Isogeny-based Cryptography I & II

Lorenz Panny

Academia Sinica

Post-Quantum Crypto Mini-School 2022, Taipei, 14 July 2022

Big picture $\rho \rho$

• <u>Isogenies</u> are a source of exponentially-sized graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

Finding graphs with *almost* all of these properties is easy — but getting all at once seems rare.

Crypto on graphs?

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Diffie-Hellman: Bob vs. Eve

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

•••

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Diffie-Hellman: Bob vs. Eve

Is this a good idea?

Diffie–Hellman: Bob vs. Eve

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b.</i> Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

Diffie-Hellman: Bob vs. Eve

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b</i> . Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b + 2$.

Effort for both: O(#G). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)

Bob computes his public key g^{13} from g.

multiply

Square-and-multiply

Square-and-multiply-and-square-and-multiply

Square-and-multiply-and-square-and-multiply-and-squ

Crypto on graphs? We've been doing it all the time!

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$. For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$. For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

→ Exponential separation!

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

New plan: Get rid of the group, keep the graph.

The upshot

In some cases, isogeny graphs

can replace DLP-based constructions post-quantumly.

The upshot

In some cases, isogeny graphs

can replace DLP-based constructions post-quantumly. s_{ome}

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both.
The beauty and the beast

At this time, there are \geq two distinct families of systems:

Plan for this lecture

- High-level overview for intuition.
- Elliptic curves & isogenies, algorithms.
- ► The SIDH/SIKE key-agreement protocol.
- The CSIDH non-interactive key-exchange.

Stand back!

We're going to do math.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$. A point on *E* is a solution (x, y), or the "fake" point ∞ .

E is an abelian group: we can "add" points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is

e of
$$(x, y)$$
 is $(x, -y)$.
 $f(x_1, y_1)$ and (x_2, y_2) is
$$\begin{pmatrix} a_0 & \mathbf{n}_{ot} \\ \delta h_{e_{S_e}} & \mathbf{n}_{o} \\ \delta h_{e_{S_e}} & \mathbf{n}_{o}$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

Elliptic curves (picture over \mathbb{R})

The elliptic curve $y^2 = x^3 - x + 1$ over \mathbb{R} .

Elliptic curves (picture over \mathbb{R})

 $\frac{\text{Addition law:}}{P + Q + R} \iff \{P, Q, R\} \text{ on a straight line.}$

Elliptic curves (picture over \mathbb{R})

The *point at infinity* ∞ lies on every vertical line.

Elliptic curves (picture over \mathbb{F}_p)

The same curve $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

Elliptic curves (picture over \mathbb{F}_p)

The <u>addition law</u> of $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

ECDH (not post-quantum)

Public parameters:

an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

ECDH (not post-quantum)

Public parameters:

an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication $[n]P := \underbrace{P + \dots + P}_{n \text{ times}}$. (Use double-and-add!)

ECDH (not post-quantum)

<u>Public parameters</u>: an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication $[n]P := \underbrace{P + \dots + P}_{n \text{ times}}$. (Use double-and-add!)

Let *k* be a field.

An elliptic curve/point/isogeny is defined over k if the coefficients in its equation/formula lie in k. We write E/k for "E is defined over k". Let *k* be a field.

An elliptic curve/point/isogeny is defined over k if the coefficients in its equation/formula lie in k. We write E/k for "E is defined over k".

For E/k, write E(k) for the set of points of *E* defined over *k*.

<u>Note</u>: Simply writing *E* means $E(\overline{k})$, i.e., points over *all* extension fields.

Everything happens over the specified field of definition:

Everything happens over the specified field of definition:

Point counting

There is a polynomial-time algorithm to compute the number of points on an elliptic curve defined over \mathbb{F}_q . [Schoof 1985]

Point counting

There is a polynomial-time algorithm to compute the number of points on an elliptic curve defined over \mathbb{F}_q . [Schoof 1985]

```
sage: E = EllipticCurve(GF(100000007), [5,5,5,5,5])
sage: E.count_points()
1000060294
sage: E.order()
1000060294
sage: E.cardinality()
1000060294
```

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where f, g are polynomials.

