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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds pp : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?

E ®a Ea
s
¥B
Eap
=z
Eg - Ega
YA

CSIDH’s solution (earlier: Couveignes, Rostovtsev-Stolbunov):

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)
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CSIDH in one slide

» Choose some small odd primes 41, ..., {;.
» Makesurep =4-/(;---{, —1is prime.
» Let X = {y* =x°+Ax*+x supersingular with A € F,}.

» Look at the [F-rational isogenies of degrees /; within X.

p =419
0 =
0 =
=7

» Walking “left” and “right” on any /;-subgraph is efficient.
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And... action! W

Cycles are compatible: [right then left] = [left then right]
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And... action! W

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘
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CSIDH via ideals

In CSIDH, the /;-isogeny kernels are generated by (x,y) € E
withx € F),.
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CSIDH via ideals

In CSIDH, the /;-isogeny kernels are generated by (x,y) € E
with x € . The two cases y € F, and y ¢ F, correspond
precisely to the two Z[r]-ideals

[i = (£i7 ™= 1)/
[7‘ = (Eivﬂ-_’_]-)/
where 7 is the p-power Frobenius endomorphism (z* = [—p]).

General picture: The kernels K of rational /;-isogenies are
defined by ideals a of Endg, (E) via

K = () ker(:(a)).

aca

!! The endomorphisms in a “carve out” our kernel subgroup.
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The class group

Recall: Group action of (Z", +) on set of curves X.
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The class group

Recall: Group action of (Z", +) on set of curves X.

Il The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z", the relation lattice.

We understand the structure: Trivial action = cycle in
the graph = endomorphism = principal Z[r]-ideal.

The quotient Z" /A is = the ideal-class group cl(Z[,/=p]).

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.
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Couveignes/Rostovtsev—-Stolbunov/De Feo-Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.
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Couveignes/Rostovtsev—-Stolbunov/De Feo-Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.

Big problem: No good way to control #E(IF,)

~+ Computing the action of [; is much more expensive.
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Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.
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Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes « from I = g* by finding the kernel of the map

f: 7? = G, (x,y) — g - h.

For group actions, we simply cannot compose a * s and b * s!

13/43



Security of CSIDH

Core problem:
Given E,E’ € X, find a path E — E’ in the isogeny graph.
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The size of X is #cl(Z[/=p]) = 3 - h(—p) = /p.

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((logp)'™°M).

14 /43



Security of CSIDH

Core problem:
Given E,E’ € X, find a path E — E’ in the isogeny graph.

The size of X is #cl(Z[/=p]) = 3 - h(—p) = /p.

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((logp)'™°M).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((logp)'/>T°M)).
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

~~ How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

= Security estimates for CSIDH & friends vary wildly.

15/43
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The basic strategy a la C/RS/DKS/CSIDH

» Letly,..., [, be small prime ideals of O, and
suppose a is given to us in the form a = (7' - - - [7/.
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The basic strategy a la C/RS/DKS/CSIDH

v

Let [, ..., [, be small prime ideals of O, and
suppose a is given to us in the form a = (7' - - - [7/.

v

Then a can be evaluated as a sequence of ;.

v

Evaluating a single [;: Write [; = (¢;,9 — \;).
Then the kernel is an order-/; point P with ©(P) = [\]P.
Optimization: Batch multiple [; together ~» “strategies”.

v

18/43
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» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).
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The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way commutative group action).

» The CSIDH paper repeats this.

Issue:

» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~+ Cost of evaluating after k operations is O(exp(k)).

» Representing cl(O) as reduced ideals allows computing in

cl(O) efficiently, but evaluation becomes superpolynomial.
(A similar approach will be discussed on the following slides.)

~+ A priori not an effective group action when done either way!
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The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Z% with respect to l1,...,0q.

[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w € A such that ”Q*EHI is "small", using the reduced basis.
[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of [;-steps.
[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html
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relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Z% with respect to l1,...,0q.

[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w &€ A such that ”Q*EHI is "small", using the reduced basis.

[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of [;-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.

What about asymptotics?
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» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.
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Tradeoff: Lattice part vs. isogeny part

» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.

. . ' . .
CSI-F1iSh really 1sn't polynomial-time

It is fairly well-known that CSIDH' in its basic form is merely a restricted effective
group action G X X — X: There is a small number of group elements [1,...,[; € G whose
action can be applied to arbitrary elements of X efficiently, but applying other elements
(say, large products [;31 [Zd of the [i) quickly becomes infeasible as the exponents grow.

The only known method to circumvent this issue consists of a folklore strategy first
employed in practice by the signature scheme CSI-FiSh. The core of the technique is to
rewrite any given group element as a short product combination of the [;, whose action can
then be computed in the usual way much more affordably. (Notice how this is philosophically
similar to the role of the square-and-multiply algorithm in discrete-logarithm land!)

