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Why Isogeny-Based Crypto?

The discrete logarithm problem (DLP) is a fundamental
building block in crypto:

The DLP:
Let G be a group. For g € Gand n € Z, given g and g", find n.

» In crypto, we use G where the DLP is (sub-)exponentially
harder than computing g".

» Shor’s algorithm makes the DLP only polynomially harder
than computing ¢g" for any group G — with a quantum
computer.

One solution: Isogeny-based cryptography.
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Fundamentals: elliptic curves

Definition
Let k be a field of characteristic # 2. An elliptic curve over kis a
smooth! curve

E/k:y* =f(x),
where f(x) € kx| is of degree 3.
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Fundamentals: the group law on elliptic curves

» For any field k, the k-rational points? of E form a group,
written E(k).

%solutions to the equation y*> = f(x), or the ‘point at infinity’ Po.
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Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition

Let E/IF,; be an elliptic curve, with g = p".
E is supersingular if p | (9 + 1 — #E(F;)).
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Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition
Let E/IF,; be an elliptic curve, with g = p".
E is supersingular if p | (9 + 1 — #E(F;)).
Otherwise E is ordinary.
Important special cases:
» When E/F, supersingular and #E(F,) =p + 1.
» When E/F > supersingular and #E(F.) = (p + 1)2.

Example
Define E/Fs : y?> = x> + 1. Then

E(FS) = {(O’ 1)’ (07 *1)7 (273)7 (2’ *3)7 (*17 0), Poo}a

so E/Fs is supersingular.
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Fundamentals: Isogenies of elliptic curves
Definition

An isogeny of elliptic curves over k is a non-zero morphism
E — E’ with finite kernel. It is given by rational maps.

5/31



Fundamentals: Isogenies of elliptic curves

Definition
An isogeny of elliptic curves over k is a non-zero morphism
E — E’ with finite kernel. It is given by rational maps.

Example
Define E51/F419 : yZ =x3 + 51x2 +x

2]: Emx — Es
(X,y) = 2'(X,y) = (x7y)+(x7y)

5/31



Fundamentals: Isogenies of elliptic curves

Definition
An isogeny of elliptic curves over k is a non-zero morphism
E — E’ with finite kernel. It is given by rational maps.

Example
Define E51/F419 : yZ =x3 + 51x2 +x

2]: Emx — Es
(X,y) = 2'(X,y) = (x7y)+(x7y)

» Composing-an-element-with-itself is a morphism for any
abelian variety. Also: it induces a morphism of groups.

5/31



Fundamentals: Isogenies of elliptic curves

Definition

An isogeny of elliptic curves over k is a non-zero morphism
E — E’ with finite kernel. It is given by rational maps.
Example

Define E51/F419 : yZ =x3 + 51x2 +Xx

2]: Emx — Es
(X,y) = 2'(X,y) = (x7y)+(x7y)

» Composing-an-element-with-itself is a morphism for any
abelian variety. Also: it induces a morphism of groups.

» Explicit calculations show that:

[2] : E51 — E51
xy) — X187 16322 —18x+5  y(x6+18x°+5x* ~522~18x—1)
Y 8x(x24+9x+1) ) (8x(x2+9x+1))2
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» A less obvious isogeny:
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Fundamentals: Isogenies of elliptic curves

Definition
An isogeny of elliptic curves over k is a non-zero morphism
E — E’ with finite kernel. It is given by rational maps.

Example
Define E4 /Fy419 : yZ =x3 4+ AxX* +x
» A less obvious isogeny:

f : E51 — Eg

¥ —183x2473x430 ,,x°>—65x2—104x+174
(x,y) — ( (x+118)2 (x+118)3

> ker(f) = {(—118,51), (118, —51), Po.}
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Fundamentals: Isogenies of elliptic curves

Definition
Let E, E'/F,; be elliptic curves and let ¢ € Z~( be coprime to g.
An (-isogeny f : E — E’ is an isogeny with # ker(f) = /.

» Our example f : Es; — Eg over F419 was a 3-isogeny.

» Fact: an isogeny is uniquely determined by its kernel

(up to isomorphism).

» Write ¢ : E — E/G for the isogeny from E with kernel G.

