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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.
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Crypto on graphs?
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a < {0...g—1} b & {0...9-1}
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
f>_<gl7
5= ()" 5= (g")"

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

Bob
Sett «g.
Sett«t-g.
Sett<t-g.

L .

Sett<«t-g.

b—2. Sett<«t-g.
b—1. Sett <« t-g.

b. PublishB < t-g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett «g.
Sett«t-g.
Sett<t-g.

L .

Sett<«t-g.

Is this a good idea?

b—2. Sett<«t-g.
b—1. Sett<+t-g.

b. PublishB < t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett « g. 1. Sett+g. Ift=Breturnl.

2. Sett«t-g. 2. Sett<«t-g. Ift =Breturn2.

3. Sett«t-g. 3. Sett <« t-g. Ift = Breturn 3.

4. Sett<t-g. 4. Sett <+ t-g. Ift = Breturn3.
b—2. Sett+«+t-g. b—2. Sett < t-g. Ift = B return b—2.
b—1. Sett<t-g. b—1. Sett < t-g. Ift = B return b—1.

b. PublishB < t-g. b. Sett < t-g. Ift = B return b.

b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«t-g. Ift = Breturnb+ 2.
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Diffie-Hellman: Bob vs. Eve

b=-2.
b-1.
b. PublishB < t-g.

L e

Bob
Sett < g.

Sett<«+t-g.
Sett+«t-g.
Sett«t-g.

Sett<«+t-g.
Sett«+t-g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett<«t-g. Ift =Breturn2.

3. Sett <« t-g. Ift = Breturn 3.

4. Sett <+ t-g. Ift = Breturn3.
b—2. Sett < t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = B return b.
b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«t-g. Ift = Breturnb+ 2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Bob computes his public key ¢'3 from g.
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Bob computes his public key ¢'3 from g.
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Square-and-multiply
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Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'3 from g.
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Square-and-multiply as graphs
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Square-and-multiply as a graph

5/66



Crypto on graphs?

We’ve been doing it all the time!
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The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

7/ 66



The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

7/ 66



The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

For well-chosen groups, computing ¢ — « takes O(/#G).

7/ 66



The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

For well-chosen groups, computing ¢ — « takes O(/#G).

~» Exponential separation!

7/ 66



The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

For well-chosen groups, computing ¢ — « takes O(/#G).

~» Exponential separation!
...and they lived happily ever after?

7/ 66



The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

For well-chosen groups, computing ¢ — « takes ©(/#G).

~» Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes « from g% in any group

in polynomial time.

7/ 66



In some cases,

isogeny graphs

can replace DLP-based constructions post-quantumly.
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In some cases,

isogeny graphs

can replace ADLP-based constructions post-quantumly.

somne
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The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?
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The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both. =

8/66



Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies.

» The CGL hash function.

» The CSIDH non-interactive key exchange.

» Hardness of isogeny problems, and reductions.
» The SQIsign signature scheme.

» Transcending to higher dimensions.
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Stand back!

.%

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: ¥ =x+ax+b

with a, b € F such that 443 + 27 # 0.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: y*=x+ax+b

with a,b € F such that 4a° + 272 # 0.

A point on E is a solution (x,y), or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y). Z;o 2,
¢

» The sum of (x1,y1) and (x2,12) is 8‘9@@;61’;7?;@%

(2795l

()\2 — X1 — X7, )\(le —+ X7 — )\2) — ]/1) s

2
3x7+a

o otherwise.

_ Y2= s _
where \ = Fom— if x1 #xpand A =
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Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F})

v .

The same curve y?> = x> — x + 1 over the finite field Fzg.
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Elliptic curves (picture over [F})

v .

The addition law of y? = x> — x + 1 over the finite field Fyo.
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In SageMath:

1
'sage: E = EllipticCurve(GF(101), [5,6,7,8,9]) |
|sage: E \
Elliptic Curve defined by \
\ yA2 + Bxxkxy + Txy = x*3 + 6xx*2 + 8xx + 9 \
\ over Finite Field of size 101 }
|

13/ 66



In SageMath:

sage: E = EllipticCurve(GF(101), [5,6,7,8,91)

sage: E

Elliptic Curve defined by
y*2 + Bxx*xy + Txy = x*3 + 6*xx"2 + 8*xx + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition

(73 : 24 : 1)
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In SageMath:

sage: E = EllipticCurve(GF(101), [5,6,7,8,91)
sage: E
Elliptic Curve defined by

over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)

sage: P + Q # point addition

(73 : 24 : 1)

sage: P - P

(0 : 1 : 0) # point at infinity

y*2 + Bxx*xy + Txy = x*3 + 6*xx"2 + 8*xx + 9

13/ 66



ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.

