$30-\varepsilon$ Years of Isogeny Group Actions Lorenz Panny Technische Universität München Swissogeny Day, Zürich, 20 March 2025 #### Plan for this talk - ► The CSIDH non-interactive key exchange. - ► Classical and quantum security. - ► Is this an effective group action? - ▶ Oriented elliptic curves and isogenies. - ► *Un*restricted effective group actions. Е ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.) - ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.) - ▶ Alice and Bob transmit the end curves E_A and E_B . - ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.) - ▶ Alice and Bob transmit the end curves E_A and E_B . - ▶ Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$, - ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.) - ▶ Alice and Bob transmit the end curves E_A and E_B . - Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}: E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}: E_A \to E_{AB}$, such that $E_{AB} \cong E_{BA}$. ### How to find "parallel" isogenies? ### How to find "parallel" isogenies? <u>CSIDH's solution</u> (earlier: Couveignes, Rostovtsev–Stolbunov): ### How to find "parallel" isogenies? <u>CSIDH</u>'s solution (earlier: Couveignes, Rostovtsev–Stolbunov): Use special isogenies φ_A which can be transported to the curve E_B totally independently of the secret isogeny φ_B . (Similarly with reversed roles, of course.) - ▶ Choose some small odd primes $\ell_1, ..., \ell_n$. - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime. - ▶ Choose some small odd primes $\ell_1, ..., \ell_n$. - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime. - ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$. - ▶ Choose some small odd primes $\ell_1, ..., \ell_n$. - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime. - ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$. - ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X. - ▶ Choose some small odd primes $\ell_1, ..., \ell_n$. - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime. - ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$. - ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X. - ▶ Choose some small odd primes $\ell_1, ..., \ell_n$. - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime. - ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$. - ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X. ▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient. #### And... action! Cycles are compatible: [right then left] = [left then right] #### And... action! Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$. #### And... action! Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$. There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X! #### CSIDH via ideals In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. #### CSIDH via ideals In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals $$\mathfrak{l}_i := (\ell_i, \pi - 1);$$ $\overline{\mathfrak{l}_i} := (\ell_i, \pi + 1),$ where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$). #### CSIDH via ideals In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals $$\mathfrak{l}_i := (\ell_i, \pi - 1);$$ $\overline{\mathfrak{l}_i} := (\ell_i, \pi + 1),$ where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$). <u>General picture</u>: The kernels K of rational ℓ_i -isogenies are defined by ideals \mathfrak{a} of $\operatorname{End}_{\mathbb{F}_p}(E)$ via $$K = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$ #### CSIDH via ideals In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals $$\mathfrak{l}_i := (\ell_i, \pi - 1);$$ $\overline{\mathfrak{l}}_i := (\ell_i, \pi + 1),$ where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$). <u>General picture</u>: The kernels K of rational ℓ_i -isogenies are defined by ideals \mathfrak{a} of $\operatorname{End}_{\mathbb{F}_p}(E)$ via $$K = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$!! The endomorphisms in a "carve out" our kernel subgroup. <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. **!!** The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. **!!** The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice. <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. **!!** The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice. We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal. <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. **!!** The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice. We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal. The quotient \mathbb{Z}^n/Λ is \cong the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$. (I will talk some more about this later.) <u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X. **!!