What are isogenies and why do we care?

Lorenz Panny

Technische Universiteit Eindhoven

Amsterdam, Netherlands, 4 October 2019

Big picture $\rho \rho$

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\rho \rho$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

It is easy to construct graphs that satisfy *almost* all of these — but getting all at once seems rare. Isogenies!

Crypto on graphs?

multiply

Square-and-multiply

Square-and-multiply-and-square-and-multiply

Square-and-multiply-and-square-and-multiply-and-squ

Crypto on graphs? We've been doing it all along!

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both.

The beauty and the beast

At this time, there are two distinct families of systems:

Stand back!

We're going to do math.

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution (x, y) *or* the "fake" point ∞ .

Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution (x, y) or the "fake" point ∞ .

E is an abelian group: we can "add" points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is

where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves $\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

Math slide #3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Math slide #3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Math slide #3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve *E*' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightarrow need to make sure extensions stay small for desired #*G* \rightarrow this is why we use supersingular curves!

¹(up to isomorphism of E')

Math slide #4: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/\mathbb{F}_q is *supersingular* if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!
Math slide #4: Supersingular isogeny graphs

Let *p* be a prime and *q* a power of *p*.

An elliptic curve E/\mathbb{F}_q is *supersingular* if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!

Let $S \not\supseteq p$ denote a set of prime numbers.

The supersingular *S*-isogeny graph over \mathbb{F}_q consists of:

 vertices given by isomorphism classes of supersingular elliptic curves,

► edges given by equivalence classes¹ of ℓ -isogenies ($\ell \in S$), both defined over \mathbb{F}_q .

¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

CSIDH ['siːˌsaɪd]

Martin Million and

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo–Kieffer–Smith '18]:

Massive speedups, but still unbearably slow.

Sometimes, there is a (free & transitive) group action of cl(O) on the set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo–Kieffer–Smith '18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes '18]:

Switch to supersingular curves \implies "practical" performance.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

• Walking "left" and "right" on any ℓ_i -subgraph is efficient.

Where's the group action?

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

Where's the group action?

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

Where's the group action?

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

By complex-multiplication theory, the quotient of \mathbb{Z}^n by the subgroup acting trivially is the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

- Our curves in the graph have $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$. Recall $p + 1 = 4 \cdot \ell_1 \cdots \ell_n \implies$ very smooth order!
- "Left" and "right" steps correspond to quotienting out distinguished subgroups of E[ℓ_i] ≃ Z/ℓ_i × Z/ℓ_i.

- Our curves in the graph have $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$. Recall $p + 1 = 4 \cdot \ell_1 \cdots \ell_n \implies$ very smooth order!
- "Left" and "right" steps correspond to quotienting out distinguished subgroups of E[ℓ_i] ≃ Z/ℓ_i × Z/ℓ_i.

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- Our curves in the graph have $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$. Recall $p + 1 = 4 \cdot \ell_1 \cdots \ell_n \implies$ very smooth order!
- "Left" and "right" steps correspond to quotienting out distinguished subgroups of E[ℓ_i] ≃ Z/ℓ_i × Z/ℓ_i.

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing a "right" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- Our curves in the graph have $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$. Recall $p + 1 = 4 \cdot \ell_1 \cdots \ell_n \implies$ very smooth order!
- "Left" and "right" steps correspond to quotienting out distinguished subgroups of E[ℓ_i] ≃ Z/ℓ_i × Z/ℓ_i.

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing a "right" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

<u>Net result</u>: With *x*-only arithmetic everything happens over \mathbb{F}_p . \implies Efficient to implement!

Why no Shor?

Shor's algorithm quantumly computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's algorithm quantumly computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor's algorithm quantumly computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y.$$

For group <u>actions</u>, we simply cannot compose a * s and b * s!

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is
$$\#$$
cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is
$$\#$$
cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

→ non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$.
Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

► **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!

Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

- ▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!
- Problem: also no more intrinsic sense of direction.
- → need extra information to let Alice & Bob's walks commute.

"It all bloody looks the same!" — a famous isogeny cryptographer

Now: SIDH (Jao, De Feo; 2011)

Ε

• Alice & Bob pick secret subgroups *A* and *B* of *E*.

- Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." ...but Alice knows only A, Bob knows only φ_B . Hm. <u>C</u>SIDH's solution: use distinguished subgroups.

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." ...but Alice knows only A, Bob knows only φ_B . Hm. <u>C</u>SIDH's solution: use distinguished subgroups.

<u>SIDH's solution</u>: φ_B is a group homomorphism!

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." ...but Alice knows only *A*, Bob knows only φ_B . Hm. <u>C</u>SIDH's solution: use distinguished subgroups.

<u>SIDH's solution</u>: φ_B is a group homomorphism! (and $A \cap B = \{\infty\}$)

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$.

► In SIDH, #*A* and #*B* are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

- ► In SIDH, $#A = 2^n$ and $#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- ► In SIDH, $#A = 2^n$ and $#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.

- ► In SIDH, $#A = 2^n$ and $#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- → Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.
 - Graph view: Each ψ_i is a step in the ℓ -isogeny graph.

SIDH in one slide

Public parameters:

- a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P, Q) of $E[2^n]$ and (R, S) of $E[3^m]$ (recall $E[k] \cong \mathbb{Z}/k \times \mathbb{Z}/k$)

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$\boldsymbol{A} := \langle \boldsymbol{P} + [\boldsymbol{a}] \boldsymbol{Q} \rangle$	$B := \langle R + [b]S \rangle$
compute $\varphi_{\mathbf{A}} \colon E \to E/\mathbf{A}$	compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(R), \varphi_A(S)$	$E/B, \varphi_B(P), \varphi_B(Q)$
$egin{aligned} &\overleftarrow{A'} := \langle arphi_B(P) + [a] arphi_B(Q) angle \ &s := j ig((E/B)/A'ig) \end{aligned}$	$B' := \langle \varphi_{\mathbf{A}}(R) + [b]\varphi_{\mathbf{A}}(S) \rangle$ $s := j((E/\mathbf{A})/B')$

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

Claw finding: claimed
 O(p^{1/6}).
 [JS19] says this is more expensive than classical attacks.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space (!).
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

Claw finding: claimed Õ(p^{1/6}).
 [JS19] says this is more expensive than classical attacks.

<u>Bottom line</u>: Fully exponential. Complexity $\exp((\log p)^{1+o(1)})$.

CSIDH...

▶ is a drop-in post-quantum replacement for (EC)DH.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH...

► may get standardized in NIST's not-a-competition.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH...

- ► may get standardized in NIST's not-a-competition.
- ► has exponential attack cost as far as we know.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH...

- ► may get standardized in NIST's not-a-competition.
- ► has exponential attack cost as far as we know.

Both...

► have tiny keys compared to other post-quantum schemes.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SIDH...

- ► may get standardized in NIST's not-a-competition.
- ► has exponential attack cost as far as we know.

Both...

- ► have tiny keys compared to other post-quantum schemes.
- ► are quite slow compared to other post-quantum schemes.

State of this talk

- Crash course on elliptic-curve isogenies. \checkmark
- Overview of CSIDH key exchange.¹ \checkmark
- Overview of SIDH key exchange.¹ \checkmark
- Sales pitch why any of this might matter. \checkmark

¹Needless to say, isogenies also give rise to other primitives. (Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies *and* pairings.)

State of this talk

- Crash course on elliptic-curve isogenies. \checkmark
- Overview of CSIDH key exchange.¹ \checkmark
- Overview of SIDH key exchange.¹ \checkmark
- Sales pitch why any of this might matter. \checkmark

► Now:

```
if (not yet out of time) {
    Explore some easy ways to not break SIDH.
}
```

¹Needless to say, isogenies also give rise to other primitives. (Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies *and* pairings.)

