
Isogeny-based Cryptography

Lorenz Panny

Technische Universität München

QSI Spring School, Porto, 15 March 2024

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Big picture

▶ Isogenies are a source of exponentially-sized graphs.

▶ We can walk efficiently on these graphs.

▶ Fast mixing: short paths to (almost) all nodes.

▶ No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

▶ Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.

1 / 66

Crypto on graphs?

2 / 66

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 66

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 66

Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 66

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 66

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 66

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 66

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 66

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 66

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 66

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 66

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 66

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 66

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 66

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 66

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 66

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 66

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 66

Crypto on graphs?

We’ve been doing it all the time!

6 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!

...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

7 / 66

In some cases,

isogeny graphs
can replace

≺

some

DLP-based constructions post-quantumly.

7 / 66

In some cases,

isogeny graphs
can replace≺

some

DLP-based constructions post-quantumly.

7 / 66

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

Both. :)

8 / 66

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both. :)

8 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies.

▶ The CGL hash function.

▶ The CSIDH non-interactive key exchange.

▶ Hardness of isogeny problems, and reductions.

▶ The SQIsign signature scheme.

▶ Transcending to higher dimensions.

9 / 66

Stand back!

We’re going to do math.

10 / 66

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

11 / 66

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

11 / 66

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.

▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

11 / 66

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

11 / 66

Elliptic curves (picture over R)

The elliptic curve y2 = x3 − x + 1 over R.

12 / 66

Elliptic curves (picture over R)

•

•

•

Addition law:

P + Q + R =∞ ⇐⇒ {P,Q,R} on a straight line.

12 / 66

Elliptic curves (picture over R)

•

•

•∞

The point at infinity∞ lies on every vertical line.

12 / 66

Elliptic curves (picture over Fp)

x

y ∞

The same curve y2 = x3 − x + 1 over the finite field F79.

12 / 66

Elliptic curves (picture over Fp)

x

y ∞

The addition law of y2 = x3 − x + 1 over the finite field F79.

12 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)
sage: P - P
(0 : 1 : 0) # point at infinity

13 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)

sage: P - P
(0 : 1 : 0) # point at infinity

13 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [5,6,7,8,9])
sage: E
Elliptic Curve defined by

y^2 + 5*x*y + 7*y = x^3 + 6*x^2 + 8*x + 9
over Finite Field of size 101

sage: P = E(3, 18) # constructing points
sage: Q = E(8, 75)
sage: P + Q # point addition
(73 : 24 : 1)
sage: P - P
(0 : 1 : 0) # point at infinity

13 / 66

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

14 / 66

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

14 / 66

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

14 / 66

Fields of definition

Generally, things can be defined over extension fields:
For example, (0,

√
−1) is a point of y2 = x3 − 1.

Let k be a field.

An elliptic curve/point/isogeny is defined over k or k-rational
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.

For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.

15 / 66

Fields of definition

Generally, things can be defined over extension fields:
For example, (0,

√
−1) is a point of y2 = x3 − 1.

Let k be a field.

An elliptic curve/point/isogeny is defined over k or k-rational
if the coefficients in its equation/formula lie in k.
We write E/k for “E is defined over k”.

For E/k, write E(k) for the set of points of E defined over k.

Note: Simply writing E means E(k), i.e., points over all extension fields.

15 / 66

In SageMath:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x

over Finite Field of size 101
sage: F.<t> = GF(101^2)
sage: E(11, 69*t + 64)
ValueError: 69*t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69*t + 64 : 1)

16 / 66

In SageMath:

Everything happens over the specified field of definition:

sage: E = EllipticCurve(GF(101), [0,5,0,1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x

over Finite Field of size 101
sage: F.<t> = GF(101^2)
sage: E(11, 69*t + 64)
ValueError: 69*t + 64 is not in the image of #...
sage: EE = E.change_ring(F)
sage: EE(11, 69*t + 64)
(11 : 69*t + 64 : 1)

16 / 66

Isogenies

...are just fancily-named

nice maps
between elliptic curves.

17 / 66

Isogenies

...are just fancily-named

nice maps
between elliptic curves.

17 / 66

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:

▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

18 / 66

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.

▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

18 / 66

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

18 / 66

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

18 / 66

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

18 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #1: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. If m ̸= 0 in the base field, its kernel is

E[m] ∼= Z/m× Z/m.

