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1 What?

In the previous lecture1 I claimed:

Fact. Well-chosen elliptic curves are as close to generic groups as it gets.

In this lecture, I will convince you of the opposite:2

Fact. Well-chosen elliptic curves are very far from generic groups.

Was interessiert mich mein Geschwätz von gestern?3

— attributed to the first German ‘Bundeskanzler’ Konrad Adenauer, although he probably never said that

2 Pairings

Throughout this section, let (G1,+), (G2,+), and (T, ·) be abelian groups.

(Note that T is written multiplicatively because it will be a subgroup of (F∗q , ·) in the con-
structions we shall see later.)

Definition 1. A map

e : G1 ×G2 → T

is bilinear if for all P, P ′ ∈ G1 and Q,Q′ ∈ G2

e(P + P ′, Q) = e(P,Q) · e(P ′, Q);
e(P,Q+Q′) = e(P,Q) · e(P,Q′).

Definition 2. A map

e : G1 ×G2 → T

is non-degenerate if for all P ∈ G1 \ {O}, there exists some Q ∈ G2 with e(P,Q) 6= 1.

Definition 3. A pairing is a bilinear and non-degenerate map

ê : G1 ×G2 −→ T .

We are usually interested in the case where (G1,+), (G2,+), and (T, ·) have prime order `.

1See https://yx7.cc/docs/lectures/ecc_20181127.pdf for the notes.
2Of course, the deception is that ‘well-chosen’ has different meanings in these two statements.
3‘What do I care about my blabber from yesterday?’
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Remark. When the groups have prime order, the condition of non-degeneracy is equiva-
lent to ê 6= 1, i.e., it is enough to find one pair (P,Q) ∈ G1 ×G2 which does not map to the
identity under the pairing ê. (Exercise if you’re bored: show this.)

Lemma 1. For a pairing ê as above, all (P,Q) ∈ G1 ×G2, and all integers a, b ∈ Z,

ê(aP, bQ) = e(P,Q)ab.

Proof. First take care of the special cases a = 0 and b = 0, then reduce to positive a and b,
then do induction on a and b.

2.1 Immediate consequences

In this section, we assumeG1 = G2 and hence simply writeG for these groups. The pairing
ê thus has the form

ê : G×G→ T .

We shall now discuss a few immediate consequences of such a pairing.

2.1.1 Transfer attacks

Let G be a cyclic group of prime order ` with an efficient pairing ê : G × G → T and P a
generator of G. Suppose an attacker faces an instance of the DLP in G with respect to P ,
hence is given Q = [x]P ∈ G and wants to find x. Using ê, he can proceed as follows:

1. Compute g = ê(P, P ) and h = ê(P,Q).
Due to bilinearity, we have h = ê(P,Q) = ê(P, [x]P ) = ê(P, P )x = gx.

2. Solve DLP in T to recover x.

This approach is sometimes much more efficient than trying to solve the DLP in G directly
(e.g., for supersingular elliptic curves, which we shall see later).

2.1.2 The decision Diffie–Hellman problem

The security of many cryptographic systems (including Diffie–Hellman key exchange) re-
lies on the hardness of the following problem:

Reminder. The decision Diffie–Hellman Problem (DDH) in a cyclic group G with generator
P is, given [x]P , [y]P , and Q ∈ G, to decide whether Q = [xy]P .

Lemma 2. If G admits an efficiently computable pairing, then DDH is easy in G.

Proof. Test whether ê([x]P, [y]P ) = ê(P,Q).

Groups in which the computational Diffie–Hellman problem (CDH) is hard while DDH
is easy are known as ‘Gap Diffie–Hellman groups’.
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2.1.3 Signatures from pairings

Let G be a cyclic group of prime order ` and P ∈ G a generator.

Identification from Diffie–Hellman. If Alice has a key pair (x, [x]P ), she can prove to
anyone that she indeed knows x, as follows.