** The set *X* is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice. We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal. The quotient \mathbb{Z}^n/Λ is \cong the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$. (I will talk some more about this later.) !! This group characterizes when two paths lead to the same curve. #### Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith ...proposed doing the same thing, but with ordinary curves. #### Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith ...proposed doing the same thing, but with ordinary curves. Big problem: No good way to control $\#E(\mathbb{F}_p)$ #### Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith ...proposed doing the same thing, but with ordinary curves. Big problem: No good way to control $\#E(\mathbb{F}_p)$ \rightsquigarrow Computing the action of l_i is much more expensive. #### Plan for this talk ► The CSIDH non-interactive key exchange. - ► Classical and quantum security. - ► Is this an effective group action? - ▶ Oriented elliptic curves and isogenies. - ► *Unrestricted effective group actions.* # Why no Shor? Shor's quantum algorithm computes α from g^{α} in any group in polynomial time. # Why no Shor? Shor's quantum algorithm computes α from g^{α} in any group in polynomial time. Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map $$f\colon \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$ # Why no Shor? Shor's quantum algorithm computes α from g^{α} in any group in polynomial time. Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map $$f\colon \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$ For group <u>actions</u>, we simply cannot compose a * s and b * s! #### Security of CSIDH #### Core problem: Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph. # Security of CSIDH #### Core problem: Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph. The size of *X* is $$\#\operatorname{cl}(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$$. \leadsto best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$. # Security of CSIDH #### Core problem: Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph. The size of *X* is $$\#\operatorname{cl}(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$$. \rightarrow best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$. #### Solving abelian hidden shift breaks CSIDH. \rightsquigarrow non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$. Kuperberg's algorithm consists of two components: - 1. Evaluate the group action many times. ("oracle calls") - 2. Combine the results in a certain way. ("sieving") Kuperberg's algorithm consists of two components: - 1. Evaluate the group action many times. ("oracle calls") - 2. Combine the results in a certain way. ("sieving") - ► The algorithm admits many different tradeoffs. - ► Oracle calls are expensive. - ► The sieving phase has classical *and* quantum operations. #### Kuperberg's algorithm consists of two components: - 1. Evaluate the group action many times. ("oracle calls") - 2. Combine the results in a certain way. ("sieving") - ► The algorithm admits many different tradeoffs. - ► Oracle calls are expensive. - ► The sieving phase has classical *and* quantum operations. - → How to compare costs? (Is one qubit operation ≈ one bit operation? a hundred? millions?) #### Kuperberg's algorithm consists of two components: - 1. Evaluate the group action many times. ("oracle calls") - 2. Combine the results in a certain way. ("sieving") - ► The algorithm admits many different tradeoffs. - ► Oracle calls are expensive. - ► The sieving phase has classical *and* quantum operations. - → How to compare costs? (Is one qubit operation ≈ one bit operation? a hundred? millions?) ⇒ Security estimates for CSIDH & friends vary wildly. #### Plan for this talk - ► The CSIDH non-interactive key exchange. - **** - ► Classical and quantum security. - ► Is this an effective group action? - ► Oriented elliptic curves and isogenies. - ► *Un*restricted effective group actions. ▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$. - ▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$. - ► Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i . - ▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$. - ▶ Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i . - ► Evaluating a single \mathfrak{l}_i : Write $\mathfrak{l}_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point P with $\vartheta(P) = [\lambda_i]P$. - ► Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$. - ▶ Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i . - ► Evaluating a single \mathfrak{l}_i : Write $\mathfrak{l}_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point P with $\vartheta(P) = [\lambda_i]P$. - ▶ Optimization: Batch multiple l_i together \leadsto "strategies". ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action). - ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action). - ► The CSIDH paper repeats this. - ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action). - ► The CSIDH paper repeats this. #### Issue: - ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation. - \rightsquigarrow Cost of evaluating after *k* operations is $O(\exp(k))$. - ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action). - ► The CSIDH paper repeats this. #### **Issue:** - ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation. - \sim Cost of evaluating after *k* operations is $O(\exp(k))$. - ► Representing cl(O) as reduced ideals allows computing in cl(O) efficiently, but evaluation becomes superpolynomial. (A similar approach will be discussed on the following slides.) - ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action). - ► The CSIDH paper repeats this. #### Issue: - ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation. \rightsquigarrow Cost of evaluating after k operations is $O(\exp(k))$. - ► Representing cl(O) as reduced ideals allows computing in cl(O) efficiently, but evaluation becomes superpolynomial. (A similar approach will be discussed on the following slides.) - → A priori **not** an effective group action when done either way! # The CSI-FiSh approach # ...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows: The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps: - 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time, Precomputation.] - 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.] - 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.] - 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.] https://yx7.cc/blah/2023-04-14.html # The CSI-FiSh approach # ...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows: The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps: - 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time. Precomputation.] - 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.] - 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.] - 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.] https://yx7.cc/blah/2023-04-14.html The CSI-FiSh paper (2019) does all this in practice for 512-bit *p*. # The CSI-FiSh approach # ...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows: The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps: - 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time. Precomputation.] - 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.] - 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.] - 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.] https://yx7.cc/blah/2023-04-14.html The CSI-FiSh paper (2019) does all this in practice for 512-bit *p*. What about asymptotics? #### Tradeoff: Lattice part vs. isogeny part - ▶ By increasing the number n of ideals l_i , we can trade off some "isogeny effort" for "lattice effort". - → Sweet spot: Minimize total cost. ## Tradeoff: Lattice part vs. isogeny part - ▶ By increasing the number n of ideals l_i , we can trade off some "isogeny effort" for "lattice effort". - → Sweet spot: Minimize total cost. #### CSI-FiSh really isn't polynomial-time It is fairly well-known that CSIDH¹ in its basic form is merely a restricted effective group action $G \times X \to X$: There is a small number of group elements $\mathfrak{l}_1, \ldots, \mathfrak{l}_d \in G$ whose action can be applied to arbitrary elements of X efficiently, but applying other elements (say, large products $\mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_d^{e_d}$ of the \mathfrak{l}_i) quickly becomes infeasible as the exponents grow. The only known method to circumvent this issue consists of a folklore strategy first employed in practice by the signature scheme CSI-FiSh. The core of the technique is to rewrite any given group element as a *short* product combination of the ℓ_i , whose action can then be computed in the usual way much more affordably. (Notice how this is philosophically similar to the role of the square-and-multiply algorithm in discrete-logarithm land!) The main point of this post is to remark that this approach is **not asymptotically efficient**, even when a quantum computer can be used, contradicting a false belief that appears to be rather common among isogeny aficionados. - Classically: Evaluation $L_p[1/2].$ Attack $L_p[1].$ - <code>Quantumly</code>: Evaluation $L_p[1/3]$. Attack $L_p[1/2]$. https://yx7.cc/blah/2023-04-14.html #### Plan for this talk - ► The CSIDH non-interactive key exchange. - **** - ► Classical and quantum security. - **v** / - ► Is this an effective group action? - \checkmark - ► Oriented elliptic curves and isogenies. - ► *Un*restricted effective group actions. ## More endomorphisms ▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi - \lambda)$. ### More endomorphisms - ▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi \lambda)$. - ► New <u>idea</u>: Replace π by other endomorphisms. (Recall that End(E) is a rank-4 lattice in the supersingular case \leadsto plenty of choice.) ## More endomorphisms - ▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi \lambda)$. - ► New <u>idea</u>: Replace π by other endomorphisms. (Recall that End(E) is a rank-4 lattice in the supersingular case \leadsto plenty of choice.) <u>Fact:</u> If $\varphi \colon E \to E'$ is an isogeny for which $\ker(\varphi)$ is described in terms of scalars and some