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Big picture

▶ Isogenies are a source of exponentially-sized graphs.

Finding graphs with almost all of these properties is easy —
but getting all at once seems rare.
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Crypto on graphs?
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Diffie–Hellman key exchange 1976

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!
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Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Square-and-multiply as graphs
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Square-and-multiply as a graph
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Crypto on graphs?

We’ve been doing it all the time!
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The fast mixing requirement

Fast mixing: paths of length log(#nodes) to everywhere.

With square-and-multiply, computing α 7→ gα takes Θ(logα).

For well-chosen groups, computing gα 7→ α takes Θ(
√
#G).

⇝ Exponential separation!
...and they lived happily ever after?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.
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In some cases,

isogeny graphs
can replace

≺

some

DLP-based constructions post-quantumly.
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The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

Both. :)
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Plan for this talk

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies.

▶ The CGL hash function.

▶ The CSIDH non-interactive key exchange.

▶ The SQIsign signature scheme.
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Stand back!

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.
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Elliptic curves (picture over R)

The elliptic curve y2 = x3 − x + 1 over R.
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Elliptic curves (picture over R)

•

•

•

Addition law:

P + Q + R =∞ ⇐⇒ {P,Q,R} on a straight line.
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Elliptic curves (picture over R)

•

•

•∞

The point at infinity∞ lies on every vertical line.
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Elliptic curves (picture over Fp)

x

y ∞

The same curve y2 = x3 − x + 1 over the finite field F79.
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Elliptic curves (picture over Fp)

x

y ∞

The addition law of y2 = x3 − x + 1 over the finite field F79.
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Isogenies

...are just fancily-named

nice maps
between elliptic curves.
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Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:

▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.
A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #1: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #2: For any a and b, the map ι : (x, y) 7→ (−x,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax− b} .

It is an isomorphism; its kernel is {∞}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E
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An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #4: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).
Important fact: An isogeny φ is Fq-rational iff π ◦ φ = φ ◦ π.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then φG and E/G are also defined over k.

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is: Walk in an isogeny graph.

1(up to isomorphism of E′)
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Isogeny graphs
Consider a field k and let S ̸∋ char(k) be a set of primes.

The S-isogeny graph over k consists of

▶ vertices given by elliptic curves over k;
▶ edges given by ℓ-isogenies, ℓ ∈ S, over k;

up to k-isomorphism.

Example components containing E : y2 = x3 + x:

k = F419, S = {3, 5, 7} k = F4312 , S = {2, 3, 5, 7}.
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Predictable groups

Elliptic curves in general can be very annoying

computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.
▶ In that case, E(Fp) ∼= Z/(p+1) and

E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular until lunch time.)
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Plan for this talk

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function.

▶ The CSIDH non-interactive key exchange.

▶ The SQIsign signature scheme.
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The Charles–Goren–Lauter hash function

h

0
1

1

11

0

0
1

0
1

0
0

0

1

▶ Start at some curve E.
▶ For each input digit b: Map the pair (E, b) to a finite

subgroup H ≤ E, compute φH : E→ E′, and set E← E′.
▶ Finally return E.
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CSIDH ["si:­saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
22 / 44



Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.
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How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.
(Similarly with reversed roles, of course.)
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“Special” isogenies

Let E/Fp be supersingular and recall E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.
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Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

!! The “tail” E→ Eℓ3 can’t exist: Backwards arrow is unique.

=⇒ The “special” isogenies φℓ form isogeny cycles!
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Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Exercise: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.
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CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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And... action!

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!
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The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn.

We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.
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Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!
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Plan for this talk

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
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Now:

Supersingular isogeny graphs over Fp2 .
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More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.

▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).
(Recall the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from a subset Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
(NB: Same E′.)
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The Deuring correspondence

...is the formal version of what I just said.

...is a strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!
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The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 =−1, j2 =−p, ji=−ij.

The ring O0 = Z ⊕ Z i ⊕ Z i+j
2 ⊕ Z 1+ij

2
corresponds to the curve E0 : y2 = x3 + x.

The ring O1 = Z ⊕ Z 4947i ⊕ Z 4947i+j
2 ⊕ Z 4947+32631010i+ij

9894
corresponds to the curve E1 : y2 = x3 + 1.

The ideal I = Z 4947 ⊕ Z 4947i ⊕ Z 598+4947i+j
2 ⊕ Z 4947+598i+ij

2
defines an isogeny E0 → E1 of degree 4947 = 3 · 17 · 97.
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Signing with isogenies

E0 EA
secret

▶ Fiat–Shamir: signature scheme from identification scheme.
▶ Easy response: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).
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SQIsign

Main idea:
▶ Construct the “signature square” in quaternion land.
▶ Project the whole situation down to the curve world.
▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.
▶ From End(E),End(E′), can randomize within Hom(E,E′).
⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2

and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsign: Numbers

Source: https://sqisign.org

40 / 44

https://sqisign.org


SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo
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Plan for this talk

▶ High-level overview for intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ The CGL hash function. ✓
▶ The CSIDH non-interactive key exchange. ✓
▶ The SQIsign signature scheme. ✓
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Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.

▶ is the only known somewhat efficient post-quantum
non-interactive key exchange (full public-key validation).

▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).

▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.

▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.

▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.

▶ are really cool!

43 / 44



Summary

CSIDH...
▶ is a drop-in post-quantum replacement for (EC)DH.
▶ is the only known somewhat efficient post-quantum

non-interactive key exchange (full public-key validation).
▶ has a clean mathematical structure: a true group action.

SQIsign...
▶ has remarkably tiny keys and signatures, post-quantumly.
▶ rests on the assumed hardness of finding endomorphisms.

Both...
▶ have tiny sizes compared to other post-quantum schemes.
▶ are quite slow compared to other post-quantum schemes.
▶ are really cool!

43 / 44



Questions?
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