
f(P) ∈ P1. If f(P) ̸= ∞, we let νP (f) denote the smallest positive integer v such that (u−v

P f)(P) ̸= 0.
In the case f(P) =∞, we let νP (f) = −νP (1/f).

The divisor of f is
div(f) :=

∑
P∈E

νP (f) · (P) .

(In particular, the map P 7→ νP (f) is zero almost everywhere.)

160 Lemma. Divisors of functions have degree zero.

161 Remark. The “correct” definition of the group law on an elliptic curve is phrased in terms of divisors:
Two divisors are equivalent if they differ by a principal divisor, i.e., a divisor of some function. The set of
equivalence classes of degree-zero divisors onE is denoted by Pic0(E). Then, the map

E −→ Pic0(E),

P 7−→
[
(P)− (∞)

]
is a bijection, and pulling back the obvious group law (formal adding) from Pic0(E) toE recovers a group
law on the points ofE. Indeed, all principal divisors are sums of divisors of lines, which is how our original
description of the group law (Theorem 30) relates to this definition.

One advantage is that this definition immediately generalizes to the group law on Jacobians of higher-
genus curves; in that case, however, the map above is not surjective, which is why the group law really only
works on the Jacobian and cannot be pulled back from Pic0 to the curve points.

162 Definition/Lemma/Theorem (it depends). Consider some pointsP1, ..., Pn on an elliptic curve. Then
P1 + · · ·+ Pn =∞ holds in the elliptic-curve group if and only if the divisor (P1) + · · ·+ (Pn)− n(∞)
is principal.

36

163 Definition. LetE be an elliptic curve,D a divisor onE, and f a function onE whose divisor has support
disjoint fromD. WritingD =

∑r
i=1 ni · (Pi), we define

f(D) :=
r∏

i=1

f(Pi)
ni .

(This generalizes the definition of function evaluation to the group of divisors.)

164 Theorem (Weil reciprocity). LetE be an elliptic curve and f, g functions onE whose divisors have
disjoint support. Then f(div g) = g(div f).

5.2.2 The Weil pairing

165 Definition. LetE be an elliptic curve over a fieldK and n ∈ Z≥1. Let µn denote the subgroup of nth

roots of unity inK×. The order-nWeil pairing

en : E[n]× E[n] −→ µn

is defined as follows: Given two points P,Q ∈ E[n], let DP and DQ denote two divisors with disjoint
support and such thatDP ∼ (P)− (∞) andDQ ∼ (Q)− (∞). Choose two functions fP and fQ onE
with divisors n ·DP and n ·DQ respectively. Then

en(P,Q) =
fQ(DP)

fP (DQ)
.

166 Theorem. The Weil pairing is well-defined, bilinear, non-degenerate unless n is divisible by the characteristic,
and antisymmetric.

Proof. A key part of the proof is that a function having a given divisor is unique up to scaling.
To show that en maps to µn, notice that

en(P,Q)n =
fQ(DP)

n

fP (DQ)n
=
fQ(n ·DP)

fP (n ·DQ)
=
↑

(Weil reciprocity)

fP (n ·DQ)

fP (n ·DQ)
= 1 .

Now for independence from the choice ofDP , DQ: LetD′
P be another divisor equivalent to (P)−(∞) andf ′P

a function with divisorn ·D′
P . ThenD′

P = DP +div(h) for some functionh, and since a function with given
divisor is essentially unique we may assume f ′P = λhnfP for some λ ∈ K×. Notice that (λf)(D) = f(D)
for any degree-0 divisorD. Hence

fQ(D
′
P)

f ′P (DQ)
=
fQ(DP) · fQ(div(h))
(λfP)(DQ) · hn(DQ)

=
fQ(DP)

fP (DQ)
·
fQ(div(h))

hn(DQ)
= en(P,Q) ·

fQ(div(h))

h(n ·DQ)︸ ︷︷ ︸
=1

(Weil reciprocity)

.

The same argument works for changing DQ. Bilinearity is “obvious” since D 7→ f(D) is homomorphic
from the divisor group to K× where defined, and since fD+D′ = λfDfD′ for some constant λ ∈ K

×.
Antisymmetry is obvious by looking at the formula. We’ll skip the nondegeneracy proof. □

Eleventh lecture (July 8)
One very useful interpretation of the Weil pairing is that it is essentially a “hidden” determinant:

167 Lemma. LetP,Q two points inE[n], for instance forming a basis. Write ζ := en(P,Q). Then

en([a]P + [b]Q, [c]P + [d]Q) = ζ
det

(
a b
c d

)
.

