Introduction to Isogeny-based Cryptography

Chloe Martindale Lorenz Panny

Technische Universiteit Eindhoven

SIAM-AG, Bern, Switzerland, 10 July 2019

The discrete logarithm problem (DLP) is a fundamental building block in crypto:

The DLP: Let *G* be a group. For $g \in G$ and $n \in \mathbb{Z}$, given *g* and g^n , find *n*.

The discrete logarithm problem (DLP) is a fundamental building block in crypto:

The DLP:

Let *G* be a group. For $g \in G$ and $n \in \mathbb{Z}$, given *g* and g^n , find *n*.

► In crypto, we use G where the DLP is (sub-)exponentially harder than computing gⁿ.

The discrete logarithm problem (DLP) is a fundamental building block in crypto:

The DLP:

Let *G* be a group. For $g \in G$ and $n \in \mathbb{Z}$, given *g* and g^n , find *n*.

- ► In crypto, we use G where the DLP is (sub-)exponentially harder than computing gⁿ.
- Shor's algorithm makes the DLP only polynomially harder than computing gⁿ for any group G – with a quantum computer.

The discrete logarithm problem (DLP) is a fundamental building block in crypto:

The DLP:

Let *G* be a group. For $g \in G$ and $n \in \mathbb{Z}$, given *g* and g^n , find *n*.

- ► In crypto, we use G where the DLP is (sub-)exponentially harder than computing gⁿ.
- Shor's algorithm makes the DLP only polynomially harder than computing gⁿ for any group G – with a quantum computer.

One solution: Isogeny-based cryptography.

Fundamentals: elliptic curves

Definition

Let *k* be a field of characteristic \neq 2. An elliptic curve over *k* is a smooth¹ curve

$$E/k: y^2 = f(x),$$

where $f(x) \in k[x]$ is of degree 3.

¹No self-intersections or cusps.

► For any field k, the k-rational points² of E form a group, written E(k).

²solutions to the equation $y^2 = f(x)$, or the 'point at infinity' P_{∞}

► For any field k, the k-rational points² of E form a group, written E(k).

The group identity P_{∞} , the 'point at infinity', lies on every vertical line.

► For any field k, the k-rational points² of E form a group, written E(k).

The group identity P_{∞} , the 'point at infinity', lies on every vertical line.

► For any field k, the k-rational points² of E form a group, written E(k).

The group identity P_{∞} , the 'point at infinity', lies on every vertical line.

► For any field k, the k-rational points² of E form a group, written E(k).

The group identity P_{∞} , the 'point at infinity', lies on every vertical line.

► For any field k, the k-rational points² of E form a group, written E(k).

The group identity P_{∞} , the 'point at infinity', lies on every vertical line.

Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition

Let E/\mathbb{F}_q be an elliptic curve, with $q = p^n$. E is supersingular if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. Otherwise E is ordinary.

Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition

Let E/\mathbb{F}_q be an elliptic curve, with $q = p^n$. E is supersingular if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. Otherwise E is ordinary.

Important special cases:

- When E/\mathbb{F}_p supersingular and $\#E(\mathbb{F}_p) = p + 1$.
- When E/\mathbb{F}_{p^2} supersingular and $\#E(\mathbb{F}_{p^2}) = (p+1)^2$.

Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition

Let E/\mathbb{F}_q be an elliptic curve, with $q = p^n$. E is supersingular if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. Otherwise E is ordinary.

Important special cases:

- When E/\mathbb{F}_p supersingular and $\#E(\mathbb{F}_p) = p + 1$.
- When E/\mathbb{F}_{p^2} supersingular and $\#E(\mathbb{F}_{p^2}) = (p+1)^2$.

Example

Define $E/\mathbb{F}_5 : y^2 = x^3 + 1$. Then

$$E(\mathbb{F}_5) = \{(0,1), (0,-1), (2,3), (2,-3), (-1,0), P_{\infty}\},\$$

so E/\mathbb{F}_5 is supersingular.

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$

 Composing-an-element-with-itself is a morphism for any abelian variety. Also: it induces a morphism of groups.

