Isogenies: The basics, some applications, and nothing much in between

Lorenz Panny

Technische Universität München

5 December 2023

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture $\rho \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths.

Big picture $\Theta \rho$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths.

Finding graphs with almost all of these properties is easy but getting all at once seems rare.

Crypto on graphs?

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: ${ }^{a}$ and ${ }^{b}$ are commutative!

Diffie-Hellman: Bob vs. Eve

Bob

1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.
$b-2$. Set $t \leftarrow t \cdot g$.
$b-1$. Set $t \leftarrow t \cdot g$.
b. Publish $B \leftarrow t \cdot g$.

Diffie-Hellman: Bob vs. Eve

$\underline{\text { Bob }}$

1. Set $t \leftarrow g$.
2. Set $t \leftarrow t \cdot g$.
3. Set $t \leftarrow t \cdot g$.
4. Set $t \leftarrow t \cdot g$.
...
b-2. Set $t \leftarrow t \cdot g$.
$b-1 . \operatorname{Set} t \leftarrow t \cdot g$.
b. $\operatorname{Publish} B \leftarrow t \cdot g$.

Is this a good idea?

Diffie-Hellman: Bob vs. Eve

$$
\begin{gathered}
\underline{\text { Bob }} \\
\text { 1. Set } t \leftarrow g . \\
\text { 2. Set } t \leftarrow t \cdot g . \\
\text { 3. Set } t \leftarrow t \cdot g . \\
\text { 4. Set } t \leftarrow t \cdot g . \\
\text {.. } \\
b-2 . ~ S e t ~ \\
b-t \cdot g . \\
b-1 . \\
\text { Set } t \leftarrow t \cdot g . \\
\text { b. } \operatorname{Publish} B \leftarrow t \cdot g .
\end{gathered}
$$

Attacker Eve

1. Set $t \leftarrow g$. If $t=B$ return 1 .
2. Set $t \leftarrow t \cdot g$. If $t=B$ return 2 .
3. Set $t \leftarrow t$. g. If $t=B$ return 3 .
4. Set $t \leftarrow t \cdot g$. If $t=B$ return 3 .
$b-2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b-1$.
b. Set $t \leftarrow t \cdot g$. If $t=B$ return b.
$b+1$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b+1$.
$b+2$. Set $t \leftarrow t \cdot g$. If $t=B$ return $b+2$.

Diffie-Hellman: Bob vs. Eve

Effort for both: $O(\# G)$. Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn't matter for my point here.)

Bob computes his public key g^{13} from g.

multiply

Bob computes his public key g^{13} from g.

Square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key g^{13} from g.

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as graphs

Square-and-multiply as a graph

Crypto on graphs?

We've been doing it all the time!

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.
For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\# G})$.

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.
For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\# G})$.
\rightsquigarrow Exponential separation!

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.
For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\# G})$.
\rightsquigarrow Exponential separation!
...and they lived happily ever after?

The fast mixing requirement

Fast mixing: paths of length \log (\# nodes) to everywhere.

With square-and-multiply, computing $\alpha \mapsto g^{\alpha}$ takes $\Theta(\log \alpha)$.
For well-chosen groups, computing $g^{\alpha} \mapsto \alpha$ takes $\Theta(\sqrt{\# G})$.
\rightsquigarrow Exponential separation!
...and they lived happily ever after?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

In some cases, isogeny graphs

can replace DLP-based constructions post-quantumly.

In some cases, isogeny graphs

can replace $\underset{\substack{\text { some }}}{\text { DLP-based constructions post-quantumly. }}$

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast

Components of particular isogeny graphs look like this:

Which of these is good for crypto? Both. \because

Plan for this talk

- High-level overview for intuition.
- Elliptic curves \& isogenies.
- The CGL hash function.
- The CSIDH non-interactive key exchange.
- The SQIsign signature scheme.

Stand back!

We're going to do math.

Elliptic curves

An elliptic curve over a field F of characteristic $\notin\{2,3\}$ is* an equation of the form

$$
E: y^{2}=x^{3}+a x+b
$$

with $a, b \in F$ such that $4 a^{3}+27 b^{2} \neq 0$.

