$30-\varepsilon$ Years of Isogeny Group Actions

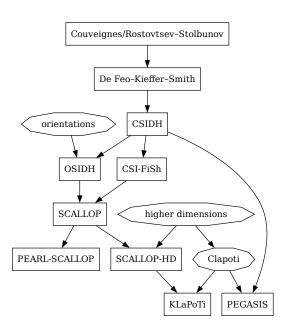
Lorenz Panny

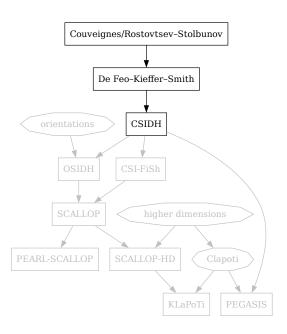
Technische Universität München

Swissogeny Day, Zürich, 20 March 2025

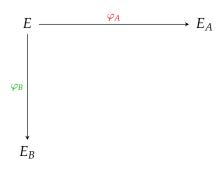
Plan for this talk

- ► The CSIDH non-interactive key exchange.
- ► Classical and quantum security.
- ► Is this an effective group action?
- ▶ Oriented elliptic curves and isogenies.
- ► *Un*restricted effective group actions.

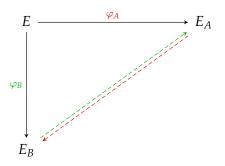




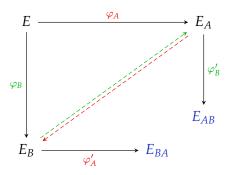
Е



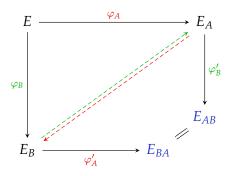
▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)



- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .

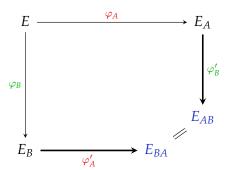


- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .
- ▶ Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$,

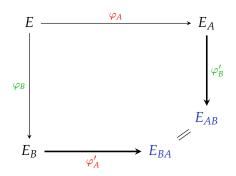


- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .
- Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}: E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}: E_A \to E_{AB}$, such that $E_{AB} \cong E_{BA}$.

How to find "parallel" isogenies?

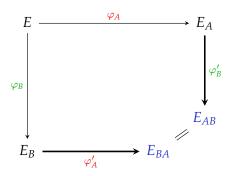


How to find "parallel" isogenies?



<u>CSIDH's solution</u> (earlier: Couveignes, Rostovtsev–Stolbunov):

How to find "parallel" isogenies?



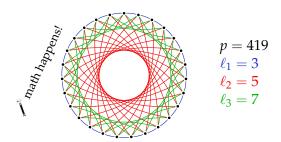
<u>CSIDH</u>'s solution (earlier: Couveignes, Rostovtsev–Stolbunov): Use special isogenies φ_A which can be transported to the curve E_B totally independently of the secret isogeny φ_B . (Similarly with reversed roles, of course.)

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

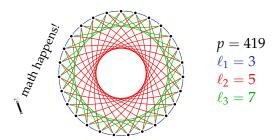
- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X.

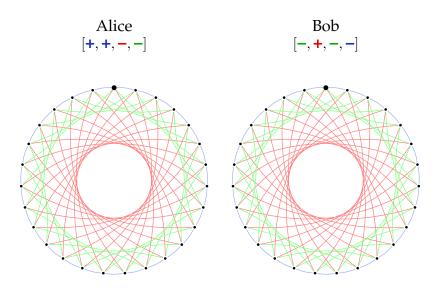
- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X.

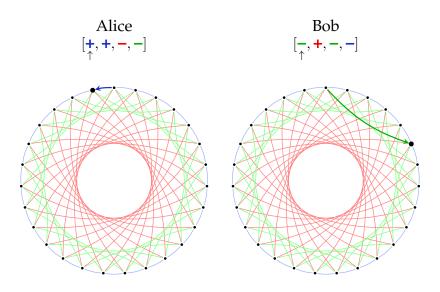


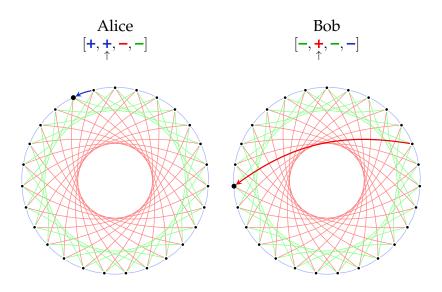
- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the \mathbb{F}_p -rational isogenies of degrees ℓ_i within X.