37

Proof. Using bilinearity and antisymmetry,

en([a]P + [b]Q, [c]P + [d]Q) = en(P, P)
ac · en(P,Q)ad · en(Q,P)bc · en(Q,Q)bd

= 1 · ζad · ζ−bc · 1 = ζad−bc = ζ
det

(
a b
c d

)
.

□

The main application in pairing-based cryptography of the Weil pairing is to construct a type-1 pairing;
thus, we would like to restrict it to a cyclic subgroup. However, due to antisymmetry, the pairing is actually
constant on cyclic subgroups: From en(P, P) = en(P, P)

−1 it follows that en(P, P) = 1. To turn the Weil
pairing into a type-1 pairing, we need some more work. The missing ingredient is given by distortion maps:
Endomorphisms ofE taking points from a certain cyclic subgroup to independent points.

168 Definition. Two pointsP,Q ∈ E[n] are independent in then-torsion if [u]P+[v]Q =∞withu, v ∈ Z
implies that u, v ∈ nZ. In that case, we say thatP,Q is an n-torsion basis.

169 Lemma. Two pointsP,Q ∈ E[n] form an n-torsion basis if and only if en(P,Q) has multiplicative order n.

Proof. (Homework.) □

170 Definition. Consider n ≥ 1 andG ∈ E of order n. We say that ϑ is a distortion map (for the group ⟨G⟩)
if the pair

(
G,ϑ(G)

)
forms a basis of the n-torsion subgroupE[n].

Given a distortion map, a type-1 pairing is indeed readily constructed from the Weil pairing:

171 Lemma. Let ϑ be a distortion map for a cyclic group ⟨G⟩ of order ℓ. Then

ê : ⟨G⟩ × ⟨G⟩ → µℓ, (P,Q) 7→ eℓ(P, ϑ(Q))

is a type-1 pairing.

Proof. Clearly ê is bilinear since eℓ is bilinear and ϑ is linear.
For non-degeneracy, write ζ = ê(G,G). Then ê([a]G, [b]G) = ê(G,G)ab; hence, if there exists any

a ̸=0 such that ê(G,G)ab = (ê(G,G)a)b does not vary with b, then ê(G,G) = 1. (Same for a, b swapped.)
It remains to prove that ê(G,G) = eℓ(G,ϑ(G)) ̸= 1. To do so, let T := ϑ(G). By Lemma 169, the value

ζ := eℓ(G,T) ̸= 1 is nonzero. Hence ê(G,G) = ζ ̸= 1. □

How does one construct such a distortion map?

172 Example. Let E : y2 = x3 + x over a field of characteristic p ≥ 3 and let ℓ ≡ 3 (mod 4) be prime.
Then the automorphism ι : (x, y) 7→ (−x,

√
−1 · y) is a distortion map for all subgroups of order ℓ.

Proof. (Homework.) □

173 Remark. This example generalizes easily: The standard method for constructing supersingular elliptic
curves (Bröker’s algorithm) outputs curves over Fp together with a small-degree irrational endomorphism.

5.2.3 The embedding degree

Notice that, in order to have any hope of using the Weil pairing in a computationally explicit manner, we
will have to work with points in the n-torsion subgroup E[n]. Recall from Theorem 58 that this group is
usually isomorphic to Z/n× Z/n, so the question is to which extension we have to go in order to find two
independent points of order n.

174 Definition. Let E be an elliptic curve over a finite field Fq and ℓ a prime dividing #E(Fq) but not
dividing q. The embedding degree ofE with respect to ℓ is the smallest k≥ 1 such thatE[ℓ] ⊆ E(Fqk).

38

In other words, the embedding degree is the degree of the extension required to access the second
component of the ℓ-torsion, which is necessary (and sufficient) to obtain a nontrivial order-ℓWeil pairing. A
convenient characterization is the following:

175 Lemma. In the situation of Definition 174, for any k ≥ 1, we haveE[ℓ] ⊆ E(Fqk) if and only ℓ | (qk − 1).

Proof. (The “⇒” direction is homework.)
For the other direction, suppose ℓ | (qk − 1). It suffices to show that the qk-power Frobenius endomor-

phism πqk ofE restricts to the identity onE[ℓ]. By assumption, there exists a cyclic subgroup ⟨P ⟩ ⊆ E of
order ℓwhere πq acts trivially. LetQ be a point inE[ℓ] that is independent fromP .