Elliptic curves

An elliptic curve over a field F of characteristic $\notin\{2,3\}$ is* an equation of the form

$$
E: y^{2}=x^{3}+a x+b
$$

with $a, b \in F$ such that $4 a^{3}+27 b^{2} \neq 0$.
A point on E is a solution (x, y), or the "fake" point ∞.

Elliptic curves

An elliptic curve over a field F of characteristic $\notin\{2,3\}$ is* an equation of the form

$$
E: y^{2}=x^{3}+a x+b
$$

with $a, b \in F$ such that $4 a^{3}+27 b^{2} \neq 0$.
A point on E is a solution (x, y), or the "fake" point ∞.
E is an abelian group: we can "add" points.

Elliptic curves

An elliptic curve over a field F of characteristic $\notin\{2,3\}$ is* an equation of the form

$$
E: y^{2}=x^{3}+a x+b
$$

with $a, b \in F$ such that $4 a^{3}+27 b^{2} \neq 0$.
A point on E is a solution (x, y), or the "fake" point ∞.
E is an abelian group: we can "add" points.

- The neutral element is ∞.
- The inverse of (x, y) is $(x,-y)$.
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(2 x_{1}+x_{2}-\lambda^{2}\right)-y_{1}\right)
$$

where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ if $x_{1} \neq x_{2}$ and $\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}$ otherwise.

Elliptic curves (picture over \mathbb{R})

The elliptic curve $y^{2}=x^{3}-x+1$ over \mathbb{R}.

Elliptic curves (picture over \mathbb{R})

Addition law:
$P+Q+R=\infty \quad \Longleftrightarrow\{P, Q, R\}$ on a straight line.

Elliptic curves (picture over \mathbb{R})

The point at infinity ∞ lies on every vertical line.

Elliptic curves (picture over \mathbb{F}_{p})

The same curve $y^{2}=x^{3}-x+1$ over the finite field \mathbb{F}_{79}.

Elliptic curves (picture over \mathbb{F}_{p})

The addition law of $y^{2}=x^{3}-x+1$ over the finite field \mathbb{F}_{79}.

Isogenies

Isogenies

...are just fancily-named

between elliptic curves.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:
A rational function is $f(x, y) / g(x, y)$ where f, g are polynomials.
A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:
A rational function is $f(x, y) / g(x, y)$ where f, g are polynomials.
A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

The kernel of an isogeny $\varphi: E \rightarrow E^{\prime}$ is $\{P \in E: \varphi(P)=\infty\}$. The degree of a separable* isogeny is the size of its kernel.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#1: $(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \longrightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \infty\}$.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#2: For any a and b, the map $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$ defines a degree- 1 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+a x+b\right\} \longrightarrow\left\{y^{2}=x^{3}+a x-b\right\}
$$

It is an isomorphism; its kernel is $\{\infty\}$.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#3: For each $m \neq 0$, the multiplication-by- m map

$$
[m]: E \rightarrow E
$$

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#3: For each $m \neq 0$, the multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is a degree- m^{2} isogeny. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \times \mathbb{Z} / m
$$

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#4: For E / \mathbb{F}_{q}, the map

$$
\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

is a degree- q isogeny, the Frobenius endomorphism.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#4: For E / \mathbb{F}_{q}, the map

$$
\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

is a degree- q isogeny, the Frobenius endomorphism.
The kernel of $\pi-1$ is precisely the set of rational points $E\left(\mathbb{F}_{q}\right)$.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

Example \#4: For E / \mathbb{F}_{q}, the map

$$
\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

is a degree- q isogeny, the Frobenius endomorphism.
The kernel of $\pi-1$ is precisely the set of rational points $E\left(\mathbb{F}_{q}\right)$. Important fact: An isogeny φ is \mathbb{F}_{q}-rational iff $\pi \circ \varphi=\varphi \circ \pi$.