Bob picks a random y ∈ {0, ..., ` − 1}, computes S := [y][x]P , sends [y]P to Alice, and
waits. Alice computes R := [x][y]P and sends that to Bob. Bob verifies that R = S. This
clearly works and the security relies on the hardness of CDH.

To turn this into a signature scheme, we need to get rid of Bob and replace him by a
message m. A promising idea is to replace [y]P by a hash of m in G. However, of course
the signatures should be publicly verifiable, but nobody knows y.4

This is where pairings enter the picture, enabling everyone to verify that Alice’s re-
sponse was correct without actually learning y.4

BLS signatures [Boneh–Lynn–Shacham ’04]. We now assume that we have an efficiently com-
putable pairing ê : G ×G → T , and that there exists a cryptographically secure hash func-
tion H : {0, 1}∗ → G. (There are G for which we can’t do this!)
We can then make a pairing-based signature scheme as follows:

• Key generation:
Alice’s private key is a random x ∈ {0, ..., `− 1}. Her public key is Q = [x]P .

• Signing:
Alice hashes her message m and computes her signature σ = [x]H(m).

• Verification:
Bob verifies that ê(σ, P ) = ê(Q,H(m)).

Correctness.
ê(P, σ) = ê(P, [x]H(m)) = ê(P,H(m))x = ê([x]P,H(m)) = ê(Q,H(m)).

Remark. Notice that the reason this works is really only an application of the ‘gap’ prop-
erty discussed in the previous section. It does not make any use of the group structure of
the target group T at all!

3 Pairings from elliptic curves

From the very beginnings of pairing-based cryptography up until now, elliptic curves are
essentially the only source of practical pairing constructions for cryptographic applications.

3.1 Preliminaries

We first need to discuss some more properties of elliptic curves.

3.1.1 Rationality

Consider an elliptic curve E over a field K, for example an Edwards curve

Ed : x
2 + y2 = 1 + dx2y2 .

Just like points in K, we can consider points over any finite extension L ⊇ K, or even over
the algebraic closure K: For any extension field L of K, an L-point or L-rational point or
point defined over L on E is a tuple (x, y) ∈ L2 that satisfies the curve equation. The set of

4No pun intended.
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L-rational points is a group.5 In the following, we will simply write E for the set E(K) of
points over the algebraic closure.

Reminder. For a finite field Fq , there exists a unique (up to isomorphism) extension field
Fqk for every integer k ≥ 1. It can be represented as Fq[Y ]/r(Y ) for an irreducible polyno-
mial r ∈ Fq[Y ] of degree k: elements of Fqk are of the form c0+ c1T + c2T

2+ · · ·+ ck−1Y k−1
with multiplications and inversions modulo r(Y ).

The algebraic closure Fq of Fq is obtained from Fq by imposing that all polynomials
have a root (and making one up on the spot if they don’t), but is trickier to compute with.
We only need Fq for theoretical considerations.

3.1.2 Torsion subgroups

Definition 4. Let E be an elliptic curve over a field K and ` a positive integer. The `-torsion
subgroup (or just ‘`-torsion’ for short) of E is defined as

E[`] = {P ∈ E : [`]P = O} .

Theorem 1. If ` is coprime to charK (i.e., ` 6= 0 ∈ K), then

E[`] ∼= Z/`× Z/`

as abelian groups.
In other words, there exist (non-unique) points P,Q ∈ E(K) such that every point

R ∈ E with [`]R = O can be written as [α]P + [β]Q for some α, β ∈ Z, and the coefficients
α, β are unique modulo `.

(In other other words, E[`] is a free (Z/`)-module of rank 2 and {P,Q} is a basis.)