» Vélu's formulas compute the /-isogeny from its kernel in
time © (/).
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Fundamentals: Isogenies of elliptic curves
Of special interest in crypto:
» We call an isogeny cyclic if its kernel is cyclic.
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Fundamentals: Isogenies of elliptic curves
Of special interest in crypto:

» We call an isogeny cyclic if its kernel is cyclic.

» The kernel of a cyclic /-isogeny is generated by an
/-torsion point (in particular: a point of order ¢).

» An (-torsion point is a point P € E(k) such that

[(][P=P+---+P=Py.
e

£ times

Our example f : Es; — Eg was a cyclic 3-isogeny:

ker(f) = {(—118,51), (=118, —51), P }

= {(-118,51), [2](—118,51), [3](—118,51)}.

~» we could also write

f=@(-nss) : Est = Es1/((—118,51)).
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Decomposing smooth isogenies

» We will use isogenies with ‘crypto-sized” (big) kernels.
Vélu's formulas take O(#G) to compute ¢;: E — E/G.
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Decomposing smooth isogenies

» We will use isogenies with ‘crypto-sized” (big) kernels.
Vélu's formulas take O(#G) to compute ¢;: E — E/G.

!! Make sure G has smooth order.
!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = 7, /¥, we can decompose ¢¢ into (-isogenies

¢17"'a¢k:

Pk—1

E1 i > . > Ek_1 *Mk E/G

PG
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Decomposing smooth isogenies

I

1"

We will use isogenies with ‘crypto-sized” (big) kernels.
Vélu's formulas take O(#G) to compute ¢;: E — E/G.

Make sure G has smooth order.

! Evaluate ¢ as a chain of small-degree isogenies:

For G = 7, /¥, we can decompose ¢¢ into (-isogenies

1/)17"'”7[)1(:

Pk—1

E1 i > . > Ek_1 *Mk E/G

G
Complexity: O(k? - £). Exponentially smaller than #G = (1
‘Optimal strategy” improves this to O(klogk - ¢).
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Elliptic curves and isogenies

Definition
Let E/F; be an elliptic curve and let £ € Z-¢. Letf : E — E’ be
an (-isogeny.
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such that
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Elliptic curves and isogenies

Definition

Let E/F; be an elliptic curve and let £ € Z-¢. Letf : E — E’ be
an (-isogeny.

Then there exists a unique (up to isomorphism) /-isogeny

fv:E’—>E

such that
%
fref =1
This is called the dual isogeny.
(As before [¢] denotes the multiplication-by-¢ map.)
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Let g be a prime power and / be a prime not dividing 4. The
isogeny graph Gy, over [F; has
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Fundamentals: Isogeny graphs

Definition
Let g be a prime power and / be a prime not dividing 4. The
isogeny graph Gy, over I, has
» Nodes: elliptic curves defined over F; with n points
(up to Fy-isomorphism).
» Edges: an edge E — E’ represents an (-isogeny E — E’
defined over I, together with its dual isogeny.

(up to post-composition with isomorphisms).

11/31



Isogeny graphs

Example

Replaceeg. [Esi¢x_2eEs by e

12/31



Isogeny graphs

Example

Replaceeg. [Esi¢x_2eEs by e

Then the graph G3 429 over Fy19 looks like:

oo
./ \.

Q/ \Q
0/ \.

./ \I
{ \
| )
| J
\, J

\, J
N ./
N~ —

S—e—o—*

[NB: the nodes with p + 1 = 420 points are the supersingular nodes].
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Isogeny graphs

A 3-isogeny

(picture not toseale) _ _ — —

Esy: yZ:x3 4512 +x ———> Eo: yz —3 102 4
} 97:3 —183:2 4«
o ( x2—183x497 -

—x3 16512+ 128v—133
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Fragen?
Questions?
Domande?

Dumondas?
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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

15/31



The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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Which of these is good for crypto?
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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Which of these is good for crypto? Both.
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The beauty and the beast

At this time, there are two distinct families of systems:

S 3 AN
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v A e O = - NN\
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q=pr q9=r
CSIDH (’sizsaid] SIDH

https://csidh.isogeny.org https://sike.org
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4-/;---{, —1is prime.

