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Plan for this talk

▶ The CSIDH non-interactive key exchange.

▶ Classical and quantum security.

▶ Is this an effective group action?

▶ Oriented elliptic curves and isogenies.

▶ Unrestricted effective group actions.
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CSIDH ["si:­saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
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Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.
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How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution (earlier: Couveignes, Rostovtsev–Stolbunov):
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)
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CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the Fp-rational isogenies of degrees ℓi within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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And... action!

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!
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CSIDH via ideals

In CSIDH, the ℓi-isogeny kernels are generated by (x, y) ∈ E
with x ∈ Fp.

The two cases y ∈ Fp and y /∈ Fp correspond
precisely to the two Z[π]-ideals

li := (ℓi, π− 1) ;

li := (ℓi, π+ 1) ,

where π is the p-power Frobenius endomorphism (π2 = [−p]).

General picture: The kernels K of rational ℓi-isogenies are
defined by ideals a of EndFp(E) via

K =
⋂
α∈a

ker(ι(α)) .

!! The endomorphisms in a “carve out” our kernel subgroup.
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The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

We understand the structure: Trivial action =̂ cycle in
the graph =̂ endomorphism =̂ principal Z[π]-ideal.

The quotient Zn/Λ is ∼= the ideal-class group cl(Z[√−p]).
(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.
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Couveignes/Rostovtsev–Stolbunov/De Feo–Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.

Big problem: No good way to control #E(Fp)

⇝ Computing the action of li is much more expensive.
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Plan for this talk

▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security.

▶ Is this an effective group action?

▶ Oriented elliptic curves and isogenies.

▶ Unrestricted effective group actions.
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Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!
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Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a path E→ E′ in the isogeny graph.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.
⇝ How to compare costs?

(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.
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The basic strategy à la C/RS/DKS/CSIDH

▶ Let l1, ..., ln be small prime ideals of O, and
suppose a is given to us in the form a = le1

1 · · · l
en
n .

▶ Then a can be evaluated as a sequence of li.

▶ Evaluating a single li: Write li = (ℓi, ϑ− λi).
Then the kernel is an order-ℓi point P with ϑ(P) = [λi]P.

▶ Optimization: Batch multiple li together⇝ “strategies”.

18 / 43
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The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

(A similar approach will be discussed on the following slides.)

⇝ A priori not an effective group action when done either way!
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⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
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The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.

What about asymptotics?
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Tradeoff: Lattice part vs. isogeny part

▶ By increasing the number n of ideals li, we can trade off
some “isogeny effort” for “lattice effort”.

⇝ Sweet spot: Minimize total cost.

⇝

https://yx7.cc/blah/2023-04-14.html
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Plan for this talk

▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security. ✓
▶ Is this an effective group action? ✓
▶ Oriented elliptic curves and isogenies.

▶ Unrestricted effective group actions.
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CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP

Couveignes/Rostovtsev–Stolbunov

De Feo–Kieffer–Smith

SCALLOP‑HDPEARL‑SCALLOP

KLaPoTi

higher dimensions

Clapoti

orientations
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More endomorphisms

▶ In CSIDH, we’ve used kernels of the form K = E(Fp)[ℓi],
which equals the subgroup defined by the ideal (ℓi, π−λ).

▶ New idea: Replace π by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case⇝ plenty of choice.)

Fact: If φ : E→ E′ is an isogeny for which ker(φ) is described in
terms of scalars and some endomorphism τ ∈ End(E), then we
can usually push τ through φ:

Z[τ ] ↪−→ End(E′)

τ 7−→ (φ ◦ τ ◦ φ̂)/deg(φ)
∗
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Ideals↔ kernels

As before with CSIDH, the isogenies for which this works are
those defined by (invertible) ideals of the ring Z[τ ].

Principal ideals (ϑ) correspond to endomorphisms ϑ.

⇝ Connection to the “class set” or class group:

ideals ←→ kernels ←→ isogenies
ideal classes ←→ (no name) ←→ isogeny codomains
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Orientations & oriented curves

Let O = Z[τ ] be an imaginary-quadratic order.
(Standard cases: τ =

√
−d or τ = 1+

√
−d

2 where d ∈ Z≥1.)

An O-orientation of an elliptic curve E is a ring embedding

ι : O ↪→ End(E) .

The pair (E, ι) is then called an O-oriented curve.

Example: For E/Fp supersingular with p ≥ 5, there are two
orientations by Z[√−p]: Mapping

√−p either to π or to −π.

Example: Any nonscalar endomorphism τ ∈ End(E) \Z
defines an orientation of O := Z[τ ] on E.
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The oriented class-group action

Onuki 2020 (previously Kohel–Colò 2020 without proof):

https://arxiv.org/pdf/2002.09894
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The oriented class-group action

ρ(Eℓℓ(O)): a set of supersingular elliptic curves E over Fp2 with a
primitive orientation ι : O ↪→ End(E), up to oriented isomorphism.

▶ ι : O ↪→ End(E) is primitive if (ι(O)⊗Z Q) ∩ End(E) = ι(O).

▶ α : (E, ι) → (E′, ι′) is an oriented isomorphism if α ◦ ι = ι′ ◦ α.

The group action is defined as follows:

a ⋆ (E, ι) :=
(
E/a, (ϕa ◦ ι ◦ ϕ̂a)/norm(a)

)
where ϕa : E→ E/a is the isogeny with kernel

E[a] :=
⋂
α∈a

ker(ι(α)) .