Define scalar multiplication [n]P := P+ --- + P.  (Use double-and-addy)
—_————

n times
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.

Define scalar multiplication [n]P := P+ --- + P.  (Use double-and-addy)
—_————

Alice public Bob
a &80, 01} b &2 10,01}
filg Dl
<—><>
s := [a)([B]P) - sl » s:= [B)([a]P)

14/ 66



Fields of definition

Generally, things can be defined over extension fields:
For example, (0, /—1) is a point of y? = x> — 1.

Let k be a field.

An elliptic curve/point/isogeny is defined over k or k-rational
if the coefficients in its equation/formula lie in k.
We write E /k for “E is defined over k”.

15/ 66



Fields of definition

Generally, things can be defined over extension fields:
For example, (0, /—1) is a point of y? = x> — 1.

Let k be a field.

An elliptic curve/point/isogeny is defined over k or k-rational
if the coefficients in its equation/formula lie in k.
We write E /k for “E is defined over k”.

’ For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.
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In SageMath:

Everything happens over the specified field of definition:
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In SageMath:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,01)
sage: E
Elliptic Curve defined by y*2 = x*3 + 5xx"2 + Xx
over Finite Field of size 101

sage: F.<t> = GF(101"2)
sage: E(11, 69xt + 64)

69*%t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69%t + 64 : 1)
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Isogenies
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Isogenies

...are just fancily-named
o
between elliptic curves.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
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» given by rational functions.

» a group homomorphism.
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A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #1: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {¥¥=2"-3x+3}

over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)

defines a degree-1 isogeny of the elliptic curves
(=2 +ax+b} — {y¥* =x>+ax—b}.

It is an isomorphism; its kernel is {oco}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For each m # 0, the multiplication-by-m map

[m]: E—E
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Isogenies (examples)

» given by rational functions.

» a group homomorphism.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #3: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Elm] = Z/m x Z/m.

19/ 66



Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #4: For E/IF;, the map

T (x,y) = (x7,y7)

is a degree-q isogeny, the Frobenius endomorphism.
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» given by rational functions.

» a group homomorphism.

Example #4: For E/IF;, the map
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #4: For E/IF;, the map

™ (%y) = (xT,y)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).
Important fact: An isogeny ¢ is F;-rational iff 7 0 o = p o 7.

19/ 66



In SageMath:

[ |
'sage: E = EllipticCurve(GF(101), [1,01) \
'sage: mu = E.scalar_multiplication(5) \
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In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]
of Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
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In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]
of Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 101
sage: mu.rational_maps ()

((x*25 + x*23 + ... + 14%x*3 + 25%x)
/(25%Xx%24 + 14%xx%22 - ... + x*2 + 1),
(50%x*36*xy + 20xx"34*y + ... + 45xx*2*xy + 48xy)
/(=12%xx*36 - 2xx*34 + ... - 26*x"2 + 50))

20/ 66



The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.
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The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by @ o ¢ = [deg ¢] and ¢ 0 § = [deg ).

Tate’s theorem:
E,E'[F, are isogenous over F, if and only if #E(F,;) = #E'(F,).

(The Schoof-Elkies—-Atkin algorithm can compute #E(F,) efficiently!)

— Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

!(up to isomorphism of E’)
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separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

!(up to isomorphism of E’)
22/66



In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()
7
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In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
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In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)
(0 : 1 : @) # o(K) =00 = K lies in the kernel
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In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
sage: K = E(80,30)
sage: K.order ()

7
sage: phi = E.isogeny(K)
sage: phi

Isogeny of degree 7
from Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 419
to Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field of size 419
sage: phi(K)

(0 : 1 : @) # o(K) =00 = K lies in the kernel

sage: phi.rational_maps()

((x*7 + 129%x“6 - ... + 25)/(x*6 + 129%x*5 - ... + 36),
(x*9%y - 16#x*8*y - ... + 70xy)/(x*9 - 16*x*8 + ...))

