
Isogeny-based Cryptography
I & II

Lorenz Panny

Academia Sinica

Post-Quantum Crypto Mini-School 2022, Taipei, 14 July 2022

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 57

Crypto on graphs?

2 / 57

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 57

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 57

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 57

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 57

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 57

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 57

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 57

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 57

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 57

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 57

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 57

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 57

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 57

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 57

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 57

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 57

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 57

Crypto on graphs?

We’ve been doing it all the time!

6 / 57

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

7 / 57

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

7 / 57

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

7 / 57

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

7 / 57

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

New plan: Get rid of the group, keep the graph.

7 / 57

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

New plan: Get rid of the group, keep the graph.

7 / 57

The upshot

In some cases,

isogeny graphs
can replace

≺

some

DLP-based constructions post-quantumly.

8 / 57

The upshot

In some cases,

isogeny graphs
can replace≺

some

DLP-based constructions post-quantumly.

8 / 57

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

Both.

9 / 57

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both.

9 / 57

The beauty and the beast

At this time, there are ≥ two distinct families of systems:

Fp

CSIDH ["si:­saId]
https://csidh.isogeny.org

Fp2

SIDH
https://sike.org

9 / 57

https://csidh.isogeny.org
https://sike.org

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies, algorithms.

▶ The SIDH/SIKE key-agreement protocol.

▶ The CSIDH non-interactive key-exchange.

10 / 57

Stand back!

We’re going to do math.

11 / 57

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

12 / 57

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

12 / 57

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.

▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

12 / 57

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

12 / 57

Elliptic curves (picture over R)

The elliptic curve y2 = x3 − x + 1 over R.

13 / 57

Elliptic curves (picture over R)

•

•

•

Addition law:

P + Q + R =∞ ⇐⇒ {P,Q,R} on a straight line.

13 / 57

Elliptic curves (picture over R)

•

•

•∞

The point at infinity∞ lies on every vertical line.

13 / 57

Elliptic curves (picture over Fp)

x

y ∞

The same curve y2 = x3 − x + 1 over the finite field F79.

13 / 57

Elliptic curves (picture over Fp)

x

y ∞

The addition law of y2 = x3 − x + 1 over the finite field F79.

13 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)
sage: P - P
(0 : 1 : 0) # point at infinity

14 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)

sage: P - P
(0 : 1 : 0) # point at infinity

14 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)
sage: P - P
(0 : 1 : 0) # point at infinity

14 / 57

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

15 / 57

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

15 / 57

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

15 / 57

Fields of definition

Let k be a field.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.

For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.

16 / 57

Fields of definition

Let k be a field.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.

For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.

16 / 57

In Sage:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x

over Finite Field of size 101
sage: F.<t> = GF(101^2)
sage: E(11, 69*t + 64)
ValueError: 69*t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69*t + 64 : 1)

17 / 57

In Sage:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x

over Finite Field of size 101
sage: F.<t> = GF(101^2)
sage: E(11, 69*t + 64)
ValueError: 69*t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69*t + 64 : 1)

17 / 57

Point counting

There is a polynomial-time algorithm to compute the number
of points on an elliptic curve defined over Fq. [Schoof 1985]

In Sage:

sage: E = EllipticCurve(GF(1000000007), [5,5,5,5,5])
sage: E.count_points ()
1000060294
sage: E.order()
1000060294
sage: E.cardinality ()
1000060294

18 / 57

Point counting

There is a polynomial-time algorithm to compute the number
of points on an elliptic curve defined over Fq. [Schoof 1985]

In Sage:

sage: E = EllipticCurve(GF(1000000007), [5,5,5,5,5])
sage: E.count_points ()
1000060294
sage: E.order()
1000060294
sage: E.cardinality ()
1000060294

18 / 57

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E | φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

19 / 57

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E | φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

19 / 57

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E | φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

19 / 57

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E | φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

19 / 57

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

20 / 57

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #1: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

20 / 57

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.

20 / 57

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m ̸= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.

20 / 57

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #4: For E/Fq where q = pr with p prime,

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).