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$

- Composing-an-element-with-itself is a morphism for any abelian variety. Also: it induces a morphism of groups.
- Explicit calculations show that:

$$\begin{array}{cccc} [2]: E_{51} & \to & E_{51} \\ (x,y) & \mapsto & \left(\frac{\frac{1}{2}x^4 - 18x^3 - 163x^2 - 18x + \frac{1}{2}}{8x(x^2 + 9x + 1)}, \frac{y(x^6 + 18x^5 + 5x^4 - 5x^2 - 18x - 1)}{(8x(x^2 + 9x + 1))^2}\right). \end{array}$$

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_A / \mathbb{F}_{419} : y^2 = x^3 + Ax^2 + x$

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_A / \mathbb{F}_{419} : y^2 = x^3 + Ax^2 + x$

• A less obvious isogeny:

$$\begin{array}{rccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^3 - 183x^2 + 73x + 30}{(x+118)^2}, y\frac{x^3 - 65x^2 - 104x + 174}{(x+118)^3}\right). \end{array}$$

Definition

An isogeny of elliptic curves over *k* is a non-zero morphism $E \rightarrow E'$ with finite kernel. It is given by rational maps.

Example

Define $E_A / \mathbb{F}_{419} : y^2 = x^3 + Ax^2 + x$

• A less obvious isogeny:

$$\begin{array}{rccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^3 - 183x^2 + 73x + 30}{(x+118)^2}, y\frac{x^3 - 65x^2 - 104x + 174}{(x+118)^3}\right). \end{array}$$

• $\ker(f) = \{(-118, 51), (-118, -51), P_{\infty}\}$

Definition

Definition

Let $E, E'/\mathbb{F}_q$ be elliptic curves and let $\ell \in \mathbb{Z}_{>0}$ be coprime to q. An ℓ -isogeny $f : E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

• Our example $f : E_{51} \to E_9$ over \mathbb{F}_{419} was a 3-isogeny.

Definition

- Our example $f : E_{51} \to E_9$ over \mathbb{F}_{419} was a 3-isogeny.
- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Definition

- Our example $f : E_{51} \to E_9$ over \mathbb{F}_{419} was a 3-isogeny.
- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).
- Write $\varphi_G : E \to E/G$ for the isogeny from *E* with kernel *G*.

Definition

- Our example $f : E_{51} \to E_9$ over \mathbb{F}_{419} was a 3-isogeny.
- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).
- Write $\varphi_G : E \to E/G$ for the isogeny from *E* with kernel *G*.
- ► Vélu's formulas compute the *l*-isogeny from its kernel in time Θ(*l*).

Of special interest in crypto:

• We call an isogeny cyclic if its kernel is cyclic.

Of special interest in crypto:

- We call an isogeny cyclic if its kernel is cyclic.
- The kernel of a cyclic ℓ-isogeny is generated by an ℓ-torsion point (in particular: a point of order ℓ).

Of special interest in crypto:

- We call an isogeny cyclic if its kernel is cyclic.
- ► The kernel of a cyclic *l*-isogeny is generated by an *l*-torsion point (in particular: a point of order *l*).
- An ℓ -torsion point is a point $P \in E(k)$ such that

$$[\ell]P = \underbrace{P + \dots + P}_{\ell \text{ times}} = P_{\infty}.$$

Of special interest in crypto:

- We call an isogeny cyclic if its kernel is cyclic.
- ► The kernel of a cyclic *l*-isogeny is generated by an *l*-torsion point (in particular: a point of order *l*).
- An ℓ -torsion point is a point $P \in E(k)$ such that

$$[\ell]P = \underbrace{P + \dots + P}_{\ell \text{ times}} = P_{\infty}.$$

Our example $f : E_{51} \rightarrow E_9$ was a cyclic 3-isogeny:

$$\ker(f) = \{(-118, 51), (-118, -51), P_{\infty}\}$$

= \{(-118, 51), [2](-118, 51), [3](-118, 51)\}.

Of special interest in crypto:

- We call an isogeny cyclic if its kernel is cyclic.
- ► The kernel of a cyclic *l*-isogeny is generated by an *l*-torsion point (in particular: a point of order *l*).
- An ℓ -torsion point is a point $P \in E(k)$ such that

$$[\ell]P = \underbrace{P + \dots + P}_{\ell \text{ times}} = P_{\infty}.$$

Our example $f : E_{51} \rightarrow E_9$ was a cyclic 3-isogeny:

$$\begin{aligned} \ker(f) &= \{(-118, 51), (-118, -51), P_{\infty}\} \\ &= \{(-118, 51), [2](-118, 51), [3](-118, 51)\}. \end{aligned}$$

→ we could also write

$$f = \varphi_{\langle (-118,51) \rangle} : E_{51} \to E_{51} / \langle (-118,51) \rangle.$$

Decomposing smooth isogenies

► We will use isogenies with 'crypto-sized' (*big*) kernels. Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

Decomposing smooth isogenies

- ► We will use isogenies with 'crypto-sized' (*big*) kernels. Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Make sure *G* has smooth order.