23 /66



Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.

The S-isogeny graph over k consists of
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Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of

» vertices given by elliptic curves over k;

» edges given by /(-isogenies, ¢ € S, over k;
up to k-isomorphism.
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Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of
» vertices given by elliptic curves over k;

» edges given by /(-isogenies, ¢ € S, over k;

up to k-isomorphism.

Example components containing E: 12 = x° + x:

"9, %

k =TFuo, S ={3,5,7} k=Fgp2, S={2,3,57}
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Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/| have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.
» In that case, E(F,) = Z/(p+1) and
E(IF 2) 2 Z/(p+1) X Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)
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Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function.

» The CSIDH non-interactive key exchange.

» Hardness of isogeny problems, and reductions.
» The SQIsign signature scheme.

» Transcending to higher dimensions.
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The Charles—Goren—Lauter hash function

T hy o7
o oe—0—>«
./]/’\U\)':»ﬁ4$ 1/ <
\O o— 1 /.\() | _
L /1/ \o\ ezl
L2 i
\0 ~a
\. 1—>e==27 _ -
0\ - 4

» Start at some curve E.
» For each input digit b: Map the pair (E, D) to a finite
subgroup H < E, compute pp: E — E/,and set E < E'.

» Finally return E.
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,
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Isogeny-based key exchange: High-level view
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds g : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?

E ©A E,

Eap

N\
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How to find “parallel” isogenies?

E o EL

s
©B
Eap
=z
Ep - Ega
YA
CSIDH'’s solution:

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)

31/66



“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).
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“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

= For every /| (p+1) exists a unique order-¢ subgroup H,.
~+ For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.

32/66



/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

/ o Eeé
Ezr—l /
E / EéS
\ /
\ - Egél

E"E@*’EZZHE@
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

/ T e Eeé
Ezrfl /
E / EéS
4 /
Nk
E, —

» Exercise: Each curve has only one other rational /-isogeny.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- R Eeé
Ezrfl /
E / Eé5
e /
\ E
E€3 - 24

» Exercise: Each curve has only one other rational /-isogeny.

I Reverse arrows are unique; the “tail” E — E,s cannot exist.
’ V4

— The “special” isogenies y, form isogeny cycles!
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

%Z /

I

» Exercise: ker(¢} o ¢),) = ker(y,, o ¢p) = (ker oy, ker ¢, ).
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

992/;5%

. / ]m
/ E
P /

I

» Exercise: ker(¢} o ¢),) = ker(y,, o ¢p) = (ker oy, ker ¢, ).
!! The order cannot matter — cycles must be compatible.

34 /66
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CSIDH in one slide

» Choose some small odd primes 41, ..., £;.
» Makesurep =4 -/(;---{;, —1is prime.
> Let X = {y? = x>+Ax?+x supersingular with A € FF,}.
» Look at the “special” /;-isogenies within X.
s ;::i;o‘;%é‘::{
Sl Wy 0=
%Q iy ) b =5
s / b3 =7
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.
Make surep =4 -/;---{, — 1is prime.

vV v.vvY

Let X = {y* = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

~ HRERLSIK
2 ZE NSRS
§ [N = 419
HAEESS \Yi P -
'Qr 112 ANy Y
Q X 4 NN A
& / W 41
S - £
& % ) 14 2
\5 ] 3 (=7
<
» Walking

“left” and “right” on any /;-subgraph is efficient.
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange

Alice Bob
[+7+7_7_] [_7+7?a_
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CSIDH key exchange

N .
NS

COSKGHAT
S "'..“Un.-’ !

o

A

<>

7222
7

[ 7>

5
[
[ 77
12

TS

X N "’. ..‘

S A
SNXAF

ETS

i

36 /66



CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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And... action! W

Cycles are compatible: [right then left] = [left then right]
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And... action! W

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

(An action of a group (G,-) onaset Xisamap *: G x X - X
such thatid «x =xand g (h+x) = (g-h) *xforallg,h € Gand x € X.)
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The class group

Recall: Group action of (Z", +) on set of curves X.
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The class group

Recall: Group action of (Z", +) on set of curves X.

I! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

!! This group characterizes when two paths lead to the same curve. ‘
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Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.
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Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:

1. Find a point (x,y) € E of order /; with x,y € F,..
2. Compute the isogeny with kernel ((x,y)).

Computing a “right” step:
1. Find a point (x,y) € E of order /; with x € FF, buty ¢ [Fp.
2. Compute the isogeny with kernel ((x,y)).

(Finding a point of order ¢;: Pick x € F, random. Find y € F,» such that
P = (x,y) € E. Compute Q = [%]P. Hope that Q # oo, else retry.)
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In SageMath:

isage: E = EllipticCurve(GF(419%2), [1,01) i
‘sage: E ‘
'Elliptic Curve defined by y*2 = x*3 + x \

|

\ over Finite Field in z2 of size 419*2
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In SageMath:

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
try:
R P = E.lift_x(x)
e except ValueError: pass
e if PL1]1 in GF(419): # "right"” step: invert
R break

(218 : 403 : 1)
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In SageMath:

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
try:
R P = E.lift_x(x)
e except ValueError: pass
e if PL1]1 in GF(419): # "right"” step: invert
R break

sage: P
(218 : 403 : 1)
sage: P.order (). factor ()

2 % 3 % 7
sage: EE = E.isogeny_codomain(2*3%P) # "left"” 7-step
sage: EE

Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field in z2 of size 419*2
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Efficient x-only arithmetic

» Forn € Z, we have [n](—P) = —[n]P_ (This holds in any group.)
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Efficient x-only arithmetic

» For n € Z, we have [n](—P) = —[n]P. (Thisholds in any group.)
» Recall that P = (x,y) has inverse —P = (x, —y).
= We get an induced map xMUL,, on x-coordinates such that
VPeE. xMUL,(x(P)) = x([n]P).

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over F,.
= (Relatively) efficient CSIDH implementations!
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.

Shor computes « from h = g* by finding the kernel of the map

f: 7> =G, (x,y) —» g .

For group actions, we simply cannot compose a * s and b x s!

42 /66



Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function. v

» The CSIDH non-interactive key exchange. v
» Hardness of isogeny problems, and reductions.

» The SQIsign signature scheme.

» Transcending to higher dimensions.
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The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E, E’ over Fy», find any isogeny E — E'.
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The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E, E’ over Fy», find any isogeny E — E'.

Fact: The supersingular isogeny graph has size [p/12] + .

Classical attacks:
» Meet-in-the-middle: O(p'/?) time & space ().
» Delfs—Galbraith: O(p'/?) time, negligible space.

Quantum attacks:

> Biasse—]ao—Sankar: (5 (pl/ 4) . (Quantum version of Delfs-Galbraith.)
Bottom line: Fully exponential. Complexity exp((logp)' ™).
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The endomorphism-ring problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular endomorphism-ring problem.

For a supersingular elliptic curve, find its endomorphism ring.
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Attacks:
» Nontrivial endomorphisms are “just” self-isogenies.
~» Dominating cost: Find cycles in isogeny graphs.

~+ Algorithms are morally similar to the isogeny problem,
followed by a polynomial-time post-processing phase.
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The endomorphism-ring problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular endomorphism-ring problem.

For a supersingular elliptic curve, find its endomorphism ring.

Attacks:
» Nontrivial endomorphisms are “just” self-isogenies.
~» Dominating cost: Find cycles in isogeny graphs.

~+ Algorithms are morally similar to the isogeny problem,
followed by a polynomial-time post-processing phase.

Theorem (Wesolowski 2021): Assuming GRH, the isogeny and
endomorphism-ring problems are polynomial-time equivalent.
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SoK: Isogeny problems

Some isogeny problems are much more broken than others.
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SoK: Isogeny problems

Some isogeny problems are much more broken than others.

Is SIKE broken yet?

Schemes

Classical Quantum References Additional

Name N » :
Security  Security Information

Key Exchange L > Comment

KEM > Comment
Key Exchange ) > Comment

Key Exchange, Non il
Interactive Key 2 - Comment
Exchange

Key Exchange, Non
Interactive Key CL+18CD19 > Comment
Exchange

https://issikebrokenyet.github.io
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Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function. v

» The CSIDH non-interactive key exchange. v

» Hardness of isogeny problems, and reductions. v
» The SQIsign signature scheme.

