
What are isogenies
and why do we care?

Lorenz Panny

Technische Universiteit Eindhoven

Amsterdam, Netherlands, 4 October 2019

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

1 / 31

Crypto on graphs?

2 / 31

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

2 / 31

Crypto on graphs?

We’ve been doing it all along!

2 / 31

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

Both.

3 / 31

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both.

3 / 31

The beauty and the beast

At this time, there are two distinct families of systems:

Fp

CSIDH ["si:­saId]
https://csidh.isogeny.org

Fp2

SIDH
https://sike.org

3 / 31

https://csidh.isogeny.org
https://sike.org

Stand back!

We’re going to do math.

4 / 31

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution (x, y) or the “fake” point∞.

E is an abelian group: we can “add” points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.

5 / 31

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution (x, y) or the “fake” point∞.

E is an abelian group: we can “add” points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y). do not remember

these formulas!

I The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.

5 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.

An endomorphism of
E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}
over F71. Its kernel is {(2, 9), (2,−9),∞}.

An endomorphism of
E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

6 / 31

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
7 / 31

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
7 / 31

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
7 / 31

Math slide #4: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.

8 / 31

Math slide #4: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.

8 / 31

CSIDH ["si:­saId]

9 / 31

A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

10 / 31

A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

10 / 31

A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

10 / 31

A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

10 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.

I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

11 / 31

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

12 / 31

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

12 / 31

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

12 / 31

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

12 / 31

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

12 / 31

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

12 / 31

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

12 / 31

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

12 / 31

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

12 / 31

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

12 / 31

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

12 / 31

Where’s the group action?

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

By complex-multiplication theory, the quotient of Zn by the
subgroup acting trivially is the ideal-class group cl(Z[

√−p]).

13 / 31

Where’s the group action?

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

By complex-multiplication theory, the quotient of Zn by the
subgroup acting trivially is the ideal-class group cl(Z[

√−p]).

13 / 31

Where’s the group action?

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

By complex-multiplication theory, the quotient of Zn by the
subgroup acting trivially is the ideal-class group cl(Z[

√−p]).

13 / 31

Walking in the CSIDH graph

I Our curves in the graph have E(Fp2) ∼= Z/(p+1)×Z/(p+1).
Recall p + 1 = 4 · `1 · · · `n =⇒ very smooth order!

I “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[`i] ∼= Z/`i × Z/`i.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 31

Walking in the CSIDH graph

I Our curves in the graph have E(Fp2) ∼= Z/(p+1)×Z/(p+1).
Recall p + 1 = 4 · `1 · · · `n =⇒ very smooth order!

I “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[`i] ∼= Z/`i × Z/`i.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 31

Walking in the CSIDH graph

I Our curves in the graph have E(Fp2) ∼= Z/(p+1)×Z/(p+1).
Recall p + 1 = 4 · `1 · · · `n =⇒ very smooth order!

I “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[`i] ∼= Z/`i × Z/`i.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 31

Walking in the CSIDH graph

I Our curves in the graph have E(Fp2) ∼= Z/(p+1)×Z/(p+1).
Recall p + 1 = 4 · `1 · · · `n =⇒ very smooth order!

I “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[`i] ∼= Z/`i × Z/`i.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 31

Why no Shor?

Shor’s algorithm quantumly computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

15 / 31

Why no Shor?

Shor’s algorithm quantumly computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

15 / 31

Why no Shor?

Shor’s algorithm quantumly computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·x hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

15 / 31

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) = 3 · h(−p) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

16 / 31

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) = 3 · h(−p) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

16 / 31

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) = 3 · h(−p) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

16 / 31

Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
 need extra information to let Alice & Bob’s walks commute.

“It all bloody looks the same!” — a famous isogeny cryptographer

17 / 31

Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
 need extra information to let Alice & Bob’s walks commute.

“It all bloody looks the same!” — a famous isogeny cryptographer

17 / 31

Now: SIDH (Jao, De Feo; 2011)

18 / 31

SIDH: High-level view

E

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH: High-level view

E
ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.

I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH: High-level view

E E/A

E/B

ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH: High-level view

E E/A

E/B

ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.

I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH: High-level view

E E/A

E/B

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

19 / 31

SIDH’s auxiliary points

“Alice somehow obtains A′ := ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups.

SIDH’s solution: ϕB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

20 / 31

SIDH’s auxiliary points

“Alice somehow obtains A′ := ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups.

SIDH’s solution: ϕB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

20 / 31

SIDH’s auxiliary points

“Alice somehow obtains A′ := ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups.

SIDH’s solution: ϕB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

20 / 31

Decomposing smooth isogenies

I In SIDH, #A

= 2n

and #B

= 3m

are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Graph view: Each ψi is a step in the `-isogeny graph.

21 / 31

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Graph view: Each ψi is a step in the `-isogeny graph.

21 / 31

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Graph view: Each ψi is a step in the `-isogeny graph.

21 / 31

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Graph view: Each ψi is a step in the `-isogeny graph.

21 / 31

SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) of E[2n] and (R,S) of E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
22 / 31

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space (!).
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

23 / 31

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space (!).
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

23 / 31

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space (!).
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

23 / 31

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space (!).
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

23 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.

I is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).

I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.

I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.

I are quite slow compared to other post-quantum schemes.

24 / 31

That’s nice and all, but... so what?

CSIDH...
I is a drop-in post-quantum replacement for (EC)DH.
I is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
I has a clean mathematical structure: a true group action.

SIDH...
I may get standardized in NIST’s not-a-competition.
I has exponential attack cost as far as we know.

Both...
I have tiny keys compared to other post-quantum schemes.
I are quite slow compared to other post-quantum schemes.

