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Big picture 2@ 2

» Isogenies are a type of maps between elliptic curves.

» Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

~» Cryptography!

(Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties.)
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Elliptic curves & isogenies.

The SIKE attacks.
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Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F,)
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The same curve y?> = x> — x + 1 over the finite field Fzg.
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The addition law of y?> = x> — x + 1 over the finite field F.
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Isogenies

...are just fancily-named
o
between elliptic curves.
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Isogenies

» given by rational functions.

» a group homomorphism.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.

¥ —4x2430x—12 x3—6x2—14x435
22 ' (x2)p Yy

defines a degree-3 isogeny of the elliptic curves

Generic example: (x,y) — (

(P =x4+x} — {¥*=2°>-3x+3}

over F7. Its kernel is {(2,9), (2, -9), oo}.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique*
separable* isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.
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Computing isogenies: Vélu’'s formulas (1971)
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Computing isogenies: Vélu’'s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

( )+ > (x(P+Q) - x(Q),

QeG\{oco}

P)+> yP+Q) - Q))>

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
» computing the defining equation of E/G;
» evaluating the isogeny E — E/G at a point.
Complexity: O(#G) ~ only suitable for small degrees.
The v/&lu algorithm reduces the cost to O(/#G).
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1. “Computing an isogeny”

Y STORMCLOUDZ

Keep in mind: Constructing isogenies E — _ is (usually) easy,
constructing an isogeny E — E’ given (E, E’) is (usually) hard.
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SIDH/SIKE

...was a well-known isogeny-based key exchange scheme:
» The “isogeny poster child” from ~ 2011 to ~ 2022.
» Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds pp : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?

E va E,
s
©B
Exp
=
Ep Ega
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How to find “parallel” isogenies?

E va E,
s
¥B
Exp
=z
Eg - Ega
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SIKE’s solution:
The isogeny 5 is a group homomorphism! (and A N B = {oc})
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How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

P ¢p(P)

» Alice picks A as (P + [a]Q) for fixed public P,Q € E.
» Bob includes 5 (P) and ¢3(Q) in his public key.

= Now Alice can compute A’ as (pp(P) + [a]¢p(Q)).
(Similarly for Bob.)
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The SIDH /SIKE attacks

» Not a case of everyone overlooking something stupid.
» The attack uses an unexpected profound new technique.

» SIKE revealed how a secret isogeny acts on lots of points.

« T LS .
LPo P

This isogeny interpolation problem turns out to be easy!
(at least in some cases —it’s complicated, etc., etc.)

» It has since found groundbreaking constructive uses.

» The general isogeny problem is entirely unaffected!

~+ The best thing to ever happen to isogenies! s
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Transcending to higher dimensions

» Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies between
products of elliptic curves

» The product E x E’ is an abelian surface.

» Similar to elliptic curves in many ways:

» Points form an abelian group.
» Similar group structure, but more components.
» Can define isogenies from kernel subgroups.
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The embedding lemma

» Fallout from the SIDH attack: New tools.

2.1. The embedding lemma. If &, a5 are two endomorphisms of an elliptic curve E of
degree a, and a,, then oy o a, is of degree a;a4,. However it is harder to control the degree
of the sum; by Cauchy-Schwartz we can bound it as: (a%”2 — a;/Z)z < deg(ag + ap) <
(a}"z + a;fz)z (unless 4y = —a5). And &y + a; is of degree a; + a5 if and only if #1 &, is of
trace 0.

If &, commutes with @, we can instead use Kanis lemma [Kangy, § 2] to build an
endomorphism F in dimension 2 on E? which is an (a; + a,)-isogeny (so is of degree
(a1 + a3)? since we are in dimension 2). So by going to higher dimension we can combine
degrees additively. The proof of this lemma is very simple (a simple two by two matrix
computation), but its powerful algorithmic potential went unnoticed until Castrick and
Decru applied it in [CD22] to attack on SIDH.

— Damien Robert [ePrint 2022/1704]
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The embedding lemma

Consider a commutative diagram of isogenies

E—2 L F
g v
E// - El//
%}

where g := deg ¢ and b := deg are coprime, and let N :=a + b.

Lemma. Then

P = (_f/} g) (P,Q) = (9(P) +#(Q), ~(P) + 7(Q))
defines an N-isogeny E x E” — E’ x E”.
Its kernel is ker(®) = {(3(T),¢'(T)) | T € E'[N]}.
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{]% Simply encode ¢: E — E’ as a higher-dimensional isogeny

/
P = (‘P 1”) ExE" - E xE".
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The HD representation

...1s an efficient representation of any (/)
isogeny between two elliptic curves.

(Recall: Using Vélu/v/&lu techniques, only smooth-degree isogenies are efficient.)

{]g Simply encode ¢: E — E’ as a higher-dimensional isogeny

AI
o= f, "ExE" S E xE".
- @

+ For full generality, need to embed in dimension 8.
I Requires isogeny formulas for principally polarized

abelian varieties of dimension > 2. Highly non-trivial matter,
but fundamentally doable and efficient.

