Cryptography
&
Quantum Computers

Lorenz Panny
Technische Universitdt Miinchen

Antrittsvorlesung, Garching, 7 February 2024

This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies

1/39

This talk

Why cryptography?

1/39

The internet

The ARPANET in December 1969

2/39

The internet

The internet

...1s a giant computer network run by
not necessarily trustworthy strangers.

2/39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

3/39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

» Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

3/39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

» Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

» Almost every bit of data gets routed over the internet
at some point —including the software everyone runs.

3/39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!

» Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

» Almost every bit of data gets routed over the internet
at some point —including the software everyone runs.

3/39

Nothing to hide?

Cryptography is vital for much more than “just” privacy!
» Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

» Almost every bit of data gets routed over the internet
at some point —including the software everyone runs.

» Existential threat: CRITICAL INFRASTRUCTURE.

» Even airgapped systems are at risk: Firmware updates...

3/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric.

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):

» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.

» They give the respective owners different capabilities.

4/39

Two kinds of cryptography

“Classical” cryptography (for thousands of years):
» Secret keys exchanged in advance via a secure channel.

» All users have the same capabilities.
For instance: encrypting and decrypting.

» Hence, symmetric.

Public-key cryptography (since ~1976):
» Keys are now pairs: a private key and a public key.
» They give the respective owners different capabilities.

» Hence, asymmetric.

4/39

Example: Digital signatures

5/39

Example: Digital signatures

:—i.:—i.fz—
v

» Alice uses her private key to sign a (digital) document.

5/39

Example: Digital signatures

:—i.:—i.fz—
v

» Alice uses her private key to sign a (digital) document.

» Anyone can verify the signature using Alice’s public key.

5/39

Example: Digital signatures

:—i.:—i.fz—
v

» Alice uses her private key to sign a (digital) document.

» Anyone can verify the signature using Alice’s public key.

(g This mimics the intended properties of a “real” signature.

5/39

Example:

Public-key encryption

E_i—g

¥ fE—

6/39

Example: Public-key encryption

= i—fzi»fé

» Anyone can use Bob’s public key to encrypt a message

6/39

Example: Public-key encryption

= i—fzi»fé

» Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

6/39

Example: Public-key encryption

= i—gi—fé

» Anyone can use Bob’s public key to encrypt a message

such that only he can decrypt it using his private key.

é Analogy: An open padlock for which Bob has the key.

6/39

Kerckhoffs” principle

Auguste Kerckhoffs, « La cryptographie militaire », Journal des
sciences militaires, vol. 1X, pp. 5-38, Janvier 1883, pp. 161-191,
Février 1883.

2° 11 faut qu’il n’exige pas le secret, et qu’il puisse sans incon-
vénient tomber entre les mains de I'ennemi ;

7/39

Kerckhoffs” principle

Auguste Kerckhoffs, « La cryptographie militaire », Journal des
sciences militaires, vol. 1X, pp. 5-38, Janvier 1883, pp. 161-191,
Février 1883.

2° 11 faut qu’il n’exige pas le secret, et qu’il puisse sans incon-
vénient tomber entre les mains de I'ennemi ;

» Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

7/39

Kerckhoffs” principle

Auguste Kerckhoffs, « La cryptographie militaire », Journal des
sciences militaires, vol. 1X, pp. 5-38, Janvier 1883, pp. 161-191,
Février 1883.

2° 11 faut qu’il n’exige pas le secret, et qu’il puisse sans incon-
vénient tomber entre les mains de I'ennemi ;

» Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)

7/39

Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

8/39

Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

8/39

Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

» Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

8/39

Hard problems

» By design, asymmetric cryptography is always breakable
—at absurdly high costs.

» Security relies on computationally hard problems.

» Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

» Key feature: These objects have a lot of useful structure.
» Sweet spot: just enough to make things functional but secure.

8/39

On hardness (1)

» We almost never know for certain if cryptography is secure.

9/39

On hardness (1)

» We almost never know for certain if cryptography is secure.

» “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

9/39

On hardness (1)

» We almost never know for certain if cryptography is secure.

