Isogenies I & II

Lorenz Panny
Technische Universiteit Eindhoven

Executive School on Post-Quantum Cryptography,
Eindhoven, 2 July 2019
Please ask me anything!
Diffie–Hellman key exchange ’76

Public parameters:
- a finite group G (traditionally \mathbb{F}_p^*, today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works:
- a and b are commutative!
Diffie–Hellman key exchange ’76

Public parameters:

- a finite group G (traditionally \mathbb{F}_p^*, today elliptic curves)
- an element $g \in G$ of prime order q

\begin{align*}
\text{Alice} & \quad \text{public} \quad \text{Bob} \\
\begin{array}{c}
\begin{array}{c}
\text{random} \\
\text{random}
\end{array}
\end{array} & \begin{aligned}
\begin{array}{c}
\begin{array}{c}
\{0 \ldots q-1\} \\
\{0 \ldots q-1\}
\end{array}
\end{array}
\end{aligned}
\end{aligned}

\begin{align*}
s := (g^b)^a \\
&= \quad (g^a)^b
\end{align*}
Diffie–Hellman key exchange '76

Public parameters:
- a finite group G (traditionally \mathbb{F}_p^*, today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: \cdot^a and \cdot^b are commutative!
Diffie–Hellman: Bob vs. Eve

Bob

1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.

...

$b−2$. Set $t \leftarrow t \cdot g$.

$b−1$. Set $t \leftarrow t \cdot g$.

b. Publish $B \leftarrow t \cdot g$.

Is this a good idea?

Effort for both: $O(\#G)$. Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)
Diffie–Hellman: Bob vs. Eve

Bob
1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.

...

$b-2$. Set $t \leftarrow t \cdot g$.

$b-1$. Set $t \leftarrow t \cdot g$.

b. Publish $B \leftarrow t \cdot g$.

Is this a good idea?
Diffie–Hellman: Bob vs. Eve

<table>
<thead>
<tr>
<th>Bob</th>
<th>Attacker Eve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set (t \leftarrow g).</td>
<td>1. Set (t \leftarrow g). If (t = B) return 1.</td>
</tr>
<tr>
<td>2. Set (t \leftarrow t \cdot g).</td>
<td>2. Set (t \leftarrow t \cdot g). If (t = B) return 2.</td>
</tr>
<tr>
<td>3. Set (t \leftarrow t \cdot g).</td>
<td>3. Set (t \leftarrow t \cdot g). If (t = B) return 3.</td>
</tr>
<tr>
<td>4. Set (t \leftarrow t \cdot g).</td>
<td>4. Set (t \leftarrow t \cdot g). If (t = B) return 3.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(b-2). Set (t \leftarrow t \cdot g).</td>
<td>(b-2). Set (t \leftarrow t \cdot g). If (t = B) return (b-2).</td>
</tr>
<tr>
<td>(b-1). Set (t \leftarrow t \cdot g).</td>
<td>(b-1). Set (t \leftarrow t \cdot g). If (t = B) return (b-1).</td>
</tr>
<tr>
<td>(b). Publish (B \leftarrow t \cdot g).</td>
<td>(b). Set (t \leftarrow t \cdot g). If (t = B) return (b).</td>
</tr>
<tr>
<td>(b+1). Set (t \leftarrow t \cdot g). If (t = B) return (b+1).</td>
<td>(b+1). Set (t \leftarrow t \cdot g). If (t = B) return (b+1).</td>
</tr>
<tr>
<td>(b+2). Set (t \leftarrow t \cdot g). If (t = B) return (b+2).</td>
<td>(b+2). Set (t \leftarrow t \cdot g). If (t = B) return (b+2).</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Effort for both: \(O(\#GP) \). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
Diffie–Hellman: Bob vs. Eve

Bob
1. Set \(t \leftarrow g \).
2. Set \(t \leftarrow t \cdot g \).
3. Set \(t \leftarrow t \cdot g \).
4. Set \(t \leftarrow t \cdot g \).

\[\vdots \]

\(b-2 \). Set \(t \leftarrow t \cdot g \).
\(b-1 \). Set \(t \leftarrow t \cdot g \).
\(b \). Publish \(B \leftarrow t \cdot g \).

