Isogenies: The basics, some applications, and nothing much in between

Lorenz Panny

Technische Universität München

5 December 2023

► <u>Isogenies</u> are a source of exponentially-sized graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- ► No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)

Big picture \wp

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- ► No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- ► Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

Big picture \wp

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- ► No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- ► Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

Finding graphs with *almost* all of these properties is easy — but getting all at once seems rare.

Crypto on graphs?

Diffie-Hellman key exchange 1976

Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- ▶ an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- ▶ an element $g \in G$ of prime order g

Diffie-Hellman key exchange 1976

Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- ▶ an element $g \in G$ of prime order g

Fundamental reason this works: \cdot^a and \cdot^b are commutative!

<u>Bob</u>

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.
- ...
- b−2. Set $t \leftarrow t \cdot g$.
- *b*−1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

...

- *b*−2. Set $t \leftarrow t \cdot g$.
- *b*−1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Is this a good idea?

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

...

- b−2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Attacker Eve

- 1. Set $t \leftarrow g$. If t = B return 1.
- 2. Set $t \leftarrow t \cdot g$. If t = B return 2.
- 3. Set $t \leftarrow t \cdot g$. If t = B return 3.
- 4. Set $t \leftarrow t \cdot g$. If t = B return 3.

•••

- b−2. Set $t \leftarrow t \cdot g$. If t = B return b−2.
- b−1. Set $t \leftarrow t \cdot g$. If t = B return b−1.
 - *b*. Set $t \leftarrow t \cdot g$. If t = B return *b*.
- b+1. Set $t \leftarrow t \cdot g$. If t = B return b+1.
- b+2. Set $t \leftarrow t \cdot g$. If t = B return b+2.

•••

<u>Bob</u>

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

...

- b-2. Set $t \leftarrow t \cdot g$.
- b−1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Attacker Eve

- 1. Set $t \leftarrow g$. If t = B return 1.
- 2. Set $t \leftarrow t \cdot g$. If t = B return 2.
- 3. Set $t \leftarrow t \cdot g$. If t = B return 3.
- 4. Set $t \leftarrow t \cdot g$. If t = B return 3.

•••

- b−2. Set $t \leftarrow t \cdot g$. If t = B return b−2.
- b−1. Set $t \leftarrow t \cdot g$. If t = B return b−1.
 - *b*. Set $t \leftarrow t \cdot g$. If t = B return *b*.
- b+1. Set $t \leftarrow t \cdot g$. If t = B return b+1.
- b+2. Set $t \leftarrow t \cdot g$. If t = B return b+2.

...

Effort for both: O(#G). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)

Bob computes his public key g^{13} from g.

multiply

Bob computes his public key g^{13} from g.

Square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key g^{13} from g.

Crypto on graphs?

We've been doing it all the time!

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

→ Exponential separation!

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

→ Exponential separation!

...and they lived happily ever after?

Fast mixing: paths of length $\log(\# \text{ nodes})$ to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\#G})$.

→ Exponential separation!

...and they lived happily ever after?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

In some cases,

isogeny graphs

can replace DLP-based constructions post-quantumly.

In some cases,

isogeny graphs

can replace DLP-based constructions post-quantumly. some

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both. :

Plan for this talk

► High-level overview for intuition.

- ► Elliptic curves & isogenies.
- ► The CGL hash function.
- ► The CSIDH non-interactive key exchange.
- ► The SQIsign signature scheme.

Stand back!

We're going to do math.

An elliptic curve over a field F of characteristic $\notin \{2,3\}$ is* an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

An elliptic curve over a field F of characteristic $\notin \{2,3\}$ is* an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), or the "fake" point ∞ .

An elliptic curve over a field F of characteristic $\notin \{2,3\}$ is* an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

An elliptic curve over a field F of characteristic $\notin \{2,3\}$ is* an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

- ▶ The neutral element is ∞ .
- ► The inverse of (x, y) is (x, -y).
- ► The sum of (x_1, y_1) and (x_2, y_2) is

$$(\lambda^2 - x_1 - x_2, \ \lambda(2x_1 + x_2 - \lambda^2) - y_1)$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

Elliptic curves (picture over \mathbb{R})

The elliptic curve $y^2 = x^3 - x + 1$ over \mathbb{R} .

Elliptic curves (picture over \mathbb{R})

Addition law:

$$P + Q + R = \infty \iff \{P, Q, R\}$$
 on a straight line.

Elliptic curves (picture over \mathbb{R})

The *point at infinity* ∞ lies on every vertical line.

Elliptic curves (picture over \mathbb{F}_p)

The same curve $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

Elliptic curves (picture over \mathbb{F}_p)

The <u>addition law</u> of $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

...are just fancily-named

nice maps

between elliptic curves.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

► given by rational functions.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ► a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Reminder:

A rational function is f(x,y)/g(x,y) where f,g are polynomials.