24 / 31

State of this talk

I Crash course on elliptic-curve isogenies. X
I Overview of CSIDH key exchange.1 X
I Overview of SIDH key exchange.1 X
I Sales pitch why any of this might matter. X

I Now:
if (not yet out of time) {

Explore some easy ways to not break SIDH.
}

1Needless to say, isogenies also give rise to other primitives.
(Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies and pairings.)

25 / 31

State of this talk

I Crash course on elliptic-curve isogenies. X
I Overview of CSIDH key exchange.1 X
I Overview of SIDH key exchange.1 X
I Sales pitch why any of this might matter. X

I Now:
if (not yet out of time) {

Explore some easy ways to not break SIDH.
}

1Needless to say, isogenies also give rise to other primitives.
(Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies and pairings.)

25 / 31

How to not break SIDH
A short beginner’s guide

Chloe Martindale Lorenz Panny

Technische Universiteit Eindhoven

Amsterdam, Netherlands, 4 October 2019

Auxiliary points: Information theory

I By linearity, the two points ϕA(R), ϕA(S) encode how ϕA
acts on the entire 3m-torsion.

I Note 3m is smooth can evaluate ϕA on any R ∈ E0[3m].

Lemma. If two d-isogenies φ, ψ act the same on the k-torsion
and k2 > 4d, then φ = ψ.

=⇒ Except for very unbalanced parameters,
the public points uniquely determine the secret isogenies.

26 / 31

Auxiliary points: Information theory

I By linearity, the two points ϕA(R), ϕA(S) encode how ϕA
acts on the entire 3m-torsion.

I Note 3m is smooth can evaluate ϕA on any R ∈ E0[3m].

Lemma. If two d-isogenies φ, ψ act the same on the k-torsion
and k2 > 4d, then φ = ψ.

=⇒ Except for very unbalanced parameters,
the public points uniquely determine the secret isogenies.

26 / 31

Auxiliary points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine ϕA.

 Rational function interpolation?

:(...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.

27 / 31

Auxiliary points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine ϕA.

 Rational function interpolation?

:(...the polynomials are of exponential degree ≈ √p.

 can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.

27 / 31

Auxiliary points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine ϕA.

 Rational function interpolation?

:(...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.

27 / 31

Auxiliary points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine ϕA.

 Rational function interpolation?

:(...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.

27 / 31

Auxiliary points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:(There’s an isomorphism of groups

E(Fp2) ∼= E[2n]× E[3m] .

=⇒ can’t learn anything about 2n from 3m using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
— me, all the time

(Exception: pairings, but those are also just bilinear maps.)

28 / 31

Auxiliary points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:(There’s an isomorphism of groups

E(Fp2) ∼= E[2n]× E[3m] .

=⇒ can’t learn anything about 2n from 3m using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
— me, all the time

(Exception: pairings, but those are also just bilinear maps.)

28 / 31

Auxiliary points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:(There’s an isomorphism of groups

E(Fp2) ∼= E[2n]× E[3m] .

=⇒ can’t learn anything about 2n from 3m using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
— me, all the time

(Exception: pairings, but those are also just bilinear maps.)

28 / 31

Auxiliary points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:(There’s an isomorphism of groups

E(Fp2) ∼= E[2n]× E[3m] .

=⇒ can’t learn anything about 2n from 3m using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
— me, all the time

(Exception: pairings, but those are also just bilinear maps.)

28 / 31

Auxiliary points: Group theory?

I Can we extrapolate the action of ϕA to some ≥ 3m-torsion?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:(There’s an isomorphism of groups

E(Fp2) ∼= E[2n]× E[3m] .

=⇒ can’t learn anything about 2n from 3m using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
— me, all the time

(Exception: pairings, but those are also just bilinear maps.)

28 / 31

Auxiliary points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining r-part.
=⇒ (details) =⇒ recover ϕA.

29 / 31

Auxiliary points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining r-part.
=⇒ (details) =⇒ recover ϕA.

29 / 31

Auxiliary points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining r-part.
=⇒ (details) =⇒ recover ϕA.

29 / 31

Auxiliary points: Petit’s endomorphisms (1)

I For typical SIDH parameters, we know endomorphisms
ι, π of E0 such that End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
.

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can evaluate endomorphisms of EA in the subring
R =

{
ϕA ◦ ϑ ◦ ϕ̂A

∣∣ ϑ ∈ End(E0)
}

on the 3m-torsion.

I Idea: Find τ ∈ R of degree 3mr; recover 3m-part from
known action; brute-force the remaining r-part.
=⇒ (details) =⇒ recover ϕA.

29 / 31

Auxiliary points: Petit’s endomorphisms (2)

I Petit uses endomorphisms τ ∈ R of the form

τ = a + ϕA(bι+ cπ + dιπ)ϕ̂A ,

where deg ι = 1 and deg π = deg ιπ = p. Hence

deg τ = a2 + 22nb2 + 22npc2 + 22npd2 .

(Recall p = 2n3m − 1.)

=⇒ Unless 3m � 2n, there is no hope to find τ
with 3m | deg τ and deg τ/3m < 2n.

30 / 31

Auxiliary points: Petit’s endomorphisms (2)

I Petit uses endomorphisms τ ∈ R of the form

τ = a + ϕA(bι+ cπ + dιπ)ϕ̂A ,

where deg ι = 1 and deg π = deg ιπ = p. Hence

deg τ = a2 + 22nb2 + 22npc2 + 22npd2 .

(Recall p = 2n3m − 1.)

=⇒ Unless 3m � 2n, there is no hope to find τ
with 3m | deg τ and deg τ/3m < 2n.

30 / 31

Questions?

31 / 31