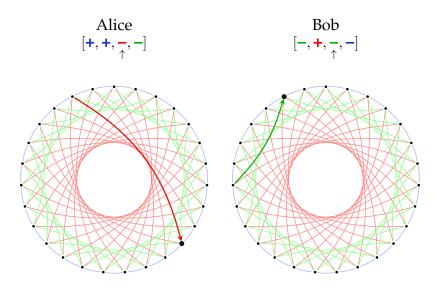


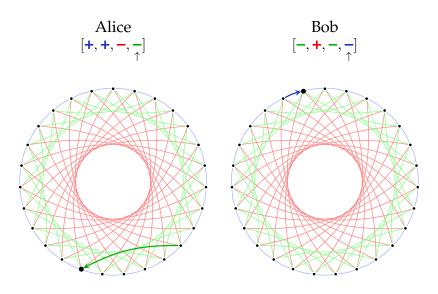
▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.

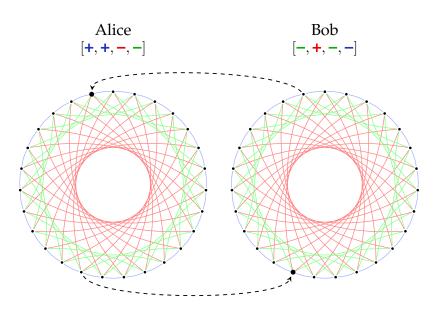


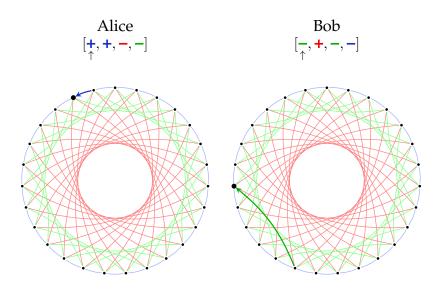


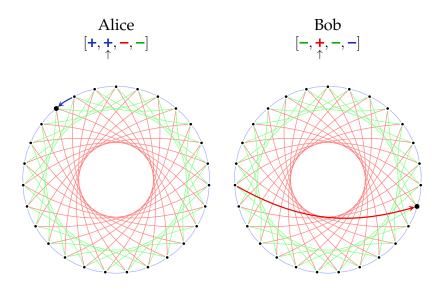


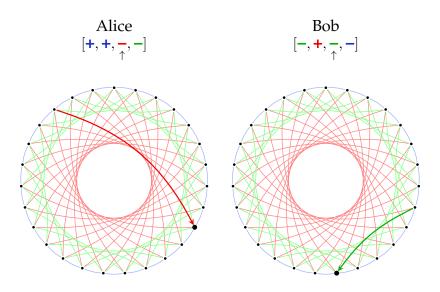


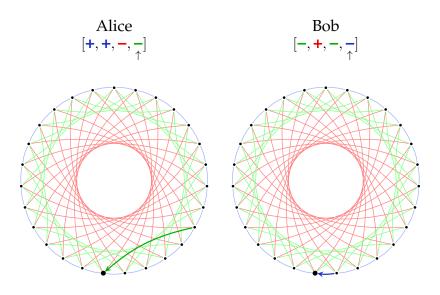


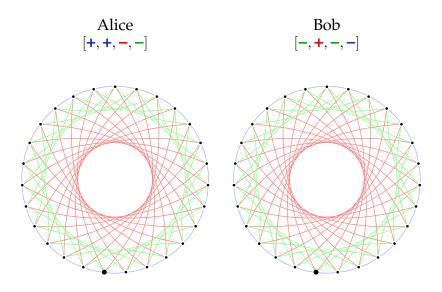












And... action!

Cycles are compatible: [right then left] = [left then right]

And... action!

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$.

And... action!

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

CSIDH via ideals

In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$.

CSIDH via ideals

In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals

$$\mathfrak{l}_i := (\ell_i, \pi - 1);$$
 $\overline{\mathfrak{l}_i} := (\ell_i, \pi + 1),$

where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$).

CSIDH via ideals

In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals

$$\mathfrak{l}_i := (\ell_i, \pi - 1);$$
 $\overline{\mathfrak{l}_i} := (\ell_i, \pi + 1),$

where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$).