Attacker Eve
1. Set \(t \leftarrow g \). If \(t = B \) return 1.
2. Set \(t \leftarrow t \cdot g \). If \(t = B \) return 2.
3. Set \(t \leftarrow t \cdot g \). If \(t = B \) return 3.
4. Set \(t \leftarrow t \cdot g \). If \(t = B \) return 3.

\[\vdots \]

\(b-2 \). Set \(t \leftarrow t \cdot g \). If \(t = B \) return \(b-2 \).
\(b-1 \). Set \(t \leftarrow t \cdot g \). If \(t = B \) return \(b-1 \).
\(b \). Set \(t \leftarrow t \cdot g \). If \(t = B \) return \(b \).

\(b+1 \). Set \(t \leftarrow t \cdot g \). If \(t = B \) return \(b+1 \).
\(b+2 \). Set \(t \leftarrow t \cdot g \). If \(t = B \) return \(b+2 \).

\[\vdots \]

Effort for both: \(O(\#G) \). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
Fast mixing: paths of length $\log(\#\text{nodes})$ to everywhere.
multiply

Fast mixing: paths of length \(\log(\# \text{nodes}) \) to everywhere.
Square-and-multiply
Square-and-multiply-and-square-and-multiply

Fast mixing: paths of length $\log(\# \text{nodes})$ to everywhere.
Square-and-multiply-and-square-and-multiply-and-squ
Square-and-multiply as graphs
Square-and-multiply as graphs

Fast mixing: paths of length $\log(\#\text{nodes})$ to everywhere.
Square-and-multiply as graphs

Fast mixing: paths of length \(\log(\#\text{nodes})\) to everywhere.
Square-and-multiply as graphs
Square-and-multiply as a graph

- Fast mixing: paths of length $\log(#\text{nodes})$ to everywhere.
Square-and-multiply as a graph

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.
With square-and-multiply, applying b takes $\Theta(\log \# G)$.

For well-chosen groups, recovering b takes $\Theta(\sqrt{\# G})$.

∽ Exponential separation!
With square-and-multiply, applying b takes $\Theta(\log \#G)$.

For well-chosen groups, recovering b takes $\Theta(\sqrt{\#G})$.

⇝ Exponential separation!

...and they lived happily ever after?
Shor’s algorithm quantumly computes x from g^x in any group in polynomial time.
Shor’s algorithm quantumly computes x from g^x in any group in polynomial time.

New plan: Get rid of the group, keep the graph.
Big picture 🧠🧠

- Isogenies are a source of exponentially-sized graphs.
Big picture

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
Big picture ⏩ ⏪

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
Big picture

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
Big picture 📃

- **Isogenies** are a source of *exponentially*-sized graphs.

- We can **walk efficiently** on these graphs.

- **Fast mixing**: short paths to (almost) all nodes.

- **No efficient*** algorithms to recover paths from endpoints.
 (Both classical and quantum!)

- **Enough structure** to **navigate** the graph meaningfully.
 That is: some *well-behaved* ‘directions’ to describe paths. More later.
Big picture 🤔🤔

- **Isogenies** are a source of *exponentially*-sized graphs.

- We can **walk efficiently** on these graphs.

- **Fast mixing:** short paths to (almost) all nodes.

- **No efficient* algorithms to recover paths** from endpoints. *(Both classical and quantum!)*

- **Enough structure to navigate** the graph meaningfully. That is: some *well-behaved* ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — *not enough for crypto!*
Isogenies give rise to

‘post-quantum Diffie–Hellman’.

(and more!)
Isogenies are well-behaved maps between elliptic curves.
Isogenies are well-behaved maps between elliptic curves.

Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
The beauty and the beast

Components of well-chosen isogeny graphs look like this:
The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?
The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? **Both.**
The beauty and the beast

At this time, there are two distinct families of systems:

- **CSIDH** ['siː,saɪd]
 - $q = p$
 - https://csidh.isogeny.org

- **SIDH**
 - $q = p^2$
 - https://sike.org
CSIDH ['siːsaɪd]

(Castryck, Lange, Martindale, Panny, Renes; 2018)
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.
Why CSIDH?

▶ Drop-in post-quantum replacement for (EC)DH.

▶ Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH.

- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)

- Small keys: starts at 64 bytes.*

* Security evaluation is complicated, might get bigger & slower.
Why CSIDH?

- **Drop-in** post-quantum replacement for (EC)DH.

- **Non-interactive key exchange** (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)

- **Small** keys: starts at 64 bytes.*

- **Competitive speed**: ≈ 55 ms / full key exchange.* (Skylake)

* Security evaluation is complicated, might get bigger & slower.
Why CSIDH?

▶ Drop-in post-quantum replacement for (EC)DH.