There exist (unique)u, v ∈ Fℓ such thatπq(Q) = [u]P+[v]Q. LetQ′ := πq(Q)−Q = [u]P+[v− 1]Q.
IfQ′ =∞, then πq(Q) = Q and we are done (for any k). Otherwise, v ̸=1, thusP,Q′ are independent, and

πq(Q
′) = πq([u]P + [v− 1]Q) = [u]P + [u(v− 1)]P + [v(v− 1)]Q = [uv]P + [v2 − v]Q = [v]Q′ .

Recalling from Lemma 71 that π2q − tπq + q = 0 where t = tr(πq) = q+1−#E(Fq), we may plugQ′

into this equation:
0 = π2q (Q

′)− [t]πq(Q
′) + [q]Q′ = [v2 − tv + q]Q′

In consequence, 0 = v2 − tv + q = (v − 1)(v − q), where the factorization works because it was assumed
that ℓ | #E(Fq) = q + 1− t and thus t ≡ q + 1 (mod ℓ). This shows v = q.

In conclusion, the action ofπq on our ℓ-torsion basis (P,Q′) is given byπq(P) = P andπq(Q′) = [q]Q′.
In particular, πqk(Q′) = Q′ if and only if qk ≡ 1 (mod ℓ), as claimed. □

176 Remark. In the following, keep in mind that writing downE[n] requires passing to an extension whose
degree is generically very large — but it is possible to force it to be much smaller. We’ll defer the question how
to construct pairing-friendly curves to later; for now, everything will simply be done in the algebraic closure.

5.2.4 The multiplicative transfer attack

The historically first use of pairings in cryptography (Menezes–Okamoto–Vanstone, 1991) was actually
destructive rather than constructive. It allows to reduce ECDLP to a finite-field DLP, where the order of the
finite field is (typically) controlled by the embedding degree of the curve.

177 Remark. There are examples where the resulting DLP lands in a subfield whose degree over the base
field is even less than the embedding degree. We will ignore this detail for simplicity.

178 The MOV attack.
Input: An elliptic curveE/Fq and an order-ℓ ECDLP instance (G,A) onE.
Output: A finite field Fqk and two elements ζ, ω ∈ Fqk such that ζ has order ℓ and ζa = ω where [a]G = A.

(1) Find the embedding degree k ≥ 1 ofE for the subgroup ⟨G⟩.

(2) Compute a point T ∈ E(Fqk) such that (G,T) form a basis of the ℓ-torsion.

(3) Return ζ := eℓ(G,T) andω := eℓ(A, T).

The key benefit for an attacker is that, as we’ve seen in Section 1.4, the complexity of DLP in a finite field is
(asymptotically as well as practically) much lower than the complexity of ECDLP. Hence, this attack puts a big
dent in the security of curves with small embedding degree. The workaround for non-pairing curves is simply
not to make an intentionally bad choice. The solution for curves which are intended to be “pairing-friendly” is
to balance the size of the base field with the embedding degree in order to render the costs of ECDLP on the
curve and of DLP in the finite field about equal.

39

5.2.5 Computing pairings via Miller functions

As seen in Definition 165, the core task in computing the Weil pairing (and this is also true for other types
of pairings) is to evaluate a function with a given divisor at some point. Indeed, for cryptographic sizes, the
functions being evaluated here are exponentially large, so it may a priori seem difficult to even write them
down. Luckily, one can get around this issue by using specific functions which can be written as a product
which is much more compact than the expanded polynomial expression. This is due to Miller (1986).

179 Remark. In general, I’ll be talking about “the” function with a given divisor. This is sloppy: In order to
make it strictly rigorous we should also control the “leading coefficients” of all functions. I will generally
sweep this issue under the rug.

180 Definition. Let P ∈ E be a point and k ≥ 1 an integer. “The” kth Miller function associated to the
pointP is a function fk,P with divisor k(P)− ([k]P)− (k−1)(∞). (Recall that this is unique up to scaling.)