The main point of this post is to remark that this approach is not asymptotically
efficient, even when a quantum computer can be used, contradicting a false belief that
appears to be rather common among isogeny aficionados.

« Classically: Evaluation LP[I/Z]. Attack Lp[l]‘
N
« Quantumly: Evaluation Lp[l/?)}. Attack Lp[l/z].

https://yx7.cc/blah/2023-04-14.html
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More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[//],
which equals the subgroup defined by the ideal (¢;, 7 — \).

24 /43



More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[//],
which equals the subgroup defined by the ideal (¢;, 7 — \).

» New idea: Replace 7 by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case ~~ plenty of choice.)

24 /43



More endomorphisms

» In CSIDH, we've used kernels of the form K = E(IF,)[//],
which equals the subgroup defined by the ideal (¢;, 7 — \).

» New idea: Replace 7 by other endomorphisms.
(Recall that End(E) is a rank-4 lattice in the supersingular case ~~ plenty of choice.)

Fact: If ¢: E — E’ is an isogeny for which ker(¢y) is described in
terms of scalars and some endomorphism 7 € End(E), then we
can usually push 7 through :
Z[t] — End(E")
T — (poTo@)/deg(y)

24 /43



Ideals < kernels

As before with CSIDH, the isogenies for which this works are
those defined by (invertible) ideals of the ring Z|7|.
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Ideals < kernels

As before with CSIDH, the isogenies for which this works are
those defined by (invertible) ideals of the ring Z|7|.

Principal ideals (¢) correspond to endomorphisms 4.

~+ Connection to the “class set” or class group:

ideals «— kernels <+— isogenies
ideal classes <— (noname) <— isogeny codomains

25/43



Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)
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Orientations & oriented curves

Let O = Z[r] be an imaginary-quadratic order.
(Standard cases: 7 = v/ —dor 7 = Hzﬂ where d € Z>1.)

An O-orientation of an elliptic curve E is a ring embedding
t: O — End(E).

The pair (E, ¢) is then called an O-oriented curve.

Example: For E/F, supersingular with p > 5, there are two
orientations by Z[,/—p]: Mapping /—p either to 7 or to —.

Example: Any nonscalar endomorphism 7 € End(E) \ Z
defines an orientation of O := Z[r] on E.
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The oriented class-group action

Onuki 2020 (previously Kohel-Colo 2020 without proof):

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in
K, and O an order in K such that p does not divide the conductor of O. Then the
ideal class group CL(O) acts freely and transitively on p(EU(QO)).

https://arxiv.org/pdf/2002.09894
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Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in
K, and O an order in K such that p does not divide the conductor of O. Then the
ideal class group CL(O) acts freely and transitively on p(EU(O)).

p(&L(0)): a set of supersingular elliptic curves E over F,» with a
primitive orientation ¢: O — End(E), up to oriented isomorphism.

> 1: O — End(E) is primitive if (1(O) ®z Q) N End(E) = +(O).

> «: (E,u) — (E', ) is an oriented isomorphism if « 0 . =t/ 0 cx.

The group action is defined as follows:
ax (E, 1) == (E/a, (¢q 0t 0 ¢y)/norm(a))
where ¢q: E — E/a is the isogeny with kernel

Ela] := ﬂ ker(v(a)) .

aca

(NB: In the cases we care about, we have 7> = [—p], hence all isogenies are F-rational.)
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Recap: CSIDH

CSIDH is the special case of orienting by Frobenius.
(That is: Orienting by O = Z[,/=p] via the identification \/=p > .)
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Recap: CSIDH
CSIDH is the special case of orienting by Frobenius.
(That is: Orienting by O = Z[,/=p] via the identification \/=p > .)

Since “finding” m on any E/F), is trivial (itis =: (x,y) = (<',")),
it need not be transmitted and we get an action on curves only.

Fun fact: Orienting E/FF, by \/—p — — gives exactly the same
picture, but everything is mirrored via quadratic twisting:

(= + AP + 3} 5 (P =x° — A¥® + 1}
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Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):
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Representing orientations

To turn the previous theorem into a concrete group action for
general O, we need to specify how to encode the pair (E, ¢):

» When O is represented as Z[7| := Z[X]/u+(X) where p,
is the minimal polynomial of 7, an embedding
t: O — End(E) can be specified by the image «(7).

~- In practice, an oriented curve is given as a pair (E, ) with
¥ € End(E), implicitly communicating that 9 = «(7).

» There are multiple options for representing such a 9.

Simple example: A deterministically chosen generator point of ker(4).
More complicated: Deterministic HD representation (SCALLOP-HD).
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Oriented isogeny group actions: Why?

» Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):
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Oriented isogeny group actions: Why?

» Key point: Orientations allow us to decouple the
discriminant of O from the characteristic p.

This is advantageous for at least two reasons (see next part):

~» Can use rings like O = Z[f+/—d], where computing the
relation lattice A can be much easier than for general O.