<u>General picture</u>: The kernels K of rational ℓ_i -isogenies are defined by ideals \mathfrak{a} of $\operatorname{End}_{\mathbb{F}_p}(E)$ via

$$K = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$

CSIDH via ideals

In CSIDH, the ℓ_i -isogeny kernels are generated by $(x, y) \in E$ with $x \in \mathbb{F}_p$. The two cases $y \in \mathbb{F}_p$ and $y \notin \mathbb{F}_p$ correspond precisely to the two $\mathbb{Z}[\pi]$ -ideals

$$\mathfrak{l}_i := (\ell_i, \pi - 1);$$
 $\overline{\mathfrak{l}}_i := (\ell_i, \pi + 1),$

where π is the *p*-power Frobenius endomorphism ($\pi^2 = [-p]$).

<u>General picture</u>: The kernels K of rational ℓ_i -isogenies are defined by ideals \mathfrak{a} of $\operatorname{End}_{\mathbb{F}_p}(E)$ via

$$K = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$

!! The endomorphisms in a "carve out" our kernel subgroup.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**.

There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**.

There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially.

Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal.

The quotient \mathbb{Z}^n/Λ is \cong the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

(I will talk some more about this later.)

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set *X* is **finite** \Longrightarrow The action is **not free**.

There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially.

Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

We <u>understand the structure</u>: Trivial action $\widehat{=}$ cycle in the graph $\widehat{=}$ endomorphism $\widehat{=}$ principal $\mathbb{Z}[\pi]$ -ideal.

The quotient \mathbb{Z}^n/Λ is \cong the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

(I will talk some more about this later.)

!! This group characterizes when two paths lead to the same curve.

Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.

Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.

Big problem: No good way to control $\#E(\mathbb{F}_p)$

Couveignes/Rostovtsev-Stolbunov/De Feo-Kieffer-Smith

...proposed doing the same thing, but with ordinary curves.

Big problem: No good way to control $\#E(\mathbb{F}_p)$

 \rightsquigarrow Computing the action of l_i is much more expensive.

Plan for this talk

► The CSIDH non-interactive key exchange.

- ► Classical and quantum security.
- ► Is this an effective group action?
- ▶ Oriented elliptic curves and isogenies.
- ► *Unrestricted effective group actions.*

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f\colon \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f\colon \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

For group <u>actions</u>, we simply cannot compose a * s and b * s!

Security of CSIDH

Core problem:

Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph.

Security of CSIDH

Core problem:

Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph.

The size of *X* is
$$\#\operatorname{cl}(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$$
.

 \leadsto best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$.

Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Security of CSIDH

Core problem:

Given $E, E' \in X$, find a path $E \to E'$ in the isogeny graph.

The size of *X* is
$$\#\operatorname{cl}(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$$
.

 \rightarrow best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

 \rightsquigarrow non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical *and* quantum operations.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical *and* quantum operations.
 - → How to compare costs?

 (Is one qubit operation ≈ one bit operation? a hundred? millions?)

Kuperberg's algorithm consists of two components:

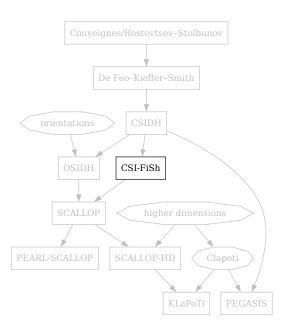
- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical *and* quantum operations.
 - → How to compare costs? (Is one qubit operation ≈ one bit operation? a hundred? millions?)

⇒ Security estimates for CSIDH & friends vary wildly.

Plan for this talk

- ► The CSIDH non-interactive key exchange.
- ****

- ► Classical and quantum security.
- ► Is this an effective group action?
- ► Oriented elliptic curves and isogenies.
- ► *Un*restricted effective group actions.



▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$.

- ▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$.
- ► Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i .

- ▶ Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$.
- ▶ Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i .
- ► Evaluating a single \mathfrak{l}_i : Write $\mathfrak{l}_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point P with $\vartheta(P) = [\lambda_i]P$.

- ► Let $l_1, ..., l_n$ be small prime ideals of \mathcal{O} , and suppose \mathfrak{a} is given to us in the form $\mathfrak{a} = l_1^{e_1} \cdots l_n^{e_n}$.
- ▶ Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_i .
- ► Evaluating a single \mathfrak{l}_i : Write $\mathfrak{l}_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point P with $\vartheta(P) = [\lambda_i]P$.
- ▶ Optimization: Batch multiple l_i together \leadsto "strategies".

► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action).

- ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action).
- ► The CSIDH paper repeats this.

- ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action).
- ► The CSIDH paper repeats this.

Issue:

- ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation.
 - \rightsquigarrow Cost of evaluating after *k* operations is $O(\exp(k))$.

- ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action).
- ► The CSIDH paper repeats this.

Issue:

- ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation.
 - \sim Cost of evaluating after *k* operations is $O(\exp(k))$.
- ► Representing cl(O) as reduced ideals allows computing in cl(O) efficiently, but evaluation becomes superpolynomial.

 (A similar approach will be discussed on the following slides.)

- ► Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way commutative group action).
- ► The CSIDH paper repeats this.

Issue:

- ▶ Representing $cl(\mathcal{O})$ by the group $(\mathbb{Z}^n, +)$ of exponents makes the exponents grow larger with each operation. \rightsquigarrow Cost of evaluating after k operations is $O(\exp(k))$.
- ► Representing cl(O) as reduced ideals allows computing in cl(O) efficiently, but evaluation becomes superpolynomial.

 (A similar approach will be discussed on the following slides.)
- → A priori **not** an effective group action when done either way!

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps:

- 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time, Precomputation.]
- 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.]
- 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.]
- 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps:

- 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time. Precomputation.]
- 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.]
- 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.]
- 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit *p*.

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector $\underline{v}\in\mathbb{Z}^d$ consists of the following steps:

- 1. "Computing the class group": Find a basis of the relation lattice $\Lambda \subseteq \mathbb{Z}^d$ with respect to $\mathfrak{l}_1,\ldots,\mathfrak{l}_d$. [Classically subexponential-time, quantumly polynomial-time. Precomputation.]
- 2. "Lattice reduction": Prepare a "good" basis of Λ using a lattice-reduction algorithm such as BKZ. [Configurable complexity-quality tradeoff by varying the block size. Precomputation.]
- 3. "Approximate CVP": Obtain a vector $\underline{w} \in \Lambda$ such that $\|\underline{v} \underline{w}\|_1$ is "small", using the reduced basis. [Polynomial-time, but the quality depends on the quality of step 2.]
- 4. "Isogeny steps": Evaluate the action of the vector $\underline{v}-\underline{w}\in\mathbb{Z}^d$ as a sequence of \mathfrak{l}_i -steps. [Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit *p*.

What about asymptotics?

Tradeoff: Lattice part vs. isogeny part

- ▶ By increasing the number n of ideals l_i , we can trade off some "isogeny effort" for "lattice effort".
- → Sweet spot: Minimize total cost.

Tradeoff: Lattice part vs. isogeny part

- ▶ By increasing the number n of ideals l_i , we can trade off some "isogeny effort" for "lattice effort".
- → Sweet spot: Minimize total cost.

CSI-FiSh really isn't polynomial-time

It is fairly well-known that CSIDH¹ in its basic form is merely a restricted effective group action $G \times X \to X$: There is a small number of group elements $\mathfrak{l}_1, \ldots, \mathfrak{l}_d \in G$ whose action can be applied to arbitrary elements of X efficiently, but applying other elements (say, large products $\mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_d^{e_d}$ of the \mathfrak{l}_i) quickly becomes infeasible as the exponents grow.

The only known method to circumvent this issue consists of a folklore strategy first employed in practice by the signature scheme CSI-FiSh. The core of the technique is to rewrite any given group element as a *short* product combination of the ℓ_i , whose action can then be computed in the usual way much more affordably. (Notice how this is philosophically similar to the role of the square-and-multiply algorithm in discrete-logarithm land!)

The main point of this post is to remark that this approach is **not asymptotically efficient**, even when a quantum computer can be used, contradicting a false belief that appears to be rather common among isogeny aficionados.

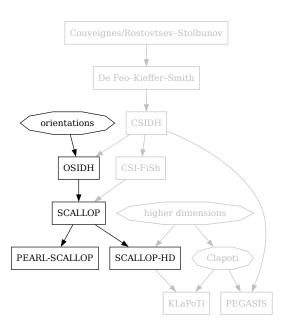
- Classically: Evaluation $L_p[1/2].$ Attack $L_p[1].$
- <code>Quantumly</code>: Evaluation $L_p[1/3]$. Attack $L_p[1/2]$.

https://yx7.cc/blah/2023-04-14.html

Plan for this talk

- ► The CSIDH non-interactive key exchange.
- ****

- ► Classical and quantum security.
- **v** /
- ► Is this an effective group action?
- \checkmark
- ► Oriented elliptic curves and isogenies.
- ► *Un*restricted effective group actions.



More endomorphisms

▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi - \lambda)$.

More endomorphisms

- ▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi \lambda)$.
- ► New <u>idea</u>: Replace π by other endomorphisms. (Recall that End(E) is a rank-4 lattice in the supersingular case \leadsto plenty of choice.)

