
Cryptography
&

Quantum Computers

Lorenz Panny

Technische Universität München

Antrittsvorlesung, Garching, 7 February 2024

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

1 / 39

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

1 / 39

The internet

2 / 39

The internet

2 / 39

The internet

...is a giant computer network run by
not necessarily trustworthy strangers.

2 / 39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...

3 / 39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...

3 / 39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...

3 / 39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...

3 / 39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...

3 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.

▶ All users have the same capabilities.
For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.

▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.

▶ Hence, asymmetric.

4 / 39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.

4 / 39

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

5 / 39

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

5 / 39

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

5 / 39

Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.

5 / 39

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

6 / 39

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

6 / 39

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

6 / 39

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.

6 / 39

Kerckhoffs’ principle

▶ Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)

7 / 39

Kerckhoffs’ principle

▶ Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)

7 / 39

Kerckhoffs’ principle

▶ Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)

7 / 39

Hard problems

▶ By design, asymmetric cryptography is always breakable
— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

8 / 39

Hard problems

▶ By design, asymmetric cryptography is always breakable
— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

8 / 39

Hard problems

▶ By design, asymmetric cryptography is always breakable
— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

8 / 39

Hard problems

▶ By design, asymmetric cryptography is always breakable
— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.

8 / 39

On hardness (1)

▶ We almost never know for certain if cryptography is secure.

▶ “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

▶ Theory: If nontrivial cryptography is secure, then P ̸= NP.
Reality: Does it matter? Is an O(n666) algorithm really “tractable”?

9 / 39

On hardness (1)

▶ We almost never know for certain if cryptography is secure.

▶ “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

▶ Theory: If nontrivial cryptography is secure, then P ̸= NP.
Reality: Does it matter? Is an O(n666) algorithm really “tractable”?

9 / 39

On hardness (1)

▶ We almost never know for certain if cryptography is secure.

▶ “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

▶ Theory: If nontrivial cryptography is secure, then P ̸= NP.

Reality: Does it matter? Is an O(n666) algorithm really “tractable”?

9 / 39

On hardness (1)

▶ We almost never know for certain if cryptography is secure.

▶ “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

▶ Theory: If nontrivial cryptography is secure, then P ̸= NP.
Reality: Does it matter? Is an O(n666) algorithm really “tractable”?

9 / 39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

10 / 39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

10 / 39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

10 / 39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

10 / 39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very

hard?

seems
secure

yes

no

no

yes

10 / 39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.
▶ Anything in NP can be viewed as an instance of some

NP-complete problem, by definition.
▶ Key question: Are we actually using hard instances?

⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11 / 39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.

▶ Anything in NP can be viewed as an instance of some
NP-complete problem, by definition.

▶ Key question: Are we actually using hard instances?
⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11 / 39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.
▶ Anything in NP can be viewed as an instance of some

NP-complete problem, by definition.

▶ Key question: Are we actually using hard instances?
⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11 / 39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.
▶ Anything in NP can be viewed as an instance of some

NP-complete problem, by definition.
▶ Key question: Are we actually using hard instances?

⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11 / 39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.
▶ Anything in NP can be viewed as an instance of some

NP-complete problem, by definition.
▶ Key question: Are we actually using hard instances?

⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)

???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))

12 / 39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)

???

a(b(g)) b(a(g))

12 / 39

Key agreement: First ideas

▶ Need: Commuting functions a and b that are hard to invert.

▶ Idea: Simply multiply by a secret number?
This “works” (g · a · b = g · b · a), but it’s obviously insecure.
(Attackers can simply compute (g · a)/g = a.)

▶ Better idea: exponentiate to a secret power?
This “works” ((ga)b = (gb)a), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

▶ Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.

13 / 39

Key agreement: First ideas

▶ Need: Commuting functions a and b that are hard to invert.

▶ Idea: Simply multiply by a secret number?
This “works” (g · a · b = g · b · a), but it’s obviously insecure.
(Attackers can simply compute (g · a)/g = a.)

▶ Better idea: exponentiate to a secret power?
This “works” ((ga)b = (gb)a), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

▶ Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.

13 / 39

Key agreement: First ideas

▶ Need: Commuting functions a and b that are hard to invert.

▶ Idea: Simply multiply by a secret number?
This “works” (g · a · b = g · b · a), but it’s obviously insecure.
(Attackers can simply compute (g · a)/g = a.)

▶ Better idea: exponentiate to a secret power?
This “works” ((ga)b = (gb)a), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

▶ Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.