~+ For Clapoti (soon!), we have to solve norm equations that
are derived from O for target values derived from p.
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Orientations: Security

!! Not every orientation is equally secure: If disc(O) has a
square factor 42, the vectorization problem for the O-orientation
can be split into smaller chunks by “walking up the g-volcano”.
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Orientations: Security

!! Not every orientation is equally secure: If disc(O) has a
square factor 42, the vectorization problem for the O-orientation
can be split into smaller chunks by “walking up the g-volcano”.

Concretely, this means vectorization for O reduces to:

» Vectorization for the superorder of O of index g.
~ class group shrinks by a factor ~ 4!

» Some brute-force search of complexity ~ g.

~» Complexity determined by squarefree part of disc(O),
plus the non-smooth square part of disc(O).

To play around with this, try my CTF challenge “not_csidh”: https://hxp.io/blog/96
(Don't forget to submit your code to SageMath afterwards. =)
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Oriented group actions: Cryptographic instantiations

v

C/RS/DKS: Oriented by Z[r], using ordinary E.

v

CSIDH: Oriented by Z[r|, using supersingular E/IF,.

v

OSIDH: Oriented by Z[(".], where ¢+ small endomorphism.
SCALLOP family: Oriented by Z[f.|, where f large prime.

v
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Plan for this talk

v

The CSIDH non-interactive key exchange. \/

v

Classical and quantum security. v

v

Is this an effective group action? v

Oriented elliptic curves and isogenies. v

v

v

Unrestricted effective group actions.
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higher dimensions

| KLaPoTi

| PEGASIS |
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Clapoti

Even more maritime isogenies??

Noun [ edit]
clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms al
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Clapoti

Even more maritime isogenies??

Noun [edit]
clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms al

» Page-Robert: A polynomial-time algorithm to evaluate
the isogeny group action on arbitrary ideals.
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Polynomial-time group action: Clapoti

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).
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» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).

» Kani: This gives an N-isogeny
®: ExE— E; x Eg,
(P,Q) — (#6(P) + 1e(Q), ~e(P) + ¢(Q)-

» The kernel is ker(®) = {(QAS[, (R),¢(R)) : R € Eq[N]}.
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Polynomial-time group action: Clapoti (in 2D)
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Polynomial-time group action: Clapoti (in 2D)

> The kernel is ker(®) = {(%(R), c(R)) : R € Eq[N]}.

» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

/" The kernel is equal to the alternative description
ker(®) = {([norm(b)|R,7(R)) | R € E[N]}
where v € End(E) is a generator of the principal ideal brc.

— The isogeny group action can now be computed in
polynomial time even for “ugly” input ideals.

— Isogenies yield true effective group actions, at last!
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Effective group actions (2D)

» Ideals equivalent to a look like 0% /norm(a) where v € a.
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Effective group actions (2D)

» Ideals equivalent to a look like 0% /norm(a) where v € a.
» The norm equation turns into N = f(x,y) + f(x,y) with
f(x,y) = norm(xw; 4+ ywy)/norm(a) when a = Zw; + Zws.

!! This is the norm form of Z := a + ia inside the quaternion
order Q := O +1i(). (NB:The quaternion algebra here is not End(E) ® Q.)

~» Look for element a € a + ia with norm(a) = N - norm(Z),
splititinto o = 8 + iy with 3,7 € O.

Then use b := af/norm(a) and ¢ := ay/norm(a).

The KLPT algorithm does this for us!

...only for disc(0) = p**=.

€

):

~+ KLaPoTi/SCALLOP2D: Practical instantiation of this.
Pretty bad performance for “small” parameters, but finally
asymptotically polynomial-time for the first time.
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Effective group actions (4D)

Applying Clapoti in 4 > 2 dimensions is better.

~ PEGASIS «
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Effective group actions (4D)

Applying Clapoti in 4 > 2 dimensions is better.

~ PEGASIS «

(See Ryan’s talk later today!)
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| Couveignes/Rostovtsev-Stolbunov

.

| De Feo-Kieffer-Smith |

orientations

A
| OSIDH | CSI-FiSh |

SCALLOP higher dimensions

| PEARL-SCALLOP | | SCALLOP-HD |

| KLaPoTi

| PEGASIS |
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Plan for this talk

The CSIDH non-interactive key exchange. \/

>

» Classical and quantum security. v

» Is this an effective group action? v

» Oriented elliptic curves and isogenies. v
» Unrestricted effective group actions. v
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Questions!

» Quantum security: How large should disc(O) be?
(I think this is the biggest roadblock for CSIDH & friends.)

» Performance: Is PEGASIS universally superior?
(Can we thank the others for their service and ditch them for good?)

» Protocols: Beyond key exchange?

(Proposals exist—any of them convincing to practicioners?)
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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