3.1.3 Functions on elliptic curves

We can consider functions from an elliptic curve E to (the algebraic closure of) its base
field. Each such function is a rational expression in the coordinates of the input point. For
example: On Ed : x2 + y2 = 1 + dx2y2 over a field K,

φ =
(x− 1)(y + 1)

xy

is a function that takes a point (ξ, η) ∈ K2
on Ed to the element (ξ−1)(η+1)

ξη ∈ K.
Just like rational functions over R (or any other field), functions on elliptic curves have

zeroes and poles: For example, the function φ from above vanishes at P1 = (1, 0) and P2 =
(0,−1) and has poles at P3 = (−1, 0) and O = (0, 1).6,7 As usual, zeroes and poles have
multiplicities (for φ: all one), which behave additively under multiplication of functions.
Hence, for example, φ3 has triple zeroes at P1 and P2 and triple poles at P3 and O, and
1/φ = xy

(x−1)(y+1) has single zeroes at P3 and O and single poles at P1 and P2.

5One can prove that any single addition formula for an elliptic curve must have exceptional points over the
algebraic closure. The nice property of Edwards curves that the addition law works for all points defined over the
base field of the curve thus does not carry over to extension fields, and one (unfortunately) needs to make case
distinctions when adding arbitrary points.

6There are quite a few technical complications under the rug: For instance, the given formula for φ does not
make sense at (1, 0) and (0,−1), as both numerator and denominator vanish at that point. The theory of algebraic
curves dictates that one has to look at the behaviour in the local ring of the curve at the point under consideration,
which in practice means rewriting the expression for φ using the curve equation until only one of numerator and
denominator vanishes:

φ =
(x− 1)(y + 1)

xy
=

(
− y2(1−dx2)

x+1

)
(y + 1)

xy
=
−y2(1− dx2)(y + 1)

(x+ 1)xy
=
−y(1− dx2)(y + 1)

(x+ 1)x
shows that φ((1, 0)) = 0, and a similar calculation works for φ((0,−1)) = 0.

7Fun fact for people who know what it means: This shows that (P1) + (P2)− (P3)− (O) is a principal divisor
on Ed, which translates to the relation P1 ⊕ P2 = P3 in the elliptic curve group.
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Fact. For a function φ on an elliptic curve E, the sum of all zeroes and the sum of all poles
are equal in the group of points on the elliptic curve.
More precisely, if φ vanishes at P1, ..., Pn ∈ E with multiplicities x1, ..., xn ∈ N and has
poles at Q1, ..., Qm ∈ E with multiplicities y1, ..., ym ∈ N, then

[x1]P1 ⊕ · · · ⊕ [xn]Pn = [y1]Q1 ⊕ · · · ⊕ [ym]Qm. (1)

A converse is also true: If x1 + · · · + xn = y1 + · · · + ym holds in addition to (1), then
there exists a function on E with that prescribed set of zeroes and poles.
(Fun fact: From a rather general and perhaps abstract perspective, this is really the definition of the group law onE.)

3.2 The Weil pairing

We will now discuss the historically most significant example of a pairing on elliptic curves.
Hence, fix an elliptic curve E over a field K and let ` be a prime not equal to charK.8

Let µ` denote the group of `th roots of unity of K, i.e., µ` = {a ∈ K : a` = 1} with the
usual multiplication. (Hence (µ`, ·) ∼= (Z/`,+) as groups.)

Theorem 2. There exists a (bilinear, non-degenerate) pairing

e` : E[`]× E[`] −→ µ`,

the Weil pairing.
It can be defined as follows: For any point P ∈ E[`], let fP denote a function onE which

vanishes at P with multiplicity ` and has an `-fold pole at O.9 Then e`(P,Q) is defined as

e`(P,Q) =
fP (Q+ S)/fP (S)

fQ(P − S)/fQ(−S)
,

where S ∈ E is an arbitrary point outside the subgroup generated by P and Q.

Proof. Not extremely hard, but a bit too complicated for the time we have. The proof makes
use of ‘divisors’ and a result called ‘Weil reciprocity’.

The Weil pairing is closely related to the determinant pairing: Fixing a basis {P,Q} of
E[`] ∼= Z/`× Z/`, we can define the map

det` : E[`]× E[`] −→ (Z/`,+)

[α]P+[β]Q, [γ]P+[δ]Q 7−→ det

(
α γ
β δ

)
= αδ − βγ

which is bilinear and non-degenerate.