▶ **Non-interactive key exchange** (full public-key validation); previously an open problem post-quantumly. (w/ reasonable speed)

▶ **Small** keys: starts at 64 bytes.*

▶ Competitive **speed**: \(\approx 55 \text{ ms} / \text{ full key exchange} \).* (Skylake)

▶ **Flexible**: compatible with 0-RTT protocols such as QUIC; yields signatures, (pre-quantum) VDFs, etc.

* Security evaluation is complicated, might get bigger & slower.
Stand back!

We’re going to do math.
An elliptic curve (modulo details) is given by an equation

$$E: \ y^2 = x^3 + ax + b.$$

A point on E is a solution to this equation or the ‘fake’ point ∞.

▶ The neutral element is ∞.

▶ The inverse of (x, y) is $(x, -y)$.

▶ The sum of (x_1, y_1) and (x_2, y_2) is $$\left(\lambda^2 - x_1 - x_2, \lambda(x_1 + x_2 - \lambda^2) - y_1\right)$$

where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = 3x_1^2 + a$ otherwise.
An elliptic curve (modulo details) is given by an equation

\[E: y^2 = x^3 + ax + b. \]

A point on \(E \) is a solution to this equation or the ‘fake’ point \(\infty \).

\(E \) is an abelian group: we can ‘add’ and ‘subtract’ points.

- The neutral element is \(\infty \).
- The inverse of \((x, y)\) is \((x, -y)\).
- The sum of \((x_1, y_1)\) and \((x_2, y_2)\) is

\[
\left(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1 \right)
\]

where \(\lambda = \frac{y_2 - y_1}{x_2 - x_1} \) if \(x_1 \neq x_2 \) and \(\lambda = \frac{3x_1^2 + a}{2y_1} \) otherwise.
Math slide #2: Isogenies (*edges*)

An **isogeny** of elliptic curves is a non-zero map $E \to E'$

- given by **rational functions**
- that is a **group homomorphism**.

The **degree** of a separable isogeny is the size of its **kernel**.
Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$
- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \rightarrow E$$

is a degree-m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$
An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{ y^2 = x^3 + ax + b \} \longrightarrow \{ y^2 = x^3 + ax - b \}.$$

It is an isomorphism; its kernel is $\{ \infty \}$.
An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3-4x^2+30x-12}{(x-2)^2}, \frac{x^3-6x^2-14x+35}{(x-2)^3} \cdot y \right)$ defines a degree-3 isogeny of the elliptic curves

\[
\{ y^2 = x^3 + x \} \rightarrow \{ y^2 = x^3 - 3x + 3 \}
\]

over \mathbb{F}_{71}. Its kernel is $\{(2, 9), (2, -9), \infty\}$.
Choose some small odd primes ℓ_1, \ldots, ℓ_n.

Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.

Let $X = \{ y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p + 1 \text{ points} \}$.

Look at the ℓ_i-isogenies defined over \mathbb{F}_p within X.

Walk 'left' and 'right' on any ℓ_i-subgraph is efficient.

We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

$p = 419$

$\ell_1 = 3$

$\ell_2 = 5$

$\ell_3 = 7$
CSIDH in one slide

- Choose some small odd primes ℓ_1, \ldots, ℓ_n.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
CSIDH in one slide

- Choose some small odd primes ℓ_1, \ldots, ℓ_n.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
- Let $X = \{ y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points} \}$.

$p = 419$

$\ell_1 = 3$

$\ell_2 = 5$

$\ell_3 = 7$
Choose some small odd primes ℓ_1, \ldots, ℓ_n.

Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.

Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}$.

Look at the ℓ_i-isogenies defined over \mathbb{F}_p within X.

Walking 'left' and 'right' on any ℓ_i-subgraph is efficient.

We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

Magic math happens!
CSIDH in one slide

- Choose some small odd primes ℓ_1, \ldots, ℓ_n.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
- Let $X = \{ y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points} \}$.
- Look at the ℓ_i-isogenies defined over \mathbb{F}_p within X.

$p = 419$

$\ell_1 = 3$

$\ell_2 = 5$

$\ell_3 = 7$
CSIDH in one slide

- Choose some small odd primes ℓ_1, \ldots, ℓ_n.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
- Let $X = \{ y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points} \}$.
- Look at the ℓ_i-isogenies defined over \mathbb{F}_p within X.

Walking ‘left’ and ‘right’ on any ℓ_i-subgraph is efficient.
CSIDH in one slide

- Choose some small odd primes ℓ_1, \ldots, ℓ_n.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}$.
- Look at the ℓ_i-isogenies defined over \mathbb{F}_p within X.