A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where f, g are polynomials. A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

The kernel of an isogeny $\varphi \colon E \to E'$ is $\{P \in E \mid \varphi(P) = \infty\}$. The degree of a separable^{*} isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #1:
$$(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an *isomorphism*; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #3: For each $m \neq 0$, the multiplication-by-*m* map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #4: For E/\mathbb{F}_q where $q = p^r$ with p prime,

 $\pi\colon (x,y)\mapsto (x^q,y^q)$

is a degree-*q* isogeny, the *Frobenius endomorphism*. The kernel of π -**1** is precisely the set of rational points $E(\mathbb{F}_q)$.

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)

```
sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25
from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101
to Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101
```

```
sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25
     from Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 101
     to Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 101
sage: mu.rational_maps()
((-4 \times x^{25} - 4 \times x^{23} - \ldots + 35 \times x^{5} + 45 \times x^{3} + x)
    /(x^{24} + 45 * x^{22} + ... - 11 * x^{4} - 4 * x^{2} - 4),
 (-21 \times x^{3}6 \times y + 32 \times x^{3}4 \times y + \ldots - 29 \times x^{2} \times y - 4 \times y)
     /(x^{36} + 17 \times x^{34} - \ldots - 44 \times x^{4} + 19 \times x^{2} - 21))
```
Isogenies between distinct curves are "rare". We say *E* and *E*′ are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Isogenies between distinct curves are "rare". We say *E* and *E*′ are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Isogenies between distinct curves are "rare". We say *E* and *E*′ are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

<u>Tate's theorem</u>: *E*, *E'*/ \mathbb{F}_a are isogenous over \mathbb{F}_a if and only if $\#E(\mathbb{F}_a) = \#E'(\mathbb{F}_a)$.

(Recall that Schoof's algorithm can check this efficiently!)

Isogenies between distinct curves are "rare". We say *E* and *E*′ are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

(Recall that Schoof's algorithm can check this efficiently!)

 \implies Bottom line: Being isogenous is an equivalence relation. Over finite fields, we can easily test it.

Isogeny graphs

Consider a field *k* and let $S \not\supseteq char(k)$ be a set of primes.

The *S*-isogeny graph over *k* consists of

- vertices given by elliptic curves over k;
- edges given by ℓ -isogenies, $\ell \in S$, over k;

up to *k*-isomorphism.

Isogeny graphs

Consider a field *k* and let $S \not\supseteq char(k)$ be a set of primes.

The *S*-isogeny graph over *k* consists of

- vertices given by elliptic curves over k;
- edges given by ℓ -isogenies, $\ell \in S$, over k;

up to k-isomorphism.

Example components containing $E: y^2 = x^3 + x$:

Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve *E*' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for

- ► computing the defining equation of *E*/*G*;
- evaluating the isogeny $E \rightarrow E/G$ at a point.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for

- ► computing the defining equation of *E*/*G*;
- evaluating the isogeny $E \rightarrow E/G$ at a point.

<u>Complexity</u>: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees. \sqrt{e} lu [ePrint 2020/341] reduces the cost to $\tilde{\Theta}(\sqrt{\#G})$.

```
sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
                         over Finite Field of size 419
sage: K = E(80, 30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7
    from Elliptic Curve defined by y^2 = x^3 + x
                         over Finite Field of size 419
    to Elliptic Curve defined by y^2 = x^3 + 285 * x + 87
                         over Finite Field of size 419
```

```
sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 419
sage: K = E(80, 30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7
    from Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 419
    to Elliptic Curve defined by y^2 = x^3 + 285 * x + 87
                          over Finite Field of size 419
sage: phi(K)
(0:1:0) # \varphi(K) = \infty \implies K lies in the kernel
```

```
sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 419
sage: K = E(80, 30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7
    from Elliptic Curve defined by y^2 = x^3 + x
                          over Finite Field of size 419
    to Elliptic Curve defined by y^2 = x^3 + 285 * x + 87
                          over Finite Field of size 419
sage: phi(K)
(0:1:0) # \varphi(K) = \infty \implies K lies in the kernel
sage: phi.rational_maps()
((x^7 + 129 \times x^6 - \ldots + 25)/(x^6 + 129 \times x^5 - \ldots + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))
```

Predictable groups: Supersingular curves

Vélu operates in the field where the points in *G* live. \rightsquigarrow We need to make sure extensions stay small for desired #*G*.

