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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.
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Crypto on graphs?
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Public parameters:
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» an element ¢ € G of prime order g
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a < {0...g—1} b & {0...9-1}
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
f>_<gl7
5= ()" 5= (g")"

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

Bob
Sett «g.
Sett«t-g.
Sett<t-g.

L .

Sett<«t-g.

b—2. Sett<«t-g.
b—1. Sett <« t-g.

b. PublishB < t-g.

4/44



Diffie-Hellman: Bob vs. Eve

Bob
Sett «g.
Sett«t-g.
Sett<t-g.

L .

Sett<«t-g.

Is this a good idea?

b—2. Sett<«t-g.
b—1. Sett<+t-g.

b. PublishB < t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett « g. 1. Sett+g. Ift=Breturnl.

2. Sett«t-g. 2. Sett<«t-g. Ift =Breturn2.

3. Sett«t-g. 3. Sett <« t-g. Ift = Breturn 3.

4. Sett<t-g. 4. Sett <+ t-g. Ift = Breturn3.
b—2. Sett+«+t-g. b—2. Sett < t-g. Ift = B return b—2.
b—1. Sett<t-g. b—1. Sett < t-g. Ift = B return b—1.

b. PublishB < t-g. b. Sett < t-g. Ift = B return b.

b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«t-g. Ift = Breturnb+ 2.
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Diffie-Hellman: Bob vs. Eve

b=-2.
b-1.
b. PublishB < t-g.

L e

Bob
Sett < g.

Sett<«+t-g.
Sett+«t-g.
Sett«t-g.

Sett<«+t-g.
Sett«+t-g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett<«t-g. Ift =Breturn2.

3. Sett <« t-g. Ift = Breturn 3.

4. Sett <+ t-g. Ift = Breturn3.
b—2. Sett < t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = B return b.
b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«t-g. Ift = Breturnb+ 2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Bob computes his public key ¢'3 from g.
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Bob computes his public key ¢'3 from g.
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Square-and-multiply
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Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'3 from g.
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Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'3 from g.
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Square-and-multiply as a graph
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Crypto on graphs?

We’ve been doing it all the time!
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The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.
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The fast mixing requirement

Fast mixing: paths of length log(# nodes) to everywhere.

With square-and-multiply, computing o — ¢“ takes ©(log ).

For well-chosen groups, computing ¢ — « takes O(/#G).

~» Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes « from g% in any group

in polynomial time.
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In some cases,

isogeny graphs

can replace DLP-based constructions post-quantumly.
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In some cases,

isogeny graphs

can replace ADLP-based constructions post-quantumly.

somne
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The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?
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The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both. =

8/44



Plan for this talk

» High-level overview for intuition. v
» Elliptic curves & isogenies.

» The CGL hash function.

» The CSIDH non-interactive key exchange.

v

The SQIsign signature scheme.
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Stand back!

.%

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: ¥ =x+ax+b

with a, b € F such that 443 + 27 # 0.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: y*=x+ax+b

with a,b € F such that 4a° + 272 # 0.

A point on E is a solution (x,y), or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y). Z;o 2,
¢

» The sum of (x1,y1) and (x2,12) is 8‘9@@;61’;7?;@%

(2795l

()\2 — X1 — X7, )\(le —+ X7 — )\2) — ]/1) s

2
3x7+a

o otherwise.

_ Y2= s _
where \ = Fom— if x1 #xpand A =

11/44



Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F})

v .

The same curve y?> = x> — x + 1 over the finite field Fzg.
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Elliptic curves (picture over [F})

v .

The addition law of y? = x> — x + 1 over the finite field Fyo.
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Isogenies
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Isogenies

...are just fancily-named
o
between elliptic curves.
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Isogenies
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» a group homomorphism.
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A rational function is f(x,y)/g(x,y) where f, g are polynomials.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #1: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {¥¥=2"-3x+3}

over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)

defines a degree-1 isogeny of the elliptic curves
(=2 +ax+b} — {y¥* =x>+ax—b}.

It is an isomorphism; its kernel is {oco}.
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Isogenies (examples)

» given by rational functions.

» a group homomorphism.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #3: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Elm] = Z/m x Z/m.