13 / 39

Key agreement: First ideas

▶ Need: Commuting functions a and b that are hard to invert.

▶ Idea: Simply multiply by a secret number?
This “works” (g · a · b = g · b · a), but it’s obviously insecure.
(Attackers can simply compute (g · a)/g = a.)

▶ Better idea: exponentiate to a secret power?
This “works” ((ga)b = (gb)a), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

▶ Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.

13 / 39

Diffie–Hellman key agreement (1976)

Forever fixed, public system parameters:
▶ A large prime p of the form p = 2ℓ+ 1 with ℓ prime.
▶ An element g ∈ F×

p of order ℓ.

Alice public Bob

a← {0, ..., ℓ−1}. b← {0, ..., ℓ−1}.

ga gb

Compute (gb)a. Compute (ga)b.

14 / 39

Diffie–Hellman key agreement (1976)

Forever fixed, public system parameters:
▶ A large prime p of the form p = 2ℓ+ 1 with ℓ prime.
▶ An element g ∈ F×

p of order ℓ.

Alice public Bob

a← {0, ..., ℓ−1}. b← {0, ..., ℓ−1}.

ga gb

Compute (gb)a. Compute (ga)b.

14 / 39

Using elliptic curves instead of exponentiation

▶ Modern cryptographic reality: Elliptic curves are better.
▶ They are abelian groups⇝ everything works “the same”.

15 / 39

Using elliptic curves instead of exponentiation

▶ Modern cryptographic reality: Elliptic curves are better.
▶ They are abelian groups⇝ everything works “the same”.

•

•

•

The elliptic curve y2 = x3 − x + 1 over R.

15 / 39

Using elliptic curves instead of exponentiation

▶ Modern cryptographic reality: Elliptic curves are better.
▶ They are abelian groups⇝ everything works “the same”.

The elliptic curve y2 = x3 − x + 1 over the finite field F79.

15 / 39

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

16 / 39

Enter quantum.

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

yes, if you have a quantum computer

17 / 39

Enter quantum.

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

yes, if you have a quantum computer

17 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.

▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.

▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

18 / 39

What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶ Mechanical calculation device: Classical mechanics — gears etc.
▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.

⇝ Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

18 / 39

19 / 39

Quantum computers: Core concepts

▶ “Classical” computer: Elementary unit is bit, can be 0 or 1.

▶ Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
α|0⟩+ β|1⟩where α, β ∈ C with |α|2 + |β|2 = 1.

⇝ Single-qubit states are unit vectors in C2.

|0⟩

|1⟩

20 / 39

Quantum computers: Core concepts

▶ “Classical” computer: Elementary unit is bit, can be 0 or 1.

▶ Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1.

They look like
α|0⟩+ β|1⟩where α, β ∈ C with |α|2 + |β|2 = 1.

⇝ Single-qubit states are unit vectors in C2.

|0⟩

|1⟩

20 / 39

Quantum computers: Core concepts

▶ “Classical” computer: Elementary unit is bit, can be 0 or 1.

▶ Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
α|0⟩+ β|1⟩where α, β ∈ C with |α|2 + |β|2 = 1.

⇝ Single-qubit states are unit vectors in C2.

|0⟩

|1⟩

20 / 39

Quantum computers: Core concepts

▶ “Classical” computer: Elementary unit is bit, can be 0 or 1.

▶ Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
α|0⟩+ β|1⟩where α, β ∈ C with |α|2 + |β|2 = 1.

⇝ Single-qubit states are unit vectors in C2.

|0⟩

|1⟩

20 / 39

Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.
▶ But we can carefully manipulate a quantum state into

something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21 / 39

Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.
▶ But we can carefully manipulate a quantum state into

something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21 / 39

Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.

▶ But we can carefully manipulate a quantum state into
something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21 / 39

Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.
▶ But we can carefully manipulate a quantum state into

something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21 / 39

Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.
▶ But we can carefully manipulate a quantum state into

something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21 / 39

Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.

▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.
▶ Physical reality: Combining qubits gives state space C2n

!
Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!

22 / 39

Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.
▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.

▶ Physical reality: Combining qubits gives state space C2n
!

Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!

22 / 39

Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.
▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.
▶ Physical reality: Combining qubits gives state space C2n

!
Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!

22 / 39

Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.
▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.
▶ Physical reality: Combining qubits gives state space C2n

!
Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!

22 / 39

Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.
▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.
▶ Physical reality: Combining qubits gives state space C2n

!
Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!

