
Isogeny Group Actions

Lorenz Panny

Technische Universität München

ECC 2024 Autumn School, Taipei, 29 October 2024

Crypto(graphy) on graphs

1 / 51

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 51

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 51

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 51

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

4 / 51

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

4 / 51

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

4 / 51

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

4 / 51

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

4 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 51

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 51

Crypto on graphs?

We’ve been doing it all the time!

5 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

6 / 51

In some cases,

isogeny graphs
can replace

≺

some

DLP-based constructions post-quantumly.

6 / 51

In some cases,

isogeny graphs
can replace≺

some

DLP-based constructions post-quantumly.

6 / 51

Components of particular isogeny graphs look like this:

7 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies.

▶ The CSIDH non-interactive key exchange.

▶ Classical and quantum security of CSIDH.

▶ Orientations and the SCALLOP family.

▶ Unrestricted effective group actions.

8 / 51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E→ E′ that is:

▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

9 / 51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.

▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

9 / 51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

9 / 51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

9 / 51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

9 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

10 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #1: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

10 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #2: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny.

10 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

10 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).

10 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).
Important fact: An isogeny φ is Fq-rational iff π ◦ φ = φ ◦ π.

10 / 51

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)

sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

11 / 51

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

11 / 51

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

11 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
12 / 51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7

sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

13 / 51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

13 / 51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel

sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

13 / 51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

13 / 51

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of

▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

14 / 51

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;

▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;
up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

14 / 51

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

14 / 51

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

14 / 51

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.
14 / 51

Predictable groups

Elliptic curves in general can be very annoying

computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies. ✓
▶ The CSIDH non-interactive key exchange.

▶ Classical and quantum security of CSIDH.

▶ Orientations and the SCALLOP family.

▶ Unrestricted effective group actions.

16 / 51

CSIDH ["si:saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
17 / 51

Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

18 / 51

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

18 / 51

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.

▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and
Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

18 / 51

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB,

such that EAB ∼= EBA.

18 / 51

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

18 / 51

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution (earlier: Couveignes, Rostovtsev–Stolbunov):
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)

19 / 51

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution (earlier: Couveignes, Rostovtsev–Stolbunov):
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)

19 / 51

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

20 / 51

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.

⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

20 / 51

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

20 / 51

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

20 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

21 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

21 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

21 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

21 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

21 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

22 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

22 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

22 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

22 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.

▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.

▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

23 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

24 / 51

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

24 / 51

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

24 / 51

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

24 / 51

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

24 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

24 / 51

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

24 / 51

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

24 / 51

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

24 / 51

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

24 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

24 / 51

And... action!

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

25 / 51

And... action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

25 / 51

And... action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

25 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

26 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.

Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

26 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

26 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

26 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

26 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

27 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

27 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

27 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

27 / 51

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2

sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

28 / 51

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)

sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

28 / 51

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

28 / 51

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

29 / 51

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).

=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

29 / 51

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

29 / 51

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

29 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security of CSIDH.

▶ Orientations and the SCALLOP family.

▶ Unrestricted effective group actions.

30 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

31 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

31 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·x hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

31 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a path E→ E′ in the isogeny graph.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

32 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a path E→ E′ in the isogeny graph.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

32 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a path E→ E′ in the isogeny graph.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

32 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

33 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

33 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

33 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

33 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security of CSIDH. ✓
▶ Orientations and the SCALLOP family.

▶ Unrestricted effective group actions.

34 / 51

More endomorphisms

▶ In CSIDH, we’ve used kernels of the form K = E(Fp)[ℓi].

▶ Alternative description: K = ker(π − 1) ∩ ker[ℓi].
...so π together with scalars “carves out” our kernel subgroup!

▶ New idea: Replace π by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case⇝ plenty of choice.)

Fact: If φ : E→ E′ is an isogeny for which ker(φ) is described in
terms of scalars and some endomorphism τ ∈ End(E), then we
can usually∗ push τ through φ:

Z[τ] ↪−→ End(E′)

τ 7−→ (φ ◦ τ ◦ φ̂)/deg(φ)
∗ Devils in details.