More endomorphisms

- ▶ In CSIDH, we've used kernels of the form $K = E(\mathbb{F}_p)[\ell_i]$, which equals the subgroup defined by the ideal $(\ell_i, \pi \lambda)$.
- ► New <u>idea</u>: Replace π by other endomorphisms. (Recall that End(E) is a rank-4 lattice in the supersingular case \leadsto plenty of choice.)

<u>Fact:</u> If $\varphi \colon E \to E'$ is an isogeny for which $\ker(\varphi)$ is described in terms of scalars and some endomorphism $\tau \in \operatorname{End}(E)$, then we can usually push τ through φ :

$$\mathbb{Z}[\tau] \longleftrightarrow \operatorname{End}(E')$$
$$\tau \longmapsto (\varphi \circ \tau \circ \widehat{\varphi})/\operatorname{deg}(\varphi)$$

24 / 43

Ideals \leftrightarrow kernels

As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$.

Ideals \leftrightarrow kernels

As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$.

Principal ideals (ϑ) correspond to endomorphisms ϑ .

Ideals \leftrightarrow kernels

As before with CSIDH, the isogenies for which this works are those defined by (invertible) ideals of the ring $\mathbb{Z}[\tau]$.

Principal ideals (ϑ) correspond to endomorphisms ϑ .

→ Connection to the "class set" or class group:

Let
$$\mathcal{O}=\mathbb{Z}[au]$$
 be an imaginary-quadratic order.
(Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.)

Let
$$\mathcal{O}=\mathbb{Z}[au]$$
 be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.)

An \mathcal{O} -orientation of an elliptic curve E is a ring embedding

$$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$
.

The pair (E, ι) is then called an \mathcal{O} -oriented curve.

Let
$$\mathcal{O}=\mathbb{Z}[au]$$
 be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.)

An \mathcal{O} -orientation of an elliptic curve E is a ring embedding

$$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$
.

The pair (E, ι) is then called an \mathcal{O} -oriented curve.

Example: For E/\mathbb{F}_p supersingular with $p \ge 5$, there are two orientations by $\mathbb{Z}[\sqrt{-p}]$: Mapping $\sqrt{-p}$ either to π or to $-\pi$.

Let
$$\mathcal{O}=\mathbb{Z}[au]$$
 be an imaginary-quadratic order. (Standard cases: $au=\sqrt{-d}$ or $au=\frac{1+\sqrt{-d}}{2}$ where $d\in\mathbb{Z}_{\geq 1}$.)

An \mathcal{O} -orientation of an elliptic curve E is a ring embedding

$$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$$
.

The pair (E, ι) is then called an \mathcal{O} -oriented curve.

Example: For E/\mathbb{F}_p supersingular with $p \ge 5$, there are two orientations by $\mathbb{Z}[\sqrt{-p}]$: Mapping $\sqrt{-p}$ either to π or to $-\pi$.

Example: Any nonscalar endomorphism $\tau \in \operatorname{End}(E) \setminus \mathbb{Z}$ defines an orientation of $\mathcal{O} := \mathbb{Z}[\tau]$ on E.

Onuki 2020 (previously Kohel-Colò 2020 without proof):

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}\ell(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

https://arxiv.org/pdf/2002.09894

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}\ell(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

 $\rho(\mathcal{E}\mathcal{U}(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism.

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

 $\rho(\mathcal{E}\mathcal{U}(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism.

- $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ is primitive if $(\iota(\mathcal{O}) \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.
- $\alpha: (E, \iota) \to (E', \iota')$ is an *oriented* isomorphism if $\alpha \circ \iota = \iota' \circ \alpha$.

Theorem 3.4. Let K be an imaginary quadratic field such that p does not split in K, and \mathcal{O} an order in K such that p does not divide the conductor of \mathcal{O} . Then the ideal class group $\mathcal{C}(\mathcal{O})$ acts freely and transitively on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

 $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$: <u>a</u> set of supersingular elliptic curves E over \mathbb{F}_{p^2} with a primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$, up to oriented isomorphism.

- $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ is primitive if $(\iota(\mathcal{O}) \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.
- $\alpha \colon (E, \iota) \to (E', \iota')$ is an *oriented* isomorphism if $\alpha \circ \iota = \iota' \circ \alpha$.

