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The internet

...is a giant computer network run by
not necessarily trustworthy strangers.
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Nothing to hide?

Cryptography is vital for much more than “just” privacy!

▶ Consequences of insufficient communications security
range from inconvenient to catastrophic, in the real world.

▶ Almost every bit of data gets routed over the internet
at some point — including the software everyone runs.

▶ Existential threat: CRITICAL INFRASTRUCTURE.
▶ Even airgapped systems are at risk: Firmware updates...
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Two kinds of cryptography

“Classical” cryptography (for thousands of years):

▶ Secret keys exchanged in advance via a secure channel.
▶ All users have the same capabilities.

For instance: encrypting and decrypting.

▶ Hence, symmetric.

Public-key cryptography (since ≈ 1976):
▶ Keys are now pairs: a private key and a public key.
▶ They give the respective owners different capabilities.
▶ Hence, asymmetric.
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Example: Digital signatures

▶ Alice uses her private key to sign a (digital) document.

▶ Anyone can verify the signature using Alice’s public key.

This mimics the intended properties of a “real” signature.
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Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message
such that only he can decrypt it using his private key.

Analogy: An open padlock for which Bob has the key.
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Kerckhoffs’ principle

▶ Security must rely exclusively on the secrecy of the keys!
The method is assumed to be known to the public.

(Notice how this constitutes an important prerequisite for the
development of cryptography as a science.)
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Hard problems

▶ By design, asymmetric cryptography is always breakable
— at absurdly high costs.

▶ Security relies on computationally hard problems.

▶ Great source of hard problems: Algebra!
Finite fields, elliptic curves, number fields, class groups, ...

▶ Key feature: These objects have a lot of useful structure.
▶ Sweet spot: just enough to make things functional but secure.
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On hardness (1)

▶ We almost never know for certain if cryptography is secure.

▶ “Provable security” only reduces to a hardness assumption.
Typical statement: “Breaking TLS is no easier than solving DLP or breaking AES.”

▶ Theory: If nontrivial cryptography is secure, then P ̸= NP.
Reality: Does it matter? Is an O(n666) algorithm really “tractable”?
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A cryptanalyst’s life

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

did we
try very
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On hardness (2)

Common claim:
“NP-hard problems are needed/good for cryptography.”

Reality:
▶ Cryptography does not care about worst-case hardness.
▶ Anything in NP can be viewed as an instance of some

NP-complete problem, by definition.
▶ Key question: Are we actually using hard instances?

⇝ Theory of average-case hardness.

▶ The problems mainly used in contemporary public-key
cryptography are in fact unlikely to be NP-hard!
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Key agreement over an insecure channel

Alice and Bob would like to establish a shared secret
between them via an insecure channel.
(They can then use symmetric cryptography to communicate securely.)

Evil eavesdropper Eve!

I’m about to tell you all my secrets!

???

a b

a(g) b(g)???

a(b(g)) b(a(g))
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Key agreement: First ideas

▶ Need: Commuting functions a and b that are hard to invert.

▶ Idea: Simply multiply by a secret number?
This “works” (g · a · b = g · b · a), but it’s obviously insecure.
(Attackers can simply compute (g · a)/g = a.)

▶ Better idea: exponentiate to a secret power?
This “works” ((ga)b = (gb)a), but with real numbers it’s
either clearly impossible to do this efficiently or insecure.

▶ Excellent idea: Do it in finite algebraic structures.
This still “works”, and can be secure and efficient.
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Diffie–Hellman key agreement (1976)

Forever fixed, public system parameters:
▶ A large prime p of the form p = 2ℓ+ 1 with ℓ prime.
▶ An element g ∈ F×

p of order ℓ.

Alice public Bob

a← {0, ..., ℓ−1}. b← {0, ..., ℓ−1}.

ga gb

Compute (gb)a. Compute (ga)b.
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Using elliptic curves instead of exponentiation

▶ Modern cryptographic reality: Elliptic curves are better.
▶ They are abelian groups⇝ everything works “the same”.
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•

The elliptic curve y2 = x3 − x + 1 over R.
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Using elliptic curves instead of exponentiation

▶ Modern cryptographic reality: Elliptic curves are better.
▶ They are abelian groups⇝ everything works “the same”.

The elliptic curve y2 = x3 − x + 1 over the finite field F79.
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This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies
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Enter quantum.

Have: Supposedly hard computational problem.

search
attack

found
one?

oops!
broken!

yes, if you have a quantum computer
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What are computers, really?

▶ Computing essentially means manipulating and exploiting
real-world physical processes to find some desired answer.

▶ Calculation “by hand”: Interaction between brain and pen and paper.
▶

▶ Pocket calculator/laptop: Electronics of silicon-based semiconductors.
▶ Quantum computer: Quantum-mechanical properties of particles.
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Quantum computers: Core concepts

▶ “Classical” computer: Elementary unit is bit, can be 0 or 1.

▶ Quantum computer: Elementary unit is qubit, can store an
infinite set of values “between” 0 and 1. They look like
α|0⟩+ β|1⟩where α, β ∈ C with |α|2 + |β|2 = 1.

⇝ Single-qubit states are unit vectors in C2.

|0⟩

|1⟩
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Quantum computers: Core concepts

▶ Measuring the qubit α|0⟩+ β|1⟩ is probabilistic: We get
▶ |0⟩with probability |α|2;
▶ |1⟩with probability |β|2.