endomorphism $\tau \in \operatorname{End}(E)$, then we can usually push τ through φ : $$\mathbb{Z}[\tau] \longleftrightarrow \operatorname{End}(E')$$ $$\tau \longmapsto (\varphi \circ \tau \circ \widehat{\varphi})/\operatorname{deg}(\varphi)$$ 24 / 43 #### Ideals \leftrightarrow kernels As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$. #### Ideals \leftrightarrow kernels As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$. *Principal* ideals (ϑ) correspond to endomorphisms ϑ . #### Ideals \leftrightarrow kernels As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$. *Principal* ideals (ϑ) correspond to endomorphisms ϑ . → Connection to the "class set" or class group: Let $$\mathcal{O}=\mathbb{Z}[au]$$ be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.) Let $$\mathcal{O}=\mathbb{Z}[au]$$ be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.) An \mathcal{O} -orientation of an elliptic curve E is a ring embedding $$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$. The pair (E, ι) is then called an \mathcal{O} -oriented curve. Let $$\mathcal{O}=\mathbb{Z}[au]$$ be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.) An \mathcal{O} -orientation of an elliptic curve E is a ring embedding $$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$. The pair (E, ι) is then called an \mathcal{O} -oriented curve. Example: For E/\mathbb{F}_p supersingular with $p \ge 5$, there are two orientations by $\mathbb{Z}[\sqrt{-p}]$: Mapping $\sqrt{-p}$ either to π or to $-\pi$. Let $$\mathcal{O}=\mathbb{Z}[au]$$ be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.) An \mathcal{O} -orientation of an elliptic curve E is a ring embedding $$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$. The pair (E, ι) is then called an \mathcal{O} -oriented curve. Example: For E/\mathbb{F}_p supersingular with $p \ge 5$, there are two orientations by $\mathbb{Z}[\sqrt{-p}]$: Mapping $\sqrt{-p}$ either to π or to $-\pi$. Example: Any nonscalar endomorphism $\tau \in \operatorname{End}(E) \setminus \mathbb{Z}$ defines an orientation of $\mathcal{O} := \mathbb{Z}[\tau]$ on E. #### Onuki 2020 (previously Kohel-Colò 2020 without proof): **Theorem 3.4.** Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}\ell(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$. https://arxiv.org/pdf/2002.09894 **Theorem 3.4.** Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}\ell(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$. $\rho(\mathcal{E}\mathcal{U}(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism. **Theorem 3.4.** Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$. $\rho(\mathcal{E}\mathcal{U}(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism. - $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ is primitive if $(\iota(\mathcal{O}) \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \operatorname{End}(E) = \iota(\mathcal{O})$. - $\alpha: (E, \iota) \to (E', \iota')$ is an *oriented* isomorphism if $\alpha \circ \iota = \iota' \circ \alpha$. **Theorem 3.4.** Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$. $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism. - $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ is primitive if $(\iota(\mathcal{O}) \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \operatorname{End}(E) = \iota(\mathcal{O})$. - $\alpha \colon (E, \iota) \to (E', \iota')$ is an *oriented* isomorphism if $\alpha \circ \iota = \iota' \circ \alpha$. The group action is defined as follows: $$\mathfrak{a} \star (E, \iota) := (E/\mathfrak{a}, (\phi_{\mathfrak{a}} \circ \iota \circ \widehat{\phi}_{\mathfrak{a}})/\text{norm}(\mathfrak{a}))$$ where $\phi_{\mathfrak{a}} \colon E \to E/\mathfrak{a}$ is the isogeny with kernel $$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$ (NB: In the cases we care about, we have $\pi_{p^2} = [-p]$, hence all isogenies are \mathbb{F}_{p^2} -rational.) ### Recap: CSIDH CSIDH is the special case of orienting by Frobenius. (That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.) ## Recap: CSIDH CSIDH is the special case of orienting by Frobenius. (That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.) Since "finding" π on any E/\mathbb{F}_p is trivial (it is $\pi: (x,y) \mapsto (x^p,y^p)$), it need not be transmitted and we get an action on curves only. ## Recap: CSIDH CSIDH is the special case of orienting by Frobenius. (That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.) Since "finding" π on any E/\mathbb{F}_p is trivial (it is π : $(x,y) \mapsto (x^p,y^p)$), it need not be transmitted and we get an action on curves only. <u>Fun fact</u>: Orienting E/\mathbb{F}_p by $\sqrt{-p} \mapsto -\pi$ gives exactly the same picture, but everything is mirrored via quadratic twisting: $${y^2 = x^3 + Ax^2 + x} \stackrel{\sim}{\longmapsto} {y^2 = x^3 - Ax^2 + x}$$ To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) : To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) : ▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$. To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) : - ▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$. - \rightsquigarrow