Decomposing smooth isogenies

- ► We will use isogenies with 'crypto-sized' (*big*) kernels. Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Make sure *G* has smooth order.
- **!!** Evaluate φ_G as a chain of small-degree isogenies:
Decomposing smooth isogenies

- ► We will use isogenies with 'crypto-sized' (*big*) kernels. Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Make sure *G* has smooth order.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, we can decompose φ_G into ℓ -isogenies ψ_1, \ldots, ψ_k :

Decomposing smooth isogenies

- ► We will use isogenies with 'crypto-sized' (*big*) kernels. Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Make sure *G* has smooth order.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, we can decompose φ_G into ℓ -isogenies ψ_1, \ldots, ψ_k :

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than $\#G = \ell^k$! 'Optimal strategy' improves this to $O(k \log k \cdot \ell)$.

Definition

Let E/\mathbb{F}_q be an elliptic curve and let $\ell \in \mathbb{Z}_{>0}$. Let $f : E \to E'$ be an ℓ -isogeny.

Definition

Let E/\mathbb{F}_q be an elliptic curve and let $\ell \in \mathbb{Z}_{>0}$. Let $f : E \to E'$ be an ℓ -isogeny.

Then there exists a unique (up to isomorphism) ℓ -isogeny

$$f^{\vee}: E' \to E$$

such that

$$f^{\vee} \circ f = [\ell].$$

Definition

Let E/\mathbb{F}_q be an elliptic curve and let $\ell \in \mathbb{Z}_{>0}$. Let $f : E \to E'$ be an ℓ -isogeny.

Then there exists a unique (up to isomorphism) ℓ -isogeny

$$f^{\vee}: E' \to E$$

such that

$$f^{\vee} \circ f = [\ell].$$

This is called the dual isogeny.

Definition

Let E/\mathbb{F}_q be an elliptic curve and let $\ell \in \mathbb{Z}_{>0}$. Let $f : E \to E'$ be an ℓ -isogeny.

Then there exists a unique (up to isomorphism) ℓ -isogeny

$$f^{\vee}: E' \to E$$

such that

$$f^{\vee} \circ f = [\ell].$$

This is called the dual isogeny.

(As before $[\ell]$ denotes the multiplication-by- ℓ map.)

Fundamentals: Isogeny graphs

Definition

Let *q* be a prime power and ℓ be a prime not dividing *q*. The isogeny graph $G_{\ell,n}$ over \mathbb{F}_q has

Fundamentals: Isogeny graphs

Definition

Let *q* be a prime power and ℓ be a prime not dividing *q*. The isogeny graph $G_{\ell,n}$ over \mathbb{F}_q has

 ▶ Nodes: elliptic curves defined over F_q with n points (up to F_q-isomorphism).

Fundamentals: Isogeny graphs

Definition

Let *q* be a prime power and ℓ be a prime not dividing *q*. The isogeny graph $G_{\ell,n}$ over \mathbb{F}_q has

- ▶ Nodes: elliptic curves defined over F_q with n points (up to F_q-isomorphism).
- ► Edges: an edge E E' represents an ℓ-isogeny E → E' defined over F_q together with its dual isogeny.
 (up to post-composition with isomorphisms).

Isogeny graphs

Example

Isogeny graphs

Example

Then the graph $G_{3,420}$ over \mathbb{F}_{419} looks like:

[NB: the nodes with p + 1 = 420 points are the supersingular nodes].

Isogeny graphs

Fragen? Questions? Domande? Dumondas?

Big picture $\rho \rho$

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\rho \rho$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture $\rho \rho$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Components of well-chosen isogeny graphs look like this:

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

At this time, there are two distinct families of systems:

CSIDH ['sir,said]

Martin Minister . 10

(Castryck, Lange, Martindale, Panny, Renes; 2018)

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

► Walking 'left' and 'right' on any *l*_{*i*}-subgraph is efficient.

Elliptic-curve people may know this graph: It is the union of depth-0 isogeny volcanoes.