Afterwards, the qubit remains in that state: either |0⟩ or |1⟩.

⇝ Measuring cannot tell us exactly what α, β were.
▶ But we can carefully manipulate a quantum state into

something whose measurement outcome will be useful!

“Quantum states are like a box of chocolates.
You never know what you’re gonna get.” — F. Gump, probably
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Quantum computers: Core concepts

▶ Key fact: Combining multiple qubits allows entanglement.

▶ Naïve juxtaposition: State space would be (C2)n ∼= C2n.
▶ Physical reality: Combining qubits gives state space C2n

!
Mathematically, this new state space is a tensor product (C2)⊗n.

▶ This allows for entangled states such as 1√
2

(
|00⟩+ |11⟩

)
.

This does not mean that “quantum computers can simply
search through all secret keys simultaneously”!
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Enter post-quantum. (1)

Common misconception:
«Quantum computers massively speed up all computations.

Therefore, cryptography is doomed, and all hope is lost.»

Not true at all!
Quantum computers struggle with plenty of tasks.
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Quantum cryptanalysis

Of primary relevance to cryptography are three algorithms:

▶ Grover’s algorithm: Given a function f : {0, 1}n→{0, 1}
such that ∃! x∈{0, 1}n with f (x) = 1, find that x.

!! Square-root complexity: from O(2n) to O(2n/2).

▶ Shor’s algorithm: Given a periodic function f : Zr→S,
find (a description of) the set of period vectors.

!! Polynomial-time complexity. (More on the next slide.)

▶ Kuperberg’s algorithm: Given two functions f1, f2 : G→ S
such that ∃! s∈G with f2(x) = f1(x + s) for all x, find that s.

!! Subexponential complexity: from |G|O(1) to 2O(
√

log|G|).
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Shor’s algorithm

Key idea: Quantum Fourier Transform.

▶ Prepare a quantum state encoding a preimage set f−1(y).
▶ Apply QFT to obtain a quantum state encoding the period.
▶ Then measure to get a random period vector. Repeat.
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Shor vs. DLP

The discrete logarithm problem: Given g and h = ga, find a.
(Here g, h are elements of a finite group G and a is an integer.)

▶ Define the map f : Z2 → G, (x, y) 7→ gx · hy.

▶ Find the period vector (a,−1) using Shor’s algorithm.

Time complexity: (log|G|)O(1). Generic classical algorithms: Ω(
√

|G|).

Exponential speedup.
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Enter post-quantum. (2)

Unfortunate coincidence (or is it?):

▶ Note: Public-key cryptography sustains much more damage
from quantum attacks than symmetric cryptography.
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This talk

Why cryptography?

The quantum threat

Post-quantum everything

Highlight: Isogenies
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Post-quantum cryptography (PQC)

...substitutes quantum-weak building blocks by
quantum-resistant alternatives.
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Note on “quantum cryptography”

▶ Post-quantum cryptography is not to be confused

with “quantum cryptography”.

▶ PQC runs on classical computers.
Only the attacker is assumed to have a quantum computer.

▶ In quantum cryptography, all users need quantum devices!
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The post-quantum zoo

▶ PQC uses alternative hardness assumptions
based on various (exciting!) types of mathematics.
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Shortcomings of PQC

The good news:
There are plausible PQC replacements for most cryptography.

The bad news: PQC is typically slower, bigger, or less flexible.
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6aba8ddc4b5f63cf69a5b367d3153e460f497a209c495fca318862d6a5780086
5479a006012d82f7212b40284d310e01bcb11e122c1fd303e441807849a7ea47
976a99abb7ccc4b674ad66f68eca195789b277d23c3d67bc418ca7c908b21e53
984983ba0205e4689000ace97238b3699016fa95e7a3a59cec0be81363852756
2fa9bf10d715e7505f6e1c1433521a918a7df52760a0d8a9549569f10827c423
cddff82aae01a90111395487b9c82b7b5a7978d789679e66b75087bfbff0569f
c94e94f93531b721315926388431f2a36ae0f701bac254befb437c58641d4560
c8738a98f30918945db0a6900ad2c2abfc3e0f4786a4555639d84dcdd031d8f0
508d8c774d68298bcac4f42c6a7ff585af491fa7d7c3bbb41727699ebb315c43
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Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39



Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39



Isogenies of elliptic curves

▶ ...are essentially just nice maps between elliptic curves.

▶ They are a source of exponentially large graphs.

▶ ...with enough structure to navigate meaningfully!

33 / 39



Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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CSIDH ["si:saId] key exchange

Alice Bob
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A much more random-looking isogeny graph
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SQIsign

Isogeny graphs are not random graphs.
Lots of useful structure looming in the background.

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the⇒ direction, but
exponential-time in the⇐ direction. Perfect for cryptography!

SQIsign is a signature scheme based on this one-wayness.
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Main goal: Solid foundations for computer security

▶ Cryptanalysis!
▶ Algorithmic advances
▶ Low-level programming (CPUs, GPUs)
▶ Quantum algorithms

▶ Number theory & algebraic geometry

▶ Fast algorithms, computer algebra
−→ Open-source software

▶ Implementations and side channels
▶ Low-level programming (again)
▶ High-assurance cryptography

▶ Information security in general
▶ Memory corruptions, reverse engineering, web hacking, ...
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