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Why Isogeny-Based Crypto?

The discrete logarithm problem (DLP) is a fundamental
building block in crypto:

The DLP:
Let G be a group. For g ∈ G and n ∈ Z, given g and gn, find n.

I In crypto, we use G where the DLP is (sub-)exponentially
harder than computing gn.

I Shor’s algorithm makes the DLP only polynomially harder
than computing gn for any group G – with a quantum
computer.

One solution: Isogeny-based cryptography.
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Fundamentals: elliptic curves
Definition
Let k be a field of characteristic 6= 2. An elliptic curve over k is a
smooth1 curve

E/k : y2 = f (x),

where f (x) ∈ k[x] is of degree 3.

1No self-intersections or cusps.
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Fundamentals: the group law on elliptic curves

I For any field k, the k-rational points2 of E form a group,
written E(k).

The group identity P∞, the ‘point at infinity’, lies on every
vertical line.

2solutions to the equation y2 = f (x), or the ‘point at infinity’ P∞
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Fundamentals: Elliptic curves

Especially important for isogeny-based crypto:

Definition
Let E/Fq be an elliptic curve, with q = pn.
E is supersingular if p | (q + 1−#E(Fq)).
Otherwise E is ordinary.

Important special cases:
I When E/Fp supersingular and #E(Fp) = p + 1.
I When E/Fp2 supersingular and #E(Fp2) = (p + 1)2.

Example
Define E/F5 : y2 = x3 + 1. Then

E(F5) = {(0, 1), (0,−1), (2, 3), (2,−3), (−1, 0),P∞},

so E/F5 is supersingular.
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Fundamentals: Isogenies of elliptic curves

Definition
An isogeny of elliptic curves over k is a non-zero morphism
E→ E′ with finite kernel. It is given by rational maps.

Example
Define E51/F419 : y2 = x3 + 51x2 + x

[2] : E51 → E51
(x, y) 7→ 2 · (x, y) := (x, y) + (x, y)

I Composing-an-element-with-itself is a morphism for any
abelian variety. Also: it induces a morphism of groups.

I Explicit calculations show that:

[2] : E51 → E51

(x, y) 7→
( 1

2 x4−18x3−163x2−18x+ 1
2

8x(x2+9x+1) ,
y(x6+18x5+5x4−5x2−18x−1)

(8x(x2+9x+1))2

)
.
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Fundamentals: Isogenies of elliptic curves

Definition
An isogeny of elliptic curves over k is a non-zero morphism
E→ E′ with finite kernel. It is given by rational maps.

Example
Define EA/F419 : y2 = x3 + Ax2 + x

I A less obvious isogeny:

f : E51 → E9

(x, y) 7→
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x3−183x2+73x+30
(x+118)2 , y x3−65x2−104x+174

(x+118)3

)
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I ker(f ) = {(−118, 51), (−118,−51),P∞}
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Fundamentals: Isogenies of elliptic curves

Definition
Let E,E′/Fq be elliptic curves and let ` ∈ Z>0 be coprime to q.
An `-isogeny f : E→ E′ is an isogeny with # ker(f ) = `.

I Our example f : E51 → E9 over F419 was a 3-isogeny.
I Fact: an isogeny is uniquely determined by its kernel

(up to isomorphism).
I Write ϕG : E→ E/G for the isogeny from E with kernel G.
I Vélu’s formulas compute the `-isogeny from its kernel in

time Θ(`).
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Fundamentals: Isogenies of elliptic curves
Of special interest in crypto:

I We call an isogeny cyclic if its kernel is cyclic.

I The kernel of a cyclic `-isogeny is generated by an
`-torsion point (in particular: a point of order `).

I An `-torsion point is a point P ∈ E(k) such that

[`]P = P + · · ·+ P︸ ︷︷ ︸
` times

= P∞.

Our example f : E51 → E9 was a cyclic 3-isogeny:

ker(f ) = {(−118, 51), (−118,−51),P∞}
= {(−118, 51), [2](−118, 51), [3](−118, 51)}.

 we could also write

f = ϕ〈(−118,51)〉 : E51 → E51/〈(−118, 51)〉.
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Decomposing smooth isogenies

I We will use isogenies with ‘crypto-sized’ (big) kernels.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Make sure G has smooth order.
!! Evaluate ϕG as a chain of small-degree isogenies:

For G ∼= Z/`k, we can decompose ϕG into `-isogenies
ψ1, . . . , ψk:

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than #G = `k!
‘Optimal strategy’ improves this to O(k log k · `).
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Elliptic curves and isogenies

Definition
Let E/Fq be an elliptic curve and let ` ∈ Z>0. Let f : E→ E′ be
an `-isogeny.

Then there exists a unique (up to isomorphism) `-isogeny

f∨ : E′ → E

such that
f∨ ◦ f = [`].

This is called the dual isogeny.
(As before [`] denotes the multiplication-by-` map.)
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Fundamentals: Isogeny graphs

Definition
Let q be a prime power and ` be a prime not dividing q. The
isogeny graph G`,n over Fq has

I Nodes: elliptic curves defined over Fq with n points
(up to Fq-isomorphism).

I Edges: an edge E− E′ represents an `-isogeny E→ E′

defined over Fq together with its dual isogeny.
(up to post-composition with isomorphisms).
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Isogeny graphs

Example

Replace eg. byE51 E9

Then the graph G3,420 over F419 looks like:

[NB: the nodes with p + 1 = 420 points are the supersingular nodes].
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Isogeny graphs

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Fragen?

Questions?

Domande?

Dumondas?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.
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The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org
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CSIDH ["si:­saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)
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CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
ag

ic
m

at
h

ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking ‘left’ and ‘right’ on any `i-subgraph is efficient.
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Elliptic-curve people may know this graph:
It is the union of depth-0 isogeny volcanoes.

Typical formulation:

Theorem. Let O be an imaginary quadratic order and k a field.
If the set

È `O(k) = { j(E) | E/k ordinary, End(E) ∼= O}

is non-empty, then the ideal-class group cl(O) acts freely and
transitively on È `O(k).

Less well-known:
This also works for supersingular elliptic curves if one restricts
to k = Fp, ∼=Fp , and EndFp .
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Walking in the CSIDH graph

Supersingular curves have computational benefits:
By taking special p, it is easy to control the group structure!
(Not easy for ordinary curves in ‘interesting’ cases.)

Taking a ‘positive’ step on the `i-subgraph:
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Taking a ‘negative’ step on the `i-subgraph:
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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Group=action-based key exchange

Like in the CSIDH example, we generally get a key exchange
from a commutative group action G× S→ S:

Alice public Bob

a random←−−− G b random←−−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) = ab ∗ s key := b ∗ (a ∗ s) = ab ∗ s

22 / 31



Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·
↑

hy

For group actions, we generally cannot compose a ∗ s and b ∗ s!

23 / 31



Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)). next talk!
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.
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Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)
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SIDH: High-level view

E

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

By the way: This is also the high-level view for CSIDH...
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB
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SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
29 / 31



Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

Newer paper says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).
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√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).
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Fragen?

Questions?

Domande?

Dumondas?
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