A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ► a group homomorphism.

Reminder:

A rational function is f(x,y)/g(x,y) where f,g are polynomials.

A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

The kernel of an isogeny $\varphi \colon E \to E'$ is $\{P \in E : \varphi(P) = \infty\}$. The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ► a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #1:
$$(x,y) \mapsto \left(\frac{x^3-4x^2+30x-12}{(x-2)^2}, \frac{x^3-6x^2-14x+35}{(x-2)^3} \cdot y\right)$$
 defines a degree-3 isogeny of the elliptic curves

$${y^2 = x^3 + x} \longrightarrow {y^2 = x^3 - 3x + 3}$$

over \mathbb{F}_{71} . Its kernel is $\{(2,9),(2,-9),\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Example #2: For any a and b, the map $\iota : (x,y) \mapsto (-x,\sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an *isomorphism*; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ▶ a group homomorphism.

Example #3: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \rightarrow E$$

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #3: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #4: For E/\mathbb{F}_q , the map

$$\pi \colon (x,y) \mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #4: For E/\mathbb{F}_q , the map

$$\pi \colon (x,y) \mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

The kernel of π –1 is precisely the set of rational points $E(\mathbb{F}_q)$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #4: For E/\mathbb{F}_q , the map

$$\pi \colon (x,y) \mapsto (x^q, y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

The kernel of π –1 is precisely the set of rational points $E(\mathbb{F}_q)$. Important <u>fact</u>: An isogeny φ is \mathbb{F}_q -rational iff $\pi \circ \varphi = \varphi \circ \pi$.

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

¹(up to isomorphism of *E*′)

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

→ To choose an isogeny, simply choose a finite subgroup.

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

- → To choose an isogeny, simply choose a finite subgroup.
 - ► We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

- → To choose an isogeny, simply choose a finite subgroup.
 - ► We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)
- → Decompose large-degree isogenies into prime steps. That is: Walk in an isogeny graph.

 $^{^{1}}$ (up to isomorphism of E')

Consider a field k and let $S \not\ni \operatorname{char}(k)$ be a set of primes.

The *S*-isogeny graph over *k* consists of

Consider a field k and let $S \not\ni \operatorname{char}(k)$ be a set of primes.

The S-isogeny graph over k consists of

► vertices given by elliptic curves over *k*;

Consider a field k and let $S \not\ni \operatorname{char}(k)$ be a set of primes.

The S-isogeny graph over k consists of

- ▶ vertices given by elliptic curves over *k*;
- ▶ edges given by ℓ -isogenies, $\ell \in S$, over k;

Consider a field k and let $S \not\ni \operatorname{char}(k)$ be a set of primes.

The S-isogeny graph over k consists of

- ▶ vertices given by elliptic curves over *k*;
- ▶ edges given by ℓ -isogenies, $\ell \in S$, over k;

up to k-isomorphism.

Isogeny graphs

Consider a field k and let $S \not\ni \operatorname{char}(k)$ be a set of primes.

The *S*-isogeny graph over *k* consists of

- ► vertices given by elliptic curves over *k*;
- ▶ edges given by ℓ -isogenies, $\ell \in S$, over k; up to k-isomorphism.

Example components containing $E: y^2 = x^3 + x$:

$$k = \mathbb{F}_{431^2}, \ S = \{2, 3, 5, 7\}.$$

Elliptic curves in general can be very annoying

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.
- \rightarrow Easy method to control the group structure by choosing p!
- → Cryptography works well using supersingular curves.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.
- \rightarrow Easy method to control the group structure by choosing p!
- → Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)

Plan for this talk

- ► High-level overview for intuition.

- ► Elliptic curves & isogenies.
- ► The CGL hash function.
- ► The CSIDH non-interactive key exchange.
- ► The SQIsign signature scheme.

The Charles-Goren-Lauter hash function

- ▶ Start at some curve *E*.
- ► For each input digit b: Map the pair (E, b) to a finite subgroup $H \le E$, compute $\varphi_H \colon E \to E'$, and set $E \leftarrow E'$.
- ► Finally return *E*.

Plan for this talk

- ► High-level overview for intuition.

- ► Elliptic curves & isogenies.
- \checkmark
- ► The CGL hash function.
- ► The CSIDH non-interactive key exchange.
- ► The SQIsign signature scheme.

Е

▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)

- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .

- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .
- ▶ Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$,

- ▶ Alice & Bob pick secret φ_A : $E \to E_A$ and φ_B : $E \to E_B$. (These isogenies correspond to walking on the isogeny graph.)
- ▶ Alice and Bob transmit the end curves E_A and E_B .
- ▶ Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$, such that $E_{AB} \cong E_{BA}$.

How to find "parallel" isogenies?

How to find "parallel" isogenies?