Lemma 3. There exists a ‘primitive `th root of unity’, or in other words, a generator ζ ∈ µ`
such that for all P,Q ∈ E[`],

e`(P,Q) = ζdet`(P,Q).

Although conceptually interesting, this characterization of the Weil pairing is not helpful
for computations: Finding α, β ∈ Z such that [α]P + [β]Q = R for a given point R ∈ E[`]
requires solving a two-dimensional DLP, which is certainly not easier than the normal DLP
itself. The intrinsic definition using functions on the curve is much better in this respect,
giving rise to a polynomial-time algorithm for evaluating the Weil pairing.

8The assumption that ` is prime is too restrictive — just ` 6= 0 ∈ K is sufficient for most of the following.
9The theory guarantees that fP always exists, and it is in not hard in practice to find such a function explicitly.

One problem one may encounter is that fP has size exponential in log `, but fortunately there is a way around
this issue when computing pairings.
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Remark. There exists a simpler pairing, the Tate pairing, which requires computing only
two fP instead of four as in the Weil pairing above. In practice, essentially all systems use
the Tate pairing, but for now we will stick with the Weil pairing for conceptual simplicity
and mathematical beauty. Keep in mind that most of the following applies to the Tate
pairing in the same way.

3.3 Restricting to cyclic groups

To make a pairing ê : G × G → µ` on a cyclic group G of order `, we need to restrict the
inputs of the Weil pairing. However, simply taking the same subgroup 〈P 〉 for both inputs
yields a degenerate pairing, as the determinant pairing of two linearly dependent vectors
is always zero.

Hence one makes use of a basis {P,Q} of E[`] such that there exists an efficiently com-
putable isomorphism

τ : 〈P 〉 −→ 〈Q〉; P 7−→ Q.

Maps like τ are known as distortion maps. We will soon see how to construct a curve E with
a distortion map.
The modified Weil pairing

ê : 〈P 〉 × 〈P 〉 → µ`

is then defined by

ê(R,S) = e`(R, τ(S)).

It is non-degenerate: ê(P, P ) = e`(P,Q) = ζ1·1−0·0 = ζ 6= 1.

3.4 Types of pairings

The fact that one needs an efficiently computable homomorphism in the previous section
to make a cryptographic pairing from the Weil pairing has prompted the cryptographic
community [Galbraith–Paterson–Smart ’06] to classify cryptographic pairings ê : G1 × G2 → T into
(roughly) three ‘types’:

• T1: G1 = G2.
• T2: G1 6= G2 but there is an efficiently computable homomorphism G2 → G1.
• T3: G1 6= G2 and there are no efficient homomorphisms between G1 and G2.

Note that this list is implicitly intersection-free: A ‘type-2’ pairing for which there also exists
an efficient homomorphism G1 → G2 is simply considered a type-1 pairing by identifying
G1 and G2 through the homomorphisms going in both directions.

These distinctions are sometimes important for applications in constructions, since ap-
parently theoretical cryptographers in the past have occasionally assumed the existence of
pairings with all kinds of properties that nobody knew how to construct.

3.5 The embedding degree

For computational purposes, we need to know which field our objects of interest are de-
fined over.

Note that µ` usually lies in a very large extension: It contains all roots of the degree-`
polynomial U ` − 1 ∈ Fq[U ], which means one generally cannot expect the roots to lie in
a Fqk with k significantly smaller than `. Since elements of Fqk have size linear in k and
arithmetic takes time exponential in log k, we must make sure that k is small.
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Definition 5. The embedding degree of a cyclic group of size ` is the smallest positive integer
k such that the `th roots of unity in Fq lie in Fqk , in other words, µ` ⊆ F∗qk .

Equivalently, k is minimal with ` | qk − 1.

