Isogeny Group Actions

Lorenz Panny

Technische Universitdt Miinchen

ECC 2024 Autumn School, Taipei, 29 October 2024

Crypto(graphy) on graphs

1/51

Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g

2/51

Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g

Alice public Bob
g Lndom {0...g—1} p {LEdom {0...q—1}

2/51

Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g

Alice public Bob
g &ndom {0...g—1} p {LEdom {0...q—1}
g >_<gl’
s:=(g")" s:=(g")"

Fundamental reason this works: -% and -’ are commutative!

2/51

Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.
Sett+«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«+t-g.
Publish B «t - g.

3/51

Diffie-Hellman: Bob vs. Eve

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.

L N

Sett<«t-g.

Is this a good idea?

b—2. Sett<«t-g.
b—1. Sett <« t-g.

b. PublishB «+t-g.

3/51

Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett<+g. Ift=Breturnl.

2. Sett<+t-g. 2. Sett <« t-g. Ift = Breturn?2.

3. Sett«+t-g. 3. Sett <« t-g. Ift = Breturn3.

4. Sett«t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett < t-g. If t = B return b—2.
b—1. Sett«+t-g. b—1. Sett < t-g. Ift = B return b—1.

b. PublishB < t-g. b. Sett < t-g. Ift = Breturnb.

b+1. Sett <+ t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.

3/51

Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.
Sett<«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«t-g.
Publish B «t - g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift = Breturn?2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett «+t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = Breturnb.
b+1. Sett <+ t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3/51

e . . . e
g3 . .gZO
. : L8Y
85 . ',: . g18
?
gé . v__‘ . g17
g7 . . glé
g * * Pau
g M o
g10 gl’l 8:12 813

Bob computes his public key ¢'* from g.

4/51

0
2 g g & 3
g /.47 . g
3 g) 0
8 o 8 .gz
¢ /s . P
/s
P L g

&\ ¢ g

RN : 15

g \ . : g

IS \. g . 8 . o
10

Bob computes his public key ¢'* from g.

4/51

Square-and-multiply

g 21
¢ 8
. o
P
e
PRI oy
P " g6
.02
& o
.. . YZ
& \ & v o
gl(). N
PAR

Bob computes his public key ¢'* from g.

4/51

Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'* from g.

4/51

Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'* from g.

4/51

Square-and-multiply as graphs

4/51

Square-and-multiply as graphs

4/51

Square-and-multiply as graphs

4/51

Square-and-multiply as graphs

4/51

Square-and-multiply as a graph

4/51

Crypto on graphs?

We’ve been doing it all the time!

5/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

6/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log).

6/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log).

For well-chosen groups, computing ¢ — « takes O(/#G).

6/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log).

For well-chosen groups, computing ¢ — « takes O(/#G).

~+ Exponential separation!

6/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log).

For well-chosen groups, computing ¢ — « takes O(/#G).

~+ Exponential separation!

...and they lived happily ever after?

6/51

The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log).

For well-chosen groups, computing ¢ — « takes O(/#G).

~+ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes o from ¢g“ in any group
in polynomial time.

6/51

In some cases,

isogeny graphs

can replace DLP-based constructions post-quantumly.

6/51

In some cases,

isogeny graphs

can replaceADLP-based constructions post-quantumly.

some

6/51

Components of particular isogeny graphs look like this:

LA LR -
ARy pitt SN
P S\

L]
o

=7

S

TS
e

';0
5
ZS

e

4

N \

Q “g;
AT

AN

~..‘§
X

7/51

Plan for this lecture

v

High-level overview for intuition. \/

v

Recap: Elliptic curves & isogenies.

v

The CSIDH non-interactive key exchange.

v

Classical and quantum security of CSIDH.
Orientations and the SCALLOP family.

Unrestricted effective group actions.

v

v

8/51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E — E’ that is:

9/51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

9/51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

9/51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

9/51

Recap: Isogenies of elliptic curves

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.

9/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

10/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #1: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {y¥¥=2"-3x+3}

over F7. Its kernel is {(2,9), (2, -9), oo}.

10/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #2: For each m # 0, the multiplication-by-m map

[m]: E—E

2

is a degree-m~ isogeny.

10/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

T (x,y) = (x7,y7)

is a degree-q isogeny, the Frobenius endomorphism.

10/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

m: (6 y) e (oY)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).

10/51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

™ (%y) = (xT, y)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).
Important fact: An isogeny ¢ is F;-rational iff 7 0 o = p o 7.