Let X = {y* =x>+Ax?*+x over F, with p+1 points}.
Look at the /;-isogenies defined over I, within X.

v v.v Y

% p =419

‘:. ‘\', fr—

frsk ta=>5

/0 l3=7
3 p—
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.
Make surep =4-/;---{, —1is prime.
Let X = {y* =x>+Ax?*+x over F, with p+1 points}.

v v.v Y

Look at the /;-isogenies defined over I, within X.

p =419
b =
lp=5
b3 =7

» Walking ‘left’ and ‘right” on any ¢;-subgraph is efficient.
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Elliptic-curve people may know this graph:
It is the union of depth-0 isogeny volcanoes.
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Theorem. Let O be an imaginary quadratic order and k a field.
If the set

&o(k) ={j(E) | E/k ordinary, End(E) = O }

is non-empty, then the ideal-class group cl(O) acts freely and
transitively on & (k).
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Elliptic-curve people may know this graph:
It is the union of depth-0 isogeny volcanoes.

Typical formulation:

Theorem. Let O be an imaginary quadratic order and k a field.
If the set

&o(k) ={j(E) | E/k ordinary, End(E) = O }

is non-empty, then the ideal-class group cl(O) acts freely and
transitively on & (k).

Less well-known:

This also works for supersingular elliptic curves if one restricts
tok = Fp, %FP, and El’ld[[«‘p.
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Walking in the CSIDH graph

Supersingular curves have computational benefits:
By taking special p, it is easy to control the group structure!
(Not easy for ordinary curves in ‘interesting’ cases.)
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Walking in the CSIDH graph

Supersingular curves have computational benefits:
By taking special p, it is easy to control the group structure!
(Not easy for ordinary curves in ‘interesting’ cases.)

Taking a ‘positive” step on the /;-subgraph:
1. Find a point (x,y) € E of order /; with x,y € F,..
2. Compute the isogeny with kernel ((x,y)).

Taking a ‘negative’ step on the /;-subgraph:
1. Find a point (x,y) € E of order /; with x € F, buty ¢ [,
2. Compute the isogeny with kernel ((x,y)).

Net result: With x-only arithmetic everything happens over [,
— Efficient to implement!
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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Group=action-based key exchange

Like in the CSIDH example, we generally get a key exchange
from a commutative group action G x S — S:

Alice public Bob
a random G b random G
ax*s bxs

—

key :==ax (bxs)=abxs key :=bx (axs)=abxs
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Why no Shor?

Shor computes « from I = g* by finding the kernel of the map
f: 7?2 =G, (x,y) '—>g"+hy

For group actions, we generally cannot compose a * s and b * s!
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Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/=p]) ~ /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((log p)1+0(1)).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((log p)/ 2+"(1)). next talk!
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.

» SIDH uses the full F»-isogeny graph. No group action!
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.

» SIDH uses the full F»-isogeny graph. No group action!

» Problem: also no more intrinsic sense of direction.
“It all blOOdy looks the same!” — a famous isogeny cryptographer

~+ need extra information to let Alice & Bob’s walks commute.
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77

Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)
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SIDH: High-level view

E
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SIDH: High-level view

E o E/A

e5
E/B
» Alice & Bob pick secret subgroups A and B of E.

» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the values E/A and E/B.
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SIDH

v

v

v

v

: High-level view
E o E/A
s "
E/B

Al

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := pp(A). (Similar for Bob.)
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E o E/A
¥B wp/
E/B ———— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A"= EJ{A,B) = (E/A)/B'.
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SIDH: High-level view

E o E/A
¥B wp/
E/B ———— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A"= EJ{A,B) = (E/A)/B'.

y way: also -lev! for CSIDH...-
This 18 Iso the hlgh level view
By the way:

27 /31



SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := ¢p(A).

Alice knows only A, Bob knows only ¢. Hm.
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Solution: ¢p is a group homomorphism!
» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 3 (P) and ¢3(Q) in his public key.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := ¢p(A).

Alice knows only A, Bob knows only ¢. Hm.

Solution: ¢p is a group homomorphism!
» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes 3 (P) and ¢3(Q) in his public key.
—> Now Alice can compute A" as (¢p(P) + [1]os(Q))!

Q v5(Q)

,,,,, @B””’ A/
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SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,

» bases (P, Q) and (R, S) of E[2"] and E[3™] (recall E[k] = Z/k x Z/k)

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

30/31



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

30/31



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).

Newer paper says this is more expensive than classical attacks.

30/31



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about , /p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).
Newer paper says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp((logp)'*° (1)).
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Fragen?
Questions?
Domande?

Dumondas?
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