
Lecture notes: Elliptic curves in cryptography

Lorenz Panny

TU/e, 2DMI10 ‘Applied Cryptography’

November 27, 2018

1 Why?
• Many popular public-key cryptosystems operate on a group.
• Core underlying assumption: Discrete Logarithm Problem is hard.
• How do we actually instantiate these schemes?

1.1 Reminders

Definition 1. An abelian group is a set G with a fixed element 0 ∈ G, a binary operation
⊕ : G×G→ G, an unary operation 	 : G→ G, and such that for all x, y, z ∈ G:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) 0 ⊕ x = x (x)⊕ x = 0 x⊕ y = y ⊕ x

Sometimes also written using multiplicative notation: (H, 1 ,⊗,�−1).

Definition 2. For any group G and x ∈ Z, let [x] : G → G denote the multiplication-by-n
map (in multiplicative groups: exponentiation). For g ∈ G, the element [x]g is defined as

g + g + · · ·+ g︸ ︷︷ ︸
x copies

if x ≥ 0 and as [−x](g) if x < 0.

Warning. This is not how [x]g is computed, since the cost is linear in x. Instead, one takes
time linear in log x by writing x = 2x′ + b with b ∈ {0, 1} and making use of the property

[x]g =

{
[x′](g ⊕ g) if b = 0;

g ⊕ [x′](g ⊕ g) if b = 1.

(This is known as ‘double-and-add’ or ‘square-and-multiply’ or ‘fast binary exponentia-
tion’, and so on. This is just the idea; there are better variants.)

Definition 3. Let G be a cyclic group of order n and g ∈ G a generator. The Discrete
Logarithm Problem (DLP) is: Given any h ∈ 〈g〉 ⊆ G, compute x ∈ Z such that [x]g = h.

1.2 Cryptographic groups

Non-example. Let p ∈ Z be a prime and G = (Z/p,+). Then [x] is just multiplication by
x ∈ Z/p and we can recover x mod p from [x]g as g−1 · [x]g, where g−1 can be computed
using Euclid’s algorithm.

Example (Diffie–Hellman ’76). Let p ∈ Z be a prime and G = (F∗p, ·). Then [x] is exponen-
tiation g 7→ gx and x can be recovered in subexponential time using index calculus methods.
These algorithms rely crucially on prime factorization of integers, which finite fields (be-
ing quotients of Z and their extensions) inherit. The impact is that p must be big (multiple
thousand bits) for security, which makes everything (comparably) slow.

1

Example (Koblitz ’85, Miller ’85). Elliptic curves. The topic of this lecture!

Warning. Every finite cyclic group is abstractly isomorphic to some (Z/n,+). The difficulty
of DLP therefore does not (only) lie in the group structure, but first and foremost in its
representation!

2 Elliptic curves

2.1 Reminder: ‘Clock crypto’

Let C = {x ∈ R2 : |x| = 1} be the unit circle. We can turn this into an abelian group by
adding angles relative to the y-axis:

P

Q

P⊕Q

Figure 1: ‘Clock crypto’

The neutral element is O = (0, 1) ∈ C, and negating means mirroring an element over
the y-axis, i.e., (x, y) 7→ (−x, y). To see how addition works, note that every point on C
is of the form (sinα, cosα), where α is the angle from the y-axis. The ‘sum’ of two points
P = (sinα, cosα) andQ = (sinβ, cosβ) is given by the point P⊕Q = (sin(α+β), cos(α+β)).
Since

sin(α+ β) = sinα cosβ + cosα sinβ

cos(α+ β) = cosα cosβ − sinα sinβ ,

this means our addition law is

⊕ : (x1, y1), (x2, y2) 7−→ (x1y2 + y1x2, y1y2 − x1x2) . (1)

The same formulas work over finite fields Fp! Is this good for crypto?