10/51

In SageMath:

[|
'sage: E = EllipticCurve(GF(101), [1,01) \
\sage: mu = E.scalar_multiplication(5) \

11/51

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]
of Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101

11/51

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]
of Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
sage: mu.rational_maps ()

((x*25 + x*23 + ... + 14%x*3 + 25%x)
/(25*xx*24 + 14%xx%22 - ... + x*2 + 1),
(50%x*36*y + 20*xx"34*y + ... + 45xx*2*xy + 48xy)
/(=12%xx*36 - 2%xx*34 + ... - 26*x"2 + 50))

11/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

!(up to isomorphism of E’)
12/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

!(up to isomorphism of E’)
12/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
12/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

!(up to isomorphism of E’)
12/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

!(up to isomorphism of E’)
12/51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

!(up to isomorphism of E’)
12/51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + X
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()
7

13/51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + X
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419

13 /51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + X
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)
(0 : 1 : 9) # o(K) =00 = K lies in the kernel

13 /51

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + X
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)

(0 : 1 : 9) # o(K) =00 = K lies in the kernel

sage: phi.rational_maps ()

((x*7 + 129%*x*“6 - ... + 25)/(x*6 + 129*x*5 - ... + 36),
(x*9*y - 16*x"8xy - ... + 70*xy)/(x*9 - 16*x*8 + ...))

13 /51

Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.

The S-isogeny graph over k consists of

14 /51

Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

14 /51

Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

» edges given by (-isogenies, £ € S, over k;

14 /51

Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

» edges given by (-isogenies, £ € S, over k;
up to k-isomorphism.

14 /51

Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

» edges given by (-isogenies, £ € S, over k;

up to k-isomorphism.

Example components containing E: 12 = x° + x:

Q.

k =Fuo, S=1{3,5,7} k=Fup2, S=1{2,3,57}

14/51

Predictable groups

Elliptic curves in general can be very annoying

15/51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

15/51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.

> In that case, E(F,) & Z/(p+1) or E(F,) = Z/251 < 7/2,
and E(F2) = Z/(p+1) x Z/(p+1).

15/51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.

> In that case, E(F,) & Z/(p+1) or E(F,) = Z/251 < 7/2,
and E(F2) = Z/(p+1) x Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.

15/51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.

> In that case, E(F,) & Z/(p+1) or E(F,) = Z/251 < 7/2,
and E(F2) = Z/(p+1) x Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.

(All curves are supersingular until about 14:00.)

15/51

Plan for this lecture

High-level overview for intuition. \/

v

v

Recap: Elliptic curves & isogenies. v

v

The CSIDH non-interactive key exchange.

v

Classical and quantum security of CSIDH.
Orientations and the SCALLOP family.

v

v

Unrestricted effective group actions.

16 /51

Isogeny-based key exchange: High-level view

E

18/51

Isogeny-based key exchange: High-level view

E ©A E,

Eg

» Alice & Bob pick secret p4: E — E4 and p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)

18 /51

Isogeny-based key exchange: High-level view

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the end curves E4 and Ejp.

18 /51

Isogeny-based key exchange: High-level view

©a E
E A
s
‘s
‘s
‘s
‘s
///
e 7
i *B
, 2
¥B s
td
‘s
‘s
L
g
L Eap
e
‘s
K
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,

18 /51

Isogeny-based key exchange: High-level view

E A E
A
T
///
///
Lo
g
(2 o
o B
et
¥B s
‘s
‘s
3
i
g
g
/::/ EAB
.
/‘;/ /
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds pp : E4 — Eap, such that E4g = Ega.

18 /51

How to find “parallel” isogenies?

E ©A E,

Eap

N\

19/51

How to find “parallel” isogenies?

E ®a Ea
s
¥B
Eap
=z
Eg - Ega
YA

CSIDH’s solution (earlier: Couveignes, Rostovtsev-Stolbunov):

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)

19/51

“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

20/51

“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

= Forevery ¢ | (p+ 1) exists a unique order-¢ subgroup Hy.

20/51

“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

= For every ¢ | (p+1) exists a unique order-¢ subgroup H,.
~» For all such E can canonically find an isogeny ¢;: E — E'.

