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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.
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Crypto on graphs?
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g
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Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a < {0...g—1} b & {0...9-1}
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
gl:><>gl7
s:= (") s:=(g")

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«+t-g.
b—2. Sett<t-g.

b—1. Sett«+t-g.
b. PublishB «t-g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«t-g.

: .2

b2 Sette t.g Is this a good idea
b—1. Sett<+t-g.

b. PublishB «t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett«+ g. Ift=Breturnl.

2. Sett<t-g. 2. Sett«t-g. Ift = Breturn2.

3. Sett<+t-g. 3. Sett < t-g. Ift = Breturn 3.

4. Sett«+t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett « t-g. If t = B return b—2.
b—1. Sett <« t-g. b—1. Sett < t-g. If t = B return b—1.

b. Publish B «t-g. b. Sett <« t-g. If t = B return b.

b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.
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Diffie-Hellman: Bob vs. Eve

b-2.
b—1.
. PublishB «t-g.

L A .

Bob
Sett < g.
Sett«t-g.
Sett<t-g.
Sett<«+t-g.

Sett«t-g.
Sett<t-g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift =Breturn2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett <« t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = B return b.
b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Bob computes his public key ¢'3 from g.
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Bob computes his public key ¢'3 from g.
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Square-and-multiply
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Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'3 from g.
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Square-and-multiply as a graph
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Crypto on graphs?

We’ve been doing it all the time!
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The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.
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The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).
For well-chosen groups, computing ¢ — « takes O(/#G).

~» Exponential separation!
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Shor’s quantum algorithm computes o from ¢ in any group

in polynomial time.




A ‘ Aa

Shor’s quantum algorithm computes o from g% in any group
in polynomial time.
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New plan Get rid of the group, keep the graph




The upshot

In some cases,
isogeny graphs

can replace DLP-based constructions post-quantumly.
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The upshot

In some cases,
isogeny graphs

can replaceADLP-based constructions post-quantumly.
some
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The beauty and the beast

Components of particular isogeny graphs look like this:
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Which of these is good for crypto?
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The beauty and the beast

Components of particular isogeny graphs look like this:
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Which of these is good for crypto? Both.
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The beauty and the beast

At this time, there are > two distinct families of systems:

CSIDH ['sizsaid]

https://csidh.isogeny.org
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https://sike.org
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https://csidh.isogeny.org
https://sike.org

Plan for this lecture

High-level overview for intuition. \/

v

v

Elliptic curves & isogenies, algorithms.

The SIDH /SIKE key-agreement protocol.

v

v

The CSIDH non-interactive key-exchange.
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Stand back!

.%

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: ¥ =x+ax+b

with a, b € F such that 443 + 27 # 0.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: y*=x+ax+b

with a,b € F such that 4a° + 272 # 0.

A point on E is a solution (x,y), or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y). Z;o 2,
¢

» The sum of (x1,y1) and (x2,12) is 8‘9@@;61’;7?;@%

(2795l

()\2 — X1 — X7, )\(le —+ X7 — )\2) — ]/1) s

2
3x7+a

o otherwise.

_ Y2= s _
where \ = Fom— if x1 #xpand A =
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Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F})

v .

The same curve y?> = x> — x + 1 over the finite field Fzg.

13 /57



Elliptic curves (picture over [F})

v .

The addition law of y? = x> — x + 1 over the finite field Fyo.

13 /57



In Sage:

1
'sage: E = EllipticCurve(GF(101), [5,6,7,8,9]) |
|sage: E \
Elliptic Curve defined by \
\ yA2 + Bxxkxy + Txy = x*3 + 6xx*2 + 8xx + 9 \
\ over Finite Field of size 101 }
|
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In Sage:

sage: E = EllipticCurve(GF(101), [5,6,7,8,91)

sage: E

Elliptic Curve defined by
y*2 + Bxx*xy + Txy = x*3 + 6*xx"2 + 8*xx + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition

(73 : 24 : 1)
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In Sage:

sage: E = EllipticCurve(GF(101), [5,6,7,8,91)

sage: E

Elliptic Curve defined by
y*2 + Bxx*xy + Txy = x*3 + 6*xx"2 + 8*xx + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)

sage: P + Q # point addition

(73 : 24 : 1)

sage: P - P

(0 : 1 : 0) # point at infinity

14 /57



ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.