Lemma 1. LetC = {(x, y) ∈ F2
p : x2+y2 = 1} and define a group onC with neutral element

O = (0, 1) ∈ C, negation (x, y) 7→ (−x, y), and addition as in (1). Then the map

ϕ : C → F∗p2 , (x, y) 7→
√
−1 · x+ y

is an injective group homomorphism.
=⇒ DLP in (C,⊕) is no more secure than DLP in (F∗p2 , ·) or even (F∗p, ·) if

√
−1 ∈ Fp.

2

2.2 Edwards curves

Definition 4. Let k be a field with char k 6= 2 and d ∈ k \ {0, 1}. Then

Ed : x
2 + y2 = 1 + dx2y2

is an Edwards curve over k.
A point on Ed is a tuple (x, y) ∈ k2 that satisfies the curve equation above.1

The set of points (in this sense) on Ed is denoted by Ed(k).

Over R and for d < 0, Edwards curves look very similar to a ‘clock’ with a dent.

Figure 2: The curve x2 + y2 = 1− 71x2y2 over R and over F257.

Theorem 1. If d is a non-square in k, then Ed(k) forms an abelian group with neutral ele-
ment (0, 1), negation (x, y) 7→ (−x, y), and addition

(x1, y1)⊕ (x2, y2) :=

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2
1− dx1x2y1y2

)
.

Proof. Exercise in case you’re bored.

Remark. The curve Ed as defined above is not an elliptic curve according to standard defi-
nitions. However, it is so closely related to an elliptic curve that it is usually still considered
to be one. (To be precise, the desingularized projectivization of Ed is an elliptic curve. This
pathology does not show up over k if d is a non-square.)

2.2.1 Why again?

Without knowing quite a bit of mathematical background in number theory and algebraic
geometry, using elliptic curves may seem pretty ‘random’: Why not some other form of
equation? Are these the only objects where this works?

The answer is that it is pretty difficult to ‘just write down’ an equation whose solutions
satisfy a meaningful group law, such that the group law is not just addition (terrible) or

1Note there are other definitions! In particular, most mathematical literature takes x, y ∈ k when talking about
a ‘point’ and uses the terminology ‘rational point’ for a point with x, y ∈ k. In cryptographic contexts, a ‘point’
often means ‘rational point’ because this is a finite set and easier to deal with on computers. For now, rational
points are all we need.

3

multiplication (suboptimal) on the underlying field in disguise. Elliptic curves are, in a
sense, the simplest of several classes of objects at once:

• They are exactly the 1-dimensional abelian varieties, i.e., ‘shapes’ cut out of a space by
polynomial equations, with a natural group law on the points (which is also given by
polynomials).

• They are smooth projective curves of genus 1. Genus-g curves have a natural group
law on multisets of g points, hence elliptic curves (of the lowest ‘non-trivial’ genus)
have a group law on points rather than just collections of points.

One can ‘do crypto’ on both of these classes of objects in general, but the situation becomes
messier both computationally and security-wise. Usually the extra effort is not worth it
(disclaimer: opinions about this vary). This is why elliptic curves are great: simplicity,
performance, and security.

2.3 Other curve forms

There are various other forms of elliptic curves in common use:

• Short Weierstraß curves: y2 = x3 + ax+ b and a made-up ‘point at infinity’ O
− Annoying addition law (case distinctions).
+ Every elliptic curve in char k /∈ {2, 3} can be written like this.
− Basically no other benefits (except historical relevance).

• Montgomery curves: By2 = x3 +Ax2 + x and a made-up ‘point at infinity’ O
− Annoying addition law (case distinctions).
− Always has a point (0, 0) of order 4.
+ Many curves can be written like this.
+ Fast and side-channel resistant one-coordinate scalar multiplications.

Curve25519 with (p,A,B) = (2255 − 19, 486662, 1) is all over the internet.
(See RFC 7748 at https://tools.ietf.org/html/rfc7748.)

Lemma 2. Any Edwards curve can be transformed to a Montgomery curve, and any elliptic
curve over a field of characteristic /∈ {2, 3} can be transformed to short Weierstraß form.