20 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)

sage: mu
Isogeny of degree 25

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

to Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((-4*x^25 - 4*x^23 - ... + 35*x^5 + 45*x^3 + x)

/ (x^24 + 45*x^22 + ... - 11*x^4 - 4*x^2 - 4),
(-21*x^36*y + 32*x^34*y + ... - 29*x^2*y - 4*y)

/ (x^36 + 17*x^34 - ... - 44*x^4 + 19*x^2 - 21))

21 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

to Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((-4*x^25 - 4*x^23 - ... + 35*x^5 + 45*x^3 + x)

/ (x^24 + 45*x^22 + ... - 11*x^4 - 4*x^2 - 4),
(-21*x^36*y + 32*x^34*y + ... - 29*x^2*y - 4*y)

/ (x^36 + 17*x^34 - ... - 44*x^4 + 19*x^2 - 21))

21 / 57

In Sage:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

to Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((-4*x^25 - 4*x^23 - ... + 35*x^5 + 45*x^3 + x)

/ (x^24 + 45*x^22 + ... - 11*x^4 - 4*x^2 - 4),
(-21*x^36*y + 32*x^34*y + ... - 29*x^2*y - 4*y)

/ (x^36 + 17*x^34 - ... - 44*x^4 + 19*x^2 - 21))

21 / 57

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(Recall that Schoof’s algorithm can check this efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

22 / 57

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(Recall that Schoof’s algorithm can check this efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

22 / 57

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(Recall that Schoof’s algorithm can check this efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

22 / 57

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(Recall that Schoof’s algorithm can check this efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

22 / 57

Isogeny graphs

Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3}.

23 / 57

Isogeny graphs

Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3}.

23 / 57

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

1(up to isomorphism of E′)
24 / 57

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.√
élu [ePrint 2020/341] reduces the cost to Θ̃(

√
#G).

25 / 57

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.√
élu [ePrint 2020/341] reduces the cost to Θ̃(

√
#G).

25 / 57

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.√
élu [ePrint 2020/341] reduces the cost to Θ̃(

√
#G).

25 / 57

In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7

sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

26 / 57

In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

26 / 57

In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel

sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

26 / 57

In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

26 / 57

Predictable groups: Supersingular curves

Vélu operates in the field where the points in G live.
⇝ We need to make sure extensions stay small for desired #G.

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

27 / 57

Predictable groups: Supersingular curves

Vélu operates in the field where the points in G live.
⇝ We need to make sure extensions stay small for desired #G.

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

27 / 57

Predictable groups: Supersingular curves

Vélu operates in the field where the points in G live.
⇝ We need to make sure extensions stay small for desired #G.

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

27 / 57

In Sage:

sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular ()
True
sage: E.order()
62208
sage: E.order().factor ()
2^8 * 3^5

sage: EE = E.change_ring(GF(62207^2))
sage: EE.order().factor ()
2^16 * 3^10
sage: EE.abelian_group ()
Additive abelian group isomorphic to Z/62208 + Z/62208

embedded in Abelian group of points
on Elliptic Curve defined by y^2 = x^3 + x
over Finite Field in z2 of size 62207^2

28 / 57

In Sage:

sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular ()
True
sage: E.order()
62208
sage: E.order().factor ()
2^8 * 3^5
sage: EE = E.change_ring(GF(62207^2))
sage: EE.order().factor ()
2^16 * 3^10

sage: EE.abelian_group ()
Additive abelian group isomorphic to Z/62208 + Z/62208

embedded in Abelian group of points
on Elliptic Curve defined by y^2 = x^3 + x
over Finite Field in z2 of size 62207^2

28 / 57

In Sage:

sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular ()
True
sage: E.order()
62208
sage: E.order().factor ()
2^8 * 3^5
sage: EE = E.change_ring(GF(62207^2))
sage: EE.order().factor ()
2^16 * 3^10
sage: EE.abelian_group ()
Additive abelian group isomorphic to Z/62208 + Z/62208

embedded in Abelian group of points
on Elliptic Curve defined by y^2 = x^3 + x
over Finite Field in z2 of size 62207^2

28 / 57

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies, algorithms. ✓
▶ The SIDH/SIKE key-agreement protocol.