CSIDH's solution:

Use special isogenies φ_A which can be transported to the curve E_B totally independently of the secret isogeny φ_B .

(Similarly with reversed roles, of course.)

Let E/\mathbb{F}_p be supersingular and recall $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

Let E/\mathbb{F}_p be supersingular and recall $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

 \Rightarrow For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} .

Let E/\mathbb{F}_p be supersingular and recall $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

- \Rightarrow For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} .
- \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$.

Let E/\mathbb{F}_p be supersingular and recall $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

- \Rightarrow For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} .
- \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$.

We consider prime ℓ and refer to φ_{ℓ} as a "special" isogeny.

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

!! The "tail" $E \to E_{\ell^3}$ can't exist: Backwards arrow is unique.

What happens when we iterate such a "special" isogeny?

!! The "tail" $E \to E_{\ell^3}$ can't exist: Backwards arrow is unique.

 \implies The "special" isogenies φ_{ℓ} form isogeny cycles!

What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

► Exercise: $\ker(\varphi'_{\ell} \circ \varphi'_{m}) = \ker(\varphi_{m} \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_{m} \rangle$.

What happens when we compose those "special" isogenies?

- ► Exercise: $\ker(\varphi'_{\ell} \circ \varphi'_{m}) = \ker(\varphi_{m} \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_{m} \rangle$.
- !! The order cannot matter \implies cycles must be compatible.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the "special" ℓ_i -isogenies within X.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the "special" ℓ_i -isogenies within X.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}$.
- ▶ Look at the "special" ℓ_i -isogenies within X.

▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.

CSIDH key exchange

And... action!

Cycles are compatible: [right then left] = [left then right]

And... action!

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i .

Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$.

And... action!

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i .

Example: [+,+,-,-,-,+,-,-] just becomes $(+1, 0,-3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**.

There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$.

We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n/Λ is the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

<u>Recall</u>: Group action of $(\mathbb{Z}^n, +)$ on set of curves X.

!! The set X is **finite** \Longrightarrow The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$.

We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n/Λ is the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

!! This group characterizes when two paths lead to the same curve.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f\colon \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y.$$

For group <u>actions</u>, we simply cannot compose a * s and b * s!

Plan for this talk

- ► High-level overview for intuition.
- •

- ► Elliptic curves & isogenies.
- ► The CGL hash function.

► The CSIDH non-interactive key exchange.

► The SQIsign signature scheme.

Now: Supersingular isogeny graphs over \mathbb{F}_{p^2} .

▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.

- ▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- ▶ In other words: $\ker \varphi_{\ell} = \ker[\ell] \cap \ker(\pi 1)$. (Recall the Frobenius endomorphism $\pi : (x, y) \mapsto (x^p, y^p)$.)

- ▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- ▶ In other words: $\ker \varphi_{\ell} = \ker[\ell] \cap \ker(\pi 1)$. (Recall the Frobenius endomorphism $\pi : (x, y) \mapsto (x^p, y^p)$.)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms.

Example:
$$y^2 = x^3 + x$$
 has $\iota : (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.

- ▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- ▶ In other words: $\ker \varphi_{\ell} = \ker[\ell] \cap \ker(\pi 1)$. (Recall the Frobenius endomorphism $\pi : (x, y) \mapsto (x^p, y^p)$.)
- !! Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota : (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- ► Extremely non-obvious fact in this setting:

Every isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.

- ▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- ▶ In other words: $\ker \varphi_{\ell} = \ker[\ell] \cap \ker(\pi 1)$. (Recall the Frobenius endomorphism $\pi : (x, y) \mapsto (x^p, y^p)$.)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota : (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- ► Extremely non-obvious fact in this setting:

Every isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.

Arr We understand the structure of $\operatorname{End}(E)$.

- ▶ Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- ▶ In other words: $\ker \varphi_{\ell} = \ker[\ell] \cap \ker(\pi 1)$. (Recall the Frobenius endomorphism $\pi : (x, y) \mapsto (x^p, y^p)$.)
- !! Over \mathbb{F}_{p^2} , we can have more endomorphisms.

Example:
$$y^2 = x^3 + x$$
 has $\iota : (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.

► Extremely non-obvious fact in this setting:

Every isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.

- \therefore We understand the structure of End(E).
- : We understand how I_{φ}, I_{ψ} relate for isogenies $\varphi, \psi : E \to E'$.

 (NB: Same E'.)

...is the formal version of what I just said.

...is the formal version of what I just said.

a priori

...is a strong connection between two very different worlds:

...is the formal version of what I just said.

a priori

...is a strong connection between two very different worlds:

► Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

...is the formal version of what I just said.

a priori

...is a strong connection between two very different worlds:

- ► Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

...is the formal version of what I just said.

a priori

...is a strong connection between two very different worlds:

- ► Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

...is the formal version of what I just said.

a priori

...is a strong connection between two very different worlds:

- ► Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

The Deuring correspondence (examples)

Let p = 7799999 and let **i**, **j** satisfy $i^2 = -1$, $j^2 = -p$, ji = -ij.