Example: Let Ed be an Edwards curve and define the Montgomery curve

MA,B : Bv2 = u3 +Au2 + u

where A = 2(1 + d)/(1− d) and B = 4/(1− d). Then

ψ : (x, y) 7−→
(
1 + y

1− y
,

1 + y

(1− y)x

)
is a map from Ed to MA,B which is defined almost everywhere. Moreover, wherever de-
fined ψ is bijective and commutes with the group laws on Ed and MA,B .

Remark. One might ask if there are no nicer maps ψ without points where they are not
defined. However, every such map must have exceptional points: After all, (0, 1) ∈ Ed

must go to O ∈MA,B , which does not have coordinates in (u, v)-space.

Remark. One might ask whether there is always a map in the other direction: For Ed as
we have defined it this is false, but there is a slightly more general form of Edwards curves
(‘twisted’ Edwards curves) into which any Montgomery curve can be transformed. The
equation becomes

ax2 + y2 = 1 + dx2y2.

4

https://tools.ietf.org/html/rfc7748

Many properties of elliptic curves are independent of the concrete coordinate system
and apply to any way of writing the curve. We and everyone else thus typically only
restrict to a specific form when necessary.

Write O for the neutral element, i.e., for Edwards curves O = (0, 1) ∈ Ed.

2.4 Point counting

For cryptographic applications, we need to know how big our group really is. However,
counting algorithms for generic groups are too slow as they essentially work by solving
DLP, which should be infeasible. Similarly, plugging in all values for x and checking if
there exists a corresponding y takes even longer.

The following classic result gives lower and upper bounds on the group size:

Theorem 2 (Hasse). Let E be an elliptic curve over Fq . Then the number of points (over
Fq) on E is bounded by

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

Hasse’s theorem implies that the group onE is about the size of the underlying field (which
makes sense, as it is a one-dimensional object over that field). However, due to the Pohlig–
Hellman algorithm, not only the size of the group is critical, but also the prime factorization
of the group order. Hence we need to know the exact number of points, rather than just an
estimate obtained from the Hasse bounds.

Theorem 3 (Schoof ’85). There exists an algorithm that computes the number of points on
a given elliptic curve over Fq in time polynomial in log q.

The algorithm and its improved versions (by Elkies and Atkin) are non-trivial but ex-
tremely interesting; exercise if you’re bored: Look into it!2

Using these ingredients, finding elliptic curves for use in cryptography is easy: They
are usually constructed by brute-force search, picking new curves and counting points via
(variants of) Schoof’s algorithm until one with a big prime-order subgroup (which ensures
security against all generic algorithms) is found.
(The prime number theorem states that for large x, there are approximately x/ lnx primes
below x, hence modelling #E(Fq) as a random number of size ≈ q shows that we can
expect a prime-order curve after approximately ln q tries.)

Remark. There are also methods to construct a curve with a chosen number of points, but
they are only efficient in rather specific circumstances. (If you’re bored, search for ‘CM
method’.)

3 Security

As usual in cryptography, all of these statements reflect the current public knowledge at the
time of writing. For all we know, somebody could break DLP on elliptic curves (ECDLP)
in polynomial time tomorrow, though this seems unlikely given how many capable people
have tried (and failed) in the past decades.

In this very unmathematical, highly practical sense, the following facts are facts:

Fact. Well-chosen elliptic curves are as close to generic groups as it gets.

For ‘good’ E, the only improvement over generic algorithms is that P and 	P share a
coordinate (y if E is in Edwards form), hence can be identified in some DLP algorithms.
This loses at most a single bit of security.

2Shamelessly advertising my B.Sc. thesis at https://yx7.cc/docs/tum/thesis_schoof.pdf as an introductory
reference.