» Transcending to higher dimensions.
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m —1).

(Recall the Frobenius endomorphism 7: (x,y) — (¥, y).)
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.

» In other words: ker ¢y = ker[¢] Nker(m —1).

(Recall the Frobenius endomorphism 7: (x,y) — (¥, y).)

! Over I 2, we can have more endomorphisms.
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m —1).

(Recall the Frobenius endomorphism 7: (x,y) — (¥, y).)

! Over I 2, we can have more endomorphisms.
Example: y* = x> + xhas¢: (x,y) = (=x,v/—1-y).

» Extremely non-obvious fact in this setting:

Every isogeny ¢: E — E’ comes from a subset I, C End(E).

2 We understand the structure of End(E).

= We understand how I, I, relate for isogenies ¢, : E — E'.
(NB: Same E’.)
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The Deuring correspondence

...1s the formal version of what I just said.

a priori
...is a strong connection between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B} .

Isogenies become “connecting ideals” in quaternion land.

< One direction is easy, the other seems hard! ~+ Cryptography!

50/ 66



The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 = —1, j?> = —p, ji= —ij.

Thering O =2 ® Zi ® 23 @ 231
corresponds to the curve Eg: y? = x° + x.

The ring O) = Z © Z4947i @ 72474 ¢ 7 27323100014

corresponds to the curve Ey: 32 = x° + 1.

The ideal I = Z4947 @ 7.4947i @ 7 28+ o 7, PV 19814]

defines an isogeny Eyg — Eq of degree 4947 = 3 -17 - 97.
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Signing with isogenies

» Fiat-Shamir: signature scheme from identification scheme.

AL > Ey
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Signing with isogenies

» Fiat-Shamir: signature scheme from identification scheme.

AL > Ey
E .
I 55
E E

1 challenge 2

» Easy signature: E4 — Ey — E1 — Ey. Obuviously broken.
» SOQIsign’s solution: Construct new path E4 — Ej (using secret).
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SQIsign

Main idea:
» Construct the “signature square” in quaternion land.
» Project the secret and signature down to the curve world.

» The verifier can check on curves that everything is correct.
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SQIsign

Main idea:
» Construct the “signature square” in quaternion land.
» Project the secret and signature down to the curve world.

» The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
» From End(E), End(E’), can find smooth isogeny E — E'.
» From End(E), End(E’), can randomize within Hom(E, E').

~+ SQIsign takes the “broken” signature E4 — Ey — E; — Ep
and rewrites it into a random isogeny E4 — Ej.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — YanBoTi
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SQIsign: Numbers

sizes
parameter set public keys signatures
NIST-1 64 bytes 177 bytes
NIST-HlI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU.

Optimizations are certainly possible and work in progress.

parameter set keygen signing
NIST-1 3728 megacycles 5779 megacycles 108 megacycles
NIST-HI 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles

Source: https://sqisign.org
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SQIsign: Comparison

+ Signature size (bytes)
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Source: https://pgshield.github.io/nist-sigs-zoo
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SQlsign verification

Main task in SQIsign verification:

Given E and K € E of order /", compute ¢): E — E/(K).
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SQlsign verification

Main task in SQIsign verification:

Given E and K € E of order /", compute ¢): E — E/(K).

» Vélu's formulas take © (/") to compute 1.

!! Evaluate v as a chain of small-degree isogenies:

Yn—1

E (1 El P2 En_l Pn E/G

Y

~ Complexity: O(n? - ().
Exponentially smaller than a /"-isogeny!