Predictable groups: Supersingular curves

Vélu operates in the field where the points in *G* live.

→ We need to make sure extensions stay small for desired #G.

Let $p \ge 5$ be prime.

- E/\mathbb{F}_p is *supersingular* if and only if $\#E(\mathbb{F}_p) = p+1$.
- In that case, $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

Predictable groups: Supersingular curves

Vélu operates in the field where the points in *G* live.

→ We need to make sure extensions stay small for desired #G.

Let $p \ge 5$ be prime.

- E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- In that case, $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.
- → Easy method to control the group structure by choosing p!→ Cryptography works well using supersingular curves.

```
sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular()
True
sage: E.order()
62208
sage: E.order().factor()
2^8 * 3^5
```

```
sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular()
True
sage: E.order()
62208
sage: E.order().factor()
2^8 * 3^5
sage: EE = E.change_ring(GF(62207^2))
sage: EE.order().factor()
2^16 * 3^10
```

```
sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular()
True
sage: E.order()
62208
sage: E.order().factor()
2^8 * 3^5
sage: EE = E.change_ring(GF(62207^2))
sage: EE.order().factor()
2^16 * 3^10
sage: EE.abelian_group()
Additive abelian group isomorphic to Z/62208 + Z/62208
        embedded in Abelian group of points
        on Elliptic Curve defined by y^2 = x^3 + x
        over Finite Field in z2 of size 62207^2
```

Plan for this lecture

- High-level overview for intuition.
- Elliptic curves & isogenies, algorithms.
- ► The SIDH/SIKE key-agreement protocol.
- The CSIDH non-interactive key-exchange.

Now: SIDH (Jao, De Feo; 2011)

Ε

• Alice & Bob pick secret subgroups *A* and *B* of *E*.

- Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." ...but Alice knows only A, Bob knows only φ_B . Hmm.

32 / 57

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

...but Alice knows only A, Bob knows only φ_B . Hmm.

<u>SIDH's solution</u>: φ_B is a group homomorphism!

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

...but Alice knows only A, Bob knows only φ_B . Hmm.

<u>SIDH's solution</u>: φ_B is a group homomorphism! (and $A \cap B = \{\infty\}$)

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$.

► In SIDH, #*A* and #*B* are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- ► In SIDH, $#A = 2^n$ and $#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than a ℓ^k -isogeny!

- ► In SIDH, $#A = 2^n$ and $#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- → Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than a ℓ^k -isogeny!
 - Graph view: Each ψ_i is a step in the ℓ -isogeny graph.

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P, Q) of $E[2^n]$ and (R, S) of $E[3^m]$ (recall $E[k] \cong \mathbb{Z}/k \times \mathbb{Z}/k$)

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$\boldsymbol{A} := \langle \boldsymbol{P} + [\boldsymbol{a}] \boldsymbol{Q} \rangle$	$B := \langle R + [b]S \rangle$
compute $\varphi_{\mathbf{A}} \colon E \to E/\mathbf{A}$	compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(R), \varphi_A(S)$	$E/B, \varphi_B(P), \varphi_B(Q)$
$A' := \langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$ $s := j((E/B)/A')$	$B' := \langle \varphi_{\mathbf{A}}(R) + [b]\varphi_{\mathbf{A}}(S) \rangle$ $s := j((E/\mathbf{A})/B')$
Strategies for SIDH

<u>Recall</u>: SIDH splits ℓ^k -isogenies into k individual ℓ -isogenies. This requires computing $K_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(K)$ for all i.

Strategies for SIDH

<u>Recall</u>: SIDH splits ℓ^k -isogenies into k individual ℓ -isogenies. This requires computing $K_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(K)$ for all i.

Strategies for SIDH

<u>Recall</u>: SIDH splits ℓ^k -isogenies into k individual ℓ -isogenies. This requires computing $K_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(K)$ for all i.

Optimal strategies for SIDH

 \implies Sparse strategy improves $O(k^2 \cdot \ell)$ to $O(k \log k \cdot \ell)$.