5

https://yx7.cc/docs/tum/thesis_schoof.pdf

Fact. Solving the discrete-logarithm problem in a subgroup of prime size ` of a well-chosen
elliptic curve over a prime field Fp requires, on average,

√
π`/4 steps using the best known

(memory-efficient) method.
For comparison, the same method on a generic group of the same size, i.e., without

making use of any special properties of elliptic curves, takes
√
π`/2 steps.

Warning. The difficulty of the DLP is required for the security of a cryptographic system
relying on elliptic curves, but it is not sufficient.

For instance, there are active attacks making use of insufficient input validation: Send a
point that is on a different curve, learn information about the private key from the resulting
leakage. See https://safecurves.cr.yp.to for many more examples of such practical pit-
falls and elliptic curves designed to protect you from shooting yourself in the foot. Quote
from the webpage:

There are many attacks that break real-world ECC without solving ECDLP.
The core problem is that if you implement the standard curves, chances are
you’re doing it wrong. — D. J. Bernstein & T. Lange

3.1 Weak classes of elliptic curves

There exist several families of elliptic curves that are known to be (much) weaker than
generic groups. Basically all of these examples are well-understood and the underlying
reasons do not generalize to larger classes of, or even all, elliptic curves. (There are a few
‘known unknowns,’ where the community does not have strong confidence in the current
security estimates, but these cases are easily avoided.)

• Slightly unclear: Curves over non-prime fields Fpk . (Not broken per sé, but shaky
security history. The conservative choice is Fp for a large prime p.)

• Curves over Fq with q points (reduces DLP in E(Fq) to DLP in (Fq,+)).
• Curves of low ‘embedding degree’ k (reduces DLP in E(Fq) to DLP in (F∗pk , ·)). k is

the smallest integer such that #E(Fq) | pk − 1.
In particular: Supersingular elliptic curves.
More about this when we discuss pairings in the next lecture!

• Slightly weaker: Curves with small t2 − 4q, where t = q + 1−#E(Fq).

4 Fast arithmetic on elliptic curves

Naïvely implementing the Edwards formulas

(x1, y1), (x2, y2) 7−→
(

x1y2 + y1x2
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
gives (all operations in Fq):

C ← x1 · x2
D ← y1 · y2
E ← d · C ·D
x3 ← ((x1 + y1) · (x2 + y2)− C −D) · (1 + E)−1

y3 ← (D − C) · (1− E)−1

This costs a bunch of additions (usually cheap), six multiplications, one multiplication with
a (small?) constant d, and two inversions. In short, ignoring additions:

6M+ 1m+ 2I.

Problem: Inversions can be very expensive, especially in constant-time code!

6

https://safecurves.cr.yp.to

4.1 Projective coordinates

We can split fractions into numerator and denominator to delay divisions until the end of
the computation. We can compute on these fractions like we would with integer fractions:

a

b
+
c

d
=
ad+ bc

bd
;

a

b
· c
d
=
ac

bd
; 1/

a

b
=
b

a
; etc.

We store (x, y) as fractionsX/Z, Y/Z with a common denominator Z, i.e., a point on an Ed-
wards curve is now of the form [X : Y : Z] which represents (X/Z, Y/Z). The conversions
are given by

(x, y) 7−→ [x : y : 1] and [X : Y : Z] 7−→ (X/Z, Y/Z).

In this representation, the Edwards addition formula becomes

[X1 : Y1 : Z1], [X2 : Y2 : Z2]

7−→
[
X1Y2Z1Z2 + Y1X2Z1Z2

Z2
1Z

2
2 + dX1X2Y1Y2

:
Y1Y2Z1Z2 −X1X2Z1Z2

Z2
1Z

2
2 − dX1X2Y1Y2

: 1

]
,

and after cancelling denominators:

[X1 : Y1 : Z1]⊕ [X2 : Y2 : Z2]

=
[
(X1Y2Z1Z2 + Y1X2Z1Z2)(Z

2
1Z

2
2 − dX1X2Y1Y2)

: (Y1Y2Z1Z2 −X1X2Z1Z2)(Z
2
1Z

2
2 + dX1X2Y1Y2)