Define scalar multiplication [n]P := P+ --- + P.  (Use double-and-addy)
—_————

n times
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.

Define scalar multiplication [n]P := P+ --- + P.  (Use double-and-addy)
—_————

Alice public Bob
a &80, 01} b &2 10,01}
filg Dl
<—><>
s := [a)([B]P) - sl » s:= [B)([a]P)

15/57



Fields of definition

Let k be a field.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.
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Fields of definition

Let k be a field.

An elliptic curve/point/isogeny is defined over k
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.

For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.
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In Sage:

Everything happens over the specified field of definition:
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In Sage:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,01)
sage: E
Elliptic Curve defined by y*2 = x*3 + 5xx"2 + Xx
over Finite Field of size 101

sage: F.<t> = GF(101"2)
sage: E(11, 69xt + 64)

69*%t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69%t + 64 : 1)

17 /57



Point counting

There is a polynomial-time algorithm to compute the number
of points on an elliptic curve defined over F,. [Schoof 1985]

18 /57



Point counting

There is a polynomial-time algorithm to compute the number
of points on an elliptic curve defined over F,. [Schoof 1985]

In Sage:

sage: E = EllipticCurve (GF(1000000007), [5,5,5,5,5])
sage: E.count_points ()

1000060294

sage: E.order ()

1000060294

sage: E.cardinality()

1000060294

18 /57



Isogenies
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E | ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #1: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {¥¥=2"-3x+3}

over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)

defines a degree-1 isogeny of the elliptic curves
(=2 +ax+b} — {y¥* =x>+ax—b}.

It is an isomorphism; its kernel is {oco}.
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Isogenies (examples)

» given by rational functions.

» a group homomorphism.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #3: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Elm] = Z/m x Z/m.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #4: For E/IF; where g = p” with p prime,

m (%, y) = (7, y7)

is a degree-q isogeny, the Frobenius endomorphism.
The kernel of m—1 is precisely the set of rational points E(IF,).
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In Sage:

[ |
'sage: E = EllipticCurve(GF(101), [1,01) \
'sage: mu = E.multiplication_by_m_isogeny(5) \
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In Sage:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
to Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
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In Sage:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.multiplication_by_m_isogeny(5)
sage: mu
Isogeny of degree 25
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
to Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
sage: mu.rational_maps ()

((-4%x"25 - 4%x"23 - ... + 35%x"5 + 45%x*3 + x)

/ (x*24 + 45%x%22 + ... - 11%x*4 - 4xx"2 - 4),
(-21#x%36*y + 32%x"%34*y + ... - 29%x"2xy - 4*y)

/ (x*36 + 17xx"34 - ... - 44%x*4 + 19%xx"*2 - 21))

21/57



The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.
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The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by @ o ¢ = [deg ¢] and ¢ 0 § = [deg ).

Tate’s theorem:
E,E'/F, are isogenous over F, if and only if #E(F,;) = #E'(F,).

(Recall that Schoof’s algorithm can check this efficiently!)

— Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

22/57



Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of
» vertices given by elliptic curves over k;

» edges given by /-isogenies, ¢ € S, over k;

up to k-isomorphism.
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Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

» edges given by /-isogenies, ¢ € S, over k;

up to k-isomorphism.

Example components containing E: y? = x° + x:

k =TFuo, S={3,5,7} k=TFyup, S={2,3}.

23 /57



Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
24/57



Computing isogenies: Vélu’'s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

< )+ > (x(P+Q) - x(Q),

QeG\{oo}

P)+> yP+Q) - Q))>

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.
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P)+> yP+Q) - Q))>

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
» computing the defining equation of E/G;
» evaluating the isogeny E — E/G at a point.