Optimal strategies for SIDH

 \implies Sparse strategy improves $O(k^2 \cdot \ell)$ to $O(k \log k \cdot \ell)$.

When the costs of $[\ell]$ and φ_{K_i} are imbalanced, other trees can be even more efficient. They can be constructed easily.

 \rightsquigarrow "optimal strategies"

In Sage:

Factored isogenies were implemented recently (version \geq 9.5):

```
sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor()
2^123
```

In Sage:

Factored isogenies were implemented recently (version \geq 9.5):

```
sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor()
2^123
sage: phi = E.isogeny(K, algorithm="factored")
sage: phi
Composite morphism of degree 1063...6608 = 2^123:
  From: Elliptic Curve defined by y^2 = x^3 + x
                 over Finite Field of size 1701...5727
  To: Elliptic Curve defined by
                 v^2 = x^3 + 1625...8575 \times x + 1200...7360
                 over Finite Field of size 1701...5727
```

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

• Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

• Claw finding: claimed $\tilde{\mathcal{O}}(p^{1/6})$.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

• Claw finding: claimed $\tilde{\mathcal{O}}(p^{1/6})$.

[ePrint 2019/103]: more expensive than classical attacks.

"An adversary with enough quantum memory to run [quantum claw finding] with the query-optimal parameters could break SIKE faster by using the classical control hardware to run [collision finding]."

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

• Claw finding: claimed $\tilde{\mathcal{O}}(p^{1/6})$.

[ePrint 2019/103]: *more expensive than classical attacks*. "An adversary with enough quantum memory to run [quantum claw finding] with the query-optimal parameters could break SIKE faster by using the classical control hardware to run [collision finding]."

<u>Bottom line</u>: Fully exponential. Complexity $\exp((\log p)^{1+o(1)})$.

Security of SIDH: The \$IKE challenges

In 2021, a well-known large technology company announced challenge instances of SIDH as a target for cryptanalysis:

Security of SIDH: The \$IKE challenges

In 2021, a well-known large technology company announced challenge instances of SIDH as a target for cryptanalysis:

► **\$IKEp182:** $p \approx 2^{181.3}$ / prize $5 \cdot 10^3$ USD Solved using meet-in-the-middle. [ePrint 2021/1421] Security of SIDH: The \$IKE challenges

In 2021, a well-known large technology company announced challenge instances of SIDH as a target for cryptanalysis:

- ► **\$IKEp182:** $p \approx 2^{181.3}$ / prize $5 \cdot 10^3$ USD Solved using meet-in-the-middle. [ePrint 2021/1421]
- ▶ \$IKEp217: *p* ≈ 2^{216.2} / prize <u>5 · 10⁴ USD</u>
 Still open. (Good luck!)

► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 \implies Bob learns the LSB of *a*.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 $\implies \text{Bob learns the LSB of } a.$ Similarly, he can completely recover a in O(n) queries.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ► Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If a = 2u : $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$. If a = 2u+1: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

 $\implies \text{Bob learns the LSB of } a.$ Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.

 \implies only usable with ephemeral keys or as a KEM "SIKE".

Fix for the active attack on SIDH [Fujisaki-Okamoto 1999]:

Fix for the active attack on SIDH [Fujisaki-Okamoto 1999]:

• The first thing Bob sends encrypted is *his private key*.

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:

- The first thing Bob sends encrypted is *his private key*.
- Alice can then recompute Bob's public key.
 If it does not match what Bob sent, she aborts.

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:

- The first thing Bob sends encrypted is *his private key*.
- Alice can then recompute Bob's public key.
 If it does not match what Bob sent, she aborts.
- ► <u>Result</u>: *One* party (Alice) can reuse her key. (Bob can't!)

Fix for the active attack on SIDH [Fujisaki–Okamoto 1999]:

- The first thing Bob sends encrypted is *his private key*.
- Alice can then recompute Bob's public key.
 If it does not match what Bob sent, she aborts.
- ► <u>Result</u>: *One* party (Alice) can reuse her key. (Bob can't!)

This is (the essence of) **SIKE**, a KEM submitted to NIST's standardization project. See https://sike.org.