Notice that div(fn,P) = n(P)− n(∞), which looks like the divisor we need for the Weil pairing. The
−([k]P) term is introduced so that the divisor becomes principal; note that there is no function with divisor
k(P)− k(∞) unless [k]P =∞. These types of functions are moreover particularly convenient since they
lend themselves to being decomposed as a product in square-and-multiply style:

181 Lemma. LetE be a Weierstraß curve. For two pointsP,Q ∈ E, letLP,Q denote the line throughP andQ; as
usual this is taken to refer to a tangent in caseP = Q. Then the function gP,Q := LP,Q/LP+Q,−(P+Q) has divisor

div(gP,Q) = (P) + (Q)− (P+Q)− (∞) .

Proof. Recall from the definition of the group law (Theorem 30) that the lineLP,Q intersects the curve in the
three pointsP ,Q, and−(P+Q). Since principal divisors have degree zero, this must be balanced by a triple
pole at infinity. Similarly forLP+Q,−(P+Q). Hence

div(LP,Q) = (P) + (Q) + (−(P+Q))− 3(∞)

div(LP+Q,−(P+Q)) = (P+Q) + (−(P+Q)) + (∞)− 3(∞)

and therefore

div(gP,Q) = div(LP,Q)− div(LP+Q,−(P+Q)) = (P) + (Q)− (P+Q)− (∞) .
□

182 Lemma. Let P be a point of order n on a Weierstraß curve E For any k ≥ 1, let fk,P denote the kth Miller
function forP , i.e., a function with divisor k(P)− ([k]P)− (k−1)(∞). Then the fk,P satisfy the recursion

fk+k′,P = fk,P · fk′,P · g[k]P,[k′]P .

Proof. Plugging in the known divisors of Miller functions and of gP,Q, we get

div(fk+k′,P)− div(fk,P)− div(fk′,P) = (k+k′)(P)− ([k+k′]P)− (k+k′−1)(∞)

−k(P) + ([k]P) + (k−1)(∞)

−k′(P) + ([k′]P) + (k′−1)(∞)

= ([k]P) + ([k′]P)− ([k+k′]P)− (∞)

= div(g[k]P,[k′]P) .
□

Twelfth lecture (July 15)

40

183 Miller’s algorithm.
Input: Two pointsP,Q on an elliptic curveE; the order n ≥ 1 ofP .
Output: The result of the Miller function fn,P evaluated atQ.

(1) Compute the binary expansion n =
∑ℓ− 1

i=0 bi2
i with each bi ∈ {0, 1}.

(2) Initialize f := 1 and V := P .

(3) For k ranging from ℓ− 1 down to 0:

(a) Set f := f2 · gV,V (Q) and V := [2]V .

(b) If bk = 1: Set f := f · gV,P (Q) and V := V + P .

(4) Return f .

As usual, the loop invariant is that f holds the value f⌊n/2k⌋,P (Q) at the end of the main loop. Similarly forV .
Clearly, this algorithm runs in time Θ(ℓ) = Θ(log(n)).

184 Remark. A key idea in Miller’s algorithm is to include the evaluations atQ inside the algorithm, so that
the (very big) functions fk,P are never explicitly computed in full: Only their evaluations atQ appear.

Now, let us concretize the definition of the Weil pairing: While the definition is phrased in terms of any
divisors in the correct class, one uses a particular shape of divisor in practice:

185 Lemma. LetP,Q ∈ E[n]. Find a point T ∈ E such that T /∈ {∞, P,Q,Q− P}. Then

en(P,Q) =
fn,Q(P + T)fn,P (−T)
fn,P (Q− T)fn,Q(T)

.

Proof. Clearly all individual evaluations can be done without hitting a zero or pole: BothP + T = Q and
Q− T = P imply T = Q− P , which was excluded.

Thus, we need to check that the result is correct. Indeed, from the definition withDP = (P + T)− (T)
andDQ = (Q)− (∞), we have

en(P,Q) =
fn,Q(P + T)/fn,Q(T)

f1(Q)/f1(∞)

where div(f1) = n(P +T)−n(T). But f1 is just fn,P with a translation by−T applied to the input, hence
f1(Q)/f1(∞) = fn,P (Q− T)/fn,P (−T). □

186 Corollary. LetP,Q ∈ E[n] be distinct. Then

en(P,Q) = (−1)n
fn,Q(P)

fn,P (Q)
.