(NB: In the cases we care about, we have πp2 = [−p], hence all isogenies are Fp2 -rational.)
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Recap: CSIDH

CSIDH is the special case of orienting by Frobenius.
(That is: Orienting by O = Z[√−p] via the identification

√−p 7→ π.)

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored via quadratic twisting:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

28 / 43



Recap: CSIDH

CSIDH is the special case of orienting by Frobenius.
(That is: Orienting by O = Z[√−p] via the identification

√−p 7→ π.)

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored via quadratic twisting:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

28 / 43



Recap: CSIDH

CSIDH is the special case of orienting by Frobenius.
(That is: Orienting by O = Z[√−p] via the identification

√−p 7→ π.)

Since “finding” π on any E/Fp is trivial (it is π : (x, y) 7→ (xp, yp)),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/Fp by
√−p 7→ −π gives exactly the same

picture, but everything is mirrored via quadratic twisting:

{y2 = x3 + Ax2 + x} ∼7−→ {y2 = x3 − Ax2 + x}

28 / 43



Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ι):

▶ When O is represented as Z[τ ] := Z[X]/µτ (X) where µτ
is the minimal polynomial of τ , an embedding
ι : O ↪→ End(E) can be specified by the image ι(τ).

⇝ In practice, an oriented curve is given as a pair (E, ϑ) with
ϑ ∈ End(E), implicitly communicating that ϑ = ι(τ).

▶ There are multiple options for representing such a ϑ.
Simple example: A deterministically chosen generator point of ker(ϑ).
More complicated: Deterministic HD representation (SCALLOP-HD).
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Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

⇝ Can use rings like O = Z[ f
√
−d], where computing the

relation lattice Λ can be much easier than for general O.

⇝ For Clapoti (soon!), we have to solve norm equations that
are derived from O for target values derived from p.
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Orientations: Security

!! Not every orientation is equally secure: If disc(O) has a
square factor q2, the vectorization problem for theO-orientation
can be split into smaller chunks by “walking up the q-volcano”.

Concretely, this means vectorization for O reduces to:
▶ Vectorization for the superorder of O of index q.

⇝ class group shrinks by a factor ≈ q!

▶ Some brute-force search of complexity ≈ q.

⇝ Complexity determined by squarefree part of disc(O),
plus the non-smooth square part of disc(O).

To play around with this, try my CTF challenge “not_csidh”: https://hxp.io/blog/96

(Don’t forget to submit your code to SageMath afterwards. :) )
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Oriented group actions: Cryptographic instantiations

▶ C/RS/DKS: Oriented by Z[π], using ordinary E.

▶ CSIDH: Oriented by Z[π], using supersingular E/Fp.

▶ OSIDH: Oriented by Z[ℓnι], where ι small endomorphism.

▶ SCALLOP family: Oriented by Z[ fι], where f large prime.
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Plan for this talk

▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security. ✓
▶ Is this an effective group action? ✓
▶ Oriented elliptic curves and isogenies. ✓
▶ Unrestricted effective group actions.
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CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP
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SCALLOP‑HDPEARL‑SCALLOP
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higher dimensions

Clapoti

orientations
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Clapoti

Even more maritime isogenies??

▶ Page–Robert: A polynomial-time algorithm to evaluate
the isogeny group action on arbitrary ideals.
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Polynomial-time group action: Clapoti

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny

Φ: E× E −→ Ea × Ea,

(P,Q) 7−→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.
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Polynomial-time group action: Clapoti (in 2D)

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.

=⇒ The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!
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Effective group actions (2D)

▶ Ideals equivalent to a look like aγ/norm(a) where γ ∈ a.

▶ The norm equation turns into N = f (x, y) + f (x, y) with
f (x, y) = norm(xω1 + yω2)/norm(a) when a = Zω1 + Zω2.

!! This is the norm form of I := a+ ia inside the quaternion
order Q := O + iO. (NB: The quaternion algebra here is not End(E)⊗ Q.)

⇝ Look for element α ∈ a+ ia with norm(α) = N · norm(I),
split it into α = β + iγ with β, γ ∈ O.
Then use b := aβ/norm(a) and c := aγ/norm(a).

:) The KLPT algorithm does this for us!

:( ...only for disc(O) = p3+ε.

⇝ KLaPoTi/SCALLOP2D: Practical instantiation of this.
Pretty bad performance for “small” parameters, but finally
asymptotically polynomial-time for the first time.
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Effective group actions (4D)

Applying Clapoti in 4 > 2 dimensions is better.

⇝ PEGASIS ⇝

(See Ryan’s talk later today!)
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Plan for this talk

▶ The CSIDH non-interactive key exchange. ✓
▶ Classical and quantum security. ✓
▶ Is this an effective group action? ✓
▶ Oriented elliptic curves and isogenies. ✓
▶ Unrestricted effective group actions. ✓
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Questions!

▶ Quantum security: How large should disc(O) be?
(I think this is the biggest roadblock for CSIDH & friends.)

▶ Performance: Is PEGASIS universally superior?
(Can we thank the others for their service and ditch them for good?)

▶ Protocols: Beyond key exchange?
(Proposals exist — any of them convincing to practicioners?)
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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