20/51
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How to find “parallel” isogenies?

E ©A E,

Eap

N\
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How to find “parallel” isogenies?

E o EL

s

©B
Eap
=z
Ep - Ega
YA

CSIDH'’s solution:

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) 2 Z/(p +1).
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) 2 Z/(p +1).

= Forevery ¢ | (p+1) exists a unique order-¢ subgroup H;,.

~+ For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- T e Eeé
Eer—l f
E / EgS
\ /
\

E"E[HEgzﬂEp
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eer—l f
E / EgS
i e
vk

E-’Ez—>E52—>E£3

» Fact: Each curve has only one other rational /-isogeny.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eerfl f
E@/ P Ee
S

» Fact: Each curve has only one other rational /-isogeny.

!! Reverse arrows are unique; the “tail” E — E 3 cannot exist.

— The “special” isogenies ¢, form isogeny cycles!
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

/%/” W/
E/

» Fact: ker(y) o ¢;,) = ker(y,, 0 pr) = (ker @y, ker ¢),).
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

sﬂ’z/fElﬁ

. / 7111
f Ey
P /

|

» Fact: ker(@% o y,) = ker (i, 0 pp) = (ker g, ker oy,).
!! The order cannot matter = cycles must be compatible.
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» Choose some small odd primes 41, ..., ¢,.
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CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
=5

U3 =
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CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
0 =
03 =

» Walking “left” and “right” on any /;-subgraph is efficient.
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Walking in the CSIDH graph (in SageMath)

'sage: E = EllipticCurve(GF(419%2), [1,0]) |
'sage: E \
'Elliptic Curve defined by y*2 = x*3 + x \

|

\ over Finite Field in z2 of size 419*2
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Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right"” step:
R break

(218 : 403 : 1)

invert
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Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right"” step: invert
R break

sage: P

(218 : 403 : 1)

sage: P.order (). factor ()

2 * 3 % 7

sage: EE = E.isogeny_codomain(2x3%P) # "left"” 7-step

sage: EE

Elliptic Curve defined by y*2 = x*3 + 285%*x + 87
over Finite Field in z2 of size 419*2
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CSIDH key exchange
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Action! W

Cycles are compatible: [right then left] = [left then right]
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Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z5.

There is a group action of (Z", +) on our set of curves X!

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

! We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

!! This group characterizes when two paths lead to the same curve. ‘

The lattice A is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).
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CSIDH: Where things stand

» Classical security: (ND(\/ﬁ) ; attacks are basically brute force.

» Quantum security: Asymptotically exp((logp)'/>+o)
due to Kuperberg’s quantum algorithm.

— Key sizes: Public keys are 4\ bits for classical A\-bit security.
(For \-bit quantum security, need ©()\?) bits.)

» Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

» 2023: “Clapoti” —a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ~ “KLaPoTi”, “PEGASIS”.

(Previously, only restricted sequences of operations were efficient.)
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Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

— Security estimates for CSIDH & friends vary wildly. /I
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Oriented isogenies

There are many ways of building isogeny group actions.

‘ Couveignes/Rostovtsev-Stolbunov

De Feo-Kieffer-Smith

orientations

CSI-FiSh

higher dimensions

‘ PEARL-SCALLOP ‘ ‘ SCALLOP-HD ‘

KLaPoTi

PEGASIS
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Plan for this talk

Elliptic curves & isogenies. v

>

> The SIKE attacks. v

» Transcending to higher dimensions. v
» Isogeny group actions. v

v

Signatures from isogenies.
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SQIsign: What?

Qs

https://sqisign.org

» A new-ish and very hot post-quantum signature scheme.

» Based on super cool mathematics. =
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m — 1).

(Here 7 is the Frobenius endomorphism 7: (x,y) — (¥, 3").)

I Over sz, we can have more endomorphisms.
Example: y* = x> + xhas¢: (x,y) = (—x,v/—1-y).

» Extremely non-obvious fact in this setting:

Every isogeny ¢: E — E’ comes from an ideal I, C End(E).

2 We understand the structure of End(E).

= We understand how I, I, relate for isogenies ¢, 1: E — E'.

~~ one-sided ideal class set of End(E), etc.
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...is the formal version of what I just said.

Theorem. Fix Eq supersingular. The (contravariant) functor
E ~— Hom(E, Ey)
defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left End(Ep)-modules
with nonzero left End(Ep)-module homomorphisms.

a priori
A strong connection between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B} .

Isogenies become “connecting ideals” in quaternion land.

Z One direction is easy, the other seems hard! ~» Cryptography!
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The Deuring correspondence (examples)

Let p = 7799999 and let i,j satisfy i = —1, j? = —p, ji = —ij.

Thering Oy =Z @ Zi @ 21 ¢ 731
corresponds to the curve Eg: y? = x° + x.

Thering O = Z & Z4947i @ 7 27 g 7, P7H20100H]

corresponds to the curve E1: 32 = x° + 1.