Some numbers for SIKE

The NIST submission contains four parameter sets: {SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Some numbers for SIKE

The NIST submission contains four parameter sets: {SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:

- <u>Public keys:</u> 330–564 bytes.
- <u>Ciphertexts:</u> 346–596 bytes.
- ► <u>Secret keys:</u> 374–644 bytes.

Some numbers for SIKE

The NIST submission contains four parameter sets: {SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:

- <u>Public keys:</u> 330–564 bytes.
- <u>Ciphertexts:</u> 346–596 bytes.
- <u>Secret keys:</u> 374–644 bytes.

Speed (Skylake):

- ▶ <u>Key generation</u>: 5–25 *million* cycles.
- ► <u>Encapsulation</u>: 10–40 *million* cycles.
- ▶ <u>Decapsulation</u>: 10–44 *million* cycles.

Plan for this lecture

- ► High-level overview for intuition.
- Elliptic curves & isogenies, algorithms.
- ► The SIDH/SIKE key-agreement protocol.
- The CSIDH non-interactive key-exchange.

CSIDH ['sir,said]

And the Manual of the State of

[Castryck–Lange–Martindale–Panny–Renes 2018]

A different way to kill the active attack?

► Recall: SIDH cannot reuse keys because of the auxiliary points φ_B(P), φ_B(Q) required to make the scheme work.

A different way to kill the active attack?

- ► Recall: SIDH cannot reuse keys because of the auxiliary points φ_B(P), φ_B(Q) required to make the scheme work.
- These points are needed because Bob must help Alice "transport" her secret subgroup *A* to his public curve *E_B*.

A different way to kill the active attack?

- ► Recall: SIDH cannot reuse keys because of the auxiliary points φ_B(P), φ_B(Q) required to make the scheme work.
- These points are needed because Bob must help Alice "transport" her secret subgroup *A* to his public curve *E*_B.

CSIDH's solution:

Use special subgroups *A* which can be transported to E_B independently of the secret isogeny φ_B .

How CSIDH avoids auxiliary points

Notation: For E/\mathbb{F}_q and $\ell, \lambda \in \mathbb{Z}$, write $E_{\ell,\lambda} := E[\ell] \cap \ker(\pi - [\lambda])$. (Recall $\pi : (x, y) \mapsto (x^q, y^q)$.)
Notation: For E/\mathbb{F}_q and $\ell, \lambda \in \mathbb{Z}$, write $E_{\ell,\lambda} := E[\ell] \cap \ker(\pi - [\lambda])$. (Recall $\pi : (x, y) \mapsto (x^q, y^q)$.)

Let E/\mathbb{F}_q and $\ell, \lambda, m, \mu \in \mathbb{Z} \setminus \{0\}$. Write $E' = E/E_{\ell,\lambda}$ and $E'' = E/E_{m,\mu}$. $\implies E'/E'_{m,\mu} \cong E''/E''_{\ell,\lambda}$.

Notation: For E/\mathbb{F}_q and $\ell, \lambda \in \mathbb{Z}$, write $E_{\ell,\lambda} := E[\ell] \cap \ker(\pi - [\lambda])$. (Recall $\pi : (x, y) \mapsto (x^q, y^q)$.)

Let
$$E/\mathbb{F}_q$$
 and $\ell, \lambda, m, \mu \in \mathbb{Z} \setminus \{0\}$.
Write $E' = E/E_{\ell,\lambda}$ and $E'' = E/E_{m,\mu}$.
 $\implies E'/E'_{m,\mu} \cong E''/E''_{\ell,\lambda}$.

<u>Problem</u>: The *typical* case is $E_{\ell,\lambda} = \{\infty\}$. Not useful.

Notation: For E/\mathbb{F}_q and $\ell, \lambda \in \mathbb{Z}$, write $E_{\ell,\lambda} := E[\ell] \cap \ker(\pi - [\lambda])$. (Recall $\pi : (x, y) \mapsto (x^q, y^q)$.)