» Graph view: Each v; is a step in the /-isogeny graph.
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In SageMath:

sage: E = EllipticCurve(GF(24127-1), [1,01)

sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order ()

10633823966279326983230456482242756608

sage: K.order (). factor ()

27123
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In SageMath:

sage: E = EllipticCurve(GF(24127-1), [1,01)
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order ()
10633823966279326983230456482242756608
sage: K.order (). factor ()
27123
sage: phi = E.isogeny(K, algorithm="factored"”)
sage: phi
Composite morphism of degree 1063...6608 = 2°123:
From: Elliptic Curve defined by y*2 = x*3 + x
over Finite Field of size 1701...5727
To: Elliptic Curve defined by
y*2 = x*3 + 1625...8575%xx + 1200...7360
over Finite Field of size 1701...5727
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Strategies for composite-degree isogenies

Recall: We split ¢"-isogenies into 7 individual /-isogenies ;.
This requires computing K; := [("~/|(¥);_1 o - - - 0 b1 ) (n) for all i.
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Strategies for composite-degree isogenies

Recall: We split ¢"-isogenies into 7 individual /-isogenies ;.
This requires computing K; := [("~/|(¥);_1 o - - - 0 b1 ) (n) for all i.

Sparse strategy:

.
/'

/ . .\. . o ./. . .\.
2 N N NN
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Optimal strategies for composite-degree isogenies

= Sparse strategy improves O(n? - ) to O(nlogn - ().
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When the costs of [¢] and ¢k, are imbalanced, other trees can be
even more efficient. They can be constructed easily.
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Optimal strategies for composite-degree isogenies

= Sparse strategy improves O(n? - ) to O(nlogn - ().

When the costs of [¢] and ¢k, are imbalanced, other trees can be
even more efficient. They can be constructed easily.

7

~ "“optimal strategies’

Similar techniques exist for general composite degree.
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Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function. v

» The CSIDH non-interactive key exchange. v

» Hardness of isogeny problems, and reductions. v
» The SQIsign signature scheme. v

» Transcending to higher dimensions.
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Gluing elliptic curves

» Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”
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Gluing elliptic curves

» Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:
Computing isogenies of
products of elliptic curves

» The product E x E’ is an abelian surface.
Compare: A product of two lines is a plane!
» Similar to elliptic curves in many ways:

» Points form an abelian group.
» Similar group structure, but more components.
» Can define isogenies from kernel subgroups.
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The embedding lemma
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The embedding lemma

» Fallout from the SIDH attack: New tools.

2.1. The embedding lemma. If &, a5 are two endomorphisms of an elliptic curve E of
degree a, and a,, then oy o a, is of degree a;a4,. However it is harder to control the degree
of the sum; by Cauchy-Schwartz we can bound it as: (a%”2 — a;/Z)z < deg(ag + ap) <
(a}"z + a;fz)z (unless 4y = —a5). And &y + a; is of degree a; + a5 if and only if #1 &, is of
trace 0.

If &, commutes with @, we can instead use Kanis lemma [Kangy, § 2] to build an
endomorphism F in dimension 2 on E? which is an (a; + a,)-isogeny (so is of degree
(a1 + a3)? since we are in dimension 2). So by going to higher dimension we can combine
degrees additively. The proof of this lemma is very simple (a simple two by two matrix
computation), but its powerful algorithmic potential went unnoticed until Castrick and
Decru applied it in [CD22] to attack on SIDH.

— Damien Robert [ePrint 2022/1704]

61/ 66



The embedding lemma

Consider a commutative diagram of isogenies

E—% LF
ufl Jw’
E// - E///
%}

where a := deg ¢ and b := deg v are coprime; let N :=a + b.

Lemma. Then N
IF o= < ¥ W)

~

— ¢
defines an N-isogeny E x E” — E' — E".
Its kernel is ker(F) = {(@(P),¢'(P)) | P € E'[N]}.
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Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
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~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = »(Q).

» Notice that ¢ is a group homomorphism.

P P

Evaluating ¢ at an arbitrary point T € E[N]:
1. Decompose T = [u]P + [v|Q with u,v € Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P’' + [v]Q'.
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Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = »(Q).

» Notice that ¢ is a group homomorphism.

P P

Evaluating ¢ at an arbitrary point T € E[N]:
1. Decompose T = [u]P + [v|Q with u,v € Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P’' + [v]Q'.

= The data (P, Q, P’, Q') encodes the restriction o|g.
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Plan for this lecture

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function. v

» The CSIDH non-interactive key exchange. v

» Hardness of isogeny problems, and reductions. v
» The SQIsign signature scheme. v

» Transcending to higher dimensions. v
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Ad

Seminar Sessions

A seminar session for young isogenists.

https://isogeny.club
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https://isogeny.club

Questions?

(Also feel free to email me: lorenz@yx7.cc)
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