35 / 51

More endomorphisms

▶ In CSIDH, we’ve used kernels of the form K = E(Fp)[ℓi].
▶ Alternative description: K = ker(π − 1) ∩ ker[ℓi].

...so π together with scalars “carves out” our kernel subgroup!

▶ New idea: Replace π by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case⇝ plenty of choice.)

Fact: If φ : E→ E′ is an isogeny for which ker(φ) is described in
terms of scalars and some endomorphism τ ∈ End(E), then we
can usually∗ push τ through φ:

Z[τ] ↪−→ End(E′)

τ 7−→ (φ ◦ τ ◦ φ̂)/deg(φ)
∗ Devils in details.

35 / 51

More endomorphisms

▶ In CSIDH, we’ve used kernels of the form K = E(Fp)[ℓi].
▶ Alternative description: K = ker(π − 1) ∩ ker[ℓi].

...so π together with scalars “carves out” our kernel subgroup!

▶ New idea: Replace π by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case⇝ plenty of choice.)

Fact: If φ : E→ E′ is an isogeny for which ker(φ) is described in
terms of scalars and some endomorphism τ ∈ End(E), then we
can usually∗ push τ through φ:

Z[τ] ↪−→ End(E′)

τ 7−→ (φ ◦ τ ◦ φ̂)/deg(φ)
∗ Devils in details.

35 / 51

More endomorphisms

▶ In CSIDH, we’ve used kernels of the form K = E(Fp)[ℓi].
▶ Alternative description: K = ker(π − 1) ∩ ker[ℓi].

...so π together with scalars “carves out” our kernel subgroup!

▶ New idea: Replace π by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case⇝ plenty of choice.)

Fact: If φ : E→ E′ is an isogeny for which ker(φ) is described in
terms of scalars and some endomorphism τ ∈ End(E), then we
can usually∗ push τ through φ:

Z[τ] ↪−→ End(E′)

τ 7−→ (φ ◦ τ ◦ φ̂)/deg(φ)
∗ Devils in details.

35 / 51

Ideals↔ kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

Principal ideals (ϑ) correspond to endomorphisms ϑ.

⇝ Connection to the “class set” or class group:

ideals ←→ kernels ←→ isogenies
ideal classes ←→ (no name) ←→ isogeny codomains

36 / 51

Ideals↔ kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

Principal ideals (ϑ) correspond to endomorphisms ϑ.

⇝ Connection to the “class set” or class group:

ideals ←→ kernels ←→ isogenies
ideal classes ←→ (no name) ←→ isogeny codomains

36 / 51

Ideals↔ kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

Principal ideals (ϑ) correspond to endomorphisms ϑ.

⇝ Connection to the “class set” or class group:

ideals ←→ kernels ←→ isogenies
ideal classes ←→ (no name) ←→ isogeny codomains

36 / 51

Orientations & oriented curves

Let O = Z[τ] be an imaginary-quadratic order.
(Standard cases: τ =

√
−d or τ = 1+

√
−d

2 where d ∈ Z≥1.)

An O-orientation of an elliptic curve E is a ring embedding

ι : O ↪→ End(E) .

The pair (E, ι) is then called an O-oriented curve.

Example: For E/Fp supersingular with p ≥ 5, there are two
orientations by Z[√−p]: Mapping

√−p either to π or to −π.

Example: Any nonscalar endomorphism τ ∈ End(E) \Z
defines an orientation of O := Z[τ] on E.

37 / 51

Orientations & oriented curves

Let O = Z[τ] be an imaginary-quadratic order.
(Standard cases: τ =

√
−d or τ = 1+

√
−d

2 where d ∈ Z≥1.)

An O-orientation of an elliptic curve E is a ring embedding

ι : O ↪→ End(E) .

The pair (E, ι) is then called an O-oriented curve.

Example: For E/Fp supersingular with p ≥ 5, there are two
orientations by Z[√−p]: Mapping

√−p either to π or to −π.

Example: Any nonscalar endomorphism τ ∈ End(E) \Z
defines an orientation of O := Z[τ] on E.

