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The internet

The ARPANET in December 1969
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The internet




The internet

...1s a giant computer network run by
not necessarily trustworthy strangers.
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Nothing to hide?

Cryptography is vital for much more than “just” privacy!
» Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

» Almost every bit of data gets routed over the internet
at some point —including the software everyone runs.

» Existential threat: CRITICAL INFRASTRUCTURE.

» Even airgapped systems are at risk: Firmware updates...
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“Classical” cryptography (for thousands of years):
» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.
» They give the respective owners different capabilities.

» Hence, asymmetric.
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Example: Digital signatures

:—i.:—i.fz—
v

» Alice uses her private key to sign a (digital) document.

» Anyone can verify the signature using Alice’s public key.

(g This mimics the intended properties of a “real” signature.

5/39



Example:
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Example: Public-key encryption

= i—gi—fé

» Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

é Analogy: An open padlock for which Bob has the key.
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Kerckhoffs” principle

Auguste Kerckhoffs, « La cryptographie militaire », Journal des
sciences militaires, vol. 1X, pp. 5-38, Janvier 1883, pp. 161-191,
Février 1883.

2° 11 faut qu’il n’exige pas le secret, et qu’il puisse sans incon-
vénient tomber entre les mains de I'ennemi ;
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Auguste Kerckhoffs, « La cryptographie militaire », Journal des
sciences militaires, vol. 1X, pp. 5-38, Janvier 1883, pp. 161-191,
Février 1883.

2° 11 faut qu’il n’exige pas le secret, et qu’il puisse sans incon-
vénient tomber entre les mains de I'ennemi ;

» Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)
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Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

» Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

» Key feature: These objects have a lot of useful structure.
» Sweet spot: just enough to make things functional but secure.
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» We almost never know for certain if cryptography is secure.

» “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

» Theory: If nontrivial cryptography is secure, then P # NP.

Reality: Does it matter? Is an O(1n°*) algorithm really “tractable”?
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On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
» Cryptography does not care about worst-case hardness.

» Anything in NP can be viewed as an instance of some
NP-complete problem, by definition.

» Key question: Are we actually using hard instances?

~+ Theory of average-case hardness.

» The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!
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Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)
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Key agreement: First ideas

» Need: Commuting functions a and b that are hard to invert.

» Idea: Simply multiply by a secret number?
This “works” (g-a-b = g-b-a), butit’s obviously insecure.
(Attackers can simply compute (g - a)/g = a.)

» Better idea: exponentiate to a secret power?
This “works” ((¢")" = (g")"), but with real numbers it’s

either clearly impossible to do this efficiently or insecure.

» Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.
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Diffie-Hellman key agreement (1976)

Forever fixed, public system parameters:
» A large prime p of the form p = 2¢ + 1 with ¢ prime.
> Anelement g € F of order £.
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Diffie-Hellman key agreement (1976)

Forever fixed, public system parameters:
» A large prime p of the form p = 2¢ + 1 with ¢ prime.
> Anelement g € F of order £.

Alice public Bob
a <+ {0,...,0—-1}. b+ {0,...,0-1}.

Compute (g")". Compute (g")".
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» They are abelian groups ~~ everything works “the same”.

15/39



Using elliptic curves instead of exponentiation

» Modern cryptographic reality: Elliptic curves are better.
» They are abelian groups ~~ everything works “the same”.

(A~
A

The elliptic curve y* = x> — x + 1 over R.

15/39



Using elliptic curves instead of exponentiation

» Modern cryptographic reality: Elliptic curves are better.
» They are abelian groups ~~ everything works “the same”.

The elliptic curve y* = x> — x + 1 over the finite field Fr.

15/39
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Enter quantum.

Have: Supposedly hard computational problem.

search
attack

yes, if you have a quantum computer

found
one?

i

oops!
broken!
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real-world physical processes to find some desired answer.
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What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.
» Calculation “by hand”: Interaction between brain and pen and paper.
Mechanical calculation device: Classical mechanics — gears etc.

Pocket calculator/laptop: Electronics of silicon-based semiconductors.
Quantum computer: Quantum-mechanical properties of particles.

vvyy

~» Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.
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» Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
a|0) + B|1) where «, 8 € C with |a|? + |3> = 1.

~~ Single-qubit states are unit vectors in C2.
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Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.
Afterwards, the qubit remains in that state: either |0) or |1).
~» Measuring cannot tell us exactly what «a, 8 were.

» But we can carefully manipulate a quantum state into
something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably
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Quantum computers: Core concepts

Key fact: Combining multiple qubits allows entanglement.

Naive juxtaposition: State space would be (C2)" = C?".
Physical reality: Combining qubits gives state space C?'!

Mathematically, this new state space is a tensor product (C*)®".