Let
$$E/\mathbb{F}_q$$
 and $\ell, \lambda, m, \mu \in \mathbb{Z} \setminus \{0\}$.
Write $E' = E/E_{\ell,\lambda}$ and $E'' = E/E_{m,\mu}$.
 $\implies E'/E'_{m,\mu} \cong E''/E''_{\ell,\lambda}$.

<u>Problem</u>: The *typical* case is $E_{\ell,\lambda} = \{\infty\}$. Not useful. <u>But</u>: *If* there are enough pairs ℓ, λ with $\varphi_{E_{\ell,\lambda}} \neq id$, we can use compositions of various $\varphi_{E_{\ell,\lambda}}$ as secret isogenies.

Notation: For E/\mathbb{F}_q and $\ell, \lambda \in \mathbb{Z}$, write $E_{\ell,\lambda} := E[\ell] \cap \ker(\pi - [\lambda])$. (Recall $\pi : (x, y) \mapsto (x^q, y^q)$.)

Let
$$E/\mathbb{F}_q$$
 and $\ell, \lambda, m, \mu \in \mathbb{Z} \setminus \{0\}$.
Write $E' = E/E_{\ell,\lambda}$ and $E'' = E/E_{m,\mu}$.
 $\implies E'/E'_{m,\mu} \cong E''/E''_{\ell,\lambda}$.

<u>Problem</u>: The *typical* case is $E_{\ell,\lambda} = \{\infty\}$. Not useful. <u>But</u>: *If* there are enough pairs ℓ, λ with $\varphi_{E_{\ell,\lambda}} \neq id$, we can use

compositions of various $\varphi_{E_{\ell,\lambda}}$ as secret isogenies.

CSIDH's solution:

- Use supersingular curves over \mathbb{F}_p to easily control $\#E(\mathbb{F}_p)$.
- ▶ Pick smooth *p*+1, i.e., many small prime factors *l_i*.
 → All the groups *E_{l_i,±1}* are good for crypto!

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

• Walking "left" and "right" on any l_i -subgraph is efficient.

Cycles are compatible: [right then left] = [left then right]

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i .

Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set X is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set X is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

We understand the structure:

By complex-multiplication theory, the action factors through the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev-Stolbunov 2006]:

Use this group action on ordinary curves for Diffie-Hellman.

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev-Stolbunov 2006]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo-Kieffer-Smith 2018]:

Massive speedups, but still unbearably slow.

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev-Stolbunov 2006]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo-Kieffer-Smith 2018]:

Massive speedups, but still unbearably slow.

[Castryck-Lange-Martindale-Panny-Renes 2018]:

Switch to supersingular curves \implies "practical" performance.

► "Left" and "right" steps correspond to isogenies with special subgroups E_{ℓ_i,±1} as kernels.

(Recall that $E_{\ell,\lambda} = \{P \in E[\ell] \mid \pi(P) = [\lambda]P\}$.)

► "Left" and "right" steps correspond to isogenies with special subgroups E_{ℓ_i,±1} as kernels.

(Recall that $E_{\ell,\lambda} = \{P \in E[\ell] \mid \pi(P) = [\lambda]P\}$.)

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

► "Left" and "right" steps correspond to isogenies with special subgroups E_{ℓ_i,±1} as kernels.

(Recall that $E_{\ell,\lambda} = \{P \in E[\ell] \mid \pi(P) = [\lambda]P\}$.)

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing a "right" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

► "Left" and "right" steps correspond to isogenies with special subgroups E_{ℓ_i,±1} as kernels.

(Recall that $E_{\ell,\lambda} = \{P \in E[\ell] \mid \pi(P) = [\lambda]P\}$.)

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing a "right" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

(Finding a point of order ℓ_i : Pick $x \in \mathbb{F}_p$ random. Find $y \in \mathbb{F}_{p^2}$ such that $P = (x, y) \in E$. Compute $Q = [\frac{p+1}{\ell_i}]P$. Hope that $Q \neq \infty$, else retry.)

Efficient *x*-only arithmetic

▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)

Efficient *x*-only arithmetic

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- Recall that P = (x, y) has inverse -P = (x, -y).