25/57



Computing isogenies: Vélu’'s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then
< )+ > (x(P+Q) - x(Q),
QeG\{oo}

P)+> yP+Q) - (Q)))

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
» computing the defining equation of E/G;
» evaluating the isogeny E — E/G at a point.

Complexity: O(#G) ~» only suitable for small degrees.

/&lu [ePrint 2020/341] reduces the cost to © (/F#G).

25/57



In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()
7
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In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
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In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)
(0 : 1 : @) # o(K) =00 = K lies in the kernel
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In Sage:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)

(0 : 1 : @) # o(K) =00 = K lies in the kernel

sage: phi.rational_maps()

((x*7 + 129%x“6 - ... + 25)/(x*6 + 129%x*5 - ... + 36),
(x*9%y - 16#x*8*y - ... + 70xy)/(x*9 - 16*x*8 + ...))

26 /57



Predictable groups: Supersingular curves

Vélu operates in the field where the points in G live.
~» We need to make sure extensions stay small for desired #G.
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Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.
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Predictable groups: Supersingular curves

Vélu operates in the field where the points in G live.
~» We need to make sure extensions stay small for desired #G.

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.
» In that case, E(F2) = Z/(p+1) x Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.
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In Sage:

sage: E = EllipticCurve(GF(62207), [1,0])
sage: E.is_supersingular ()

True

sage: E.order ()

62208

sage: E.order ().factor ()

28 * 3”5
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In Sage:

sage: E = EllipticCurve(GF(62207), [1,0])

sage: E.is_supersingular ()

True

sage: E.order ()

62208

sage: E.order (). factor ()

28 % 3*5

sage: EE = E.change_ring(GF(62207"2))

sage: EE.order (). factor ()

216 = 3*10

sage: EE.abelian_group()

Additive abelian group isomorphic to Z/62208 + 7/62208
embedded in Abelian group of points
on Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 62207"2
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Plan for this lecture

High-level overview for intuition. \/

v

Elliptic curves & isogenies, algorithms. v
The SIDH /SIKE key-agreement protocol.

v

v

v

The CSIDH non-interactive key-exchange.
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Now: SIDH (Jao, De Feo; 2011)
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SIDH: High-level view

E
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SIDH: High-level view

E o E/A

E/B

A/

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v
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SIDH: High-level view

E o E/A
¥B ©p/
E/B o E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A' = E/(A,B) 2 (E/A)/B.
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SIDH’s auxiliary points

/4

“Alice somehow obtains A" := ¢p(A).
...but Alice knows only A, Bob knows only ¢p. Hmm.
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SIDH’s solution: ¢g is a group homomorphism!

Q v5(Q)
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SIDH’s auxiliary points

/4

“Alice somehow obtains A" := ¢p(A).
...but Alice knows only A, Bob knows only ¢p. Hmm.

SIDH’s solution: ¢p is a group homomorphism! (and A B = {oc})

Q v5(Q)

fffff @B - A

P ©p(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 5 (P) and ¢5(Q) in his public key.
= Now Alice can compute A" as (¢p(P) + [a]v(Q))-

32/57



Decomposing smooth isogenies

» In SIDH, #A and #B are “crypto-sized”.
Vélu's formulas take O(#G) to compute ¢;: E — E/G.
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Decomposing smooth isogenies

» InSIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take O(#G) to compute ¢;: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](;_1 0 - -- 0 91)(G).
W1 El Py Yr_1 Ek_1 i E/G

G
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Vélu's formulas take O(#G) to compute ¢;: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](;_1 0 - -- 0 91)(G).

i

E

El V2 Pk—1 Ek_1 Pk E/G
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Exponentially smaller than a /*-isogeny!

33/57



Decomposing smooth isogenies

» InSIDH, #A = 2" and #B = 3" are “crypto-sized”.

Vélu's formulas take O(#G) to compute ¢;: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](;_1 0 - -- 0 91)(G).

i

E

El V2 Pk—1 Ek_1 Pk E/G

®G
~ Complexity: O(k? - £).
Exponentially smaller than a /*-isogeny!