▶ The CSIDH non-interactive key-exchange.

29 / 57

Now: SIDH (Jao, De Feo; 2011)

30 / 57

SIDH: High-level view

E

▶ Alice & Bob pick secret subgroups A and B of E.
▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.
▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH: High-level view

E
φA

φB

▶ Alice & Bob pick secret subgroups A and B of E.

▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.
▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH: High-level view

E E/A

E/B

φA

φB

▶ Alice & Bob pick secret subgroups A and B of E.
▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.
▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH: High-level view

E E/A

E/B

φA

φB

▶ Alice & Bob pick secret subgroups A and B of E.
▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.

▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH: High-level view

E E/A

E/B

φA

φB φB′

φA′

▶ Alice & Bob pick secret subgroups A and B of E.
▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.
▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH: High-level view

E E/A

E/B E/⟨A,B⟩

φA

φB φB′

φA′

▶ Alice & Bob pick secret subgroups A and B of E.
▶ Alice computes φA : E→ E/A; Bob computes φB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the values E/A and E/B.
▶ Alice somehow obtains A′ := φB(A). (Similar for Bob.)

▶ They both compute the shared secret
(E/B)/A′ ∼= E/⟨A,B⟩ ∼= (E/A)/B′.

31 / 57

SIDH’s auxiliary points

“Alice somehow obtains A′ := φB(A).”
...but Alice knows only A, Bob knows only φB. Hmm.

SIDH’s solution: φB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ as ⟨φB(P) + [a]φB(Q)⟩.

32 / 57

SIDH’s auxiliary points

“Alice somehow obtains A′ := φB(A).”
...but Alice knows only A, Bob knows only φB. Hmm.

SIDH’s solution: φB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ as ⟨φB(P) + [a]φB(Q)⟩.

32 / 57

SIDH’s auxiliary points

“Alice somehow obtains A′ := φB(A).”
...but Alice knows only A, Bob knows only φB. Hmm.

SIDH’s solution: φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ as ⟨φB(P) + [a]φB(Q)⟩.

32 / 57

Decomposing smooth isogenies

▶ In SIDH, #A

= 2n

and #B

= 3m

are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute φG : E→ E/G.

!! Evaluate φG as a chain of small-degree isogenies:
For G ∼= Z/ℓk, set kerψi := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

φG

ψ2 ψk−1 ψk

⇝ Complexity: O(k2 · ℓ).
Exponentially smaller than a ℓk-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

33 / 57

Decomposing smooth isogenies

▶ In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute φG : E→ E/G.

!! Evaluate φG as a chain of small-degree isogenies:
For G ∼= Z/ℓk, set kerψi := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

φG

ψ2 ψk−1 ψk

⇝ Complexity: O(k2 · ℓ).
Exponentially smaller than a ℓk-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

33 / 57

Decomposing smooth isogenies

▶ In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute φG : E→ E/G.

!! Evaluate φG as a chain of small-degree isogenies:
For G ∼= Z/ℓk, set kerψi := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

φG

ψ2 ψk−1 ψk

⇝ Complexity: O(k2 · ℓ).
Exponentially smaller than a ℓk-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

33 / 57

Decomposing smooth isogenies

▶ In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute φG : E→ E/G.

!! Evaluate φG as a chain of small-degree isogenies:
For G ∼= Z/ℓk, set kerψi := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

φG

ψ2 ψk−1 ψk

⇝ Complexity: O(k2 · ℓ).
Exponentially smaller than a ℓk-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

33 / 57

SIDH in one slide

Public parameters:
▶ a large prime p = 2n3m − 1 and a supersingular E/Fp
▶ bases (P,Q) of E[2n] and (R,S) of E[3m] (recall E[k] ∼= Z/k × Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}
A := ⟨P + [a]Q⟩

compute φA : E→ E/A
B := ⟨R + [b]S⟩

compute φB : E→ E/B

E/A, φA(R), φA(S) E/B, φB(P), φB(Q)

A′ := ⟨φB(P) + [a]φB(Q)⟩
s := j

(
(E/B)/A′) B′ := ⟨φA(R) + [b]φA(S)⟩

s := j
(
(E/A)/B′)

34 / 57

Strategies for SIDH

Recall: SIDH splits ℓk-isogenies into k individual ℓ-isogenies.
This requires computing Ki := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(K) for all i.