$p = 419$

$\ell_1 = 3$

$\ell_2 = 5$

$\ell_3 = 7$

- Walking ‘left’ and ‘right’ on any ℓ_i-subgraph is efficient.
- We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.
Walking in the CSIDH graph

Taking a ‘positive’ step on the ℓ_i-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
 This uses scalar multiplication by $(p + 1)/\ell_i$.

2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Taking a ‘negative’ step on the ℓ_i-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \not\in \mathbb{F}_p$.

2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over $\mathbb{F}_p = \Rightarrow$ Efficient to implement!
Walking in the CSIDH graph

Taking a ‘positive’ step on the ℓ_i-subgraph.
1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
 This uses scalar multiplication by $(p + 1)/\ell_i$.
2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Taking a ‘negative’ step on the ℓ_i-subgraph.
1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
 This uses scalar multiplication by $(p + 1)/\ell_i$.
2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over \mathbb{F}_p.
\Rightarrow Efficient to implement!
Walking in the CSIDH graph

Taking a ‘positive’ step on the ℓ_i-subgraph.
1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
 This uses scalar multiplication by $(p + 1)/\ell_i$.
2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Taking a ‘negative’ step on the ℓ_i-subgraph.
1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
 This uses scalar multiplication by $(p + 1)/\ell_i$.
2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Upshot: With ‘x-only arithmetic’ everything happens over \mathbb{F}_p.
\implies Efficient to implement!
For any finite subgroup G of E, there exists a unique\(^1\) separable isogeny $\varphi_G: E \to E'$ with kernel G.

The curve E' is called E/G. (\(\approx\) quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

\(^1\)(up to isomorphism of E')
Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique\(^1\) separable isogeny $\varphi_G : E \rightarrow E'$ with kernel G.

The curve E' is called E/G. (≈ quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating φ_G at a point.
Complexity: $\Theta(\#G) \sim$ only suitable for small degrees.

\(^1\)(up to isomorphism of E')
Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique\(^1\) separable isogeny $\varphi_G : E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating φ_G at a point.

Complexity: $\Theta(\#G)$ \leadsto only suitable for small degrees.

Vélu operates in the field where the points in G live.
\leadsto need to make sure extensions stay small for desired $\#G$
\leadsto this is why we use special p and curves with $p + 1$ points!

\(^1\)(up to isomorphism of E')
CSIDH key exchange

Alice
[+, +, −, −]

Bob
[−, +, −, −]
CSIDH key exchange

Alice
$[\uparrow, \uparrow, -, -]$

Bob
$[\downarrow, \uparrow, -, -]$
CSIDH key exchange

Alice

Bob

\([+, +, -, -] \uparrow \)
CSIDH key exchange

Alice
[+, +, −, −]

Bob
[−, +, −, −]
CSIDH key exchange

Alice

[+, +, -, -]

Bob

[-, +, -, -]
CSIDH key exchange

Alice
\[+, +, -, -\]

Bob
\[-, +, -, -\]
CSIDH key exchange

Alice
\[[+ , + , - , -] \]

Bob
\[[- , + , - , -] \]
CSIDH key exchange

Alice
$[+,-, -,-]$

Bob
$[-, +, -,-]$

Graphical representation of the key exchange protocol.
CSIDH key exchange

Alice

\[[+ , + , - , -] \]

Bob

\[[- , + , - , -] \]
CSIDH key exchange

Alice

Bob

$[+ , + , - , -]$

$[- , + , - , -]$
CSIDH key exchange

Alice
\[+, +, -, -\]

Bob
\[-, +, -, -\]
Has anyone seen my group action?

“CSIDH: an efficient post-quantum commutative group action”
Has anyone seen my group action?

“CSIDH: an efficient post-quantum commutative group action”

Cycles are compatible: \([\text{right then left}] = [\text{left then right}]\)

\[\Rightarrow\] only need to keep track of total step counts for each \(\ell_i\).

Example: \([+, +, -, -, -, +, -, -]\) just becomes \((+1, 0, -3) \in \mathbb{Z}^3\).
Has anyone seen my group action?

“CSIDH: an efficient post-quantum commutative group action”

Cycles are compatible: [right then left] = [left then right]
→ only need to keep track of total step counts for each ℓ_i.
Example: $[+, +, -, -, -, +, -, -]$ just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!
Has anyone seen my group action?

“CSIDH: an efficient post-quantum commutative group action”

Cycles are compatible: \([\text{right then left}] = [\text{left then right}]\)\n\(~\mapsto\) only need to keep track of total step counts for each \(\ell_i\).
Example: \([+, +, -, -, -, +, -, -]\) just becomes \((+1, 0, -3) \in \mathbb{Z}^3\).