» Graph view: Each 1); is a step in the /-isogeny graph.
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SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,

» bases (P, Q) of E[2"] and (R, S) of E[3"] (recall E[K] 2 Z/k x Z/k)

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Strategies for SIDH

Recall: SIDH splits ¢*-isogenies into k individual /-isogenies.
This requires computing K; := [(*7|();_1 o - - - 0 4b1)(K) for all i.
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Recall: SIDH splits ¢*-isogenies into k individual /-isogenies.

This requires computing K; := [(*7|();_1 o - - - 0 4b1)(K) for all i.
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Strategies for SIDH

Recall: SIDH splits ¢*-isogenies into k individual /-isogenies.
This requires computing K; := [(*7|();_1 o - - - 0 4b1)(K) for all i.

Sparse strategy:
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Optimal strategies for SIDH

= Sparse strategy improves O(k* - ) to O(klogk - ¢).
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Optimal strategies for SIDH

= Sparse strategy improves O(k* - ) to O(klogk - ¢).
When the costs of [¢] and ¢k, are imbalanced, other trees can be

even more efficient. They can be constructed easily.

~ “optimal strategies”
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In Sage:

Factored isogenies were implemented recently (version > 9.5):

sage: E = EllipticCurve(GF(24127-1), [1,01)

sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order ()

10633823966279326983230456482242756608

sage: K.order ().factor ()

27123
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In Sage:

Factored isogenies were implemented recently (version > 9.5):

sage: E = EllipticCurve(GF(24127-1), [1,01)
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order ()
10633823966279326983230456482242756608
sage: K.order ().factor ()
27123
sage: phi = E.isogeny(K, algorithm="factored"”)
sage: phi
Composite morphism of degree 1063...6608 = 2°123:
From: Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 1701...5727
To: Elliptic Curve defined by
y*2 = x*3 + 1625...8575%xx + 1200...7360
over Finite Field of size 1701...5727

36 /57



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.
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» Collision finding: O(p>/8/, /menioryy/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).

[ePrint 2019 /103]: more expensive than classical attacks.

“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”
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Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

Classical attacks:
» Meet-in-the-middle: O(p'/*) time & space (!).
» Collision finding: O(p>/8/, /menioryy/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).

[ePrint 2019 /103]: more expensive than classical attacks.

“An adversary with enough quantum memory to run [quantum claw finding] with
the query-optimal parameters could break SIKE faster by using the classical control
hardware to run [collision finding].”

Bottom line: Fully exponential. Complexity exp((logp)! ™).

37/57



Security of SIDH: The $IKE challenges

In 2021, a well-known large technology company announced
challenge instances of SIDH as a target for cryptanalysis:
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Security of SIDH: The $IKE challenges

In 2021, a well-known large technology company announced
challenge instances of SIDH as a target for cryptanalysis:

> $IKEp182: p ~ 21813 / prize 5103 USD
Solved using meet-in-the-middle. [ePrint2021/1421]

» SIKEp217: p ~ 22162 / prize 5-10* USD
Still open. (Good luck!)

38/57



An active attack on SIDH key reuse

» Recall: Bob sends P’ := pp(P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.
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An active attack on SIDH key reuse

» Recall: Bob sends P’ := pp(P) and Q' := 5(Q) to Alice.
She computes A" = (P’ + [4]Q’) and, from that, obtains s.

» Bob cheats and sends Q" := Q' + [2"~ 1P’ instead of Q'.
Alice computes A” = (P’ + [a]Q").
Ifa=2u :[a]Q" = [a]Q + [u][2"]P’ = [1]Q".
Ifa =2u+1: [a]Q" = [a]Q + [W][2"|P' + 2" '|P' = [9]Q" + [2"']P".

= Bob learns the LSB of a.
Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ~ as hard as breaking SIDH. ‘

= only usable with ephemeral keys or as a KEM “SIKE”.
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SIKE

Fix for the active attack on SIDH [Fujisaki-Okamoto 1999];
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SIKE

Fix for the active attack on SIDH [Fujisaki-Okamoto 1999];
» The first thing Bob sends encrypted is his private key.

» Alice can then recompute Bob’s public key.
If it does not match what Bob sent, she aborts.