The ideal | = Z4947 & Z4947i & 2 2207 o 7 DA
defines an isogeny Eyg — Eq of degree 4947 = 3 -17 - 97.
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The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.
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The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski "21: “Orientations and the supersingular endomorphism ring problem”).

» ~All isogeny security reduces to the “=" direction.
» SQIsign builds on the “<=" direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~+ Oriented curves and isogeny group actions. :
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Signing with isogenies a la SQIsign

» Fiat-Shamir: signature scheme from identification scheme.

seeret . > Ep

I

|

=

§ |
=} 3
= R
S| 3
CH s

I

I

v

E E

com challenge chl

» Easy signature: Eyx — Eg — Ecom — Ecni. Obviously broken.
» SQIsign: Construct new path Ey — Egpy (using secret).

» It relies on an explicit form of the Deuring correspondence.
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SQIsign (original version)

Via the Deuring correspondence:
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SQIsign (original version)

Via the Deuring correspondence:

» From End(E), End(E’), can randomize within Hom(E, E').

Main technical tool: The KLPT algorithm.
» From End(E), End(E’), can find smooth isogeny E — E'.

~+ SQIsign rewrites the “broken” signature
Epk — Eo = Ecom — Eci
into a random (smooth) isogeny E,i — Ey.

“If you have KLPT implemented very nicely as a black box,

then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.
+ ...but performance only gets better!
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SQIsign (original version): Numbers

sizes
parameter set public keys signatures
NIST-1 64 bytes 177 bytes
NIST-HI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel ice Lake CPU.
Optimizations are certainly possible and work in progress.

parameter set keygen signing verifying
NIST-1 3728 megacycles 5779 megacycles 108 megacycles
NIST-HlI 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles

Source: https://sqisign.org (2023-2024)
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SQIsign (current version): Dramatically improved!

» The > 20 x speedup over the original version of SQIsign
comes from the new tools underlying the SIKE attacks.

» Also, it has even smaller signatures.
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SQIsign (current version): Dramatically improved!

» The > 20 x speedup over the original version of SQIsign
comes from the new tools underlying the SIKE attacks.

» Also, it has even smaller signatures.

Main idea (from “SQIsign[H2]D” papers): Use HD representation.

Eg =mmmmmmmmmeeea 0, Ep

I

n

=

S
H 3
=1 =<
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8! ?
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n

Q

E E
com challenge chl
— 1-dimensional isogeny = 2-dimensional isogeny
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core properties

+ Very compact keys and signatures.

SQIsign (current version): Numbers

+ Confident tuning of security parameters.

+ No longer slow!
- A complex signing procedure.
¥ The coolest team!

-- sizes --
parameter set public keys signatures
NIST -1 65 bytes 148 bytes
NIST - m 97 bytes 224 bytes
NIST - V 129 bytes 292 bytes

-- performance --

Cycle counts for an optimized implementation using platform-specific assembly running

on an Intel Raptor Lake CPU:

signing

verifying
5.1 megacycles

parameter set keygen
NIST -1 43.3 megacycles
NIST - m 134.0 megacycles
NIST - V 212.0 megacycles

101.6 megacycles
309.2 megacycles
507.5 megacycles

18.6 megacycles
35.7 megacycles

Source: https://sqisign.org (2025-?)
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SQIsign (current version): Comparison

+ Signature size (bytes)
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Source: https://pgshield.github.io/nist-sigs-zoo
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Signing with isogenies —another way

Issue: Original security proofs for HD variants of SQlsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man'’s treasure.”

PRISM builds a two-round identification scheme as follows:

» Public key: Random supersingular elliptic curve E;
prover knows a secret isogeny Ey — E.

» Challenge: A large prime g.

» Response: Anisogeny ¢: E — _of degree .
How? Create HD representation of ¢ using knowledge of End(E)!
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PRISM: Parameters

Protocol This Work SQIsi(g;H SQIsign2D-East SQIsign2D-West SQIPrime
Sig. size (bits) 12X ~11A 12X 9\ 19X

Table 3. Signature sizes for the signature scheme given in this work, SQIsign, and its
most efficient variants.
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Protocol This Work SQIsi(g;H SQIsign2D-East SQIsign2D-West SQIPrime
Sig. size (bits) 12X ~11A 12X 9\ 19X

Table 3. Signature sizes for the signature scheme given in this work, SQIsign, and its
most efficient variants.

Table 5. Run time comparison in millions of clockcycles between our signature scheme
and SQIsign2D-West at NIST-I security, with optimized finite field arithmetic. Average
run time over 100 iterations on an Intel Core i7 at 2.30 GHz with turbo-boost disabled.

KeyGen 77.4
SQIsign2D-West ~ Sign  285.7
Verify 11.9
KeyGen 78.2
This work Sign  157.6
Verify  16.9
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Plan for this talk

Elliptic curves & isogenies. v

>

» The SIKE attacks. v

» Transcending to higher dimensions. v
» Isogeny group actions. v

Signatures from isogenies. v

v
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Ad break

Seminar Sessions

A seminar session for young isogenists.

https://isogeny.club
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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