How to not break SIDH A short beginner's guide

Chloe Martindale

Lorenz Panny

Technische Universiteit Eindhoven

Amsterdam, Netherlands, 4 October 2019

Auxiliary points: Information theory

- By linearity, the two points φ_A(R), φ_A(S) encode how φ_A acts on the entire 3^m-torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Auxiliary points: Information theory

- By linearity, the two points φ_A(R), φ_A(S) encode how φ_A acts on the entire 3^m-torsion.
- Note 3^m is smooth \rightsquigarrow can evaluate φ_A on any $R \in E_0[3^m]$.

Lemma. If two *d*-isogenies ϕ , ψ act the same on the *k*-torsion and $k^2 > 4d$, then $\phi = \psi$.

 \implies Except for very unbalanced parameters, the public points uniquely determine the secret isogenies.

Auxiliary points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine φ_A.
- → Rational function interpolation?

Auxiliary points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine φ_A.
- → Rational function interpolation?
- \succ ...the polynomials are of exponential degree $\approx \sqrt{p}$.
Auxiliary points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine φ_A.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.

Auxiliary points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine φ_A.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.
 - No known algorithms for interpolating and decomposing at the same time.

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

 $E(\mathbb{F}_{p^2})\cong E[2^n]\times E[3^m].$

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

 $E(\mathbb{F}_{p^2})\cong E[2^n]\times E[3^m].$

 \implies can't learn anything about 2^n from 3^m using groups alone.

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion?
- e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \succ There's an isomorphism of groups

 $E(\mathbb{F}_{p^2}) \cong E[2^n] \times E[3^m] \,.$

- \implies can't learn anything about 2^n from 3^m using groups alone.
- "[...] elliptic curves are as close to generic groups as it gets." —me, all the time

- Can we extrapolate the action of φ_A to some $\geq 3^m$ -torsion? e.g. we win if we get the action of φ_A on the 2^n -torsion.
 - \div There's an isomorphism of groups

 $E(\mathbb{F}_{p^2}) \cong E[2^n] \times E[3^m] \,.$

- \implies can't learn anything about 2^n from 3^m using groups alone.
- "[...] elliptic curves are as close to generic groups as it gets." —me, all the time

(Exception: pairings, but those are also just bilinear maps.)

• For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

→ We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.

- For typical SIDH parameters, we know endomorphisms ι, π of E_0 such that $\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$.
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*_{*A*}:

- → We can evaluate endomorphisms of E_A in the subring $R = \{ \varphi_A \circ \vartheta \circ \widehat{\varphi_A} \mid \vartheta \in \text{End}(E_0) \}$ on the 3^{*m*}-torsion.
- Idea: Find τ ∈ R of degree 3^mr; recover 3^m-part from known action; brute-force the remaining *r*-part.
 ⇒ (details) ⇒ recover φ_A.

• Petit uses endomorphisms $\tau \in R$ of the form

 $au = a + \varphi_A(b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$,

where deg $\iota = 1$ and deg $\pi = \deg \iota \pi = p$. Hence deg $\tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2$.

(Recall $p = 2^n 3^m - 1.$)

• Petit uses endomorphisms $\tau \in R$ of the form

$$au = a + \varphi_A (b\iota + c\pi + d\iota\pi)\widehat{\varphi_A}$$
,

where deg $\iota = 1$ and deg $\pi = \deg \iota \pi = p$. Hence deg $\tau = a^2 + 2^{2n}b^2 + 2^{2n}pc^2 + 2^{2n}pd^2$.

(Recall
$$p = 2^n 3^m - 1.$$
)

 \implies Unless $3^m \gg 2^n$, there is no hope to find τ with $3^m \mid \deg \tau$ and $\deg \tau/3^m < 2^n$.

Questions?