20/51

“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

= For every ¢ | (p+1) exists a unique order-¢ subgroup H,.
~» For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.
p ¥ % geny

20/51

/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

21/51

/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- T e Eeé
Eer—l f
E / EgS
\ /
\

E"E[HEgzﬂEp

21/51

/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Es
Eerfl f
E / EgS
e /,
-

» Exercise: Each curve has only one other rational /-isogeny.

21/51

/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eerfl f
E@/ P Ee
S

» Exercise: Each curve has only one other rational /-isogeny.

!! Reverse arrows are unique; the “tail” E — E 3 cannot exist.

21/51

/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eerfl f
E@/ P Ee
S

» Exercise: Each curve has only one other rational /-isogeny.

!! Reverse arrows are unique; the “tail” E — E 3 cannot exist.

— The “special” isogenies ¢, form isogeny cycles!

21/51

7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

22/51

7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

22/51

7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

/%/” W/
E/

» Exercise: ker(¢) o ¢),) = ker(yp, o ¢r) = (ker py, ker ¢,).

22/51

7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

sﬂ’z/fElﬁ

. / 7111
f Ey
P /

|

» Exercise: ker(¢) o ¢),) = ker(yp, o ¢r) = (ker py, ker ¢,).
!! The order cannot matter = cycles must be compatible.

22/51

CSIDH in one slide

23/51

CSIDH in one slide

» Choose some small odd primes 41, ..., ¢,.

» Makesurep =4-/;---{, —11is prime.

23/51

CSIDH in one slide

» Choose some small odd primes 41, ..., ¢,.
» Makesurep =4-/;---{, —11is prime.
» Let X = {y* =x>+Ax>+x supersingular with A € F,}.

23/51

CSIDH in one slide

» Choose some small odd primes 41, ..., ¢,.

» Makesurep =4-/;---{, —11is prime.

» Let X = {y* =x>+Ax>+x supersingular with A € F,}.
» Look at the “special” /;-isogenies within X.

23/51

CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
=5

U3 =

23/51

CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
0 =
03 =

» Walking “left” and “right” on any /;-subgraph is efficient.

23/51

CSIDH key exchange

Alice

AN
[N A1
ll'l’ﬂﬂﬂ!: =77]

';l,’
7 '
v
]
]

SIS
70

277

N
%2
5

==ZZ

y
1

S

R\
s

S|

24 /51

CSIDH key exchange

ob

B

Alice
[+: +, -, _]

24 /51

CSIDH key exchange

ob

B

Alice

24 /51

CSIDH key exchange

]

Alice
=

[+7 +7

\\\M\l“
. ."1‘4“0““\‘\.‘ 4
S

""ﬂﬂ“‘§~..
T IS 1
LSS

24 /51

CSIDH key exchange

b

Bo
[_7 +, -,

]

T

Alice
[+: +, -,

i
=

S
S
LS

SS

S

TR ZH
fd‘“’“\\\\\.‘
amn-aw«oﬁqnﬁis.
ROCKATS
AT
<04%V064.~i.0

g

/1]
L]
4

Z7

%
e

=7

22

==

S

>

“‘

‘
52

W
B

[
IR
N
S}

\/
AN
»

24 /51

CSIDH key exchange

WeSSS

LS

T
g !
<+
£ AN
AT
ORISR 4

%,

24 /51

CSIDH key exchange

ob

B

Alice

/1 7
N AT
AT TS X
RIS A

RS
.
< X

L] A=
KA

Q‘M‘

277]
L]
SKLH

==ZZ

o2
S 0.0

oS
oS
XX

I\
NB
<X

N

24 /51

CSIDH key exchange

ob

B

R
LSS

Alice

24 /51

CSIDH key exchange

7_]

Alice
=

[+,+,

L7

277]
L]

%7
7

==

“"0
%

5

[N

"f‘"ﬂ”‘.~.

1SS

24 /51

CSIDH key exchange

b

Bo
[_7 +, -,

]

T

Alice
[+: +, -,

HEES ST
“\W\\\\ /Iuﬂd...’/

L

==/
2]

X
%%

AN A)
AT S

X A-""“’QQ.. 7
KT

7

=7

22

oo
K7
KL

s

P

TS
D

>

e

[
B

[
IR
N
S}

\/
AN
»

24 /51

CSIDH key exchange

Alice

K

y Ty T _]
=277]
L]

<>

NS
O

R\
"lﬂ'¢ﬂi

0 eVl

24 /51

And... action! W

Cycles are compatible: [right then left] = [left then right]

25/51

And... action! W

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

25/51

And... action! W

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

(An action of a group (G,-) onaset Xisamap *: G x X — X
such thatid xx =xand g+ (h+*x) = (g-h) *xforallg,h € Gand x € X.)