» “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

» Theory: If nontrivial cryptography is secure, then P # NP.

9/39

On hardness (1)

» We almost never know for certain if cryptography is secure.

» “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

» Theory: If nontrivial cryptography is secure, then P # NP.

Reality: Does it matter? Is an O(1n°*) algorithm really “tractable”?

9/39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

10/39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

10/39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

yes

\

oops!
broken!

10/39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

did we
try very
hard?

10/39

A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

did we
try very
hard?

— yes —>

seems
secure

10/39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

11/39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:

» Cryptography does not care about worst-case hardness.

11/39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
» Cryptography does not care about worst-case hardness.

» Anything in NP can be viewed as an instance of some
NP-complete problem, by definition.

11/39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
» Cryptography does not care about worst-case hardness.

» Anything in NP can be viewed as an instance of some
NP-complete problem, by definition.

» Key question: Are we actually using hard instances?
~+ Theory of average-case hardness.

11/39

On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
» Cryptography does not care about worst-case hardness.

» Anything in NP can be viewed as an instance of some
NP-complete problem, by definition.

» Key question: Are we actually using hard instances?

~+ Theory of average-case hardness.

» The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!

11/39

Key agreement over an insecure channel

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

@ 1'm about to tell you a1l ™Y secrets) @

l |

L

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

)

Evil eavesdropper Eve!

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

)

Evil eavesdropper Eve!

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

///_/—%
a(g) ? b(g)

m

® 0 o

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

12 /39

Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.

(They can then use symmetric cryptography to communicate securely.)

12 /39

Key agreement: First ideas

» Need: Commuting functions a and b that are hard to invert.

13 /39

Key agreement: First ideas

» Need: Commuting functions a and b that are hard to invert.

» Idea: Simply multiply by a secret number?

This “works” (g-a-b = g-b-a), butit’s obviously insecure.

(Attackers can simply compute (g -a)/g = a.)

13 /39

Key agreement: First ideas

» Need: Commuting functions a and b that are hard to invert.

» Idea: Simply multiply by a secret number?
This “works” (g-a-b = g-b-a), butit’s obviously insecure.
(Attackers can simply compute (g - a)/g = a.)

» Better idea: exponentiate to a secret power?

This “works” ((¢")" = (g")"), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

13 /39

Key agreement: First ideas

» Need: Commuting functions a and b that are hard to invert.

» Idea: Simply multiply by a secret number?
This “works” (g-a-b = g-b-a), butit’s obviously insecure.
(Attackers can simply compute (g - a)/g = a.)

» Better idea: exponentiate to a secret power?
This “works” ((¢")" = (g")"), but with real numbers it’s

either clearly impossible to do this efficiently or insecure.

» Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.

13 /39

Diffie-Hellman key agreement (1976)

Forever fixed, public system parameters:
» A large prime p of the form p = 2¢ + 1 with ¢ prime.
> Anelement g € F of order £.

14 /39

Diffie-Hellman key agreement (1976)

Forever fixed, public system parameters:
» A large prime p of the form p = 2¢ + 1 with ¢ prime.
> Anelement g € F of order £.

Alice public Bob
a <+ {0,...,0—-1}. b+ {0,...,0-1}.

Compute (g")". Compute (g")".

14 /39

Using elliptic curves instead of exponentiation

» Modern cryptographic reality: Elliptic curves are better.
» They are abelian groups ~~ everything works “the same”.

15/39

Using elliptic curves instead of exponentiation

» Modern cryptographic reality: Elliptic curves are better.
» They are abelian groups ~~ everything works “the same”.

(A~
A

The elliptic curve y* = x> — x + 1 over R.

15/39

Using elliptic curves instead of exponentiation

» Modern cryptographic reality: Elliptic curves are better.
» They are abelian groups ~~ everything works “the same”.

The elliptic curve y* = x> — x + 1 over the finite field Fr.

15/39

This talk

The quantum threat

16 /39

Enter quantum.

Have: Supposedly hard computational problem.

search found
R
attack one?

17 /39

Enter quantum.

Have: Supposedly hard computational problem.

search
attack

yes, if you have a quantum computer

found
one?

i

oops!
broken!