The group action is defined as follows:

$$\mathfrak{a} \star (E, \iota) := (E/\mathfrak{a}, (\phi_{\mathfrak{a}} \circ \iota \circ \widehat{\phi}_{\mathfrak{a}})/\text{norm}(\mathfrak{a}))$$

where $\phi_{\mathfrak{a}} \colon E \to E/\mathfrak{a}$ is the isogeny with kernel

$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$

(NB: In the cases we care about, we have $\pi_{p^2} = [-p]$, hence all isogenies are \mathbb{F}_{p^2} -rational.)

Recap: CSIDH

CSIDH is the special case of orienting by Frobenius.

(That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.)

Recap: CSIDH

CSIDH is the special case of orienting by Frobenius. (That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.)

Since "finding" π on any E/\mathbb{F}_p is trivial (it is $\pi: (x,y) \mapsto (x^p,y^p)$), it need not be transmitted and we get an action on curves only.

Recap: CSIDH

CSIDH is the special case of orienting by Frobenius. (That is: Orienting by $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ via the identification $\sqrt{-p} \mapsto \pi$.)

Since "finding" π on any E/\mathbb{F}_p is trivial (it is π : $(x,y) \mapsto (x^p,y^p)$), it need not be transmitted and we get an action on curves only.

<u>Fun fact</u>: Orienting E/\mathbb{F}_p by $\sqrt{-p} \mapsto -\pi$ gives exactly the same picture, but everything is mirrored via quadratic twisting:

$${y^2 = x^3 + Ax^2 + x} \stackrel{\sim}{\longmapsto} {y^2 = x^3 - Ax^2 + x}$$

To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) :

To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) :

▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$.

To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) :

- ▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$.
- \rightsquigarrow In **practice**, an oriented curve is given as a pair (E, ϑ) with $\vartheta \in \operatorname{End}(E)$, implicitly communicating that $\vartheta = \iota(\tau)$.

To turn the previous theorem into a concrete group action for general \mathcal{O} , we need to specify how to encode the pair (E, ι) :

- ▶ When \mathcal{O} is represented as $\mathbb{Z}[\tau] := \mathbb{Z}[X]/\mu_{\tau}(X)$ where μ_{τ} is the minimal polynomial of τ , an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ can be specified by the image $\iota(\tau)$.
- \rightsquigarrow In **practice**, an oriented curve is given as a pair (E, ϑ) with $\vartheta \in \operatorname{End}(E)$, implicitly communicating that $\vartheta = \iota(\tau)$.
 - ► There are multiple options for representing such a ϑ . Simple example: A deterministically chosen generator point of ker(ϑ). More complicated: Deterministic HD representation (SCALLOP-HD).

Oriented isogeny group actions: Why?

▶ <u>Key point</u>: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p.

This is advantageous for at least two reasons (see next part):

Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p.

This is advantageous for at least two reasons (see next part):

 \sim Can use rings like $\mathcal{O} = \mathbb{Z}[f\sqrt{-d}]$, where computing the relation lattice Λ can be much easier than for general \mathcal{O} .

Oriented isogeny group actions: Why?

▶ Key point: Orientations allow us to decouple the discriminant of \mathcal{O} from the characteristic p.

This is advantageous for at least two reasons (see next part):

- \sim Can use rings like $\mathcal{O} = \mathbb{Z}[f\sqrt{-d}]$, where computing the relation lattice Λ can be much easier than for general \mathcal{O} .
- \leadsto For Clapoti (soon!), we have to solve norm equations that are derived from \mathcal{O} for target values derived from p.

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

Concretely, this means vectorization for \mathcal{O} reduces to:

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

Concretely, this means vectorization for \mathcal{O} reduces to:

▶ Vectorization for the superorder of \mathcal{O} of index q.

 \rightsquigarrow class group shrinks by a factor $\approx q!$

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

Concretely, this means vectorization for \mathcal{O} reduces to:

- ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$
- ► Some brute-force search of complexity $\approx q$.

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

Concretely, this means vectorization for \mathcal{O} reduces to:

- ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$
- ► Some brute-force search of complexity $\approx q$.
- \sim Complexity determined by squarefree part of disc(\mathcal{O}), <u>plus</u> the non-smooth square part of disc(\mathcal{O}).

!! Not every orientation is equally secure: If $\operatorname{disc}(\mathcal{O})$ has a square factor q^2 , the vectorization problem for the \mathcal{O} -orientation can be split into smaller chunks by "walking up the q-volcano".

Concretely, this means vectorization for \mathcal{O} reduces to:

- ► Vectorization for the superorder of \mathcal{O} of index q. \sim class group shrinks by a factor $\approx q!$
- ► Some brute-force search of complexity $\approx q$.
- \sim **Complexity** determined by squarefree part of disc(\mathcal{O}), <u>plus</u> the non-smooth square part of disc(\mathcal{O}).