25/51

The class group

Recall: Group action of (Z", +) on set of curves X.

26 /51

The class group

Recall: Group action of (Z", +) on set of curves X.

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.

26 /51

The class group

Recall: Group action of (Z", +) on set of curves X.

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

26 /51

The class group

Recall: Group action of (Z", +) on set of curves X.

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

(I will talk some more about this later.)

26 /51

The class group

Recall: Group action of (Z", +) on set of curves X.

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve. ‘

26 /51

Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

27 /51

Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).

27 /51

Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:

1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).

Computing a “right” step:
1. Find a point (x,y) € E of order /; with x € F, buty ¢ [Fp.
2. Compute the isogeny with kernel ((x,y)).

27 /51

Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).

Computing a “right” step:

1. Find a point (x,y) € E of order /; with x € F, buty ¢ [Fp.

2. Compute the isogeny with kernel ((x,y)).

(Finding a point of order ¢;: Pick x € F, random. Find y € F,» such that
P = (x,y) € E. Compute Q = [%]P. Hope that Q # oo, else retry.)

27 /51

In SageMath:

'sage: E = EllipticCurve(GF(419%2), [1,0]) |
'sage: E \
'Elliptic Curve defined by y*2 = x*3 + x \

|

\ over Finite Field in z2 of size 419*2

28/51

In SageMath:

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right” step: invert
R break

(218 : 403 : 1)

28/51

In SageMath:

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right"” step: invert
R break

sage: P
(218 : 403 : 1)
sage: P.order (). factor ()

2 * 3 % 7
sage: EE = E.isogeny_codomain(2x3%P) # "left"” 7-step
sage: EE

Elliptic Curve defined by y*2 = x*3 + 285%*x + 87
over Finite Field in z2 of size 419*2

28/51

Efficient x-only arithmetic

» Forn € 7, we have [n](—P) = —[n]P. (Thisholds in any group.)

29/51

Efficient x-only arithmetic

» Forn € Z, we have [n](—P) = —[n]P. (Thisholds in any group.)
» Recall that P = (x,y) has inverse —P = (x, —y).

29/51

Efficient x-only arithmetic

» Forn € Z, we have [n](—P) = —[n]P. (Thisholds in any group.)
» Recall that P = (x,y) has inverse —P = (x, —y).
= We get an induced map xMUL,, on x-coordinates such that
VPeE. xMUL,(x(P)) = x([n]P).

29/51

Efficient x-only arithmetic

» Forn € Z, we have [n](—P) = —[n]P. (Thisholds in any group.)
» Recall that P = (x,y) has inverse —P = (x, —y).
= We get an induced map xMUL,, on x-coordinates such that
VPeE. xMUL,(x(P)) = x([n]P).

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over [,.
= (Relatively) efficient CSIDH implementations!

29/51

Plan for this lecture

High-level overview for intuition. \/

v

v

Recap: Elliptic curves & isogenies. v
The CSIDH non-interactive key exchange. v

v

v

Classical and quantum security of CSIDH.
Orientations and the SCALLOP family.

v

v

Unrestricted effective group actions.

30/51

Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

31/51

Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes « from I = g* by finding the kernel of the map

f: 7? = G, (x,y) — g - h.

31/51

Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes « from I = g* by finding the kernel of the map

f: 7? = G, (x,y) — g - h.

For group actions, we simply cannot compose a * s and b * s!

31/51

Security of CSIDH

Core problem:
Given E,E’ € X, find a path E — E’ in the isogeny graph.

32/51

Security of CSIDH

Core problem:
Given E,E’ € X, find a path E — E’ in the isogeny graph.

The size of X is #cl(Z[/=p]) = 3 - h(—p) = /p.

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((logp)'™°M).

32/51

Security of CSIDH

Core problem:
Given E,E’ € X, find a path E — E’ in the isogeny graph.

The size of X is #cl(Z[/=p]) = 3 - h(—p) = /p.

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((logp)'™°M).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((logp)'/>T°M)).

32/51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

33/51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.

» Oracle calls are expensive.

» The sieving phase has classical and quantum operations.

33/51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

33/51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

= Security estimates for CSIDH vary wildly.