There is a group action of \((\mathbb{Z}^n, +)\) on our set of curves \(X\)!

Many paths are ‘useless’. Fun fact: Quotienting out trivial actions yields the ideal-class group \(\text{cl}(\mathbb{Z}[\sqrt{-p}])\).
Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key exchange from a commutative group action $G \times S \rightarrow S$:

Alice \hspace{1cm} public \hspace{1cm} Bob

\[a \xleftarrow{\text{random}} G \quad \quad \quad b \xleftarrow{\text{random}} G \]

\[a \ast s \quad \quad b \ast s \]

\[key := a \ast (b \ast s) \quad \quad key := b \ast (a \ast s) \]
Why no Shor?

Recall from Dan’s talk:
Shor computes α from $h = g^\alpha$ by finding the kernel of the map

$$f : \mathbb{Z}^2 \to G, \ (x, y) \mapsto g^x \cdot h^y$$

For general group actions, we cannot compose $a \ast s$ and $b \ast s$!
Security of CSIDH

Core problem:
Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.
Core problem:
Given $E, E' \in X$, find a smooth-degree isogeny $E \rightarrow E'$.

The size of X is $\#\text{cl}(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

⇝ best known classical attack: meet-in-the-middle, $\tilde{O}(p^{1/4})$.

Solving abelian hidden shift breaks CSIDH.

⇝ quantum subexponential attack (Kuperberg's algorithm).
Security of CSIDH

Core problem:
Given $E, E' \in X$, find a smooth-degree isogeny $E \rightarrow E'$.

The size of X is $\#cl(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

\[\leadsto \] best known classical attack: meet-in-the-middle, $\tilde{O}(p^{1/4})$.

Solving abelian hidden shift breaks CSIDH.

\[\leadsto \] quantum subexponential attack (Kuperberg's algorithm).
CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. **Evaluate** the group action many times. (‘oracle calls’)
2. **Combine** the results in a certain way. (‘sieving’)

The algorithm admits many different tradeoffs.

Oracle calls are expensive.

The sieving phase has classical and quantum operations.

How to compare costs? (Is one qubit operation \approx one bit operation? a hundred? millions?)

\Rightarrow It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost $\exp\left(\frac{\log p}{2} + o(1)\right)$. $!^{23/33}$
Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (‘oracle calls’)
2. Combine the results in a certain way. (‘sieving’)

- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical and quantum operations.
Kuperberg’s algorithm consists of two components:

1. **Evaluate** the group action many times. (‘oracle calls’)
2. **Combine** the results in a certain way. (‘sieving’)

- The algorithm admits many different **tradeoffs**.
- Oracle calls are **expensive**.
- The sieving phase has **classical and quantum** operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)
Kuperberg’s algorithm consists of two components:

1. **Evaluate** the group action many times. (‘oracle calls’)
2. **Combine** the results in a certain way. (‘sieving’)

- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical *and* quantum operations.

How to compare costs?
(Is one qubit operation \approx one bit operation? a hundred? millions?)

\Rightarrow It is still rather **unclear** how to choose CSIDH parameters.

...but all known attacks cost $\exp\left(\left(\log p\right)^{1/2+o(1)}\right)!$
Can we avoid Kuperberg’s algorithm?

With great commutative group action comes great subexponential attack.
Can we avoid Kuperberg’s algorithm?

> With great commutative group action comes great subexponential attack.

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

- SIDH uses the full \mathbb{F}_{p^2}-isogeny graph. No group action!
Can we avoid Kuperberg’s algorithm?

With great commutative group action comes great subexponential attack.

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

- SIDH uses the full \mathbb{F}_{p^2}-isogeny graph. No group action!

- Problem: also no more intrinsic sense of direction.

 “It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.
Now: SIDH (Jao, De Feo; 2011)

(...whose name doesn’t allow for nice pictures of beaches...)
“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH for parties A and B is straightforward for those familiar with a Diffie–Hellman key exchange or its elliptic curve variant. [...]”
“While several steps of SIDH involve complex isogeny calculations, the overall flow of SIDH for parties A and B is straightforward for those familiar with a Diffie–Hellman key exchange or its elliptic curve variant. [...]”

Setup.

1. A prime of the form $p = w_A^e_A \cdot w_B^e_B \cdot f \pm 1$.
2. A supersingular elliptic curve E over \mathbb{F}_{p^2}.
3. Fixed elliptic points P_A, Q_A, P_B, Q_B on E.
4. The order of P_A and Q_A is $(w_A)^{e_A}$.
5. The order of P_B and Q_B is $(w_B)^{e_B}$.