17 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.
» Mechanical calculation device: Classical mechanics — gears etc.

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

» Calculation “by hand”: Interaction between brain and pen and paper.
» Mechanical calculation device: Classical mechanics — gears etc.
» Pocket calculator/laptop: Electronics of silicon-based semiconductors.

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.
» Calculation “by hand”: Interaction between brain and pen and paper.
Mechanical calculation device: Classical mechanics — gears etc.

Pocket calculator/laptop: Electronics of silicon-based semiconductors.
Quantum computer: Quantum-mechanical properties of particles.

vvyy

18 /39

What are computers, really?

» Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.
» Calculation “by hand”: Interaction between brain and pen and paper.
Mechanical calculation device: Classical mechanics — gears etc.

Pocket calculator/laptop: Electronics of silicon-based semiconductors.
Quantum computer: Quantum-mechanical properties of particles.

vvyy

~» Quantum computers are just “the next evolution” of using
an increasingly bigger share of physics to compute things.

18 /39

19/39

Quantum computers: Core concepts

» “Classical” computer: Elementary unit is bit, can be 0 or 1.

20/39

Quantum computers: Core concepts
» “Classical” computer: Elementary unit is bit, can be 0 or 1.

» Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1.

20/39

Quantum computers: Core concepts

» “Classical” computer: Elementary unit is bit, can be 0 or 1.

» Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
a|0) + B|1) where «, 8 € C with |a|? + |3> = 1.

~~ Single-qubit states are unit vectors in C2.

20/39

Quantum computers: Core concepts

» “Classical” computer: Elementary unit is bit, can be 0 or 1.

» Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
a|0) + B|1) where «, 8 € C with |a|? + |3> = 1.

~~ Single-qubit states are unit vectors in C2.

0)

20/39

Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.

21/39

Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.
Afterwards, the qubit remains in that state: either |0) or |1).

21/39

Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.
Afterwards, the qubit remains in that state: either |0) or |1).

~» Measuring cannot tell us exactly what «a, 8 were.

21/39

Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.

Afterwards, the qubit remains in that state: either |0) or |1).

~» Measuring cannot tell us exactly what «a, 8 were.

» But we can carefully manipulate a quantum state into
something whose measurement outcome will be useful!

21/39

Quantum computers: Core concepts

» Measuring the qubit «|0) + $|1) is probabilistic: We get
» |0) with probability |a|?;
» |1) with probability |3|>.
Afterwards, the qubit remains in that state: either |0) or |1).
~» Measuring cannot tell us exactly what «a, 8 were.

» But we can carefully manipulate a quantum state into
something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably

21/39

Quantum computers: Core concepts

» Key fact: Combining multiple qubits allows entanglement.

22/39

Quantum computers: Core concepts

» Key fact: Combining multiple qubits allows entanglement.

» Naive juxtaposition: State space would be (C2)" = C?".

22/39

Quantum computers: Core concepts

» Key fact: Combining multiple qubits allows entanglement.
» Naive juxtaposition: State space would be (C2)" = C?".

» Physical reality: Combining qubits gives state space C2'!

Mathematically, this new state space is a tensor product (C*)®".

22/39

Quantum computers: Core concepts

v

Key fact: Combining multiple qubits allows entanglement.

v

Naive juxtaposition: State space would be (C2)" = C?".

v

Physical reality: Combining qubits gives state space C?'!

Mathematically, this new state space is a tensor product (C*)®".

v

This allows for entangled states such as —= (|OO> + [11)).

22/39

Quantum computers: Core concepts

Key fact: Combining multiple qubits allows entanglement.

Naive juxtaposition: State space would be (C2)" = C?".
Physical reality: Combining qubits gives state space C?'!

Mathematically, this new state space is a tensor product (C*)®".

This allows for entangled states such as —= (|00) + [11)).

This does not mean that “quantum computers can simply

I/'

search through all secret keys simultaneously”!

22/39

Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.

23/39

Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

23/39

Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.

Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

‘Qe
‘?/-
«
[

L 4

23/39

Enter post-quantum. (1)

Common misconception:

«Quantum computers massively speed up all computations.
Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.