: (Z2
1Z

2
2 + dX1X2Y1Y2)(Z

2
1Z

2
2 − dX1X2Y1Y2)

]
While this looks much worse than what we started with, it is actually very good for compu-
tations! Here is how we can evaluate this expression in a computer:

A← Z1 · Z2

B ← A2

C ← X1 ·X2

D ← Y1 · Y2
E ← d · C ·D
F ← B − E
G← B + E

X3 ← A · F · ((X1 + Y1) · (X2 + Y2)− C −D)

Y3 ← A ·G · (D − C)
Z3 ← F ·G

The cost is

10M+ 1m+ 1S.

(Squarings S are often a bit cheaper than M.)

4.2 The Montgomery ladder

Note that ‘almost all’ of the information contained in an elliptic-curve point is determined
by one of the coordinates: On an Edwards curve Ed, for a given y, there exist at most two
x such that (x, y) is a point on a given Edwards curve Ed. Moreover, the y-coordinate

7

of [n]P depends only on the y-coordinate of P , since negation preserves y and therefore
[n](P) = 	[n]P , has the same y-coordinate as [n]P . One may therefore wonder if we can
avoid computing x in the first place, sacrificing one bit of information (and hence security),
for much faster computations. It turns out that this is indeed the case.

Since the underlying ideas of this section really apply to any choice of curve model,
we now replace the ad-hoc term ‘dropping coordinates’ by the mathematically much more
meaningful ‘identifying a point P and its negative 	P ’. It turns out that the set E/± of
such equivalence classes still supports a well-defined scalar multiplication, whereas the group
structure gets lost.

To build an algorithm that computes [n](±P) without computing [n]P on the way, we
will need the operation of differential addition:

xDBLADD:
• Input: The elements ±P , ±Q, and ±(P	Q) for some P,Q ∈ E.
• Output: The elements ±[2]P and ±(P⊕Q).

On a Montgomery curve (modulo ±) using [X : Z] coordinates, one xDBLADD costs 5M +
4S+ 1m. Using this operation, we can build the Montgomery ladder:

xMUL:

• Input: A scalar n ≥ 0 and an element ±P .
• Output: The element ±[n]P .

1. Write n =
∑`−1

i=0 bi2
i with each bi ∈ {0, 1}.

2. Let ±Q← ±O and ±R← ±P .

3. For i ∈ (`− 1, `− 2, . . . , 1, 0):

1) If bi = 0: Let (±Q,±R)← xDBLADD(±Q,±R,±P).
2) If bi = 1: Let (±R,±Q)← xDBLADD(±R,±Q,±P).

• Return ±Q.

Notice that the algorithm above can be implemented such that the only conditional opera-
tions are swaps, which are inexpensive and easy to get right in constant-time implementa-
tions. This makes the Montgomery ladder highly efficient and robust against side-channel
attacks.

Correctness. Ad-hoc notation: Write (k) for ±[k]P . The variables (x) := ±Q and (y) := ±R
are thus initialized as (x) = (0) and (y) = (1). By induction, we have y − x = 1 at all times,
and hence the two possible steps in each loop are

(x), (y) 7−→

{
(2x), (x+ y) if bi = 0;
(x+ y), (2y) if bi = 1.

Define ui =
∑`−1

j=i bj2
j−i and vi = ui + 1. The loop invariant at the end of the loop in the

Montgomery ladder algorithm is

x = ui; y = vi.

To see this, do induction. After the final iteration, we have x = u0 = n.

The bottom line is a practical result: With well-designed curves and algorithms, you
can do thousands of Diffie–Hellman key exchanges per second on a single core!

8

	Why?
	Reminders
	Cryptographic groups

	Elliptic curves
	Reminder: `Clock crypto'
	Edwards curves
	Why again?

	Other curve forms
	Point counting

	Security
	Weak classes of elliptic curves

	Fast arithmetic on elliptic curves
	Projective coordinates
	The Montgomery ladder