33/51

Plan for this lecture

High-level overview for intuition. \/

v

v

Recap: Elliptic curves & isogenies. v
The CSIDH non-interactive key exchange. v

v

v

Classical and quantum security of CSIDH. v
Orientations and the SCALLOP family.

v

v

Unrestricted effective group actions.

34 /51

More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[/;].

35/51

More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[/;].

» Alternative description: K = ker(m — 1) N ker[/;].
...s0 7 together with scalars “carves out” our kernel subgroup!

35/51

More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[/;].

» Alternative description: K = ker(m — 1) N ker[/;].
...s0 7 together with scalars “carves out” our kernel subgroup!

» New idea: Replace 7 by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case ~~ plenty of choice.)

35/51

More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[/;].

» Alternative description: K = ker(m — 1) N ker[/;].
...s0 7 together with scalars “carves out” our kernel subgroup!

» New idea: Replace 7 by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case ~~ plenty of choice.)

Fact: If ¢: E — E’ is an isogeny for which ker(¢y) is described in
terms of scalars and some endomorphism 7 € End(E), then we
can usually* push 7 through ¢:

Z[7] — End(E')
7+ (poTop)/deg(p)

* Devils in details.

35/51

Ideals < kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

36 /51

Ideals < kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

Principal ideals (¢) correspond to endomorphisms 4.

36 /51

Ideals < kernels

More precisely, the subsets of endomorphisms which determine
isogeny kernel subgroups are ideals of the endomorphism ring.

Principal ideals (¢) correspond to endomorphisms 4.

~+ Connection to the “class set” or class group:

ideals «— kernels <+— isogenies
ideal classes <— (noname) <— isogeny codomains

36 /51

Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)

37/51

Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)

An O-orientation of an elliptic curve E is a ring embedding
t: O — End(E).

The pair (E, ¢) is then called an O-oriented curve.

37/51

Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)

An O-orientation of an elliptic curve E is a ring embedding
t: O — End(E).

The pair (E, ¢) is then called an O-oriented curve.

Example: For E/F, supersingular with p > 5, there are two
orientations by Z[,/—p]: Mapping /—p either to 7 or to —.

37/51

Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)

An O-orientation of an elliptic curve E is a ring embedding
t: O — End(E).

The pair (E, ¢) is then called an O-oriented curve.

Example: For E/F, supersingular with p > 5, there are two
orientations by Z[,/—p]: Mapping /—p either to 7 or to —.

Example: Any nonscalar endomorphism 7 € End(E) \ Z
defines an orientation of O := Z[r] on E.

37/51

The oriented class-group action

Onuki 2020 (previously Kohel-Colo without proof):

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in
K, and O an order in K such that p does not divide the conductor of O. Then the
ideal class group CL(O) acts freely and transitively on p(EU(O)).

https://arxiv.org/pdf/2002.09894

38/51

https://arxiv.org/pdf/2002.09894

The oriented class-group action

Onuki 2020 (previously Kohel-Colo without proof):

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in
K, and O an order in K such that p does not divide the conductor of O. Then the
ideal class group CL(O) acts freely and transitively on p(EU(O)).

https://arxiv.org/pdf/2002.09894
p(&L(0)): a set of supersingular elliptic curves E over F,» witha
primitive orientation ¢: O — End(E), up to oriented isomorphism.

> 1 O — End(E) is primitive if (.(O) ®z Q) N End(E) = (0).

> a: (E,u) — (E',) is an oriented isomorphism if « 0 . =/ 0 c.

38/51

https://arxiv.org/pdf/2002.09894

The oriented class-group action

Onuki 2020 (previously Kohel-Colo without proof):

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in
K, and O an order in K such that p does not divide the conductor of O. Then the
ideal class group CL(O) acts freely and transitively on p(EU(O)).

https://arxiv.org/pdf/2002.09894
p(&L(0)): a set of supersingular elliptic curves E over F,» witha

primitive orientation ¢: O — End(E), up to oriented isomorphism.

> 1 O — End(E) is primitive if (.(O) ®z Q) N End(E) = (0).

> a: (E,u) — (E’,) is an oriented isomorphism if « 0 v = ¢/ 0 av.

The group action is defined as follows:

ax(E) := (E/a, (paoro gga)/norm(a))

where ¢,: E — E/ais the isogeny with kernel

Ela] := ﬂ ker(u(av)) .

aca

38/51

https://arxiv.org/pdf/2002.09894

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x,y) € Ewithx € F).