15/ 44



Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #4: For E/IF;, the map

T (x,y) = (x7,y7)

is a degree-q isogeny, the Frobenius endomorphism.
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» a group homomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #4: For E/IF;, the map

™ (%y) = (xT,y)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).
Important fact: An isogeny ¢ is F;-rational iff 7 0 o = p o 7.

15/ 44
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable* isogeny ¢¢: E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

!(up to isomorphism of E’)
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Isogeny graphs

Consider a field k and let S # char(k) be a set of primes.
The S-isogeny graph over k consists of
» vertices given by elliptic curves over k;

» edges given by /(-isogenies, ¢ € S, over k;

up to k-isomorphism.

Example components containing E: 12 = x° + x:

"9, %

k =TFuo, S ={3,5,7} k=Fgp2, S={2,3,57}

17/ 44
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Elliptic curves in general can be very annoying
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Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/| have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.
» In that case, E(F,) = Z/(p+1) and
E(IF 2) 2 Z/(p+1) X Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

18 /44



Plan for this talk

» High-level overview for intuition. v
» Elliptic curves & isogenies. v

» The CGL hash function.

» The CSIDH non-interactive key exchange.

v

The SQIsign signature scheme.
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The Charles—Goren—Lauter hash function

T hy o7
o oe—0—>«
./]/’\U\)':»ﬁ4$ 1/ <
\O o— 1 /.\() | _
L /1/ \o\ ezl
L2 i
\0 ~a
\. 1—>e==27 _ -
0\ - 4

» Start at some curve E.
» For each input digit b: Map the pair (E, D) to a finite
subgroup H < E, compute pp: E — E/,and set E < E'.

» Finally return E.
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Plan for this talk

High-level overview for intuition. \/

v

Elliptic curves & isogenies. v
The CGL hash function. v

v

v

v

The CSIDH non-interactive key exchange.

v

The SQIsign signature scheme.
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Isogeny-based key exchange: High-level view

©a E
E A
s
‘s
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‘s
///
e 7
i *B
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¥B s
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‘s
‘s
L
g
L Eap
e
‘s
K
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,

23 /44



Isogeny-based key exchange: High-level view

E A E
A
T
///
///
Lo
g
(2 o
o B
et
¥B s
‘s
‘s
3
i
g
g
/::/ EAB
.
/‘;/ /
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds g : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?

E ©A E,

Eap

N\
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How to find “parallel” isogenies?

E o EL

s
©B
Eap
=z
Ep - Ega
YA
CSIDH'’s solution:

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)

24 /44



“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).
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“Special” isogenies

Let E/IF, be supersingular and recall E(F,) = Z/(p+1).

= For every /| (p+1) exists a unique order-¢ subgroup H,.
~+ For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.

25/ 44



/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

/ = E@ﬁ
Ezr—l f
E / Ees
. /
\ ok

E——>FE — Ep — Ep
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- R Ezﬁ
Ezr—l f
E / EES
. /
P

!! The “tail” E — E;s can’t exist: Backwards arrow is unique.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- R Ezﬁ
Ezr—l f
E / EES
. /
P

!! The “tail” E — E;s can’t exist: Backwards arrow is unique.

— The “special” isogenies ¢, form isogeny cycles!
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

%Z /

I

» Exercise: ker(¢} o ¢),) = ker(y,, o ¢p) = (ker oy, ker ¢, ).
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

992/;5%

. / ]m
/ E
P /

I

» Exercise: ker(¢} o ¢),) = ker(y,, o ¢p) = (ker oy, ker ¢, ).
!! The order cannot matter — cycles must be compatible.

27 /44



CSIDH in one slide

28 /44



CSIDH in one slide

» Choose some small odd primes 41, ..., £;.
» Makesurep =4 -/(;---{;, —1is prime.

28 /44



CSIDH in one slide

» Choose some small odd primes 41, ..., £;.
» Makesurep =4 -/(;---{;, —1is prime.
» Let X = {y? =x3+Ax>+x supersingular with A € F, }.

28 /44



CSIDH in one slide

» Choose some small odd primes 41, ..., £;.
» Makesurep =4 -/(;---{;, —1is prime.
» Let X = {y? =x3+Ax>+x supersingular with A € F, }.