Elliptic-curve people may know this graph: It is the union of depth-0 isogeny volcanoes.

Typical formulation:

Theorem. Let \mathcal{O} be an imaginary quadratic order and k a field. If the set

 $\mathcal{E}\ell_{\mathcal{O}}(k) = \{ j(E) \mid E/k \text{ ordinary}, \text{ End}(E) \cong \mathcal{O} \}$

is non-empty, then the ideal-class group cl(O) acts freely and transitively on $\mathcal{E}\!\ell\ell_O(k)$.

Elliptic-curve people may know this graph: It is the union of depth-0 isogeny volcanoes.

Typical formulation:

Theorem. Let \mathcal{O} be an imaginary quadratic order and k a field. If the set

 $\mathcal{E}\ell_{\mathcal{O}}(k) = \{ j(E) \mid E/k \text{ ordinary}, \text{ End}(E) \cong \mathcal{O} \}$

is non-empty, then the ideal-class group cl(O) acts freely and transitively on $\mathcal{E}\!\ell\ell_O(k)$.

Less well-known:

This *also* works for supersingular elliptic curves if one restricts to $k = \mathbb{F}_p$, $\cong_{\mathbb{F}_p}$, and $\operatorname{End}_{\mathbb{F}_p}$.

Walking in the CSIDH graph

Supersingular curves have computational benefits: By taking special *p*, it is easy to control the group structure! (Not easy for ordinary curves in 'interesting' cases.)

Walking in the CSIDH graph

Supersingular curves have computational benefits: By taking special *p*, it is easy to control the group structure! (Not easy for ordinary curves in 'interesting' cases.)

Taking a 'positive' step on the ℓ_i -subgraph:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Walking in the CSIDH graph

Supersingular curves have computational benefits: By taking special *p*, it is easy to control the group structure! (Not easy for ordinary curves in 'interesting' cases.)

Taking a 'positive' step on the ℓ_i -subgraph:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Taking a 'negative' step on the l_i -subgraph:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.
Walking in the CSIDH graph

Supersingular curves have computational benefits: By taking special *p*, it is easy to control the group structure! (Not easy for ordinary curves in 'interesting' cases.)

Taking a 'positive' step on the ℓ_i -subgraph:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Taking a 'negative' step on the l_i -subgraph:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

<u>Net result</u>: With *x*-only arithmetic everything happens over \mathbb{F}_p . \implies Efficient to implement!

Group=action-based key exchange

Like in the CSIDH example, we *generally* get a key exchange from a commutative group action $G \times S \rightarrow S$:

Why no Shor?

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y$$

For group <u>actions</u>, we generally cannot compose a * s and b * s!

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

→ non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$. <u>next talk!</u>

Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!

Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

- ▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!
- Problem: also no more intrinsic sense of direction.
 "It all bloody looks the same!" a famous isogeny cryptographer
 meed extra information to let Alice & Bob's walks commute.

Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn't allow for nice pictures of beaches...)

Ε

E A B

• Alice & Bob pick secret subgroups *A* and *B* of *E*.

- Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)

- Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'$.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- They both compute the shared secret

 $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only A, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only *A*, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P, Q) and (R, S) of $E[2^n]$ and $E[3^m]$ (recall $E[k] \cong \mathbb{Z}/k \times \mathbb{Z}/k$)

Alice	public Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$\boldsymbol{A} := \langle \boldsymbol{P} + [\boldsymbol{a}] \boldsymbol{Q} \rangle$	$B := \langle R + [b]S \rangle$
compute $\varphi_{\mathbf{A}} \colon E \to E/\mathbf{A}$	compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(R), \varphi_A(S)$	$E/B, \varphi_B(P), \varphi_B(Q)$
$A' := \langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$ $s := j((E/B)/A')$	$B' := \langle \varphi_{\mathbf{A}}(R) + [b]\varphi_{\mathbf{A}}(S) \rangle$ $s := j((E/\mathbf{A})/B')$

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

 Claw finding: claimed
 O(p^{1/6}).
 Newer paper says this is *more expensive than classical attacks*.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

 Claw finding: claimed
 O(p^{1/6}).
 Newer paper says this is *more expensive than classical attacks*.

<u>Bottom line</u>: Fully exponential. Complexity $\exp((\log p)^{1+o(1)})$.

Fragen? Questions? Domande? Dumondas?