23/39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

23/39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

» Grover’s algorithm: Given a functionf: {0,1}" — {0,1}
such that 3!'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

23/39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

» Grover’s algorithm: Given a functionf: {0,1}" — {0,1}
such that 3!'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

» Shor’s algorithm: Given a periodic function f: Z" — S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

23/39

Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

» Grover’s algorithm: Given a functionf: {0,1}" — {0,1}
such that 3!'x € {0,1}" with f(x) = 1, find that x.
I Square-root complexity: from O(2") to O(2"/?).

» Shor’s algorithm: Given a periodic function f: Z" — S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

» Kuperberg’s algorithm: Given two functions f1,f»: G — S
such that 3!'s € G with f(x) = f1(x + s) for all x, find that s.

I Subexponential complexity: from |G|OM) to 20V/1eglGl)

23/39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

24 /39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

» Prepare a quantum state encoding a preimage set f~1(y).

24 /39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

» Prepare a quantum state encoding a preimage set f~1(y).
» Apply QFT to obtain a quantum state encoding the period.

24 /39

Shor’s algorithm

Key idea: Quantum Fourier Transform.

» Prepare a quantum state encoding a preimage set f~1(y).
» Apply QFT to obtain a quantum state encoding the period.

» Then measure to get a random period vector. Repeat.

24 /39

Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

25/39

Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

» Define the map f: 7% — G, (x,y) > g - hY.

25/39

Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

» Define the map f: 7% — G, (x,y) > g - hY.

» Find the period vector (2, —1) using Shor’s algorithm.

25/39

Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

» Define the map f: 7% — G, (x,y) > g - hY.

» Find the period vector (2, —1) using Shor’s algorithm.

Time complexity: (10g‘GDO(]). Generic classical algorithms: Q(,/|G|).

25/39

Shor vs. DLP

The discrete logarithm problem: Given g and h = g*, find a.

(Here g, h are elements of a finite group G and a is an integer.)

» Define the map f: 7% — G, (x,y) > g - hY.

» Find the period vector (2, —1) using Shor’s algorithm.

Time complexity: (1Og‘GDO(]). Generic classical algorithms: Q(,/|G|).

Exponential speedup.

25/39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

26 /39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
QUANTUM
COMPUTERS ARE
PARTICULARLY
GOOD AT

26 /39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
PRETTY MUCH

STUFF THAT
QUANTON ALL OUR
CRYPTOGRAPHY
COMPUTERS ARE RELIES ON
PARTICULARLY

GOOD AT

26 /39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT
PRETTY MUCH

STUFF THAT
QUANTON ALL OUR
CRYPTOGRAPHY
COMPUTERS ARE RELIES ON
PARTICULARLY

GOOD AT

26 /39

Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

STUFF THAT

STUFF THAT PRETTY MUCH
QUANTUM ALL OUR
CRYPTOGRAPHY
COMPUTERS ARE L on
PARTICULARLY

GOOD AT

» Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.

26 /39

This talk

Post-quantum everything

27 /39

Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.

28/39

Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

29/39

Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

29/39

Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused
with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

» In quantum cryptography, all users need quantum devices!

29/39

Note on “quantum cryptography”

» Post-quantum cryptography is not to be confused

with “quantum cryptography”.

» PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

» In quantum cryptography, all users need quantum devices!

29/39

Note on “quantum cryptography”

EX * Federal Office
REPUBLIQUE &Y | for Information Security
FRANGAISE

Liberté
Egalité
Fraternité

n
¥ General Intelligence and E SWEDISH ARMED FORCES
Security Service
Ministry of the Interior and
Kingdom Relations

Position Paper on
Quantum Key Distribution

French Cybersecurity Agency (ANSSI)
Federal Office for Information Security (BSI)
Netherlands National Communications Security Agency (NLNCSA)

Swedish National Communications Security Authority, Swedish Armed Forces

29/39

Note on “quantum cryptography”

Executive summary

Quantum Key Distribution (QKD) seeks to leverage quantum effects in order for two remote parties to agree
on a secret key via an insecure quantum channel. This technology has received significant attention,
sometimes claiming unprecedented levels of security against attacks by both classical and quantum
computers.