» Look at the “special” /;-isogenies within X.
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CSIDH in one slide

» Choose some small odd primes 41, ..., £;.
» Makesurep =4 -/(;---{;, —1is prime.
> Let X = {y? = x>+Ax?+x supersingular with A € FF,}.
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.
Make surep =4 -/;---{, — 1is prime.

vV v.vvY

Let X = {y* = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.
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» Walking

“left” and “right” on any /;-subgraph is efficient.
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And... action! W

Cycles are compatible: [right then left] = [left then right]
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Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘
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The class group

Recall: Group action of (Z", +) on set of curves X.

I! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z".

We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

!! This group characterizes when two paths lead to the same curve. ‘
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.
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Why no Shor?

Shor’s quantum algorithm computes « from ¢g“ in any group
in polynomial time.

Shor computes « from h = g* by finding the kernel of the map

f: 7> =G, (x,y) —» g .

For group actions, we simply cannot compose a * s and b x s!
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Plan for this talk

» High-level overview for intuition. v

» Elliptic curves & isogenies. v

» The CGL hash function. v

» The CSIDH non-interactive key exchange. v
» The SQIsign signature scheme.
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m —1).

(Recall the Frobenius endomorphism 7: (x,y) — (¥, y).)

! Over I 2, we can have more endomorphisms.
Example: y* = x> + xhas¢: (x,y) = (=x,v/—1-y).

» Extremely non-obvious fact in this setting:

Every isogeny ¢: E — E’ comes from a subset I, C End(E).

2 We understand the structure of End(E).

= We understand how I, I, relate for isogenies ¢, : E — E'.
(NB: Same E’.)
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The Deuring correspondence

...1s the formal version of what I just said.

a priori
...is a strong connection between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B} .

Isogenies become “connecting ideals” in quaternion land.

< One direction is easy, the other seems hard! ~+ Cryptography!
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The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 = —1, j?> = —p, ji= —ij.

Thering O =2 ® Zi ® 23 @ 231
corresponds to the curve Eg: y? = x° + x.

The ring O) = Z © Z4947i @ 72474 ¢ 7 27323100014

corresponds to the curve Ey: 32 = x° + 1.

The ideal I = Z4947 @ 7.4947i @ 7 28+ o 7, PV 19814]

defines an isogeny Eyg — Eq of degree 4947 = 3 -17 - 97.
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Signing with isogenies

. L — > Ey
E .
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= 3
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Signing with isogenies

secret

Eg -mmmmmmmm S > Ea
£ .
S 55
= 3
S g
3 <
E E

1 challenge 2

» Fiat-Shamir: signature scheme from identification scheme.
» Easy response: E4 — Eg — E1 — E». Obviously broken.
» SOQIsign’s solution: Construct new path E4 — Ej (using secret).

38 /44



SQIsign

Main idea:
» Construct the “signature square” in quaternion land.
» Project the whole situation down to the curve world.

» The verifier can check on curves that everything is correct.
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SQIsign

Main idea:
» Construct the “signature square” in quaternion land.
» Project the whole situation down to the curve world.

» The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
» From End(E), End(E’), can find smooth isogeny E — E'.
» From End(E), End(E’), can randomize within Hom(E, E').

~+ SQIsign takes the “broken” signature E4 — Ey — E; — Ep
and rewrites it into a random isogeny E4 — Ej.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — YanBoTi

39 /44



SQIsign: Numbers

sizes
parameter set public keys signatures
NIST-1 64 bytes 177 bytes
NIST-HlI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU.

Optimizations are certainly possible and work in progress.

parameter set keygen signing
NIST-1 3728 megacycles 5779 megacycles 108 megacycles
NIST-HI 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles

Source: https://sqisign.org
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SQIsign: Comparison

+ Signature size (bytes)
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Source: https://pgshield.github.io/nist-sigs-zoo
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Plan for this talk

v

High-level overview for intuition. \/

v

Elliptic curves & isogenies. v
The CGL hash function. v
The CSIDH non-interactive key exchange. v

v

v

v

The SQIsign signature scheme. v
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Summary

CSIDH...
» is a drop-in post-quantum replacement for (EC)DH.

» is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

» has a clean mathematical structure: a true group action.

SQIsign...
» has remarkably tiny keys and signatures, post-quantumly.
» rests on the assumed hardness of finding endomorphisms.

Both...
» have tiny sizes compared to other post-quantum schemes.
» are quite slow compared to other post-quantum schemes.

» are really cool!
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Questions?
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