To play around with this, try my CTF challenge "not_csidh": https://hxp.io/blog/96 (Don't forget to submit your code to SageMath afterwards. :)

Oriented group actions: Cryptographic instantiations

▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*.

Oriented group actions: Cryptographic instantiations

- ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*.
- ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p .

Oriented group actions: Cryptographic instantiations

- ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*.
- ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p .
- ▶ **OSIDH**: Oriented by $\mathbb{Z}[\ell^n \iota]$, where ι small endomorphism.

Oriented group actions: Cryptographic instantiations

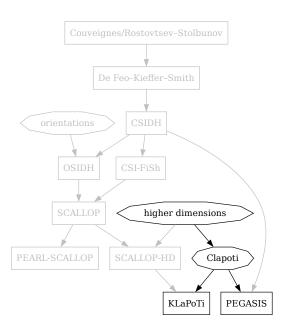
- ▶ **C/RS/DKS**: Oriented by $\mathbb{Z}[\pi]$, using ordinary *E*.
- ▶ **CSIDH**: Oriented by $\mathbb{Z}[\pi]$, using supersingular E/\mathbb{F}_p .
- ▶ **OSIDH**: Oriented by $\mathbb{Z}[\ell^n \iota]$, where ι small endomorphism.
- ▶ **SCALLOP** family: Oriented by $\mathbb{Z}[f\iota]$, where f large prime.

Plan for this talk

- ► The CSIDH non-interactive key exchange.
- \checkmark

- ► Classical and quantum security.
- **√**
- ► Is this an effective group action?
- ► Oriented elliptic curves and isogenies.

► *Unrestricted effective group actions.*



Clapoti

Even more maritime isogenies??

```
Noun [edit]

clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms ▲]
```

Clapoti

Even more maritime isogenies??

```
Noun [edit]

clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms ▲]
```

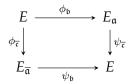
► Page–Robert: A polynomial-time algorithm to evaluate the isogeny group action on arbitrary ideals.

Idea:

► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$.

Idea:

► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$.



Idea:

► Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$.

$$E \xrightarrow{\phi_{\mathfrak{b}}} E_{\mathfrak{a}}$$

$$\downarrow^{\psi_{\overline{\mathfrak{c}}}}$$

$$E_{\overline{\mathfrak{a}}} \xrightarrow{\psi_{\mathfrak{b}}} E$$

► Kani: This gives an *N*-isogeny

$$\begin{split} \Phi \colon E \times E &\longrightarrow E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}}, \\ (P, Q) &\longmapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi}_{\overline{\mathfrak{c}}}(Q), \ -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi}_{\mathfrak{b}}(Q)) \,. \end{split}$$

Idea:

▶ Find two ideals \mathfrak{b} , \mathfrak{c} of coprime norms, both equivalent to \mathfrak{a} . Let $N := \text{norm}(\mathfrak{b}) + \text{norm}(\mathfrak{c})$.

$$E \xrightarrow{\phi_{\mathfrak{b}}} E_{\mathfrak{a}}$$

$$\downarrow^{\phi_{\overline{\mathfrak{c}}}} \downarrow^{\psi_{\overline{\mathfrak{c}}}} E_{\overline{\mathfrak{a}}} \xrightarrow{\psi_{\mathfrak{b}}} E$$

► Kani: This gives an *N*-isogeny

$$\begin{split} \Phi \colon E \times E &\longrightarrow E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}}, \\ (P,Q) &\longmapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi}_{\overline{\mathfrak{c}}}(Q), \, -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi}_{\mathfrak{b}}(Q)) \, . \end{split}$$

► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathbf{b}}(R), \psi_{\overline{\mathbf{c}}}(R)) : R \in \underline{E}_{\mathbf{a}}[N]\}.$

► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in E_{\mathfrak{a}}[N]\}.$

- ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{b}(R), \psi_{\overline{c}}(R)) : R \in E_{\mathfrak{a}}[N]\}.$
- ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$.

- ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$
- ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$.
- The kernel is equal to the alternative description

$$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$

where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{c}$.

- ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{b}(R), \psi_{\overline{c}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$
- ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$.

$$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$

where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{\mathfrak{c}}$.

⇒ The isogeny group action can now be computed in polynomial time even for "ugly" input ideals.