Due to current and inherent limitations, QKD can however currently only be used in practice in some niche
use cases. For the vast majority of use cases where classical key agreement schemes are currently used it is
not possible to use QKD in practice. Furthermore, QKD is not yet sufficiently mature from a security
perspective. In light of the urgent need to stop relying only on quantum-vulnerable public-key
cryptography for key establishment, the clear priorities should therefore be the migration to post-quantum
cryptography and/or the adoption of symmetric keying.

This paper is aimed at a general audience. Technical details have therefore been left out to the extent
possible. Technical terms that require a definition are printed in italics and are explained in a glossary at the
end of the document.

29/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

30/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Hash-based signatures

Hash functions are random-looking functions that compress arbitrary data to short
bitstrings. They should be hard to invert.

iter hash function
pieeraly, anything ~———————— 10100111001010110011001010100100. ..

really hard

An individual can tie a hash value to their identity and later identify themself by
revealing the corresponding input.
Selectively revealing inputs depending on a message leads to a signature scheme.

30/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Code-based crypto

Main application: Encryption.
Underlying problem: Correct errors in a codeword of a random-looking code.

error

|

secret messaqe —‘ Encoder ‘— 0101101101110010 —) — 0100101111110110

Oldest proposal: McEliece 1978. Still essentially unbroken [2].

30/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Lattice-based crypto

Main applications: Encryption, signatures, and beyond.

Underlying problem: Find short vectors in a discrete additive subgroup of R".

short!

30/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Multivariate crypto

Main application: Signatures.

Underlying problem: Solve systems of quadratic equations over a finite field.

102% + 1522 + 192y + Tez + 27yz + 20z +y = 14 (mod 31)
2527 4+ 30y° + 1722 + 30xy + 23x2 + 27yz + 150 + 4y + 162 =5 (mod 31)
152 + 9y% + 112% + 182y + 24wz + 16yz + 282 + 9y + 32 =6 (mod 31)
2722+ 10y* + 1722 + Taz 4+ 28yz + 4o + 13y + 272 = 12 (mod 31)

30/39

The post-quantum zoo

» PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.

Isogeny-based crypto

Main application: Key exchange, signatures.

Underlying problem: Find an isogeny between two elliptic curves.
An isogeny is a surjective group homomorphism given by rational functions.

30/39

Shortcomings of PQC

31/39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

31/39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

31/39

Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.

pre-quantum post-quantum
45c83435071624067d69587335b97bf564929709c8825a004b0282209c40980a
bac67d34cbe762 128552
f63cfe 'd3153e460f49 -a318862d

5479a006012d82f7212b40284d310e01bcb11e122¢1fd303e441807849a7ead?
976a99abb7ccc4b674ad66f68ecal 95789b277d23c3d67bcd18ca7c908b21e53
ag95e7a 1363852756
2fagbf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569F10827c423
cddff82aae@1a90111395487b9c82b7b5a7978d789679e66b75087bFbf FO569F
©9494f93531b721315926388431f2a362e0701bac254befba37c58641d4560
87382983091 c3ef 1dsfe
508d8c774d68298bcac4f42c6a7FF585af491fa7d7c3bbb4a1727699ebb315¢43
7b210d42626ebc66c916af 135153743144F40309ca7289c7bc51c301d8180e
6ee2da7b68b72997€062d09d94c1c76de61b5c260235273713ddcc29e09ac840 dc792d4dd44c41b77bd47a972d8434a9F03bb3954236ec4 22bedc8e991a79af2
86b6a7c459295ed44868ed8052f 2dbof3741710228979507cfF961564882b5ea
19515ee00d657¢7141e9b059a24136a2f915620b664404b5397cC 7842748973

d0716cc273b528d51383a63f a8bc965775d! 4
1e42362a759baa: 1d831 3790149487

73a9695¢1229a0c9bddbob2d992a350c6cac657745¢1308af 354010595 3682a
4dc 7594384 b1bca348330ac1791fab14190
99cf1 3b127 1df6bebs

807aabaa8cbect4d749a9e47f851c47c6537e196f 1 fccdd63b67d29a58e86b9a
7251 99cbb793c5084e5bab20bd02289b4aaabaedc119488531e8a651a3175014

£3056ad44c4
4713574ca7@8e435d5c1seewd95357c523512653c83b27b41cbamfﬁczszsbw
b5487a4ce6401ec27a1605f8: 27€165246401cad7840a077934b8

31/39

This talk

Highlight: Isogenies

32/39

Isogenies of elliptic curves

» ...are essentially just s2zce 745(775 between elliptic curves.