22 / 39

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.

Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

23 / 39

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

23 / 39

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

23 / 39

Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

23 / 39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1}
such that ∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S
such that ∃! s∈G with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O(
√

log|G|).

23 / 39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1}
such that ∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S
such that ∃! s∈G with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O(
√

log|G|).

23 / 39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1}
such that ∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S
such that ∃! s∈G with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O(
√

log|G|).

23 / 39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1}
such that ∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S
such that ∃! s∈G with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O(
√

log|G|).

23 / 39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

▶ Prepare a quantum state encoding a preimage set f−1(y).
▶ Apply QFT to obtain a quantum state encoding the period.
▶ Then measure to get a random period vector. Repeat.

24 / 39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

▶ Prepare a quantum state encoding a preimage set f−1(y).

▶ Apply QFT to obtain a quantum state encoding the period.
▶ Then measure to get a random period vector. Repeat.

24 / 39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

▶ Prepare a quantum state encoding a preimage set f−1(y).
▶ Apply QFT to obtain a quantum state encoding the period.

▶ Then measure to get a random period vector. Repeat.

24 / 39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

▶ Prepare a quantum state encoding a preimage set f−1(y).
▶ Apply QFT to obtain a quantum state encoding the period.
▶ Then measure to get a random period vector. Repeat.

24 / 39

Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.

25 / 39

Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.

25 / 39

Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.

25 / 39

Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.

25 / 39

Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.

25 / 39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 / 39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 / 39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 / 39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 / 39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 / 39

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

27 / 39

Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.

28 / 39

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

29 / 39

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

29 / 39

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

29 / 39

Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!

29 / 39

Note on “quantum cryptography”

29 / 39

Note on “quantum cryptography”

29 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30 / 39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

31 / 39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

31 / 39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

31 / 39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

pre-quantum post-quantum

6ee2da7b68b7a997e062d09d94c1c76de61b5c260a35273713ddcc29e09ac840

45c83435071624067d69587335b97bf564929709c8825a004b028ae09c40980a
07e8d4bd604527ee221e8bac67d34cbe762c26df8453aae8b8c82b59c51a8552
6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
7b210d42626ebc66c916af1f3515374314e4f40309ca7289c7bc51c301d8180e
dc792d4dd44c41b77bd47a972d8434a9f03bb3954236ec422be0c8e991a79af2
86b6a7c459a95ed44868ed8052f2db0f3741710228979507cff961564882b5ea
19515ee00d657c7141e9b05f9a24136a2f915620b664404b5397cc7842748973
d0716cc273b528d51383a63fc8a3c4a3b1a8bc965775d750add6996c929e29f4
1e42362a759baa76f5a3dc0552f1d83195960e45837901494a87f2a6dc3b5d8b
73a9695c1229a0c9bddb0b2d99aa350c6cac657745c1308af354e10595f3682a
34dc26d9d28e2e2c4634aca75e94384700c9c06b1bca348330ac1791fab14190
99cf1288283bab03dca09ab3593cf3b12739cb44c0c04c6b93d1ea831df6bcb8
807aa6aa8cbec64d749a9e47f851c47c6537e196f1fcc4d63b67d29a58e86b9a
72a199cbb793c5084e5bab20bd02289b4aaa64e4c119488531e8a651a3175014
8e1742c5390bb9995c123f3056ad44c476468ded4b88a49130e35b4b00803dd2
4718674ca708e436d5c15ee1d95367c623512653c83b27b41cb308f8c2929b19
3b5487a4ce6401ec27a1605f879e2d9c53bf27e165246401cad7840a077934b8

31 / 39

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

32 / 39

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39

Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39

Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

34 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, , ,] [, , ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, , ,] [, , ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

35 / 39

CSIDH ["si:saId] key exchange

Alice Bob
[, , ,] [, , ,]

35 / 39

A much more random-looking isogeny graph

36 / 39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the⇒ direction, but
exponential-time in the⇐ direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

37 / 39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the⇒ direction, but
exponential-time in the⇐ direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

37 / 39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the⇒ direction, but
exponential-time in the⇐ direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

37 / 39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the⇒ direction, but
exponential-time in the⇐ direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

37 / 39

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

38 / 39

Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...

39 / 39

Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...

39 / 39

Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...

39 / 39

Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...

39 / 39

Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...

39 / 39

	Why cryptography?
	The quantum threat
	Post-quantum everything
	Highlight: Isogenies
	Done

