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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!
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Crypto on graphs?
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Square-and-multiply
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Square-and-multiply as graphs
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Square-and-multiply as a graph
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Crypto on graphs?

We’ve been doing it all along!
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The beauty and the beast

Components of particular isogeny graphs look like this:
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The beauty and the beast

Components of particular isogeny graphs look like this:
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Which of these is good for crypto? Both.
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The beauty and the beast

At this time, there are two distinct families of systems:
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Stand back!

.%

We’re going to do math.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: »=x+ax+b.

A point on E is a solution (x, y) or the “fake” point co.
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Math slide #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: »=x+ax+b.

A point on E is a solution (x, y) or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y).

e 0
» The sum of (x1,11) and (x2,y2) is 889@2772@%
(278
()\2 — X1 — X, )\(le + Xy — )\2) — y1) sz
2
where A = 27 if x; £ xp and A = M Gtherwise.

Xo—X1 211
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is
Em] = Z/m x Z/m.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—-1-y)
defines a degree-1 isogeny of the elliptic curves
(P =x>4ax+b} — {y* =x>+ax—b}.

It is an isomorphism; its kernel is {oco}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,y) — (x374x2+30x712 23 —6x2—14x435 ,y)

(=272 > (2P
defines a degree-3 isogeny of the elliptic curves

(P =x+x} — {P=2>-3x+3}
over F7. Its kernel is {(2,9), (2, -9), oo}.
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Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by ¢ o ¢ = [deg ¢] and ¢ o § = [deg ).

Tate’s theorem:
E,E'/F, are isogenous over I, if and only if #E(FF;) = #E'(F,).
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Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: ©(#G) ~ only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+ need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E')
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Math slide #4: Supersingular isogeny graphs

Let p be a prime and g a power of p.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(Fy)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!
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Math slide #4: Supersingular isogeny graphs

Let p be a prime and g a power of p.

An elliptic curve E/F; is supersingular if p | (9 +1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!

Let S Z p denote a set of prime numbers.
The supersingular S-isogeny graph over [, consists of:

» vertices given by isomorphism classes of supersingular
elliptic curves,

» edges given by equivalence classes! of /-isogenies (¢ € S),
both defined over F,.

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.
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A brief history of CSIDH

Sometimes, there is a (free & transitive) group action of cl(O)
on the set of curves with endomorphism ring O.

[Couveignes '97/°06], independently [Rostovtsev—Stolbunov "06]:

’ Use this group action on ordinary curves for Diffie-Hellman. ‘

[De Feo—Kieffer-Smith "18]:

’ Massive speedups, but still unbearably slow. ‘

[Castryck-Lange-Martindale-Panny-Renes "18]:

’ Switch to supersingular curves = “practical” performance. ‘
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4-/;---{, — 1is prime.

Let X = {y* = x*+Ax?+x supersingular with A € F,}.
Look at the /;-isogenies defined over I, within X.
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6=5
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4-/;---{, — 1is prime.

Let X = {y* = x*+Ax?+x supersingular with A € F,}.
Look at the /;-isogenies defined over I, within X.

vV v.v v

p =419
0 =3
6=5
=7

» Walking “left” and “right” on any ¢;-subgraph is efficient.
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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Where's the group action?

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z5.

13/31



Where's the group action?

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z5.

There is a group action of (Z", +) on our set of curves X!
group

13/31



Where's the group action?

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z5.

There is a group action of (Z", +) on our set of curves X!
group

By complex-multiplication theory, the quotient of Z" by the
subgroup acting trivially is the ideal-class group cl(Z[,/=p]).
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Walking in the CSIDH graph

> Our curves in the graph have E(F») = Z/(p+1) X Z/ (p+1).
Recallp+1=4-/4;---¢, = very smooth order!

» “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[¢;] = Z /{; x Z /.
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Walking in the CSIDH graph

» Our curves in the graph have E(sz) =7/(p+1) x Z/(p+1).
Recallp+1=4-/4;---¢, = very smooth order!

» “Left” and “right” steps correspond to quotienting out
distinguished subgroups of E[¢;] = Z /{; x Z /.

Computing a “left” step:
1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).
Computing a “right” step:
1. Find a point (x,y) € E of order /; with x € F, buty ¢ [F,,.
2. Compute the isogeny with kernel ((x,y)).