33/39

Isogenies of elliptic curves

» ...are essentially just s2zce 745(775 between elliptic curves.

» They are a source of exponentially large graphs.

2%

33/39

Isogenies of elliptic curves

» ...are essentially just s2zce 741(775 between elliptic curves.

» They are a source of exponentially large graphs.

2%

» ..with enough structure to navigate meaningfully!

33/39

Graphs of elliptic curves

A 3-isogeny

(picture not to scale) | e .

Es;: yZ:x3 Jr51x2 +x — Eg: yz =2 <|»9xZ +x

) | 9733 — 18322 +x
B2 X2 —183x497 -
133311542 —5v497)

V3 62 {128r—133

34/39

said] key exchange

v
'S

CSIDH ['si

=N

%

%

2

=3

L2

===

ZZ

L Z

35/39

said] key exchange

v
'S

CSIDH ['si

ob

B

Alice
[+7 +7 _7 _]

35/39

said] key exchange

v
'S

CSIDH ['si

b

Bo
_7 +7 _’
T

35/39

said] key exchange

v
'S

CSIDH ['si

7_]

Alice
=

[+, +,

35/39

said] key exchange

v
'S

CSIDH ['si

b

Bo
_7 +7 _’

Alice
[+7 +7 _7

35/39

said] key exchange

v
'S

CSIDH ['si

9

&

1|
\

Alice
[+, +,—,-]
%

/2

[7

35/39

said] key exchange

v
'S

CSIDH ['si

ob

B

35/39

said] key exchange

v
'S

CSIDH ['si

ob

B

[T

n

<>

(M

Q)
\

>

Q

[7>

ZZ

35/39

said] key exchange

v
'S

CSIDH ['si

Q |«
o -
M +
L
o ’
O |+
= 5 A
<* o\
+ AN
— TN
A ."‘!W‘O

35/39

said] key exchange

v
'S

CSIDH ['si

Bob
[_7 +7 _’

Alice
[+7 +7 _7

35/39

said] key exchange

v
'S

CSIDH ['si

Alice
[+7 +7 _7 _]

AN

N
S

N

==

35/39

A much more random-looking isogeny graph

7 S
s
AICSHXRE)

: ﬂs.&mehm.ao»,«‘« [0

N
AT TR R
X R
PSS ZSKA
75

36 /39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

37/39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

37/39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction, but
exponential-time in the < direction. Perfect for cryptography!

37/39

SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction, but
exponential-time in the < direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.

secret
o L — > Eq
B ®
£ £
B g
s R
3
E

El challenge 2

37/39

This talk

38/39

Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

39/39

Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

» Number theory & algebraic geometry

39/39

Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

» Number theory & algebraic geometry

» Fast algorithms, computer algebra
— Open-source software

39/39

Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

» Number theory & algebraic geometry

» Fast algorithms, computer algebra
— Open-source software

» Implementations and side channels

» Low-level programming (again)
» High-assurance cryptography

39/39

Main goal: Solid foundations for computer security

» Cryptanalysis!
» Algorithmic advances
» Low-level programming (CPUs, GPUs)
» Quantum algorithms

v

Number theory & algebraic geometry

v

Fast algorithms, computer algebra
— Open-source software

v

Implementations and side channels
» Low-level programming (again)
» High-assurance cryptography

v

Information security in general
» Memory corruptions, reverse engineering, web hacking, ...

39/39

	Why cryptography?
	The quantum threat
	Post-quantum everything
	Highlight: Isogenies
	Done