Naïve strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

35 / 57

Strategies for SIDH

Recall: SIDH splits ℓk-isogenies into k individual ℓ-isogenies.
This requires computing Ki := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(K) for all i.

Naïve strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

35 / 57

Strategies for SIDH

Recall: SIDH splits ℓk-isogenies into k individual ℓ-isogenies.
This requires computing Ki := [ℓk−i](ψi−1 ◦ · · · ◦ ψ1)(K) for all i.

Sparse strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

35 / 57

Optimal strategies for SIDH

=⇒ Sparse strategy improves O(k2 · ℓ) to O(k log k · ℓ).

When the costs of [ℓ] and φKi are imbalanced, other trees can be
even more efficient. They can be constructed easily.

⇝ “optimal strategies”

35 / 57

Optimal strategies for SIDH

=⇒ Sparse strategy improves O(k2 · ℓ) to O(k log k · ℓ).

When the costs of [ℓ] and φKi are imbalanced, other trees can be
even more efficient. They can be constructed easily.

⇝ “optimal strategies”

35 / 57

In Sage:

Factored isogenies were implemented recently (version ≥ 9.5):

sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor ()
2^123

sage: phi = E.isogeny(K, algorithm="factored")
sage: phi
Composite morphism of degree 1063 ... 6608 = 2^123:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 1701 ... 5727

To: Elliptic Curve defined by
y^2 = x^3 + 1625 ... 8575*x + 1200 ... 7360
over Finite Field of size 1701 ... 5727

36 / 57

In Sage:

Factored isogenies were implemented recently (version ≥ 9.5):

sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor ()
2^123
sage: phi = E.isogeny(K, algorithm="factored")
sage: phi
Composite morphism of degree 1063 ... 6608 = 2^123:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 1701 ... 5727

To: Elliptic Curve defined by
y^2 = x^3 + 1625 ... 8575*x + 1200 ... 7360
over Finite Field of size 1701 ... 5727

36 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).
▶ Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).

▶ Collision finding: Õ(p3/8/
√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).
▶ Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).
▶ Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).
▶ Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH

The SIDH graph has size ⌊p/12⌋+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/4) time & space (!).
▶ Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
▶ Claw finding: claimed Õ(p1/6).

[ePrint 2019/103]: more expensive than classical attacks.
“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

37 / 57

Security of SIDH: The $IKE challenges

In 2021, a well-known large technology company announced
challenge instances of SIDH as a target for cryptanalysis:

▶ $IKEp182: p ≈ 2181.3 / prize 5 · 103 USD
Solved using meet-in-the-middle. [ePrint 2021/1421]

▶ $IKEp217: p ≈ 2216.2 / prize 5 · 104 USD
Still open. (Good luck!)

38 / 57

Security of SIDH: The $IKE challenges

In 2021, a well-known large technology company announced
challenge instances of SIDH as a target for cryptanalysis:

▶ $IKEp182: p ≈ 2181.3 / prize 5 · 103 USD
Solved using meet-in-the-middle. [ePrint 2021/1421]

▶ $IKEp217: p ≈ 2216.2 / prize 5 · 104 USD
Still open. (Good luck!)

38 / 57

Security of SIDH: The $IKE challenges

In 2021, a well-known large technology company announced
challenge instances of SIDH as a target for cryptanalysis:

▶ $IKEp182: p ≈ 2181.3 / prize 5 · 103 USD
Solved using meet-in-the-middle. [ePrint 2021/1421]

▶ $IKEp217: p ≈ 2216.2 / prize 5 · 104 USD
Still open. (Good luck!)

38 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.

If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

An active attack on SIDH key reuse

▶ Recall: Bob sends P′ := φB(P) and Q′ := φB(Q) to Alice.
She computes A′ = ⟨P′ + [a]Q′⟩ and, from that, obtains s.