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #4: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #4: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).

19 / 66

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #4: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).
Important fact: An isogeny φ is Fq-rational iff π ◦ φ = φ ◦ π.

19 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)

sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

20 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

20 / 66

In SageMath:

sage: E = EllipticCurve(GF(101), [1,0])
sage: mu = E.scalar_multiplication(5)
sage: mu
Scalar-multiplication endomorphism [5]

of Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 101

sage: mu.rational_maps ()
((x^25 + x^23 + ... + 14*x^3 + 25*x)

/(25*x^24 + 14*x^22 - ... + x^2 + 1),
(50*x^36*y + 20*x^34*y + ... + 45*x^2*y + 48*y)

/(-12*x^36 - 2*x^34 + ... - 26*x^2 + 50))

20 / 66

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

21 / 66

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

21 / 66

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

21 / 66

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

21 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
22 / 66

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7

sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

23 / 66

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

23 / 66

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel

sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

23 / 66

In SageMath:

sage: E = EllipticCurve(GF(419), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
sage: K = E(80,30)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: phi
Isogeny of degree 7

from Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 419

to Elliptic Curve defined by y^2 = x^3 + 285*x + 87
over Finite Field of size 419

sage: phi(K)
(0 : 1 : 0) # φ(K) =∞ =⇒ K lies in the kernel
sage: phi.rational_maps ()
((x^7 + 129*x^6 - ... + 25)/(x^6 + 129*x^5 - ... + 36),
(x^9*y - 16*x^8*y - ... + 70*y)/(x^9 - 16*x^8 + ...))

23 / 66

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of

▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

24 / 66

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;

▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;
up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

24 / 66

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

24 / 66

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.

24 / 66

Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of
▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.
24 / 66

Predictable groups

Elliptic curves in general can be very annoying

computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

25 / 66

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

25 / 66

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

25 / 66

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

25 / 66

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

25 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function.

▶ The CSIDH non-interactive key exchange.

▶ Hardness of isogeny problems, and reductions.

▶ The SQIsign signature scheme.

▶ Transcending to higher dimensions.

26 / 66

The Charles–Goren–Lauter hash function

h

0
1

1

11

0

0
1

0
1

0
0

0

1

▶ Start at some curve E.
▶ For each input digit b: Map the pair (E, b) to a finite

subgroup H ≤ E, compute φH : E→ E′, and set E← E′.
▶ Finally return E.

27 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange.

▶ Hardness of isogeny problems, and reductions.

▶ The SQIsign signature scheme.

▶ Transcending to higher dimensions.

28 / 66

CSIDH ["si:saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
29 / 66

Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

30 / 66

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

30 / 66

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.

▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and
Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

30 / 66

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB,

such that EAB ∼= EBA.

30 / 66

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

30 / 66

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)

31 / 66

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)

31 / 66

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

32 / 66

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.

⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

32 / 66

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

32 / 66

“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

32 / 66

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

33 / 66

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

33 / 66

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

33 / 66

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

33 / 66

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Exercise: Each curve has only one other rational ℓ-isogeny.
!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

33 / 66

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

34 / 66

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

34 / 66

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

34 / 66

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

34 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.

▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.

▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

35 / 66

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

36 / 66

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

36 / 66

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

36 / 66

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

36 / 66

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

36 / 66

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

36 / 66

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

36 / 66

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

36 / 66

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

36 / 66

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

36 / 66

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

36 / 66

And... action!

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

37 / 66

And... action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

37 / 66

And... action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

37 / 66

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

38 / 66

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.

Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

38 / 66

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

38 / 66

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

38 / 66

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

38 / 66

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

39 / 66

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

39 / 66

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

39 / 66

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

39 / 66

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2

sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: pass
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

40 / 66

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: pass
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)

sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

40 / 66

In SageMath:
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: pass
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

40 / 66

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

41 / 66

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).

=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

41 / 66

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

41 / 66

Efficient x-only arithmetic

▶ For n ∈ Z, we have [n](−P) = −[n]P. (This holds in any group.)

▶ Recall that P = (x, y) has inverse −P = (x,−y).
=⇒We get an induced map xMULn on x-coordinates such that

∀P∈E. xMULn(x(P)) = x([n]P) .

