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Big picture

▶ Isogenies are a type of maps between elliptic curves.

▶ Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

⇝ Cryptography!

(Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties.)
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Plan for this talk

▶ Elliptic curves & isogenies.

▶ The SIKE attacks.
▶ Transcending to higher dimensions.

▶ Isogeny group actions.

▶ Signatures from isogenies.
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Elliptic curves (picture over R)

The elliptic curve y2 = x3 − x + 1 over R.
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Elliptic curves (picture over R)

•

•

•

Addition law:

P + Q + R = ∞ ⇐⇒ {P,Q,R} on a straight line.
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Elliptic curves (picture over R)

•

•

•∞

The point at infinity ∞ lies on every vertical line.
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Elliptic curves (picture over Fp)

x

y ∞

The same curve y2 = x3 − x + 1 over the finite field F79.
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Isogenies

...are just fancily-named

nice maps
between elliptic curves.
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Isogenies

An isogeny of elliptic curves is a non-zero map E → E′ that is:

▶ given by rational functions.
▶ a group homomorphism.

The kernel of an isogeny φ : E → E′ is {P ∈ E : φ(P) = ∞}.
The degree of a separable∗ isogeny is the size of its kernel.

Generic example: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E → E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.
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Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E → E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.
The

√
élu algorithm reduces the cost to Õ(

√
#G).
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“Computing an isogeny”

Keep in mind: Constructing isogenies E → is (usually) easy,
constructing an isogeny E → E′ given (E,E′) is (usually) hard.
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Plan for this talk

▶ Elliptic curves & isogenies. ✓
▶ The SIKE attacks.
▶ Transcending to higher dimensions.

▶ Isogeny group actions.

▶ Signatures from isogenies.
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SIDH/SIKE
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SIDH/SIKE
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SIDH/SIKE

...was a well-known isogeny-based key exchange scheme:
▶ The “isogeny poster child” from ≈ 2011 to ≈ 2022.
▶ Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.
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Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E → EA and φB : E → EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.
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How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})
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How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)
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The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.

▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!
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Plan for this talk

▶ Elliptic curves & isogenies. ✓
▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions.

▶ Isogeny group actions.

▶ Signatures from isogenies.
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Transcending to higher dimensions

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies between
products of elliptic curves
▶ The product E × E′ is an abelian surface.

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.
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The embedding lemma

▶ Fallout from the SIDH attack: New tools.

— Damien Robert [ePrint 2022/1704]
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The embedding lemma
Consider a commutative diagram of isogenies

E E′

E′′ E′′′

φ

ψ ψ′

φ′

where a := degφ and b := degψ are coprime, and let N := a + b.

Lemma. Then

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: (P,Q) 7→

(
φ(P)+ ψ̂′(Q),−ψ(P)+ φ̂′(Q)

)
defines an N-isogeny E × E′′′ → E′ × E′′.

Its kernel is ker(Φ) =
{
(φ̂(T), ψ′(T)) | T ∈ E′[N]

}
.
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The HD representation

...is an efficient representation of any (!)
isogeny between two elliptic curves.

(Recall: Using Vélu/
√

élu techniques, only smooth-degree isogenies are efficient.)

Simply encode φ : E → E′ as a higher-dimensional isogeny

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: E × E′′′ → E′ × E′′ .

+ For full generality, need to embed in dimension 8.

Requires isogeny formulas for principally polarized
abelian varieties of dimension ≥ 2. Highly non-trivial matter,
but fundamentally doable and efficient.
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Plan for this talk

▶ Elliptic curves & isogenies. ✓
▶ The SIKE attacks. ✓
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▶ Isogeny group actions.

▶ Signatures from isogenies.
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How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.

(Similarly with reversed roles, of course.)
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CSIDH ["si:saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
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“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E → E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51



“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.

⇝ For all such E can canonically find an isogeny φℓ : E → E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51



“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E → E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51



“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E → E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51



Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E → Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!
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Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Fact: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.
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CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.
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Walking in the CSIDH graph (in SageMath)
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2

sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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Action!
Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0} which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).
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CSIDH: Where things stand

▶ Classical security: Õ(
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.
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Oriented isogenies

There are many ways of building isogeny group actions.

CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP

Couveignes/Rostovtsev–Stolbunov

De Feo–Kieffer–Smith

SCALLOP‑HDPEARL‑SCALLOP

KLaPoTi

higher dimensions

Clapoti

orientations
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Plan for this talk

▶ Elliptic curves & isogenies. ✓
▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions. ✓
▶ Isogeny group actions. ✓
▶ Signatures from isogenies.
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SQIsign: What?

https://sqisign.org

▶ A new-ish and very hot post-quantum signature scheme.
▶ Based on super cool mathematics. :)
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More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.

▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).
(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E → E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E → E′.
⇝ one-sided ideal class set of End(E), etc.
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⇝ one-sided ideal class set of End(E), etc.
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The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!
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The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 =−1, j2 =−p, ji=−ij.

The ring O0 = Z ⊕ Z i ⊕ Z i+j
2 ⊕ Z 1+ij

2
corresponds to the curve E0 : y2 = x3 + x.

The ring O1 = Z ⊕ Z 4947i ⊕ Z 4947i+j
2 ⊕ Z 4947+32631010i+ij

9894
corresponds to the curve E1 : y2 = x3 + 1.

The ideal I = Z 4947 ⊕ Z 4947i ⊕ Z 598+4947i+j
2 ⊕ Z 4947+598i+ij

2
defines an isogeny E0 → E1 of degree 4947 = 3 · 17 · 97.
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The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.
▶ SQIsign builds on the “⇐=” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and isogeny group actions.
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Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.
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SQIsign (original version)

Via the Deuring correspondence:
▶ From End(E),End(E′), can randomize within Hom(E,E′).

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E → E′.

⇝ SQIsign rewrites the “broken” signature
Epk → E0 → Ecom → Echl

into a random (smooth) isogeny Epk → Echl.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsign: Why?

+ It’s extremely small compared to the competition.
– It’s relatively slow compared to the competition.
+ ...but performance only gets better!
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SQIsign (original version): Numbers

Source: https://sqisign.org (2023–2024)
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SQIsign (current version): Dramatically improved!

▶ The ≥ 20× speedup over the original version of SQIsign
comes from the new tools underlying the SIKE attacks.

▶ Also, it has even smaller signatures.

Main idea (from “SQIsign[H2]D” papers): Use HD representation.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

response

challenge

−→ 1-dimensional isogeny =⇒ 2-dimensional isogeny
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SQIsign (current version): Numbers

Source: https://sqisign.org (2025–?)
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SQIsign (current version): Comparison

Source: https://pqshield.github.io/nist-sigs-zoo
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Signing with isogenies — another way

47 / 51



Signing with isogenies — another way

47 / 51



Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!
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PRISM: Parameters
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Plan for this talk

▶ Elliptic curves & isogenies. ✓
▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions. ✓
▶ Isogeny group actions. ✓
▶ Signatures from isogenies. ✓
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Ad break

https://isogeny.club
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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