▶ Bob cheats and sends Q′′ := Q′ + [2n−1]P′ instead of Q′.
Alice computes A′′ = ⟨P′ + [a]Q′′⟩.
If a = 2u : [a]Q′′ = [a]Q′ + [u][2n]P′ = [a]Q′.
If a = 2u+1: [a]Q′′ = [a]Q′ + [u][2n]P′ + [2n−1]P′ = [a]Q′ + [2n−1]P′.

=⇒ Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE”.

39 / 57

SIKE

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:

▶ The first thing Bob sends encrypted is his private key.
▶ Alice can then recompute Bob’s public key.

If it does not match what Bob sent, she aborts.
▶ Result: One party (Alice) can reuse her key. (Bob can’t!)

This is (the essence of) SIKE, a KEM submitted
to NIST’s standardization project.

See https://sike.org.

40 / 57

https://sike.org

SIKE

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:
▶ The first thing Bob sends encrypted is his private key.

▶ Alice can then recompute Bob’s public key.
If it does not match what Bob sent, she aborts.

▶ Result: One party (Alice) can reuse her key. (Bob can’t!)

This is (the essence of) SIKE, a KEM submitted
to NIST’s standardization project.

See https://sike.org.

40 / 57

https://sike.org

SIKE

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:
▶ The first thing Bob sends encrypted is his private key.
▶ Alice can then recompute Bob’s public key.

If it does not match what Bob sent, she aborts.

▶ Result: One party (Alice) can reuse her key. (Bob can’t!)

This is (the essence of) SIKE, a KEM submitted
to NIST’s standardization project.

See https://sike.org.

40 / 57

https://sike.org

SIKE

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:
▶ The first thing Bob sends encrypted is his private key.
▶ Alice can then recompute Bob’s public key.

If it does not match what Bob sent, she aborts.
▶ Result: One party (Alice) can reuse her key. (Bob can’t!)

This is (the essence of) SIKE, a KEM submitted
to NIST’s standardization project.

See https://sike.org.

40 / 57

https://sike.org

SIKE

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:
▶ The first thing Bob sends encrypted is his private key.
▶ Alice can then recompute Bob’s public key.

If it does not match what Bob sent, she aborts.
▶ Result: One party (Alice) can reuse her key. (Bob can’t!)

This is (the essence of) SIKE, a KEM submitted
to NIST’s standardization project.

See https://sike.org.

40 / 57

https://sike.org

Some numbers for SIKE

The NIST submission contains four parameter sets:
{SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:
▶ Public keys: 330–564 bytes.
▶ Ciphertexts: 346–596 bytes.
▶ Secret keys: 374–644 bytes.

Speed (Skylake):
▶ Key generation: 5–25 million cycles.
▶ Encapsulation: 10–40 million cycles.
▶ Decapsulation: 10–44 million cycles.

41 / 57

Some numbers for SIKE

The NIST submission contains four parameter sets:
{SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:
▶ Public keys: 330–564 bytes.
▶ Ciphertexts: 346–596 bytes.
▶ Secret keys: 374–644 bytes.

Speed (Skylake):
▶ Key generation: 5–25 million cycles.
▶ Encapsulation: 10–40 million cycles.
▶ Decapsulation: 10–44 million cycles.

41 / 57

Some numbers for SIKE

The NIST submission contains four parameter sets:
{SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:
▶ Public keys: 330–564 bytes.
▶ Ciphertexts: 346–596 bytes.
▶ Secret keys: 374–644 bytes.

Speed (Skylake):
▶ Key generation: 5–25 million cycles.
▶ Encapsulation: 10–40 million cycles.
▶ Decapsulation: 10–44 million cycles.

41 / 57

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies, algorithms. ✓
▶ The SIDH/SIKE key-agreement protocol. ✓
▶ The CSIDH non-interactive key-exchange.

42 / 57

CSIDH ["si:­saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
43 / 57

A different way to kill the active attack?

▶ Recall: SIDH cannot reuse keys because of the auxiliary
points φB(P), φB(Q) required to make the scheme work.