Net result: With x-only arithmetic everything happens over F,.
— Efficient to implement!

14 /31



Why no Shor?

Shor’s algorithm quantumly computes « from g% in any group
in polynomial time.
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Why no Shor?

Shor’s algorithm quantumly computes « from g% in any group
in polynomial time.

Shor computes « from h = g* by finding the kernel of the map

f: 7> =G, (x,y) —» g .

For group actions, we simply cannot compose a * s and b x s!

15/31



Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.
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The size of X is #cl(Z[,/=p]) =3 - h(—p) = /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((log p)1+0(1)).
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/=p]) =3 - h(—p) = /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((log p)1+0(1)).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((log p)/ 2+"(1)) .

16 /31



Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.

> SIDH uses the full IF,>-isogeny graph. No group action!
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.

> SIDH uses the full IF,>-isogeny graph. No group action!

» Problem: also no more intrinsic sense of direction.

~+ need extra information to let Alice & Bob’s walks commute.

“It all blOOdy looks the same!” — a famous isogeny cryptographer

17 /31
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Now: SIDH (Jao, De Feo; 2011)
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SIDH: High-level view

E
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SIDH: High-level view

E A

» Alice & Bob pick secret subgroups A and B of E.
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SIDH: High-level view

E o E/A

E/B

» Alice & Bob pick secret subgroups A and B of E.

» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
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SIDH: High-level view

E o E/A

E/B

» Alice & Bob pick secret subgroups A and B of E.

» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the values E/A and E/B.

19/31



SIDH: High-level view

E o E/A

E/B

A/

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v
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SIDH: High-level view

E o E/A
¥B ©p/
E/B ——— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢, : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := pp(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A' = E/(A,B) 2 (E/A)/B.
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SIDH’s auxiliary points

4

“Alice somehow obtains A’ := pp(A).
...but Alice knows only A, Bob knows only ¢5. Hm.
SIDH’s solution: use distinguished subgroups.
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SIDH’s auxiliary points
“Alice somehow obtains A" := ¢p(A).”
...but Alice knows only A, Bob knows only ¢p. Hm.

SIDH’s solution: use distinguished subgroups.
SIDH'’s solution: ¢g is a group homomorphism!

Q v5(Q)
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SIDH’s auxiliary points

“Alice somehow obtains A" := ¢p(A).”
...but Alice knows only A, Bob knows only ¢p. Hm.

SIDH'’s solution: ¢p is a group homomorphism! (and 4 N B = {oc})

Q v5(Q)

,,,,, O - A

P w5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢p(P) and ¢5(Q) in his public key.
=—> Now Alice can compute A" as (pp(P) + [a]¢(Q))-

20/31



Decomposing smooth isogenies

» In SIDH, #A and #B are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.
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Decomposing smooth isogenies

» In SIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](v;_1 0 - -- 0 1) (G).

PYr—1

E ¥t El ul2> > Ek,1 *M)k E/G

\/’

¥G
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Decomposing smooth isogenies

» In SIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](v;_1 0 - -- 0 1) (G).

L4 W Pr-1 )
YG

~~ Complexity: O(k? - /). Exponentially smaller than ¢!
“Optimal strategy” improves this to O(klogk - £).
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Decomposing smooth isogenies

» In SIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*7](v;_1 0 - -- 0 1) (G).

L4 W Pr-1 )
YG

~~ Complexity: O(k? - /). Exponentially smaller than ¢!
“Optimal strategy” improves this to O(klogk - £).

» Graph view: Each #; is a step in the /-isogeny graph.
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SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,

» bases (P, Q) of E[2"] and (R, S) of E[3"] (recall E[K] 2 Z/k x Z/k)

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.
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Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about , /p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space (!).
» Collision finding: O(p®/®/, /meniory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).
[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp((logp)'*° (1)).
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That’s nice and all, but... so what?
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That’s nice and all, but... so what?

CSIDH...
» is a drop-in post-quantum replacement for (EC)DH.

» is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

» has a clean mathematical structure: a true group action.

SIDH...
» may get standardized in NIST’s not-a-competition.

» has exponential attack cost as far as we know.

Both...
» have tiny keys compared to other post-quantum schemes.

» are quite slow compared to other post-quantum schemes.
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State of this talk

v

Crash course on elliptic-curve isogenies. v
Overview of CSIDH key exchange.! v
Overview of SIDH key exchange.! v

Sales pitch why any of this might matter. v

v

v

v

Needless to say, isogenies also give rise to other primitives.

(Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies and pairings.)
25/31



State of this talk

» Crash course on elliptic-curve isogenies. v
» Overview of CSIDH key exchange.! v

» Overview of SIDH key exchange.! v

» Sales pitch why any of this might matter. v
» Now:

if (not yet out of time) {
Explore some easy ways to not break SIDH.

Needless to say, isogenies also give rise to other primitives.

(Check out ePrint 2019/166 for a cool out-of-the-box idea with isogenies and pairings.)
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How to not break SIDH
A short beginner’s guide

Chloe Martindale Lorenz Panny

Technische Universiteit Eindhoven

Amsterdam, Netherlands, 4 October 2019



Auxiliary points: Information theory

» By linearity, the two points ¢4 (R), ¢4 (S) encode how ¢4
acts on the entire 3"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3™].
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Auxiliary points: Information theory

» By linearity, the two points ¢4 (R), ¢4 (S) encode how ¢4
acts on the entire 3"-torsion.

» Note 3™ is smooth ~+ can evaluate p4 on any R € Ey[3™].

Lemma. If two d-isogenies ¢, act the same on the k-torsion
and k? > 4d, then ¢ = 1.

— Except for very unbalanced parameters,
the public points uniquely determine the secret isogenies.
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Auxiliary points: Interpolation?

» Recall: Isogenies are rational maps.
We know enough input-output pairs to determine pa4.

~- Rational function interpolation?
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Auxiliary points: Interpolation?

» Recall: Isogenies are rational maps.
We know enough input-output pairs to determine pa4.

~- Rational function interpolation?

...the polynomials are of exponential degree ~ ,/p.

):

§

can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

» No known algorithms for interpolating and decomposing
at the same time.

27 /31



Auxiliary points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3"-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.
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Auxiliary points: Group theory?

» Can we extrapolate the action of ¢4 to some > 3"-torsion?

e.g. we win if we get the action of ¢4 on the 2"-torsion.

~ There’s an isomorphism of groups
E(F,) = E[2"] x E[3"].
= can’t learn anything about 2" from 3" using groups alone.

“[...] elliptic curves are as close to generic groups as it gets.”
—me, all the time

(Exception: pairings, but those are also just bilinear maps.)
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Auxiliary points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
1, m of Eg such that End(Eg) = (1, ST, 147).

29/31



Auxiliary points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
¢, of Eg such that End(Ey) = <1 . HEW’ 1+m>_

» Going back and forth to Ej yields endomorphisms of E4:

/_\ /SOA\
\ /

29/31



Auxiliary points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
¢, of Eg such that End(Ey) = <1 . HEW’ 1+m>_

» Going back and forth to Ej yields endomorphisms of E4:

/_\ /SOA\
\ /

~+ We can evaluate endomorphisms of E 4 in the subring
R= {SDA oo pa ‘ RS End(Eo)} on the 3"-torsion.

29/31



Auxiliary points: Petit’s endomorphisms (1)

» For typical SIDH parameters, we know endomorphisms
¢, of Eg such that End(Ey) = <1 . HEW’ 1+m>_

» Going back and forth to Ej yields endomorphisms of E4:
/\ / PA \
\ /

~+ We can evaluate endomorphisms of E 4 in the subring
R= {SDA odopa ‘ Y€ End(Eo)} on the 3"-torsion.

» Idea: Find 7 € R of degree 3"r; recover 3"-part from

known action; brute-force the remaining r-part.
—> (details) = recover p4.
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Auxiliary points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+ pa(bL+cm + dum)pga,
where deg: = 1 and deg 7 = degm = p. Hence
deg ™ = a* + 22"b* + 2%'pc? + 2%'pd? .

(Recall p =2"3" —1.)
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Auxiliary points: Petit’s endomorphisms (2)

» Petit uses endomorphisms 7 € R of the form
T=a+ pa(bL+cm + dum)pga,
where deg: = 1 and deg 7 = degm = p. Hence
deg T = a® + 2%'b* + 2¥'pc* + 2%'pd® .

(Recall p =2"3" —1.)

= Unless 3" > 2", there is no hope to find 7
with 3" | deg 7 and deg 7/3™ < 2".
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Questions?
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