The ring $\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{1+\mathbf{i}\mathbf{j}}{2}$ corresponds to the curve $E_0 \colon y^2 = x^3 + x$.

The ring $\mathcal{O}_1 = \mathbb{Z} \oplus \mathbb{Z}$ 4947 $\mathbf{i} \oplus \mathbb{Z} \frac{4947\mathbf{i} + \mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947 + 32631010\mathbf{i} + \mathbf{i}\mathbf{j}}{9894}$ corresponds to the curve $E_1 \colon y^2 = x^3 + 1$.

The ideal $I = \mathbb{Z} 4947 \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{598+4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+598\mathbf{i}+\mathbf{i}\mathbf{j}}{2}$ defines an isogeny $E_0 \to E_1$ of degree $4947 = 3 \cdot 17 \cdot 97$.

 $E_0 \xrightarrow{secret} E_A$

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

- ► <u>Fiat–Shamir</u>: signature scheme from identification scheme.
- ► Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.

- ► <u>Fiat–Shamir</u>: signature scheme from identification scheme.
- ► Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- ▶ <u>SQIsign's solution</u>: Construct new path $E_A \rightarrow E_2$ (using secret).

Main idea:

- ► Construct the "signature square" in quaternion land.
- ▶ Project the whole situation down to the curve world.
- ► The verifier can check on curves that everything is correct.

Main idea:

- ► Construct the "signature square" in quaternion land.
- ▶ Project the whole situation down to the curve world.
- ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- ▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.
- ► From End(E), End(E'), can randomize within Hom(E, E').

Main idea:

- ► Construct the "signature square" in quaternion land.
- ▶ Project the whole situation down to the curve world.
- ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- ▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.
- ► From End(E), End(E'), can randomize within Hom(E, E').
- \sim SQIsign takes the "broken" signature $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ and rewrites it into a random isogeny $E_A \rightarrow E_2$.

Main idea:

- ► Construct the "signature square" in quaternion land.
- ▶ Project the whole situation down to the curve world.
- ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- ▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.
- ► From End(E), End(E'), can randomize within Hom(E, E').
- $ightharpoonup SQIsign takes the "broken" signature <math>E_A
 ightharpoonup E_0
 ightharpoonup E_1
 ightharpoonup E_2$ and rewrites it into a random isogeny $E_A
 ightharpoonup E_2$.

"If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign." — Yan Bo Ti

SQIsign: Numbers

sizes

parameter set	public keys	signatures
NIST-I	64 bytes	177 bytes
NIST-III	96 bytes	263 bytes
NIST- V	128 bytes	335 bytes

performance

Cycle counts for a *generic C implementation* running on an Intel *Ice Lake* CPU. Optimizations are certainly possible and work in progress.

parameter set	keygen	signing	verifying
NIST-I	3728 megacycles	5779 megacycles	108 megacycles
NIST-III	23734 megacycles	43760 megacycles	654 megacycles
NIST- V	91049 megacycles	158544 megacycles	2177 megacycles

Source: https://sqisign.org

SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo

Plan for this talk

- ► High-level overview for intuition.

- ► Elliptic curves & isogenies.
- ► The CGL hash function.

► The CSIDH non-interactive key exchange.

► The SQIsign signature scheme.

CSIDH...

▶ is a drop-in post-quantum replacement for (EC)DH.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- ► is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- ▶ is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ▶ has a clean mathematical structure: a true group action.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- ► is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ▶ has a clean mathematical structure: a true group action.

SQIsign...

► has remarkably tiny keys and signatures, post-quantumly.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SQIsign...

- ► has remarkably tiny keys and signatures, post-quantumly.
- ► rests on the assumed hardness of finding endomorphisms.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SQIsign...

- ▶ has remarkably tiny keys and signatures, post-quantumly.
- ► rests on the assumed hardness of finding endomorphisms.

Both...

► have tiny sizes compared to other post-quantum schemes.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SQIsign...

- ▶ has remarkably tiny keys and signatures, post-quantumly.
- ► rests on the assumed hardness of finding endomorphisms.

Both...

- ► have tiny sizes compared to other post-quantum schemes.
- ► are quite slow compared to other post-quantum schemes.

CSIDH...

- ▶ is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- ► has a clean mathematical structure: a true group action.

SQIsign...

- ▶ has remarkably tiny keys and signatures, post-quantumly.
- ► rests on the assumed hardness of finding endomorphisms.

Both...

- ► have tiny sizes compared to other post-quantum schemes.
- ► are quite slow compared to other post-quantum schemes.
- ▶ are really cool!

Questions?