39/51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x,y) € Ewithx € [F,. The two casesy € F,and y ¢ I,
correspond precisely to the two Z[r]-ideals

[1' = (gl',ﬂ'— 1);

[i = (éi,erl),

where 7 is the p-power Frobenius endomorphism (7> = [—p)).

39/51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x,y) € Ewithx € [F,. The two casesy € F,and y ¢ I,
correspond precisely to the two Z[r]-ideals

= (6, m—1);
[7 = (el',TF—f—l),
where 7 is the p-power Frobenius endomorphism (7> = [—p)).

Since “finding” m on any E/F), is trivial (itis =: (x,y) = (&),
it need not be transmitted and we get an action on curves only.

39/51

Recap: CSIDH

Recall that in CSIDH, our isogeny kernels are generated by
(x,y) € Ewithx € [F,. The two casesy € F,and y ¢ I,
correspond precisely to the two Z[r]-ideals

= (6, m—1);
[7 = (el',TF—f—l),
where 7 is the p-power Frobenius endomorphism (7> = [—p)).

Since “finding” m on any E/F), is trivial (itis =: (x,y) = (&),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/IF, by \/—p +— — gives exactly the same
picture, but everything is mirrored along “quadratic twisting”:

(P =3+ A% 42} = (P =% — A)

39/51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):

40/51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):

» When O is represented as Z[7| := Z[X]/u+(X) where p,
is the minimal polynomial of 7, an embedding
t: O — End(E) can be specified by the image «(7).

40 /51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):

» When O is represented as Z[7| := Z[X]/u+(X) where p,
is the minimal polynomial of 7, an embedding
t: O — End(E) can be specified by the image «(7).

~- In practice, an oriented curve is given as a pair (E, ¥) with
¥ € End(E), implicitly communicating that 9 = «(7).

40 /51

Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):

» When O is represented as Z[7| := Z[X]/u+(X) where p,
is the minimal polynomial of 7, an embedding
t: O — End(E) can be specified by the image «(7).

~- In practice, an oriented curve is given as a pair (E, ¥) with
¥ € End(E), implicitly communicating that 9 = «(7).

» There are multiple options for representing such a).

Simple example: A deterministically chosen generator point of ker(4).
More complicated: Deterministic “HD” representation (SCALLOP-HD).

40 /51

Oriented isogeny group actions: Why?

» Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

41/51

Oriented isogeny group actions: Why?

» Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

~ Can use rings like O = Z[/—f?d|, where computing the
relation lattice A can be much easier than for general O.

41/51

Oriented isogeny group actions: Why?

» Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

~ Can use rings like O = Z[/—f?d|, where computing the
relation lattice A can be much easier than for general O.

~+ For Clapoti, we have to solve norm equations that are
derived from O for target values derived from p.

41/51

Plan for this lecture

High-level overview for intuition. \/

v

v

Recap: Elliptic curves & isogenies. v
The CSIDH non-interactive key exchange. v

v

v

Classical and quantum security of CSIDH. v
Orientations and the SCALLOP family. v

v

v

Unrestricted effective group actions.

42 /51

The basic strategy a la C/R-S

» Letly,..., [, be small prime ideals of O, and
suppose a is given to us in the form a = (7' - - - [7/.

» Then a can be evaluated as a sequence of [;.

43 /51

The basic strategy a la C/R-S

» Letly,..., [, be small prime ideals of O, and
suppose a is given to us in the form a = (7' - - - [7/.

» Then a can be evaluated as a sequence of [;.

» Evaluating a single [;: Write [; = (£;,9 — \;).

Then the kernel is an order-/; point P with ©(P) = [\;]P.

43 /51

The basic strategy a la C/R-S

v

Let [, ..., [, be small prime ideals of O, and
suppose a is given to us in the form a = (7' - - - [7/.

v

Then a can be evaluated as a sequence of ;.

v

Evaluating a single [;: Write [; = (¢;,9 — \;).
Then the kernel is an order-/; point P with ©(P) = [\;]P.

Optimizations: Batch multiple [; together ~+ “strategies”.

v

43 /51

The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

» The CSIDH paper repeats this.

44 /51

The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”

(weirder name for a one-way commutative group action).

» The CSIDH paper repeats this.

Issue:

» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~» Cost of evaluating after k operations is O(exp(k)).

44 /51

The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

» The CSIDH paper repeats this.

Issue:
» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~» Cost of evaluating after k operations is O(exp(k)).