▶ These points are needed because Bob must help Alice
“transport” her secret subgroup A to his public curve EB.

CSIDH’s solution:
Use special subgroups A which can be transported to EB
independently of the secret isogeny φB.

44 / 57

A different way to kill the active attack?

▶ Recall: SIDH cannot reuse keys because of the auxiliary
points φB(P), φB(Q) required to make the scheme work.

▶ These points are needed because Bob must help Alice
“transport” her secret subgroup A to his public curve EB.

CSIDH’s solution:
Use special subgroups A which can be transported to EB
independently of the secret isogeny φB.

44 / 57

A different way to kill the active attack?

▶ Recall: SIDH cannot reuse keys because of the auxiliary
points φB(P), φB(Q) required to make the scheme work.

▶ These points are needed because Bob must help Alice
“transport” her secret subgroup A to his public curve EB.

CSIDH’s solution:
Use special subgroups A which can be transported to EB
independently of the secret isogeny φB.

44 / 57

How CSIDH avoids auxiliary points
Notation: For E/Fq and ℓ, λ ∈ Z, write Eℓ,λ := E[ℓ] ∩ ker(π−[λ]).

(Recall π : (x, y) 7→ (xq, yq).)

Let E/Fq and ℓ, λ,m, µ ∈ Z\{0}.
Write E′ = E/Eℓ,λ and E′′ = E/Em,µ.

=⇒ E′/E′
m,µ
∼= E′′/E′′

ℓ,λ .

Problem: The typical case is Eℓ,λ = {∞}. Not useful.

But: If there are enough pairs ℓ, λ with φEℓ,λ
̸= id, we can use

compositions of various φEℓ,λ
as secret isogenies.

CSIDH’s solution:
▶ Use supersingular curves over Fp to easily control #E(Fp).
▶ Pick smooth p+1, i.e., many small prime factors ℓi.
⇝ All the groups Eℓi,±1 are good for crypto!

45 / 57

How CSIDH avoids auxiliary points
Notation: For E/Fq and ℓ, λ ∈ Z, write Eℓ,λ := E[ℓ] ∩ ker(π−[λ]).

(Recall π : (x, y) 7→ (xq, yq).)

Let E/Fq and ℓ, λ,m, µ ∈ Z\{0}.
Write E′ = E/Eℓ,λ and E′′ = E/Em,µ.

=⇒ E′/E′
m,µ
∼= E′′/E′′

ℓ,λ .

Problem: The typical case is Eℓ,λ = {∞}. Not useful.

But: If there are enough pairs ℓ, λ with φEℓ,λ
̸= id, we can use

compositions of various φEℓ,λ
as secret isogenies.

CSIDH’s solution:
▶ Use supersingular curves over Fp to easily control #E(Fp).
▶ Pick smooth p+1, i.e., many small prime factors ℓi.
⇝ All the groups Eℓi,±1 are good for crypto!

45 / 57

How CSIDH avoids auxiliary points
Notation: For E/Fq and ℓ, λ ∈ Z, write Eℓ,λ := E[ℓ] ∩ ker(π−[λ]).

(Recall π : (x, y) 7→ (xq, yq).)

Let E/Fq and ℓ, λ,m, µ ∈ Z\{0}.
Write E′ = E/Eℓ,λ and E′′ = E/Em,µ.

=⇒ E′/E′
m,µ
∼= E′′/E′′

ℓ,λ .

Problem: The typical case is Eℓ,λ = {∞}. Not useful.

But: If there are enough pairs ℓ, λ with φEℓ,λ
̸= id, we can use

compositions of various φEℓ,λ
as secret isogenies.

CSIDH’s solution:
▶ Use supersingular curves over Fp to easily control #E(Fp).
▶ Pick smooth p+1, i.e., many small prime factors ℓi.
⇝ All the groups Eℓi,±1 are good for crypto!

45 / 57

How CSIDH avoids auxiliary points
Notation: For E/Fq and ℓ, λ ∈ Z, write Eℓ,λ := E[ℓ] ∩ ker(π−[λ]).

(Recall π : (x, y) 7→ (xq, yq).)