Efficient *x*-only arithmetic

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- Recall that P = (x, y) has inverse -P = (x, -y).
- ⇒ We get an induced map $xMUL_n$ on *x*-coordinates such that $\forall P \in E$. $xMUL_n(x(P)) = x([n]P)$.
Efficient *x*-only arithmetic

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ► Recall that P = (x, y) has inverse -P = (x, -y).

⇒ We get an induced map $xMUL_n$ on *x*-coordinates such that $\forall P \in E$. $xMUL_n(x(P)) = x([n]P)$.

The same reasoning works for isogeny formulas.

<u>Net result</u>: With *x*-only arithmetic everything happens over \mathbb{F}_p . \implies Efficient CSIDH implementations!

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y.$$

For group <u>actions</u>, we simply cannot compose a * s and b * s!

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is
$$\#$$
cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

→ non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical *and* quantum operations.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- ► The sieving phase has classical and quantum operations.
 How to compare costs?
 (Is one qubit operation ≈ one bit operation? a hundred? millions?)

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- ► The sieving phase has classical *and* quantum operations.
 How to compare costs?
 (Is one qubit operation ≈ one bit operation? a hundred? millions?)

 \implies Security estimates for CSIDH vary wildly.

Plan for this lecture

- ► High-level overview for intuition.
- Elliptic curves & isogenies, algorithms.
- ► The SIDH/SIKE key-agreement protocol.
- The CSIDH non-interactive key-exchange.

CSIDH...

► is a drop-in post-quantum replacement for (EC)DH.

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH/SIKE...

 survived NIST's post-quantum not-a-competition (but wasn't selected as a winner in the first round).

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH/SIKE...

- survived NIST's post-quantum not-a-competition (but wasn't selected as a winner in the first round).
- ► has exponential attack cost as far as we know.

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH/SIKE...

- survived NIST's post-quantum not-a-competition (but wasn't selected as a winner in the first round).
- ► has exponential attack cost as far as we know.

Both...

► have tiny keys compared to other post-quantum schemes.

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH/SIKE...

- survived NIST's post-quantum not-a-competition (but wasn't selected as a winner in the first round).
- ► has exponential attack cost as far as we know.

Both...

- ► have tiny keys compared to other post-quantum schemes.
- ► are quite slow compared to other post-quantum schemes.

CSIDH...

- ► is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH/SIKE...

- survived NIST's post-quantum not-a-competition (but wasn't selected as a winner in the first round).
- ► has exponential attack cost as far as we know.

Both...

- ► have tiny keys compared to other post-quantum schemes.
- are quite slow compared to other post-quantum schemes.
- ► are really cool!

Recall **SIDH**:

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(R), \varphi_A(S))$
- ▶ Bob: $B := \langle R + [b]S \rangle \leq E[3^m]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Recall SIDH:

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(R), \varphi_A(S))$
- ▶ Bob: $B := \langle R + [b]S \rangle \leq E[3^m]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Let's look at "BAD SIDH":

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(P), \varphi_A(Q))$
- ▶ Bob: $B := \langle P + [b]Q \rangle \leq E[2^n]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Recall SIDH:

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(R), \varphi_A(S))$
- ▶ Bob: $B := \langle R + [b]S \rangle \leq E[3^m]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Let's look at "BAD SIDH":

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(P), \varphi_A(Q))$
- ▶ Bob: $B := \langle P + [b]Q \rangle \leq E[2^n]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Advantage: Need only $2^n \mid (p+1)$ instead of $2^n 3^m \mid (p+1)$.

Recall SIDH:

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(R), \varphi_A(S))$
- ▶ Bob: $B := \langle R + [b]S \rangle \leq E[3^m]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Let's look at "BAD SIDH":

- Setup: $E[2^n] = \langle P, Q \rangle$ and $E[3^m] = \langle R, S \rangle$
- Alice: $A := \langle P + [a]Q \rangle \leq E[2^n]$, <u>public</u> $(E_A, \varphi_A(P), \varphi_A(Q))$
- ▶ Bob: $B := \langle P + [b]Q \rangle \leq E[2^n]$, <u>public</u> $(E_B, \varphi_B(P), \varphi_B(Q))$

Advantage: Need only $2^n | (p+1)$ instead of $2^n 3^m | (p+1)$. **Disadvantage:** <u>Insecure</u>. *Why*?