37 / 51

Orientations & oriented curves

Let O = Z[τ] be an imaginary-quadratic order.
(Standard cases: τ =

√
−d or τ = 1+

√
−d

2 where d ∈ Z≥1.)

An O-orientation of an elliptic curve E is a ring embedding

ι : O ↪→ End(E) .

The pair (E, ι) is then called an O-oriented curve.

Example: For E/Fp supersingular with p ≥ 5, there are two
orientations by Z[√−p]: Mapping

√−p either to π or to −π.

Example: Any nonscalar endomorphism τ ∈ End(E) \Z
defines an orientation of O := Z[τ] on E.

37 / 51

Orientations & oriented curves

Let O = Z[τ] be an imaginary-quadratic order.
(Standard cases: τ =

√
−d or τ = 1+

√
−d

2 where d ∈ Z≥1.)

An O-orientation of an elliptic curve E is a ring embedding

ι : O ↪→ End(E) .

The pair (E, ι) is then called an O-oriented curve.

Example: For E/Fp supersingular with p ≥ 5, there are two
orientations by Z[√−p]: Mapping

√−p either to π or to −π.

Example: Any nonscalar endomorphism τ ∈ End(E) \Z
defines an orientation of O := Z[τ] on E.

37 / 51

The oriented class-group action

Onuki 2020 (previously Kohel–Colò without proof):

https://arxiv.org/pdf/2002.09894

ρ(Eℓℓ(O)): a set of supersingular elliptic curves E over Fp2 with a
primitive orientation ι : O ↪→ End(E), up to oriented isomorphism.

▶ ι : O ↪→ End(E) is primitive if (ι(O)⊗Z Q) ∩ End(E) = ι(O).

▶ α : (E, ι) → (E′, ι′) is an oriented isomorphism if α ◦ ι = ι′ ◦ α.

The group action is defined as follows:

a ⋆ (E, ι) :=
(
E/a, (ϕa ◦ ι ◦ ϕ̂a)/norm(a)

)
where ϕa : E→ E/a is the isogeny with kernel

E[a] :=
⋂
α∈a

ker(ι(α)) .

38 / 51

https://arxiv.org/pdf/2002.09894

The oriented class-group action

Onuki 2020 (previously Kohel–Colò without proof):

https://arxiv.org/pdf/2002.09894

ρ(Eℓℓ(O)): a set of supersingular elliptic curves E over Fp2 with a
primitive orientation ι : O ↪→ End(E), up to oriented isomorphism.

▶ ι : O ↪→ End(E) is primitive if (ι(O)⊗Z Q) ∩ End(E) = ι(O).

▶ α : (E, ι) → (E′, ι′) is an oriented isomorphism if α ◦ ι = ι′ ◦ α.

The group action is defined as follows:

a ⋆ (E, ι) :=
(
E/a, (ϕa ◦ ι ◦ ϕ̂a)/norm(a)

)
where ϕa : E→ E/a is the isogeny with kernel

E[a] :=
⋂
α∈a

ker(ι(α)) .

38 / 51

https://arxiv.org/pdf/2002.09894

The oriented class-group action

Onuki 2020 (previously Kohel–Colò without proof):

https://arxiv.org/pdf/2002.09894

ρ(Eℓℓ(O)): a set of supersingular elliptic curves E over Fp2 with a
primitive orientation ι : O ↪→ End(E), up to oriented isomorphism.

▶ ι : O ↪→ End(E) is primitive if (ι(O)⊗Z Q) ∩ End(E) = ι(O).

▶ α : (E, ι) → (E′, ι′) is an oriented isomorphism if α ◦ ι = ι′ ◦ α.

The group action is defined as follows:

a ⋆ (E, ι) :=
(
E/a, (ϕa ◦ ι ◦ ϕ̂a)/norm(a)

)
where ϕa : E→ E/a is the isogeny with kernel

E[a] :=
⋂
α∈a

ker(ι(α)) .

38 / 51

https://arxiv.org/pdf/2002.09894

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x, y) ∈ E with x ∈ Fp.

The two cases y ∈ Fp and y /∈ Fp
correspond precisely to the two Z[π]-ideals

li := (ℓi, π− 1) ;

li := (ℓi, π+ 1) .

where π is the p-power Frobenius endomorphism (π2 = [−p]).