Proof sketch. The idea is to let T →∞ in the previous expression, which can be made rigorous by examining
the formal expansion.

Put this way, the computation of the Weil pairing requires two “Miller loops”. However, over the course
of proving Theorem 166, we’ve already seen that even the simpler map (P,Q) 7→ fP (Q) already enjoys
bilinearity! So, is there a way to create a cryptographic pairing from this?

41

5.3 The Tate pairing

Recall that fP is a function with divisor n(P)− n(∞) and thatDQ is a divisor equivalent to (Q)− (∞).
(We’ll silently assume that the supports ofDQ and (P)− (∞) are disjoint whenever needed.)

187 Theorem. Let Fq be a finite field of characteristic p andE an elliptic curve over Fq . Let n ∈ Z≥1 not divisible
by p and suppose µn ⊆ Fq . Then

e : E(Fq)[n]× E(Fq)/[n]E(Fq) −→ F×
q /(F×

q)
n

(P,Q) 7−→ fP (DQ)

is a nondegenerate bilinear pairing.

188 Remark. The “interface” of this pairing is significantly less “clean” than for the Weil pairing: In particular,
the second input and the result are cosets of their respective groups modulo nth multiples rather than elements.

The motivation for quotienting bynth multiples is as follows: Since the pairing is to be bilinear, we require
e(P, [n]Q) = e([n]P,Q) = e(∞, Q) = 1. Thus we should quotient the second input by nth multiples.
But then the output varies with the choice of coset representative for the input, so we also have to quotient
out the subgroup e(P, [n]E(Fq)) = e(P,E(Fq))

n = (F×
q)

n in the target group F×
q . (The last equality relies

on nondegeneracy.)

Proof of Theorem 187. Everything follows from the same type of reasoning as for the Weil pairing. □

In many applications, we do need to compute a standardized representative of the result of the pairing.
The easiest way of doing so is to apply the isomorphismF×

q /(F×
q)

n ∼−→ µn which is given by exponentiation:

189 Definition. Let e denote the order-n Tate pairing. The reduced Tate pairing is

ê : E(Fq)[n]× E(Fq)/[n]E(Fq) −→ µn

(P,Q) 7−→ e(P,Q)(q−1)/n .

The exponentiation to the power of (q−1)/n is commonly called the final exponentiation.

190 Remark. The final exponentiation is also necessary for security: There exist examples where the pairing
would be insecure if the exact representative of the output computed by Miller’s algorithm was revealed!

191 Remark. The word “reduced” is often omitted when referring to the reduced Tate pairing.

In practice, to recover the standard framework of a cryptographic group actionG1 ×G2 → GT with
G1
∼= G2

∼= GT
∼= Z/ℓ, it is common for one of the inputs to lie in the base field of the curve, while the other

lies in an extension to the embedding degree (Definition 174). Depending on the situation, one may restrict
the field of definition of either input. It is therefore also common to write the (reduced) Tate pairing as a map

E(Fqk)[n]× E(Fq)/[n]E(Fq) −→ µn ≤ F×
qk

or
E(Fq)[n]× E(Fqk)/[n]E(Fqk) −→ µn ≤ F×

qk

where k is the embedding degree.

42

5.3.1 A neat optimization

In this case, the final exponentiation can be sped up significantly using the fact that the exponent is of
the special form (qk − 1)/n: The key lies in the fact that Xk − 1 factors as a product of the cyclotomic
polynomials Φd ∈ Z[X] for d | k, and that n | Φk(q) by construction (Definition 174). Therefore we get

α(qk−1)/n =
(
αF (q)

)Φk(q)/n

whereF (X) = (Xk− 1)/Φk . Now, the polynomialsF (X) tend to have coefficients±1 and be fairly sparse.
For example, for k=12 we getF (X) = X8 +X6 −X2 − 1.

Why does this help? The key observation is that the q-power Frobenius is Fq-linear. Therefore, we may
(once and for all) precompute the action of π : α 7→ αq on the fuinite field Fqk as a k× k matrix over Fq ,
then evaluateαF (q) as a short and simple product of some powers of Frobenius applied toα. Example: For
k=12, the Frobenius acts on a Fq-basis of Fqk as a matrixM ∈ F12×12

q , and we have

αF (q) =
M8(α) ·M6(α)

M2(α) · α
.