The same reasoning works for isogeny formulas.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ (Relatively) efficient CSIDH implementations!

41 / 66

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

42 / 66

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

42 / 66

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·x hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

42 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Hardness of isogeny problems, and reductions.

▶ The SQIsign signature scheme.

▶ Transcending to higher dimensions.

43 / 66

Now:

Supersingular isogeny graphs over Fp2 .

44 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).
▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).
▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).

▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).
▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).
▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The supersingular isogeny problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular isogeny problem. Given two supersingular
elliptic curves E,E′ over Fp2 , find any isogeny E→ E′.

Fact: The supersingular isogeny graph has size ⌊p/12⌋+ ε.

Classical attacks:
▶ Meet-in-the-middle: Õ(p1/2) time & space (!).
▶ Delfs–Galbraith: Õ(p1/2) time, negligible space.

Quantum attacks:
▶ Biasse–Jao–Sankar: Õ(p1/4). (Quantum version of Delfs–Galbraith.)

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

45 / 66

The endomorphism-ring problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular endomorphism-ring problem.
For a supersingular elliptic curve, find its endomorphism ring.

Attacks:
▶ Nontrivial endomorphisms are “just” self-isogenies.
⇝ Dominating cost: Find cycles in isogeny graphs.
⇝ Algorithms are morally similar to the isogeny problem,

followed by a polynomial-time post-processing phase.

Theorem (Wesolowski 2021): Assuming GRH, the isogeny and
endomorphism-ring problems are polynomial-time equivalent.

46 / 66

The endomorphism-ring problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular endomorphism-ring problem.
For a supersingular elliptic curve, find its endomorphism ring.

Attacks:
▶ Nontrivial endomorphisms are “just” self-isogenies.
⇝ Dominating cost: Find cycles in isogeny graphs.
⇝ Algorithms are morally similar to the isogeny problem,

followed by a polynomial-time post-processing phase.

Theorem (Wesolowski 2021): Assuming GRH, the isogeny and
endomorphism-ring problems are polynomial-time equivalent.

46 / 66

The endomorphism-ring problem

Most contemporary isogeny-based cryptography reduces to:

The supersingular endomorphism-ring problem.
For a supersingular elliptic curve, find its endomorphism ring.

Attacks:
▶ Nontrivial endomorphisms are “just” self-isogenies.
⇝ Dominating cost: Find cycles in isogeny graphs.
⇝ Algorithms are morally similar to the isogeny problem,

followed by a polynomial-time post-processing phase.

Theorem (Wesolowski 2021): Assuming GRH, the isogeny and
endomorphism-ring problems are polynomial-time equivalent.

46 / 66

SoK: Isogeny problems

Some isogeny problems are much more broken than others.

https://issikebrokenyet.github.io

47 / 66

https://issikebrokenyet.github.io

SoK: Isogeny problems

Some isogeny problems are much more broken than others.

https://issikebrokenyet.github.io

47 / 66

https://issikebrokenyet.github.io

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Hardness of isogeny problems, and reductions. ✓
▶ The SQIsign signature scheme.

▶ Transcending to higher dimensions.

48 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.

▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).
(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)

49 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:

▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .

▶ Quaternions: Maximal orders in a certain algebra Bp,∞.
Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

50 / 66

The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 =−1, j2 =−p, ji=−ij.

The ring O0 = Z ⊕ Z i ⊕ Z i+j
2 ⊕ Z 1+ij

2
corresponds to the curve E0 : y2 = x3 + x.

The ring O1 = Z ⊕ Z 4947i ⊕ Z 4947i+j
2 ⊕ Z 4947+32631010i+ij

9894
corresponds to the curve E1 : y2 = x3 + 1.

The ideal I = Z 4947 ⊕ Z 4947i ⊕ Z 598+4947i+j
2 ⊕ Z 4947+598i+ij

2
defines an isogeny E0 → E1 of degree 4947 = 3 · 17 · 97.

51 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA
secret

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA

E1

secret

co
m

m
itm

en
t

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

challenge

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

signature

challenge

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

signature

challenge

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.

▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

Signing with isogenies

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

signature

challenge

▶ Easy signature: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).