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored along “quadratic twisting”:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

39 / 51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x, y) ∈ E with x ∈ Fp. The two cases y ∈ Fp and y /∈ Fp
correspond precisely to the two Z[π]-ideals

li := (ℓi, π− 1) ;

li := (ℓi, π+ 1) .

where π is the p-power Frobenius endomorphism (π2 = [−p]).

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored along “quadratic twisting”:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

39 / 51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x, y) ∈ E with x ∈ Fp. The two cases y ∈ Fp and y /∈ Fp
correspond precisely to the two Z[π]-ideals

li := (ℓi, π− 1) ;

li := (ℓi, π+ 1) .

where π is the p-power Frobenius endomorphism (π2 = [−p]).

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored along “quadratic twisting”:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

39 / 51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x, y) ∈ E with x ∈ Fp. The two cases y ∈ Fp and y /∈ Fp
correspond precisely to the two Z[π]-ideals

li := (ℓi, π− 1) ;

li := (ℓi, π+ 1) .

where π is the p-power Frobenius endomorphism (π2 = [−p]).

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored along “quadratic twisting”:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

39 / 51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ι):

▶ When O is represented as Z[τ] := Z[X]/µτ (X) where µτ
is the minimal polynomial of τ , an embedding
ι : O ↪→ End(E) can be specified by the image ι(τ).

⇝ In practice, an oriented curve is given as a pair (E, ϑ) with
ϑ ∈ End(E), implicitly communicating that ϑ = ι(τ).

▶ There are multiple options for representing such a ϑ.
Simple example: A deterministically chosen generator point of ker(ϑ).
More complicated: Deterministic “HD” representation (SCALLOP-HD).

40 / 51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ι):

▶ When O is represented as Z[τ] := Z[X]/µτ (X) where µτ
is the minimal polynomial of τ , an embedding
ι : O ↪→ End(E) can be specified by the image ι(τ).

⇝ In practice, an oriented curve is given as a pair (E, ϑ) with
ϑ ∈ End(E), implicitly communicating that ϑ = ι(τ).

▶ There are multiple options for representing such a ϑ.
Simple example: A deterministically chosen generator point of ker(ϑ).
More complicated: Deterministic “HD” representation (SCALLOP-HD).

40 / 51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ι):

▶ When O is represented as Z[τ] := Z[X]/µτ (X) where µτ
is the minimal polynomial of τ , an embedding
ι : O ↪→ End(E) can be specified by the image ι(τ).

⇝ In practice, an oriented curve is given as a pair (E, ϑ) with
ϑ ∈ End(E), implicitly communicating that ϑ = ι(τ).

▶ There are multiple options for representing such a ϑ.
Simple example: A deterministically chosen generator point of ker(ϑ).
More complicated: Deterministic “HD” representation (SCALLOP-HD).

40 / 51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ι):

▶ When O is represented as Z[τ] := Z[X]/µτ (X) where µτ
is the minimal polynomial of τ , an embedding
ι : O ↪→ End(E) can be specified by the image ι(τ).

⇝ In practice, an oriented curve is given as a pair (E, ϑ) with
ϑ ∈ End(E), implicitly communicating that ϑ = ι(τ).

▶ There are multiple options for representing such a ϑ.
Simple example: A deterministically chosen generator point of ker(ϑ).
More complicated: Deterministic “HD” representation (SCALLOP-HD).

40 / 51

Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

⇝ Can use rings like O = Z[
√
−f 2d], where computing the

relation lattice Λ can be much easier than for general O.

⇝ For Clapoti, we have to solve norm equations that are
derived from O for target values derived from p.

41 / 51

Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

⇝ Can use rings like O = Z[
√
−f 2d], where computing the

relation lattice Λ can be much easier than for general O.

⇝ For Clapoti, we have to solve norm equations that are
derived from O for target values derived from p.

41 / 51

Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

⇝ Can use rings like O = Z[
√
−f 2d], where computing the

relation lattice Λ can be much easier than for general O.