Hence, in those cases, the size of the “actual” remaining exponentation by Φk(q)/n can be reduced by a large
factor compared to the entire exponentiation by (qk− 1)/n naïvely. This improvement is more pronounced
the more prime factors k has. Example comparison:

• Computingα(q12−1)/n naïvely takes about≈ 12 log(q) multiplications in Fq12 .

• Computing αF (q) using matrix-vector products takes about 3 · 123 ≈ 5000 multiplications in Fq ,
followed by just a few operations in Fq12 .
(If Fq12 is implemented as naïve arithmetic, one multiplication in Fq12 costs about the same as 150 multiplications in Fq .)

• Computing the final exponentiation ofαF (q) to the power of Φ12(q)/n takes no more than≈ 4 log(q)
multiplications in Fq12 .

Thus, as q →∞, this saves about 3/4 of the total work for the final exponentiation.

5.4 Constructing pairing-friendly curves

Finally, let us discuss how to find pairing-friendly curves. We will mainly focus on one important family of such
curves. First, some preliminaries, which apply to several known methods for constructing pairing-friendly
curves.

Notation: We would like an elliptic curve defined over Fq with trace of Frobenius t := tr(πq), such
that n := #E(Fq) = q + 1 − t factors as n = h · ℓ with h small (perhaps h=1) and ℓ a large prime,
and such that the embedding degree k for the order-ℓ subgroup is fairly small, but not too small. (The main
example below will have k=12.)

First, recall from Lemma 175 that having embedding degree exactly k means ℓ | (qk− 1) but ℓ ∤ (qd− 1)
for all smaller d | k. Since qk− 1 =

∏
d|k Φd(q), this is equivalent to saying ℓ | Φk(q). From the requirement

q + 1− t = hℓ ≡ 0 (mod ℓ), we get Φk(q) ≡ Φk(t− 1) (mod ℓ).
The basic idea now is to find pairing-friendly curves by first choosing a suitably-sized t, looking for a

suitable divisor ℓ | Φk(t − 1), and checking if the remaining conditions (existence of a h such that q is a
prime power) hold. The tricky part is that constructing a curve with a given q and t is in general difficult:
The only case where we know how to do this efficiently is when the fundamental discriminant of Z[πq] is
small, i.e., when t2− 4q = dv2 with d a small (negative) integer, using the so-called CM method. Quite a bit
of effort has gone into fabricating this situation, exploiting insights from algebraic number theory and the
theory of diophantine equations. We will only discuss one particularly neat (and simple) special case below.

5.4.1 The Barreto–Naehrig construction

This family of elliptic curves from 2005 is actually given as a parameterized family: There are polynomial
expressions for t, q, n in terms of some parameterX such that whenever q is a prime, it is straightforward to
construct the associated pairing-friendly curve.

43

Here, we consider the fixed choice k=12: This embedding degree is (still) a good choice given current
performance estimates for finite-field DLP algorithms: For a 250-bit group, the size of the base field ends up
being about 3000 bits, which exactly matches the BSI recommendation mentioned at the end of Section 1.4.

It is also very convenient because Φ12 = X4 −X2 + 1, a remarkably low-degree polynomial given the
magnitude of k.

In terms of sizes, if we want ℓ ≈ q, notice that t ≈ √q ≈
√
n from the Hasse bounds. hence we should

have deg(n) = 2 deg(t). Recalling that n | Φk(t− 1), we immediately see that deg(t) = 1 is not a possible
choice since Φ12 is irreducible. The next best thing is deg(t) = 2, which turns out to work!

192 Lemma. Φ12(6X
2) = (36X4 + 36X3 + 18X2 + 6X + 1)(36X4 − 36X3 + 18X2 − 6X + 1).

Proof. Calculation. □

From this, the BN construction follows quickly: We let

t(X) := 6X2 + 1

n(X) := 36X4 + 36X3 + 18X2 + 6X + 1

⇝ q(X) := n(X)− 1 + t(X) = 36X4 + 36X3 + 24X2 + 6X + 1 .