Key exchange.

1A. A generates two random integers $m_A, n_A < (w_A)^{e_A}$.
2A. A generates $R_A := m_A \cdot (P_A) + n_A \cdot (Q_A)$.
3A. A uses the point R_A to create an isogeny mapping $\phi_A : E \rightarrow E_A$ and curve E_A isogenous to E.
4A. A applies ϕ_A to P_B and Q_B to form two points on E_A: $\phi_A(P_B)$ and $\phi_A(Q_B)$.
5A. A sends to B $E_A, \phi_A(P_B)$, and $\phi_A(Q_B)$.

1B–4B. Same as A1 through A4, but with A and B subscripts swapped.

5B. B sends to A $E_B, \phi_B(P_A)$, and $\phi_B(Q_A)$.

6A. A has $m_A, n_A, \phi_B(P_A)$, and $\phi_B(Q_A)$ and forms $S_{BA} := m_A(\phi_B(P_A)) + n_A(\phi_B(Q_A))$.
7A. A uses S_{BA} to create an isogeny mapping ψ_{BA}.
8A. A uses ψ_{BA} to create an elliptic curve E_{BA} which is isogenous to E.
9A. A computes $K := j$-invariant (j_{BA}) of the curve E_{BA}.

6B. Similarly, B has $m_B, n_B, \phi_A(P_B)$, and $\phi_A(Q_B)$ and forms $S_{AB} = m_B(\phi_A(P_B)) + n_B(\phi_A(Q_B))$.
7B. B uses S_{AB} to create an isogeny mapping ψ_{AB}.
8B. B uses ψ_{AB} to create an elliptic curve E_{AB} which is isogenous to E_k.
9B. B computes $K := j$-invariant (j_{AB}) of the curve E_{AB}.

The curves E_{AB} and E_{BA} are guaranteed to have the same j-invariant.”
Alice & Bob pick secret subgroups A and B of E.

Alice computes $\varphi_A : E \rightarrow E/A$; Bob computes $\varphi_B : E \rightarrow E/B$.

(A These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains $A' := \varphi_B(A)$; (Similar for Bob.)

They both compute the shared secret $(E/B)/A' \sim = E/\langle A, B \rangle \sim = (E/A)/B'$.
SIDH: High-level view

Alice & Bob pick secret subgroups A and B of E.

Alice computes $\varphi_A : E \rightarrow E/A$; Bob computes $\varphi_B : E \rightarrow E/B$. (These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains $A' := \varphi_B(A)$: (Similar for Bob.)

They both compute the shared secret $(E/B)/A' \sim = E/\langle A, B \rangle \sim = (E/A)/B'$.

Diagram:

\[
\begin{array}{c}
E & \xrightarrow{\varphi_A} & E/A \\
\downarrow{\varphi_B} & & \downarrow{\varphi_B'} \\
E/B & \xrightarrow{\varphi_A'} & E/\langle A, B \rangle \\
\end{array}
\]
SIDH: High-level view

Alice & Bob pick secret subgroups A and B of E.

- Alice computes $\varphi_A : E \rightarrow E/A$; Bob computes $\varphi_B : E \rightarrow E/B$.
 (These isogenies correspond to walking on the isogeny graph.)
SIDH: High-level view

Alice & Bob pick secret subgroups A and B of E.

Alice computes $\varphi_A : E \rightarrow E/A$; Bob computes $\varphi_B : E \rightarrow E/B$.

(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.
SIDH: High-level view

▶ Alice & Bob pick secret subgroups \(A \) and \(B \) of \(E \).
▶ Alice computes \(\varphi_A : E \rightarrow E/A \); Bob computes \(\varphi_B : E \rightarrow E/B \).
 (These isogenies correspond to walking on the isogeny graph.)
▶ Alice and Bob transmit the values \(E/A \) and \(E/B \).
▶ Alice somehow obtains \(A' := \varphi_B(A) \). (Similar for Bob.)
SIDH: High-level view

Alice & Bob pick secret subgroups A and B of E.

Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.
(These isogenies correspond to walking on the isogeny graph.)

Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains $A' := \varphi_B(A)$. (Similar for Bob.)

They both compute the shared secret

\[(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.\]
SIDH’s auxiliary points

Previous slide: “Alice somehow obtains $A' := \varphi_B(A)$.”