Let E/Fq and ℓ, λ,m, µ ∈ Z\{0}.
Write E′ = E/Eℓ,λ and E′′ = E/Em,µ.

=⇒ E′/E′
m,µ
∼= E′′/E′′

ℓ,λ .

Problem: The typical case is Eℓ,λ = {∞}. Not useful.

But: If there are enough pairs ℓ, λ with φEℓ,λ
̸= id, we can use

compositions of various φEℓ,λ
as secret isogenies.

CSIDH’s solution:
▶ Use supersingular curves over Fp to easily control #E(Fp).
▶ Pick smooth p+1, i.e., many small prime factors ℓi.
⇝ All the groups Eℓi,±1 are good for crypto!

45 / 57

How CSIDH avoids auxiliary points
Notation: For E/Fq and ℓ, λ ∈ Z, write Eℓ,λ := E[ℓ] ∩ ker(π−[λ]).

(Recall π : (x, y) 7→ (xq, yq).)

Let E/Fq and ℓ, λ,m, µ ∈ Z\{0}.
Write E′ = E/Eℓ,λ and E′′ = E/Em,µ.

=⇒ E′/E′
m,µ
∼= E′′/E′′

ℓ,λ .

Problem: The typical case is Eℓ,λ = {∞}. Not useful.

But: If there are enough pairs ℓ, λ with φEℓ,λ
̸= id, we can use

compositions of various φEℓ,λ
as secret isogenies.

CSIDH’s solution:
▶ Use supersingular curves over Fp to easily control #E(Fp).
▶ Pick smooth p+1, i.e., many small prime factors ℓi.
⇝ All the groups Eℓi,±1 are good for crypto!

45 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.

▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.

▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the ℓi-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

46 / 57

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

47 / 57

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

47 / 57

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

47 / 57

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

47 / 57

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

47 / 57

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

47 / 57

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

47 / 57

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

47 / 57

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

47 / 57

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

47 / 57

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

47 / 57

A group action

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X such that
id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

We understand the structure:
By complex-multiplication theory, the action factors through
the ideal-class group cl(Z[√−p]).

48 / 57

A group action

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X such that
id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

We understand the structure:
By complex-multiplication theory, the action factors through
the ideal-class group cl(Z[√−p]).

48 / 57

A group action

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X such that
id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

We understand the structure:
By complex-multiplication theory, the action factors through
the ideal-class group cl(Z[√−p]).

48 / 57

A group action

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X such that
id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

We understand the structure:
By complex-multiplication theory, the action factors through
the ideal-class group cl(Z[√−p]).

48 / 57

A brief history of CSIDH

Well-known classical theorem:
Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev–Stolbunov 2006]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith 2018]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes 2018]:

Switch to supersingular curves =⇒ “practical” performance.

49 / 57

A brief history of CSIDH

Well-known classical theorem:
Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev–Stolbunov 2006]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith 2018]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes 2018]:

Switch to supersingular curves =⇒ “practical” performance.

49 / 57

A brief history of CSIDH

Well-known classical theorem:
Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev–Stolbunov 2006]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith 2018]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes 2018]:

Switch to supersingular curves =⇒ “practical” performance.

49 / 57

A brief history of CSIDH

Well-known classical theorem:
Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev–Stolbunov 2006]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith 2018]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes 2018]:

Switch to supersingular curves =⇒ “practical” performance.

49 / 57

Walking in the CSIDH graph

▶ “Left” and “right” steps correspond to isogenies with
special subgroups Eℓi,±1 as kernels.
(Recall that Eℓ,λ = {P ∈ E[ℓ] | π(P) = [λ]P}.)

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

50 / 57

Walking in the CSIDH graph

▶ “Left” and “right” steps correspond to isogenies with
special subgroups Eℓi,±1 as kernels.
(Recall that Eℓ,λ = {P ∈ E[ℓ] | π(P) = [λ]P}.)

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

50 / 57

Walking in the CSIDH graph

▶ “Left” and “right” steps correspond to isogenies with
special subgroups Eℓi,±1 as kernels.
(Recall that Eℓ,λ = {P ∈ E[ℓ] | π(P) = [λ]P}.)