Remark. Since all values of ê come from the coordinates of the input points in some way,
this shows that the input groups of the pairing must as well be defined (at least) over
Fqk . Hence we are now doing elliptic-curve arithmetic over fields of several thousand bits,
which makes everything comparably slow.
(For comparison: ‘Normal’ ECC on ‘well-chosen’ curves requires only ≈ 256 bits.)

3.6 Example: A supersingular curve

Let p = 4` − 1 be a prime such that ` is also prime and consider the elliptic curve E : y2 =
x3 + x defined over Fp. For reasons, this implies that #E(Fp) = p + 1, which means that
#E(Fp) has a cyclic subgroup G = 〈P 〉 of size ` = (p+ 1)/4.

The embedding degree of G with respect to Fp is the smallest positive integer k such
that ` | pk − 1, hence k = 2 since ` - p− 1 = 4`− 2 but

p2 − 1 = (p− 1)(p+ 1) = (p− 1)4`.

Moreover, the ‘distortion map’

τ : (x, y) 7−→ (−x,
√
−1 · y)

is a group homomorphism, hence maps P to another `-torsion point Q := τ(P ). This point
must be linearly independent from P as Q /∈ E(Fp) ⊇ 〈P 〉. Hence {P,Q} is a basis of E[`].
Therefore, we get a non-degenerate pairing from G to µ` ⊆ F∗p2 as explained before:

ê(R,S) = e`(R, τ(S)) ∈ F∗p2 .

3.7 Miller’s algorithm

The definition of the Weil (and Tate) pairing makes use of functions fP which have an
`-fold zero at P and an `-fold pole at O. Clearly such a function must be made up of
polynomials of degree about `, which means the size of fP is exponential in log `. This
makes computating fP with cryptographically-sized ` impossible!

However, there is hope: Note that to compute pairings, we do not really need the
rational-function expression for fP , but only its value at another point Q. Moreover, note
that for two functions g, h, we have the trivial fact

(g · h)(Q) = g(Q) · h(Q).

Hence if we can decompose fP into a product with few distinct factors, then computing
fP (Q) is easy by applying the ‘trivial fact’ above to the decomposed product.

Naïve idea: Decompose fP as gbm−1

m−1 · · · g
b0
0 , where ` =

∏m−1
i=0 bi2

i, and each gi is a func-
tion with a 2i-fold zero resp. pole at P resp. O. By the multiplicativity property of zeroes
and poles, we are done? No: There simply is no function on E with, e.g., a single zero resp.
pole at P resp. O: Recall that this can only exist if the set of zeroes and poles sum to the
same point, which here would imply P = O.

Miller (’86) found a good decomposition:
Lemma 4. For any R,S ∈ E, there exists an (easily computable) function gR,S on E which
has a single zero at R and S, and a single pole at R+ S and O.
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Lemma 5. For fixed P and k ≥ 0, let fk denote a function with a k-fold zero at P , a single
pole at [k]P , and a (k−1)-fold pole atO. Such functions may be computed via the following
recursive relation:

fk+k′ = fk · fk′ · g[k]P,[k′]P .

Proof. Follows easily from the definition of gR,S the fact that zeroes and poles are added
under multiplication of functions.

Note that in this notation, fP = f`. Hence we may decompose fP into a product of
size log ` by using the previous lemma in a square-and-multiply manner. We evaluate the
functions at each intermediate stage to make sure we are not building a big (exponentially
sized) rational expression for fP . This discussion leads to the following algorithm:

Algorithm 1 (Miller ’86).
• Input: Two points P,Q ∈ E[`].
• Output: The value fP (Q), where fP is as defined above.

1. Write ` =
∑m−1
i=1 bi2

i with each bi ∈ {0, 1}.
2. Initialize f ← 1 and R← P .
3. For i ∈ (m− 1,m− 2, . . . , 1, 0):

1) Let f ← f2 · gR,R(Q) and R← [2]R.
2) If bi = 1: Let f ← f · gR,P (Q) and R← R+ P .

• Return f .
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