⇝ For Clapoti, we have to solve norm equations that are
derived from O for target values derived from p.

41 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security of CSIDH. ✓
▶ Orientations and the SCALLOP family. ✓
▶ Unrestricted effective group actions.

42 / 51

The basic strategy à la C/R–S

▶ Let l1, ..., ln be small prime ideals of O, and
suppose a is given to us in the form a = le1

1 · · · l
en
n .

▶ Then a can be evaluated as a sequence of li.

▶ Evaluating a single li: Write li = (ℓi, ϑ− λi).
Then the kernel is an order-ℓi point P with ϑ(P) = [λi]P.

▶ Optimizations: Batch multiple li together⇝ “strategies”.

43 / 51

The basic strategy à la C/R–S

▶ Let l1, ..., ln be small prime ideals of O, and
suppose a is given to us in the form a = le1

1 · · · l
en
n .

▶ Then a can be evaluated as a sequence of li.

▶ Evaluating a single li: Write li = (ℓi, ϑ− λi).
Then the kernel is an order-ℓi point P with ϑ(P) = [λi]P.

▶ Optimizations: Batch multiple li together⇝ “strategies”.

43 / 51

The basic strategy à la C/R–S

▶ Let l1, ..., ln be small prime ideals of O, and
suppose a is given to us in the form a = le1

1 · · · l
en
n .

▶ Then a can be evaluated as a sequence of li.

▶ Evaluating a single li: Write li = (ℓi, ϑ− λi).
Then the kernel is an order-ℓi point P with ϑ(P) = [λi]P.

▶ Optimizations: Batch multiple li together⇝ “strategies”.

43 / 51

The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

(A similar approach will be discussed on the following slides.)

⇝ A priori not an effective group action when done either way!

44 / 51

The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

(A similar approach will be discussed on the following slides.)

⇝ A priori not an effective group action when done either way!

44 / 51

The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

(A similar approach will be discussed on the following slides.)

⇝ A priori not an effective group action when done either way!

44 / 51

The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

(A similar approach will be discussed on the following slides.)

⇝ A priori not an effective group action when done either way!

44 / 51

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?

45 / 51

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.

What about asymptotics?

45 / 51

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?

45 / 51

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

▶ By increasing the number n of ideals li, we can trade off
some “isogeny effort” for “lattice effort”.

⇝ Sweet spot: Minimize total cost.

⇝

https://yx7.cc/blah/2023-04-14.html

46 / 51

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

▶ By increasing the number n of ideals li, we can trade off
some “isogeny effort” for “lattice effort”.

⇝ Sweet spot: Minimize total cost.

⇝

https://yx7.cc/blah/2023-04-14.html

46 / 51

https://yx7.cc/blah/2023-04-14.html

Clapoti

Even more maritime isogenies??

▶ Page–Robert: A polynomial-time algorithm to evaluate
the isogeny group action on arbitrary ideals.

47 / 51

Clapoti

Even more maritime isogenies??

▶ Page–Robert: A polynomial-time algorithm to evaluate
the isogeny group action on arbitrary ideals.

47 / 51

Polynomial-time group action: Clapoti

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny

Φ: E× E−→Ea × Ea,

(P,Q) 7−→(ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

48 / 51

Polynomial-time group action: Clapoti

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny

Φ: E× E−→Ea × Ea,

(P,Q) 7−→(ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

48 / 51

Polynomial-time group action: Clapoti

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny

Φ: E× E−→Ea × Ea,

(P,Q) 7−→(ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

48 / 51

Polynomial-time group action: Clapoti

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny

Φ: E× E−→Ea × Ea,

(P,Q) 7−→(ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

48 / 51

Polynomial-time group action: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

49 / 51

Polynomial-time group action: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

49 / 51

Polynomial-time group action: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

49 / 51

Polynomial-time group action: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

49 / 51

Polynomial-time group action: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

49 / 51

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Recap: Elliptic curves & isogenies. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security of CSIDH. ✓
▶ Orientations and the SCALLOP family. ✓
▶ Unrestricted effective group actions. ✓

50 / 51

Questions?

(Also feel free to email me: lorenz@yx7.cc)

51 / 51