» Result: One party (Alice) can reuse her key. (Bob can’t!)

m This is (the essence of) SIKE, a KEM submitted

— to NIST’s standardization project.
‘é— See https://sike.org.
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The NIST submission contains four parameter sets:
{SIKEp434, SIKEp503, SIKEp610, SIKEp751}
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Some numbers for SIKE

The NIST submission contains four parameter sets:
{SIKEp434, SIKEp503, SIKEp610, SIKEp751}

Sizes:
» Public keys: 330-564 bytes.
» Ciphertexts: 346-596 bytes.
» Secret keys: 374-644 bytes.

Speed (Skylake):

» Key generation: 5-25 million cycles.

» Encapsulation: 1040 million cycles.
» Decapsulation: 1044 million cycles.

41/57



Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies, algorithms. v

» The SIDH/SIKE key-agreement protocol. v
» The CSIDH non-interactive key-exchange.
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» Recall: SIDH cannot reuse keys because of the auxiliary
points ¢p(P), ¢5(Q) required to make the scheme work.
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A different way to kill the active attack?

» Recall: SIDH cannot reuse keys because of the auxiliary
points ¢p(P), ¢5(Q) required to make the scheme work.

» These points are needed because Bob must help Alice

“transport” her secret subgroup A to his public curve Ep.

CSIDH's solution:

Use special subgroups A which can be transported to Ep
independently of the secret isogeny 5.

44 /57



How CSIDH avoids auxiliary points

Notation: For E/F; and ¢, X € Z, write E;  := E[(] N ker(m—[A]).
(Recall 7: (x,y) — (x7,17).)
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How CSIDH avoids auxiliary points

Notation: For E/F; and ¢, X € Z, write E;  := E[(] N ker(m—[A]).

(Recall 7: (x,y) — (x7,17).)

Let E/F, and ¢, \,m, i € Z\{0}.
Write E' = E/E; » and E” = E/E,, ..
—  E'/E,, = E'/E},.

Problem: The typical case is E; y = {oo}. Not useful.

But: If there are enough pairs ¢, A with ¢, , # id, we can use
compositions of various ¢, , as secret isogenies.

CSIDH's solution:

» Use supersingular curves over I, to easily control #E(F,).
p & p y p

» Pick smooth p+1, i.e., many small prime factors /;.
~+ All the groups Ey, +1 are good for crypto!
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y* = x*+Ax?+x supersingular with A € F,}.
Look at the /;-isogenies defined over I, within X.

vV v.v Yy

p =419
=3
by =5

l3 =7
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y* = x*+Ax?+x supersingular with A € F,}.
Look at the /;-isogenies defined over I, within X.

vV v.v Yy

p =419
=3
by =5
b3 =7

» Walking “left” and “right” on any ¢;-subgraph is efficient.
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CSIDH key exchange
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A group action

Cycles are compatible: [right then left] = [left then right]
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A group action

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

(An action of a group (G, ) on a set X is amap *: G x X — X such that
idxx=xand g« (hxx)=(g-h)+xforallg,h € Gand x € X.)

We understand the structure:
By complex-multiplication theory, the action factors through
the ideal-class group cl(Z[,/—p]).
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A brief history of CSIDH

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O)
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A brief history of CSIDH

Well-known classical theorem:

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes 1997/2006], independently [Rostovtsev—Stolbunov 2006]:

’ Use this group action on ordinary curves for Diffie-Hellman. ‘

[De Feo-Kieffer-Smith 2018]:

’ Massive speedups, but still unbearably slow. ‘

[Castryck-Lange-Martindale-Panny-Renes 2018]:

’ Switch to supersingular curves = “practical” performance. ‘

49 /57



Walking in the CSIDH graph

» “Left” and “right” steps correspond to isogenies with
special subgroups Ey, +1 as kernels.

(Recall that E, » = {P € E[{] | 7(P) = [A|P}.)
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Walking in the CSIDH graph

» “Left” and “right” steps correspond to isogenies with
special subgroups Ey, +1 as kernels.