In **practice**, an oriented curve is given as a pair (E, ϑ) with $\vartheta \in \operatorname{End}(E)$, implicitly communicating that $\vartheta = \iota(\tau)$. To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) : - ▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$. - \rightsquigarrow In **practice**, an oriented curve is given as a pair (E, ϑ) with $\vartheta \in \operatorname{End}(E)$, implicitly communicating that $\vartheta = \iota(\tau)$. - ► There are multiple options for representing such a ϑ . Simple example: A deterministically chosen generator point of ker(ϑ). More complicated: Deterministic HD representation (SCALLOP-HD). # Oriented isogeny group actions: Why? ▶ <u>Key point</u>: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p. This is advantageous for at least two reasons (see next part): # Oriented isogeny group actions: Why? ▶ Key point: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p. This is advantageous for at least two reasons (see next part): \sim Can use rings like $\mathcal{O} = \mathbb{Z}[f\sqrt{-d}]$, where computing the relation lattice Λ can be much easier than for general \mathcal{O} . ## Oriented isogeny group actions: Why? ▶ Key point: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p. This is advantageous for at least two reasons (see next part): - \sim Can use rings like $\mathcal{O} = \mathbb{Z}[f\sqrt{-d}]$, where computing the relation lattice Λ can be much easier than for general \mathcal{O} . - \leadsto For Clapoti (soon!), we have to solve norm equations that are derived from \mathcal{O} for target values derived from p. !! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". !! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". Concretely, this means vectorization for \mathcal{O} reduces to: !! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". Concretely, this means vectorization for \mathcal{O} reduces to: ▶ Vectorization for the superorder of \mathcal{O} of index q. \rightsquigarrow class group shrinks by a factor $\approx q!$!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". Concretely, this means vectorization for \mathcal{O} reduces to: - ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$ - ► Some brute-force search of complexity $\approx q$. !! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". Concretely, this means vectorization for \mathcal{O} reduces to: - ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$ - ► Some brute-force search of complexity $\approx q$. - \sim Complexity determined by squarefree part of disc(\mathcal{O}), <u>plus</u> the non-smooth square part of disc(\mathcal{O}). !! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano". Concretely, this means vectorization for \mathcal{O} reduces to: - ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$ - ► Some brute-force search of complexity $\approx q$. - \sim **Complexity** determined by squarefree part of disc(\mathcal{O}), <u>plus</u> the non-smooth square part of disc(\mathcal{O}). To play around with this, try my CTF challenge "not_csidh": https://hxp.io/blog/96 (Don't forget to submit your code to SageMath afterwards. :) # Oriented group actions: Cryptographic instantiations ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*. # Oriented group actions: Cryptographic instantiations - ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*. - ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p . # Oriented group actions: Cryptographic instantiations - ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*. - ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p . - ▶ **OSIDH**: Oriented by $\mathbb{Z}[\ell^n \iota]$, where ι small endomorphism. ## Oriented group actions: Cryptographic instantiations - ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*. - ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p . - ▶ **OSIDH**: Oriented by $\mathbb{Z}[\ell^n \iota]$, where ι small endomorphism. - ▶ **SCALLOP** family: Oriented by $\mathbb{Z}[f\iota]$, where f large prime. #### Plan for this talk - ► The CSIDH non-interactive key exchange. - \checkmark - ► Classical and quantum security. - **√** - ► Is this an effective group action? - ► Oriented elliptic curves and isogenies. ► *Unrestricted effective group actions.