52 / 66

SQIsign

Main idea:
▶ Construct the “signature square” in quaternion land.
▶ Project the secret and signature down to the curve world.
▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.
▶ From End(E),End(E′), can randomize within Hom(E,E′).
⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2

and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

53 / 66

SQIsign

Main idea:
▶ Construct the “signature square” in quaternion land.
▶ Project the secret and signature down to the curve world.
▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.
▶ From End(E),End(E′), can randomize within Hom(E,E′).

⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2
and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

53 / 66

SQIsign

Main idea:
▶ Construct the “signature square” in quaternion land.
▶ Project the secret and signature down to the curve world.
▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.
▶ From End(E),End(E′), can randomize within Hom(E,E′).
⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2

and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

53 / 66

SQIsign

Main idea:
▶ Construct the “signature square” in quaternion land.
▶ Project the secret and signature down to the curve world.
▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.
▶ From End(E),End(E′), can randomize within Hom(E,E′).
⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2

and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

53 / 66

SQIsign: Numbers

Source: https://sqisign.org

54 / 66

https://sqisign.org

SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo
55 / 66

https://pqshield.github.io/nist-sigs-zoo

SQIsign verification

Main task in SQIsign verification:

Given E and K ∈ E of order ℓn, compute ψ : E→ E/⟨K⟩.

▶ Vélu’s formulas take Θ(ℓn) to compute ψ.

!! Evaluate ψ as a chain of small-degree isogenies:

E E1 . . . En−1 E/G
ψ1

ψ

ψ2 ψn−1 ψn

⇝ Complexity: O(n2 · ℓ).
Exponentially smaller than a ℓn-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

56 / 66

SQIsign verification

Main task in SQIsign verification:

Given E and K ∈ E of order ℓn, compute ψ : E→ E/⟨K⟩.

▶ Vélu’s formulas take Θ(ℓn) to compute ψ.

!! Evaluate ψ as a chain of small-degree isogenies:

E E1 . . . En−1 E/G
ψ1

ψ

ψ2 ψn−1 ψn

⇝ Complexity: O(n2 · ℓ).
Exponentially smaller than a ℓn-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

56 / 66

SQIsign verification

Main task in SQIsign verification:

Given E and K ∈ E of order ℓn, compute ψ : E→ E/⟨K⟩.

▶ Vélu’s formulas take Θ(ℓn) to compute ψ.

!! Evaluate ψ as a chain of small-degree isogenies:

E E1 . . . En−1 E/G
ψ1

ψ

ψ2 ψn−1 ψn

⇝ Complexity: O(n2 · ℓ).
Exponentially smaller than a ℓn-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

56 / 66

SQIsign verification

Main task in SQIsign verification:

Given E and K ∈ E of order ℓn, compute ψ : E→ E/⟨K⟩.

▶ Vélu’s formulas take Θ(ℓn) to compute ψ.

!! Evaluate ψ as a chain of small-degree isogenies:

E E1 . . . En−1 E/G
ψ1

ψ

ψ2 ψn−1 ψn

⇝ Complexity: O(n2 · ℓ).
Exponentially smaller than a ℓn-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

56 / 66

SQIsign verification

Main task in SQIsign verification:

Given E and K ∈ E of order ℓn, compute ψ : E→ E/⟨K⟩.

▶ Vélu’s formulas take Θ(ℓn) to compute ψ.

!! Evaluate ψ as a chain of small-degree isogenies:

E E1 . . . En−1 E/G
ψ1

ψ

ψ2 ψn−1 ψn

⇝ Complexity: O(n2 · ℓ).
Exponentially smaller than a ℓn-isogeny!

▶ Graph view: Each ψi is a step in the ℓ-isogeny graph.