(Recall that E, » = {P € E[{] | 7(P) = [A|P}.)

Computing a “left” step:
1. Find a point (x,y) € E of order /; with x,y € F,..
2. Compute the isogeny with kernel ((x,y)).

Computing a “right” step:
1. Find a point (x,y) € E of order /; with x € F, buty ¢ [Fp.
2. Compute the isogeny with kernel ((x,y)).

(Finding a point of order ¢;: Pick x € F, random. Find y € F,» such that
P = (x,y) € E. Compute Q = [%]P. Hope that Q # oo, else retry.)
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Efficient x-only arithmetic

» Forn € Z, we have [n](—P) = —[n]P_ (This holds in any group.)
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Efficient x-only arithmetic

» For n € Z, we have [n](—P) = —[n]P. (Thisholds in any group.)
» Recall that P = (x,y) has inverse —P = (x, —y).
= We get an induced map xMUL,, on x-coordinates such that
VPeE. xMUL,(x(P)) = x([n]P).

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over F,.
— Efficient CSIDH implementations!
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.

Shor computes « from h = g* by finding the kernel of the map

f: 7> =G, (x,y) —» g .

For group actions, we simply cannot compose a * s and b x s!
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Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/=p]) =3 - h(—p) = /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((log p)1+0(1)).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((log p)/ 2+"(1)) .
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

— Security estimates for CSIDH vary wildly.
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Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies, algorithms. v

» The SIDH/SIKE key-agreement protocol. v
» The CSIDH non-interactive key-exchange. v
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That’s nice and all, but... so what?

CSIDH...
» is a drop-in post-quantum replacement for (EC)DH.

> is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

» has a clean mathematical structure: a true group action.

SIDH/SIKE...

» survived NIST’s post-quantum not-a-competition
(but wasn't selected as a winner in the first round).

» has exponential attack cost as far as we know.

Both...
» have tiny keys compared to other post-quantum schemes.
» are quite slow compared to other post-quantum schemes.

» are really cool!
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Brainteaser

Recall SIDH:
» Setup: E[2"] = (P,Q) and E[3"] = (R, S)
» Alice: A := (P + [a]Q) < E[2"], public (Ea, pa(R), pa(S))
> Bob: B (R + [I|S) < E[3"], public (Es, s (P), #4(Q))
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» Alice: A := (P + [a]Q) < E[2"], public (Ea, pa(R), pa(S))
> Bob: B (R + [I|S) < E[3"], public (Es, s (P), #4(Q))

Let’s look at “BAD SIDH":

» Setup: E[2"] = (P,Q) 3 —

> Alice: A= (P+ [g]Q) < E[2"], public (E4, ¢4 (P), 94 (Q))
> Bob: B:= (P+ [b]Q) < E[2"], public (Es, @5 (P), p5(Q))
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Recall SIDH:
» Setup: E[2"] = (P,Q) and E[3"] = (R, S)
» Alice: A := (P + [1]Q) < E[2"], public (E, 4 (R), pa(S))
» Bob: B := (R + [b]S) < E[3"], public (Ez, p5(P), vz(Q))

Let’s look at “BAD SIDH":
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> Alice: A:= (P + [1]Q) < E[2"], public (Ea, ¢a(P), va(Q))
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Advantage: Need only 2" | (p+1) instead of 2"3™ | (p+1).
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Recall SIDH:
» Setup: E[2"] = (P,Q) and E[3"] = (R, S)
» Alice: A := (P + [1]Q) < E[2"], public (E, 4 (R), pa(S))
» Bob: B := (R + [b]S) < E[3"], public (Ez, p5(P), vz(Q))

Let’s look at “BAD SIDH":
> Setup: E[2"] = (P, Q) and-F[3"} — (RS}
> Alice: A:= (P + [1]Q) < E[2"], public (Ea, ¢a(P), va(Q))
> Bob: B := (P + [b]Q) < E[2"], public (Eg, ¢5(P), ¢5(Q))

Advantage: Need only 2" | (p+1) instead of 2"3™ | (p+1).

Disadvantage: Insecure. Why?
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