For these choices, if we can find a curve over Fq such that tr(πq) = t, then this curve will be pairing-friendly
for order n by construction. We only first have to find someX where both q(X) and n(X) are primes, but
this can (practically) be done using brute force.23

Finding the curve. The last thing to do is to find an elliptic curve with prescribed base field and Frobenius
trace. As it turns out, in this particular case, this is particularly easy! The key ingredient is that

t(X)2 − 4q(X) = −3(6X2 + 4X + 1︸ ︷︷ ︸
=:u(X)

)2 .

Hence, the Frobenius on such a curve can be embedded in the quadratic field Q(
√
t2 − 4q) = Q(

√
−3).

But we know such a curve, namely y2 = x3 + bwith b ∈ Fq . Indeed, this curve has an automorphism

ω : (x, y) 7→ (ζ3x, y)

where ζ3 is any primitive cube root of unity in Fq . If q is a prime satisfying q ≡ 1 (mod 3), we can prove
that πq ∈ Z[ω], so we want a curve with Frobenius πq = (t+u)/2 + uω. As it turns out, exactly one of the
six isomorphism classes of curves y2 = x3 + b over Fq has precisely this Frobenius, so we can brute-force b.

5.5 Pairing optimizations

Cryptographic pairings were made practical using a plethora of cool tricks. Here’s a non-exhaustive list of
some of the techniques:

• Working on twists (cf. Lemma 107). For instance, for BN curves, it is possible to encode elements
ofG2 ≤ E(Fq12) as points in Ẽ(Fq2), where Ẽ is a sextic twist of the curve.

• Convenient models for extension fields. For instance, in the setup above, it makes sense to buildFp12 as
a tower of extensionsFp ⊆ Fp2 ⊆ Fp6 ⊆ Fp12 . It is also convenient to use simple defining polynomials
for each intermediate extension, for example given by simply adjoining a root of the correct degree.

• Final exponentiation exploiting the linearity of Frobenius; see above in Section 5.3.

• Sparse constants. For example, in the final exponentiation, having fewer bits set in the scalar accelerates
the square-and-multiply algorithm.24

The bottom line is that pairings on contemporary de-facto standard curves at a 128-bit security level can
be evaluated with timings on the scale of≈ one millisecond per pairing computation on standard hardware.
(For comparison: Sage takes about 200 times longer for a generic Weil pairing for the same family of curves and pairing group order.)

23Recall that the density of primes in {1, ..., N} is ≈ 1/ln(N), hence this brute-force search is polynomial-time in the target
size log(q) unless there is some mathematical reason why the polynomials q(X) and n(X) represent fewer primes. (There isn’t.)

24Note that using naïve square-and-multiply is okay here since the scalar is not a secret!

44

	Public-key cryptography and the discrete-logarithm problem
	What is public-key cryptography?
	The Diffie–Hellman key exchange
	The discrete-logarithm problem
	Index calculus
	Enter elliptic curves!
	The ``Q''-word...

	Elliptic curves, concretely
	The group law
	Explicit formulas

	The number of points on an elliptic curve
	The Pohlig–Hellman algorithm
	Baseline: Counting points by literal counting
	Counting points using generic-group algorithms
	Division polynomials
	The group structure
	Isogenies and endomorphisms
	Frobenius & the Hasse bound
	Counting points in polynomial time (Schoof/SEA)

	Efficient & secure elliptic-curve cryptography
	Efficiency: Eliminating inversions
	Efficiency: Eliminating the y
	Invalid-curve attacks
	Small-subgroup attacks
	Invalid curve points
	Twist security

	Physical security and side-channel attacks
	Power consumption and emissions
	Fault attacks
	Timing attacks
	Microarchitectural side channels
	There's more!

	``Constant-time'' software
	Montgomery curves
	Edwards curves
	Digital signatures from elliptic curves
	(Interactive) identification protocols
	Hash functions
	The Fiat–Shamir transform
	Two concrete signature schemes

	The Diffie–Hellman problem
	Reducing DLP to CDH

	The decisional Diffie–Hellman problem

	Pairings
	Signatures from pairings
	Computing pairings on elliptic curves
	Divisors of functions
	The Weil pairing
	The embedding degree
	The multiplicative transfer attack
	Computing pairings via Miller functions

	The Tate pairing
	A neat optimization

	Constructing pairing-friendly curves
	The Barreto–Naehrig construction

	Pairing optimizations