56 / 66

In SageMath:

sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor ()
2^123

sage: phi = E.isogeny(K, algorithm="factored")
sage: phi
Composite morphism of degree 1063 ... 6608 = 2^123:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 1701 ... 5727

To: Elliptic Curve defined by
y^2 = x^3 + 1625 ... 8575*x + 1200 ... 7360
over Finite Field of size 1701 ... 5727

57 / 66

In SageMath:

sage: E = EllipticCurve(GF(2^127-1), [1,0])
sage: K = E(23, 40490046516039691075571867486180936666)
sage: K.order()
10633823966279326983230456482242756608
sage: K.order().factor ()
2^123
sage: phi = E.isogeny(K, algorithm="factored")
sage: phi
Composite morphism of degree 1063 ... 6608 = 2^123:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field of size 1701 ... 5727

To: Elliptic Curve defined by
y^2 = x^3 + 1625 ... 8575*x + 1200 ... 7360
over Finite Field of size 1701 ... 5727

57 / 66

Strategies for composite-degree isogenies

Recall: We split ℓn-isogenies into n individual ℓ-isogenies ψi.
This requires computing Ki := [ℓn−i](ψi−1 ◦ · · · ◦ ψ1)(n) for all i.

Naïve strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

58 / 66

Strategies for composite-degree isogenies

Recall: We split ℓn-isogenies into n individual ℓ-isogenies ψi.
This requires computing Ki := [ℓn−i](ψi−1 ◦ · · · ◦ ψ1)(n) for all i.

Naïve strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

58 / 66

Strategies for composite-degree isogenies

Recall: We split ℓn-isogenies into n individual ℓ-isogenies ψi.
This requires computing Ki := [ℓn−i](ψi−1 ◦ · · · ◦ ψ1)(n) for all i.

Sparse strategy:

sc
ala

r m
ulti

plic
ati

on [
ℓ]

ℓ-isogeny
φ

K
i

K

K1 K2 K3 K4 K5 K6 K7 K8

58 / 66

Optimal strategies for composite-degree isogenies

=⇒ Sparse strategy improves O(n2 · ℓ) to O(n log n · ℓ).

When the costs of [ℓ] and φKi are imbalanced, other trees can be
even more efficient. They can be constructed easily.

⇝ “optimal strategies”

Similar techniques exist for general composite degree.

58 / 66

Optimal strategies for composite-degree isogenies

=⇒ Sparse strategy improves O(n2 · ℓ) to O(n log n · ℓ).

When the costs of [ℓ] and φKi are imbalanced, other trees can be
even more efficient. They can be constructed easily.

⇝ “optimal strategies”

Similar techniques exist for general composite degree.

58 / 66

Optimal strategies for composite-degree isogenies

=⇒ Sparse strategy improves O(n2 · ℓ) to O(n log n · ℓ).

When the costs of [ℓ] and φKi are imbalanced, other trees can be
even more efficient. They can be constructed easily.

⇝ “optimal strategies”

Similar techniques exist for general composite degree.

58 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Hardness of isogeny problems, and reductions. ✓
▶ The SQIsign signature scheme. ✓
▶ Transcending to higher dimensions.

59 / 66

Gluing elliptic curves

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies of
products of elliptic curves

▶ The product E× E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

60 / 66

Gluing elliptic curves

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies of
products of elliptic curves

▶ The product E× E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

60 / 66

Gluing elliptic curves

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies of
products of elliptic curves

▶ The product E× E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

60 / 66

Gluing elliptic curves

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

Main technique underlying attack:

Computing isogenies of
products of elliptic curves

▶ The product E× E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

60 / 66

The embedding lemma

▶ Fallout from the SIDH attack: New tools.

— Damien Robert [ePrint 2022/1704]

61 / 66

The embedding lemma

▶ Fallout from the SIDH attack: New tools.

— Damien Robert [ePrint 2022/1704]

61 / 66

The embedding lemma

Consider a commutative diagram of isogenies

E E′

E′′ E′′′

φ

ψ ψ′

φ′

where a := degφ and b := degψ are coprime; let N := a + b.

Lemma. Then

F :=

(
φ ψ̂′

−ψ φ̂′

)
defines an N-isogeny E× E′′′ → E′ → E′′.

Its kernel is ker(F) =
{
(φ̂(P), ψ′(P)) | P ∈ E′[N]

}
.

62 / 66

Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].

63 / 66

Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].

63 / 66

Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].

63 / 66

Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].

63 / 66

Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a DLP-like computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].

63 / 66

Plan for this lecture

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ Hardness of isogeny problems, and reductions. ✓
▶ The SQIsign signature scheme. ✓
▶ Transcending to higher dimensions. ✓

64 / 66

Ad

https://isogeny.club

65 / 66

https://isogeny.club

Questions?

(Also feel free to email me: lorenz@yx7.cc)

66 / 66