This allows for entangled states such as —= (|00) + [11)).

This does not mean that “quantum computers can simply

I/'

search through all secret keys simultaneously”!
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Of primary relevance to cryptography are three algorithms:

» Grover’s algorithm: Given a functionf: {0,1}" — {0,1}
such that 3!'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

» Shor’s algorithm: Given a periodic function f: Z" — S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

» Kuperberg’s algorithm: Given two functions f1,f»: G — S
such that 3!'s € G with f(x) = f1(x + s) for all x, find that s.

I Subexponential complexity: from |G|OM) to 20V/1eglGl)
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Shor’s algorithm

Key idea: Quantum Fourier Transform.

» Prepare a quantum state encoding a preimage set f~1(y).
» Apply QFT to obtain a quantum state encoding the period.

» Then measure to get a random period vector. Repeat.
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Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

» Define the map f: 7% — G, (x,y) > g - hY.

» Find the period vector (2, —1) using Shor’s algorithm.

Time complexity: (1Og‘GDO(]). Generic classical algorithms: Q(,/|G|).

Exponential speedup.

25/39
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Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT

STUFF THAT PRETTY MUCH
QUANTUM ALL OUR
CRYPTOGRAPHY
COMPUTERS ARE L on
PARTICULARLY

GOOD AT

» Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.
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Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.
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Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
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Note on “quantum cryptography”
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Note on “quantum cryptography”

Executive summary

Quantum Key Distribution (QKD) seeks to leverage quantum effects in order for two remote parties to agree
on a secret key via an insecure quantum channel. This technology has received significant attention,
sometimes claiming unprecedented levels of security against attacks by both classical and quantum
computers.

Due to current and inherent limitations, QKD can however currently only be used in practice in some niche
use cases. For the vast majority of use cases where classical key agreement schemes are currently used it is
not possible to use QKD in practice. Furthermore, QKD is not yet sufficiently mature from a security
perspective. In light of the urgent need to stop relying only on quantum-vulnerable public-key
cryptography for key establishment, the clear priorities should therefore be the migration to post-quantum
cryptography and/or the adoption of symmetric keying.

This paper is aimed at a general audience. Technical details have therefore been left out to the extent
possible. Technical terms that require a definition are printed in italics and are explained in a glossary at the
end of the document.
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The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Hash-based signatures

Hash functions are random-looking functions that compress arbitrary data to short
bitstrings. They should be hard to invert.

iter hash function
pieeraly, anything ~————————  10100111001010110011001010100100. ..

really hard

An individual can tie a hash value to their identity and later identify themself by
revealing the corresponding input.
Selectively revealing inputs depending on a message leads to a signature scheme.
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The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Code-based crypto

Main application: Encryption.
Underlying problem: Correct errors in a codeword of a random-looking code.

error

|

secret messaqe —‘ Encoder ‘— 0101101101110010 — ) — 0100101111110110

Oldest proposal: McEliece 1978. Still essentially unbroken [2].
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The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Lattice-based crypto

Main applications: Encryption, signatures, and beyond.

Underlying problem: Find short vectors in a discrete additive subgroup of R".

short!
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The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Multivariate crypto

Main application: Signatures.

Underlying problem: Solve systems of quadratic equations over a finite field.

102% + 1522 + 192y + Tez + 27yz + 20z +y = 14 (mod 31)
2527 4+ 30y° + 1722 + 30xy + 23x2 + 27yz + 150 + 4y + 162 =5 (mod 31)
152 + 9y% + 112% + 182y + 24wz + 16yz + 282 + 9y + 32 =6 (mod 31)
2722+ 10y* + 1722 + Taz 4+ 28yz + 4o + 13y + 272 = 12 (mod 31)
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The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Isogeny-based crypto

Main application: Key exchange, signatures.

Underlying problem: Find an isogeny between two elliptic curves.
An isogeny is a surjective group homomorphism given by rational functions.
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This talk

Highlight: Isogenies
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Isogenies of elliptic curves

» ...are essentially just s2zce 745(775 between elliptic curves.
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Isogenies of elliptic curves

» ...are essentially just s2zce 741(775 between elliptic curves.

» They are a source of exponentially large graphs.

2%

» ..with enough structure to navigate meaningfully!
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Graphs of elliptic curves

A 3-isogeny

(picture not to scale) | e .
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A much more random-looking isogeny graph
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Isogeny graphs are not random graphs.
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SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction, but
exponential-time in the < direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.
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Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

v

Number theory & algebraic geometry

v

Fast algorithms, computer algebra
— Open-source software

v

Implementations and side channels
» Low-level programming (again)
» High-assurance cryptography

v

Information security in general
» Memory corruptions, reverse engineering, web hacking, ...
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