Alice knows only A, Bob knows only φ_B. Hm.
SIDH’s auxiliary points

Previous slide: “Alice somehow obtains $A' := \varphi_B(A)$.”

Alice knows only A, Bob knows only φ_B. Hm.

- Alice picks A as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
SIDH’s auxiliary points

Previous slide: “Alice somehow obtains \(A' := \varphi_B(A) \).”

Alice knows only \(A \), Bob knows only \(\varphi_B \). Hm.

Solution: \(\varphi_B \) is a group homomorphism!

- Alice picks \(A \) as \(\langle P + [a]Q \rangle \) for fixed public \(P, Q \in E \).
- Bob includes \(\varphi_B(P) \) and \(\varphi_B(Q) \) in his public key.

\(\implies \) Now Alice can compute \(A' \) as \(\langle \varphi_B(P) + [a]\varphi_B(Q) \rangle \)!

![Diagram showing the relationship between points and homomorphism](image-url)
SIDH in one slide

Public parameters:
- a large prime \(p = 2^n 3^m - 1 \) and a supersingular \(E/\mathbb{F}_p \)
- bases \((P, Q)\) and \((R, S)\) of \(E[2^n]\) and \(E[3^m]\) (recall \(E[k] \cong \mathbb{Z}/k \times \mathbb{Z}/k\))

<table>
<thead>
<tr>
<th>Alice</th>
<th>public</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) \stackrel{\text{random}}{\leftarrow} {0 \ldots 2^n - 1}</td>
<td>(b) \stackrel{\text{random}}{\leftarrow} {0 \ldots 3^m - 1}</td>
<td>(b) \stackrel{\text{random}}{\leftarrow} {0 \ldots 3^m - 1}</td>
</tr>
<tr>
<td>(A := \langle P + [a]Q \rangle)</td>
<td>(B := \langle R + [b]S \rangle)</td>
<td>(B := \langle R + [b]S \rangle)</td>
</tr>
<tr>
<td>compute (\varphi_A : E \rightarrow E/A)</td>
<td>compute (\varphi_B : E \rightarrow E/B)</td>
<td>compute (\varphi_B : E \rightarrow E/B)</td>
</tr>
<tr>
<td>(E/A, \varphi_A(R), \varphi_A(S))</td>
<td>(E/B, \varphi_B(P), \varphi_B(Q))</td>
<td>(E/B, \varphi_B(P), \varphi_B(Q))</td>
</tr>
<tr>
<td>(A' := \langle \varphi_B(P) + [a]\varphi_B(Q) \rangle)</td>
<td>(B' := \langle \varphi_A(R) + [b]\varphi_A(S) \rangle)</td>
<td>(B' := \langle \varphi_A(R) + [b]\varphi_A(S) \rangle)</td>
</tr>
<tr>
<td>(s := j((E/B)/A'))</td>
<td>(s := j((E/A)/B'))</td>
<td>(s := j((E/A)/B'))</td>
</tr>
</tbody>
</table>
Decomposing smooth isogenies

- In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are ‘crypto-sized’.
 Vélu’s formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

BTW: The choice of p makes sure everything stays over \mathbb{F}_{p^2}.

Decomposing smooth isogenies

- In SIDH, \(\#A = 2^n \) and \(\#B = 3^m \) are ‘crypto-sized’.
 Vélu’s formulas take \(\Theta(\#G) \) to compute \(\varphi_G : E \to E/G \).

!! **Evaluate** \(\varphi_G \) as a chain of small-degree isogenies:
For \(G \cong \mathbb{Z}/\ell^k \), set \(\ker \psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G) \).

\[
\begin{array}{cccccc}
E \xrightarrow{\psi_1} E_1 & \xrightarrow{\psi_2} & \cdots & \xrightarrow{\psi_{k-1}} & E_{k-1} & \xrightarrow{\psi_k} E/G \\
\varphi_G
\end{array}
\]

Complexity: \(O(k^2 \cdot \ell) \). Exponentially smaller than \(\ell^k \).

BTW: The choice of \(p \) makes sure everything stays over \(F_{p^2} \).
Decomposing smooth isogenies

- In SIDH, \(\#A = 2^n \) and \(\#B = 3^m \) are ‘crypto-sized’.
 Vélu’s formulas take \(\Theta(\#G) \) to compute \(\varphi_G : E \to E/G \).