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

50 / 57

Walking in the CSIDH graph

▶ “Left” and “right” steps correspond to isogenies with
special subgroups Eℓi,±1 as kernels.
(Recall that Eℓ,λ = {P ∈ E[ℓ] | π(P) = [λ]P}.)

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

50 / 57

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient CSIDH implementations!

51 / 57

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).

=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient CSIDH implementations!

51 / 57

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient CSIDH implementations!

51 / 57

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient CSIDH implementations!

51 / 57

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

52 / 57

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

52 / 57

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·x hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

52 / 57

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

53 / 57

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

53 / 57

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

53 / 57

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

54 / 57

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

54 / 57

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

54 / 57

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH vary wildly.

54 / 57

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies, algorithms. ✓
▶ The SIDH/SIKE key-agreement protocol. ✓
▶ The CSIDH non-interactive key-exchange. ✓

55 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.

▶ is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).

▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).

▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.

▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.

▶ are really cool!

56 / 57

That’s nice and all, but... so what?

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SIDH/SIKE...
▶ survived NIST’s post-quantum not-a-competition

(but wasn’t selected as a winner in the first round).
▶ has exponential attack cost as far as we know.

Both...
▶ have tiny keys compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

56 / 57

Brainteaser

Recall SIDH:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(R), φA(S))
▶ Bob: B := ⟨R + [b]S⟩ ≤ E[3m], public (EB, φB(P), φB(Q))

Let’s look at “BAD SIDH”:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(P), φA(Q))

▶ Bob: B := ⟨P + [b]Q⟩ ≤ E[2n], public (EB, φB(P), φB(Q))

Advantage: Need only 2n | (p+1) instead of 2n3m | (p+1).

Disadvantage: Insecure. Why?

57 / 57

Brainteaser

Recall SIDH:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(R), φA(S))
▶ Bob: B := ⟨R + [b]S⟩ ≤ E[3m], public (EB, φB(P), φB(Q))

Let’s look at “BAD SIDH”:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(P), φA(Q))

▶ Bob: B := ⟨P + [b]Q⟩ ≤ E[2n], public (EB, φB(P), φB(Q))

Advantage: Need only 2n | (p+1) instead of 2n3m | (p+1).

Disadvantage: Insecure. Why?

57 / 57

Brainteaser

Recall SIDH:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(R), φA(S))
▶ Bob: B := ⟨R + [b]S⟩ ≤ E[3m], public (EB, φB(P), φB(Q))

Let’s look at “BAD SIDH”:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(P), φA(Q))

▶ Bob: B := ⟨P + [b]Q⟩ ≤ E[2n], public (EB, φB(P), φB(Q))

Advantage: Need only 2n | (p+1) instead of 2n3m | (p+1).

Disadvantage: Insecure. Why?

57 / 57

Brainteaser

Recall SIDH:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(R), φA(S))
▶ Bob: B := ⟨R + [b]S⟩ ≤ E[3m], public (EB, φB(P), φB(Q))

Let’s look at “BAD SIDH”:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(P), φA(Q))

▶ Bob: B := ⟨P + [b]Q⟩ ≤ E[2n], public (EB, φB(P), φB(Q))

Advantage: Need only 2n | (p+1) instead of 2n3m | (p+1).

Disadvantage: Insecure. Why?

57 / 57

Brainteaser

Recall SIDH:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(R), φA(S))
▶ Bob: B := ⟨R + [b]S⟩ ≤ E[3m], public (EB, φB(P), φB(Q))

Let’s look at “BAD SIDH”:
▶ Setup: E[2n] = ⟨P,Q⟩ and E[3m] = ⟨R,S⟩
▶ Alice: A := ⟨P + [a]Q⟩ ≤ E[2n], public (EA, φA(P), φA(Q))

▶ Bob: B := ⟨P + [b]Q⟩ ≤ E[2n], public (EB, φB(P), φB(Q))

Advantage: Need only 2n | (p+1) instead of 2n3m | (p+1).

Disadvantage: Insecure. Why?

57 / 57