* #### Clapoti Even more maritime isogenies?? ``` Noun [edit] clapotis m (plural clapotis) 1. lapping of water against a surface [synonyms ▲] ``` #### Clapoti Even more maritime isogenies?? ``` Noun [edit] clapotis m (plural clapotis) 1. lapping of water against a surface [synonyms ▲] ``` ► Page–Robert: A polynomial-time algorithm to evaluate the isogeny group action on arbitrary ideals. #### Idea: ► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$. #### Idea: ► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$. #### Idea: ► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$. $$E \xrightarrow{\phi_{\mathfrak{b}}} E_{\mathfrak{a}}$$ $$\downarrow^{\psi_{\overline{\mathfrak{c}}}}$$ $$E_{\overline{\mathfrak{a}}} \xrightarrow{\psi_{\mathfrak{b}}} E$$ ► Kani: This gives an *N*-isogeny $$\begin{split} \Phi \colon E \times E &\longrightarrow E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}}, \\ (P, Q) &\longmapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi}_{\overline{\mathfrak{c}}}(Q), \ -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi}_{\mathfrak{b}}(Q)) \,. \end{split}$$ #### Idea: ▶ Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$. $$E \xrightarrow{\phi_{\mathfrak{b}}} E_{\mathfrak{a}}$$ $$\downarrow^{\phi_{\overline{\mathfrak{c}}}} \downarrow^{\psi_{\overline{\mathfrak{c}}}} E_{\overline{\mathfrak{a}}} \xrightarrow{\psi_{\mathfrak{b}}} E$$ ► Kani: This gives an *N*-isogeny $$\begin{split} \Phi \colon E \times E &\longrightarrow E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}}, \\ (P,Q) &\longmapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi}_{\overline{\mathfrak{c}}}(Q), \, -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi}_{\mathfrak{b}}(Q)) \, . \end{split}$$ ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathbf{b}}(R), \psi_{\overline{\mathbf{c}}}(R)) : R \in \underline{E}_{\mathbf{a}}[N]\}.$ ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in E_{\mathfrak{a}}[N]\}.$ - ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{b}(R), \psi_{\overline{c}}(R)) : R \in E_{\mathfrak{a}}[N]\}.$ - ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$. - ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$ - ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$. - The kernel is equal to the alternative description $$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$ where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{c}$. - ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{b}(R), \psi_{\overline{c}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$ - ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$. $$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$ where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{\mathfrak{c}}$. ⇒ The isogeny group action can now be computed in polynomial time even for "ugly" input ideals. - ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$ - ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$. $$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$ where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{\mathfrak{c}}$. - ⇒ The isogeny group action can now be computed in polynomial time even for "ugly" input ideals. - ⇒ Isogenies yield true effective group actions, at last! ▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ▶ Ideals equivalent to a look like $a\overline{\gamma}/\text{norm}(a)$ where $\gamma \in a$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - ▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes \mathbb{Q} .) - ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* $\operatorname{End}(E) \otimes \mathbb{Q}$.) - ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$. - ▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes Q.) - ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$. - ∴ The KLPT algorithm does this for us! - ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - !! This is the norm form of $\mathcal{I}:=\mathfrak{a}+i\mathfrak{a}$ inside the quaternion order $\mathcal{Q}:=\mathcal{O}+i\mathcal{O}$. (NB: The quaternion algebra here is *not* $\mathrm{End}(\mathit{E})\otimes\mathbb{Q}$.) - ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$. - ∴ The KLPT algorithm does this for us! - : ...only for disc(\mathcal{O}) = $p^{3+\varepsilon}$. - ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$. - ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. - **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes Q.) - ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$. - ∴ The KLPT algorithm does this for us! - : ...only for disc $(\mathcal{O}) = p^{3+\varepsilon}$. - <u>KLaPoTi/SCALLOP2D</u>: Practical instantiation of this. Pretty bad performance for "small" parameters, but finally asymptotically polynomial-time for the first time. Applying Clapoti in 4 > 2 dimensions is better. \rightsquigarrow PEGASIS \leftrightarrow Applying Clapoti in 4 > 2 dimensions is better. **→ PEGASIS ←** (See Ryan's talk later today!) #### Plan for this talk - ► The CSIDH non-interactive key exchange. - ► Classical and quantum security. ✓ - ► Is this an effective group action? - ► Oriented elliptic curves and isogenies. ✓ - ► *Unrestricted effective group actions.* ✓ #### Questions! ► Quantum security: How large should disc(O) be? (I think this is the biggest roadblock for CSIDH & friends.) ► Performance: Is PEGASIS universally superior? (Can we thank the others for their service and ditch them for good?) ► Protocols: Beyond key exchange? (Proposals exist—any of them convincing to practicioners?) # Questions? (Also feel free to email me: lorenz@yx7.cc)