» Representing cl(O) as reduced ideals allows computing in

cl(O) efficiently, but evaluation becomes superpolynomial.
(A similar approach will be discussed on the following slides.)

44 /51

The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

» The CSIDH paper repeats this.

Issue:

» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~» Cost of evaluating after k operations is O(exp(k)).

» Representing cl(O) as reduced ideals allows computing in

cl(O) efficiently, but evaluation becomes superpolynomial.
(A similar approach will be discussed on the following slides.)

~+ A priori not an effective group action when done either way!

44 /51

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Zd with respect to [1,...,[,1.
[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w € A such that ”E*EHI is "small", using the reduced basis.
[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of (i-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

45/51

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Zd with respect to [1,...,[,1.
[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w € A such that ”E*EHI is "small", using the reduced basis.

[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of (i-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.

45/51

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Zd with respect to [1,...,[,1.
[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w € A such that ”E*EHI is "small", using the reduced basis.

[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of (i-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?

45/51

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.

46 /51

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.

. . ' . .
CSI-F1iSh really 1sn't polynomial-time

It is fairly well-known that CSIDH' in its basic form is merely a restricted effective
group action G X X — X: There is a small number of group elements [1,...,[; € G whose
action can be applied to arbitrary elements of X efficiently, but applying other elements
(say, large products [;31 [Zd of the [i) quickly becomes infeasible as the exponents grow.

The only known method to circumvent this issue consists of a folklore strategy first
employed in practice by the signature scheme CSI-FiSh. The core of the technique is to
rewrite any given group element as a short product combination of the [;, whose action can
then be computed in the usual way much more affordably. (Notice how this is philosophically
similar to the role of the square-and-multiply algorithm in discrete-logarithm land!)

The main point of this post is to remark that this approach is not asymptotically
efficient, even when a quantum computer can be used, contradicting a false belief that
appears to be rather common among isogeny aficionados.

« Classically: Evaluation LP[I/Z]. Attack Lp[l]‘
N
« Quantumly: Evaluation Lp[l/?)}. Attack Lp[l/z].

https://yx7.cc/blah/2023-04-14.html

46 /51

https://yx7.cc/blah/2023-04-14.html

Clapoti

Even more maritime isogenies??

Noun [edit]
clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms al

47 /51

Clapoti

Even more maritime isogenies??

Noun [edit]
clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms al

» Page-Robert: A polynomial-time algorithm to evaluate
the isogeny group action on arbitrary ideals.

47 /51

Polynomial-time group action: Clapoti

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).

48 /51

Polynomial-time group action: Clapoti

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).

48 /51

Polynomial-time group action: Clapoti

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).

» Kani: This gives an N-isogeny
®: ExE— E; x Eg,
(P,Q) — (#6(P) + 1e(Q), ~e(P) + ¢(Q)-

48 /51

Polynomial-time group action: Clapoti

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).

» Kani: This gives an N-isogeny
®: ExE— E; x Eg,
(P,Q) — (#6(P) + 1e(Q), ~e(P) + ¢(Q)-

» The kernel is ker(®) = {(QAS[, (R),¢(R)) : R € Eq[N]}.

48 /51

Polynomial-time group action: Clapoti

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

49 /51

Polynomial-time group action: Clapoti

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

49 /51

Polynomial-time group action: Clapoti

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

/" The kernel is equal to the alternative description
ker(®) = {([norm(b)|R,7(R)) | R € E[N]}

where v € End(E) is a generator of the principal ideal brc.

49 /51

Polynomial-time group action: Clapoti

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

/" The kernel is equal to the alternative description
ker(®) = {([norm(b)|R,7(R)) | R € E[N]}
where v € End(E) is a generator of the principal ideal brc.

— The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

49 /51

Polynomial-time group action: Clapoti

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

/" The kernel is equal to the alternative description
ker(®) = {([norm(b)|R,7(R)) | R € E[N]}
where v € End(E) is a generator of the principal ideal brc.

— The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

— Isogenies yield true effective group actions, at last!

49 /51

Plan for this lecture

High-level overview for intuition. \/

v

v

Recap: Elliptic curves & isogenies. v
The CSIDH non-interactive key exchange. v

v

v

Classical and quantum security of CSIDH. v
Orientations and the SCALLOP family. v

v

v

Unrestricted effective group actions. v

50 /51

Questions?

(Also feel free to email me: lorenz@yx7.cc)

51/51