- ► The kernel is $\ker(\Phi) = \{(\widehat{\phi}_{\mathfrak{b}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \underline{E}_{\mathfrak{a}}[N]\}.$
- ► <u>Issue</u>: Evaluating this formula seems to require a-priori knowledge of $\phi_{\mathfrak{b}}, \psi_{\overline{\mathfrak{c}}}$.

$$\ker(\Phi) = \{([\mathsf{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N]\}$$

where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $b\bar{\mathfrak{c}}$.

- ⇒ The isogeny group action can now be computed in polynomial time even for "ugly" input ideals.
- ⇒ Isogenies yield true effective group actions, at last!

▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.

- ▶ Ideals equivalent to a look like $a\overline{\gamma}/\text{norm}(a)$ where $\gamma \in a$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.

- ▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.
- **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes \mathbb{Q} .)

- ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.
- **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* $\operatorname{End}(E) \otimes \mathbb{Q}$.)
- ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$.

- ▶ Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.
- **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes Q.)
- ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$.
- ∴ The KLPT algorithm does this for us!

- ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.
- !! This is the norm form of $\mathcal{I}:=\mathfrak{a}+i\mathfrak{a}$ inside the quaternion order $\mathcal{Q}:=\mathcal{O}+i\mathcal{O}$. (NB: The quaternion algebra here is *not* $\mathrm{End}(\mathit{E})\otimes\mathbb{Q}$.)
- ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$.
- ∴ The KLPT algorithm does this for us!
- : ...only for disc(\mathcal{O}) = $p^{3+\varepsilon}$.

- ► Ideals equivalent to \mathfrak{a} look like $\mathfrak{a}\overline{\gamma}/\mathrm{norm}(\mathfrak{a})$ where $\gamma \in \mathfrak{a}$.
- ► The norm equation turns into N = f(x, y) + f(x, y) with $f(x, y) = \text{norm}(x\omega_1 + y\omega_2)/\text{norm}(\mathfrak{a})$ when $\mathfrak{a} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$.
- **!!** This is the norm form of $\mathcal{I} := \mathfrak{a} + i\mathfrak{a}$ inside the quaternion order $\mathcal{Q} := \mathcal{O} + i\mathcal{O}$. (NB: The quaternion algebra here is *not* End(*E*) \otimes Q.)
- ightharpoonup Look for element $\alpha \in \mathfrak{a} + i\mathfrak{a}$ with $\operatorname{norm}(\alpha) = N \cdot \operatorname{norm}(\mathcal{I})$, split it into $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathcal{O}$. Then use $\mathfrak{b} := \mathfrak{a}\overline{\beta}/\operatorname{norm}(\mathfrak{a})$ and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/\operatorname{norm}(\mathfrak{a})$.
- ∴ The KLPT algorithm does this for us!
- : ...only for disc $(\mathcal{O}) = p^{3+\varepsilon}$.
- <u>KLaPoTi/SCALLOP2D</u>: Practical instantiation of this.

 Pretty bad performance for "small" parameters, but finally asymptotically polynomial-time for the first time.

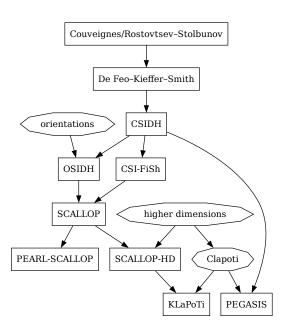
Applying Clapoti in 4 > 2 dimensions is better.

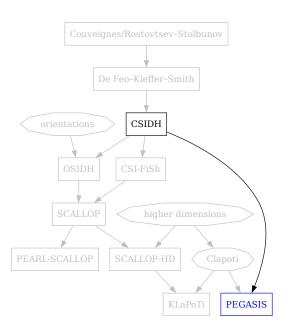
 \rightsquigarrow PEGASIS \leftrightarrow

Applying Clapoti in 4 > 2 dimensions is better.

→ PEGASIS ←

(See Ryan's talk later today!)





Plan for this talk

- ► The CSIDH non-interactive key exchange.
- ► Classical and quantum security. ✓
- ► Is this an effective group action?
- ► Oriented elliptic curves and isogenies. ✓
- ► *Unrestricted effective group actions.* ✓

Questions!

► Quantum security: How large should disc(O) be?
(I think this is the biggest roadblock for CSIDH & friends.)

► Performance: Is PEGASIS universally superior?

(Can we thank the others for their service and ditch them for good?)

► Protocols: Beyond key exchange?

(Proposals exist—any of them convincing to practicioners?)

Questions?

(Also feel free to email me: lorenz@yx7.cc)