!! Evaluate \(\varphi_G \) as a chain of small-degree isogenies:
For \(G \cong \mathbb{Z}/\ell^k \), set \(\ker \psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G) \).

\[
\begin{array}{cccccc}
E & \xrightarrow{\psi_1} & E_1 & \xrightarrow{\psi_2} & \cdots & \xrightarrow{\psi_{k-1}} & E_{k-1} & \xrightarrow{\psi_k} & E/G \\
& \varphi_G & & & & & & \\
\end{array}
\]

\[\leadsto\] Complexity: \(O(k^2 \cdot \ell) \). Exponentially smaller than \(\ell^k \)!
‘Optimal strategy’ improves this to \(O(k \log k \cdot \ell) \).
Decomposing smooth isogenies

- In SIDH, \(\#A = 2^n \) and \(\#B = 3^m \) are ‘crypto-sized’.
 Vélu’s formulas take \(\Theta(\#G) \) to compute \(\varphi_G : E \rightarrow E/G \).

!! Evaluate \(\varphi_G \) as a chain of small-degree isogenies:
 For \(G \cong \mathbb{Z}/\ell^k \), set \(\ker \psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G) \).

\[
E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \cdots \xrightarrow{\psi_{k-1}} E_{k-1} \xrightarrow{\psi_k} E/G
\]

\(\varphi_G \)

\(\sim \) Complexity: \(O(k^2 \cdot \ell) \). Exponentially smaller than \(\ell^k \! \).
 ‘Optimal strategy’ improves this to \(O(k \log k \cdot \ell) \).

- BTW: The choice of \(p \) makes sure everything stays over \(\mathbb{F}_{p^2} \).
Security of SIDH

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$.
Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps.
(Alice & Bob can choose from about \sqrt{p} secret keys each.)
The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps. (Alice & Bob can choose from about \sqrt{p} secret keys each.)

Classical attacks:

- Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{O}(p^{1/4})$ time & space.
- Collision finding: $\tilde{O}(p^{3/8}/\sqrt{\text{memory/cores}})$.
Security of SIDH

The SIDH graph has size \(\lfloor p/12 \rfloor + \varepsilon \).
Each secret isogeny \(\varphi_A, \varphi_B \) is a walk of about \(\log p/2 \) steps.
(Alice & Bob can choose from about \(\sqrt{p} \) secret keys each.)

Classical attacks:
- Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: \(\tilde{O}(p^{1/4}) \) time & space.
- Collision finding: \(\tilde{O}(p^{3/8}/\sqrt{\text{memory/cores}}) \).

Quantum attacks:
- Claw finding: claimed \(\tilde{O}(p^{1/6}) \). Newer paper says \(\tilde{O}(p^{1/4}) \):
 “An adversary with enough quantum memory to run Tani’s algorithm
 with the query-optimal parameters could break SIKE faster by using
 the classical control hardware to run van Oorschot–Wiener.”
Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

\Rightarrow Validating that Bob is honest is \approx as hard as breaking SIDH. Only usable with ephemeral keys or as a KEM 'SIKE'.
Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

- Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

Validating that Bob is honest is \approx as hard as breaking SIDH. Only usable with ephemeral keys or as a KEM 'SIKE'.
Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

- Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

 If $a = 2u$: $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$.

 If $a = 2u+1$: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

Validating that Bob is honest is \approx as hard as breaking SIDH. Only usable with ephemeral keys or as a KEM 'SIKE'.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

- Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

 If $a = 2u$: $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$.

 If $a = 2u+1$: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'.$

 \implies Bob learns the parity of a.

Validating that Bob is honest is \approx as hard as breaking SIDH. Only usable with ephemeral keys or as a KEM 'SIKE'.

Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

- Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

 If $a = 2u$: $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$.

 If $a = 2u+1$: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

\implies Bob learns the parity of a.

 Similarly, he can completely recover a in $O(n)$ queries.
Thou shalt not reuse SIDH keys

- Recall: Bob sends $P' := \varphi_B(P)$ and $Q' := \varphi_B(Q)$ to Alice. She computes $A' = \langle P' + [a]Q' \rangle$ and, from that, obtains s.

- Bob cheats and sends $Q'' := Q' + [2^{n-1}]P'$ instead of Q'. Alice computes $A'' = \langle P' + [a]Q'' \rangle$.

If $a = 2u$: $[a]Q'' = [a]Q' + [u][2^n]P' = [a]Q'$.

If $a = 2u+1$: $[a]Q'' = [a]Q' + [u][2^n]P' + [2^{n-1}]P' = [a]Q' + [2^{n-1}]P'$.

\implies Bob learns the parity of a.

Similarly, he can completely recover a in $O(n)$ queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.

\implies only usable with ephemeral keys or as a KEM ‘SIKE’.
Questions?