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
${ }^{1}$ (up to isomorphism of E^{\prime})

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
${ }^{1}$ (up to isomorphism of E^{\prime})

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
\rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
\rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

- We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)

Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable* isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
\rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

- We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)
\rightsquigarrow Decompose large-degree isogenies into prime steps. That is: Walk in an isogeny graph.
${ }^{1}$ (up to isomorphism of E^{\prime})

Isogeny graphs

Consider a field k and let $S \not \supset \operatorname{char}(k)$ be a set of primes.
The S-isogeny graph over k consists of

Isogeny graphs

Consider a field k and let $S \nexists \operatorname{char}(k)$ be a set of primes.
The S-isogeny graph over k consists of

- vertices given by elliptic curves over k;

Isogeny graphs

Consider a field k and let $S \not \supset \operatorname{char}(k)$ be a set of primes.
The S-isogeny graph over k consists of

- vertices given by elliptic curves over k;
- edges given by ℓ-isogenies, $\ell \in S$, over k;

Isogeny graphs

Consider a field k and let $S \not \supset \operatorname{char}(k)$ be a set of primes.
The S-isogeny graph over k consists of

- vertices given by elliptic curves over k;
- edges given by ℓ-isogenies, $\ell \in S$, over k; up to k-isomorphism.

Isogeny graphs

Consider a field k and let $S \nexists \operatorname{char}(k)$ be a set of primes.
The S-isogeny graph over k consists of

- vertices given by elliptic curves over k;
- edges given by ℓ-isogenies, $\ell \in S$, over k; up to k-isomorphism.

Example components containing $E: y^{2}=x^{3}+x$:

$k=\mathbb{F}_{419,} \quad S=\{3,5,7\}$

$k=\mathbb{N}_{431^{2}}, \quad S=\{2,3,5,7\}$.

Predictable groups

Elliptic curves in general can be very annoying

Predictable groups

Elliptic curves in general can be very annoying computationally: Points in $E[\ell]$ have a tendency to live in large extension fields.

Predictable groups

Elliptic curves in general can be very annoying computationally: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:
Let $p \geq 5$ be prime.

- E / \mathbb{F}_{p} is supersingular if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- In that case, $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$ and

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)
$$

Predictable groups

Elliptic curves in general can be very annoying computationally: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:
Let $p \geq 5$ be prime.

- E / \mathbb{F}_{p} is supersingular if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- In that case, $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$ and

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)
$$

\rightsquigarrow Easy method to control the group structure by choosing p !
\rightsquigarrow Cryptography works well using supersingular curves.

Predictable groups

Elliptic curves in general can be very annoying computationally: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:
Let $p \geq 5$ be prime.

- E / \mathbb{F}_{p} is supersingular if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- In that case, $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$ and

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)
$$

\rightsquigarrow Easy method to control the group structure by choosing p !
\rightsquigarrow Cryptography works well using supersingular curves.
(All curves are supersingular until lunch time.)

Plan for this talk

- High-level overview for intuition.
- Elliptic curves \& isogenies.
- The CGL hash function.
- The CSIDH non-interactive key exchange.
- The SQIsign signature scheme.

The Charles-Goren-Lauter hash function

- Start at some curve E.
- For each input digit b : Map the pair (E, b) to a finite subgroup $H \leq E$, compute $\varphi_{H}: E \rightarrow E^{\prime}$, and set $E \leftarrow E^{\prime}$.
- Finally return E.

Plan for this talk

- High-level overview for intuition.
- Elliptic curves \& isogenies.
- The CGL hash function.
- The CSIDH non-interactive key exchange.
- The SQIsign signature scheme.

CSIDH ['sii;said]

Isogeny-based key exchange: High-level view

E

Isogeny-based key exchange: High-level view

- Alice \& Bob pick secret $\varphi_{A}: E \rightarrow E_{A}$ and $\varphi_{B}: E \rightarrow E_{B}$. (These isogenies correspond to walking on the isogeny graph.)

Isogeny-based key exchange: High-level view

- Alice \& Bob pick secret $\varphi_{A}: E \rightarrow E_{A}$ and $\varphi_{B}: E \rightarrow E_{B}$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_{A} and E_{B}.

Isogeny-based key exchange: High-level view

- Alice \& Bob pick secret $\varphi_{A}: E \rightarrow E_{A}$ and $\varphi_{B}: E \rightarrow E_{B}$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_{A} and E_{B}.
- Alice somehow finds a "parallel" $\varphi_{A^{\prime}}: E_{B} \rightarrow E_{B A}$, and Bob somehow finds $\varphi_{B^{\prime}}: E_{A} \rightarrow E_{A B}$,

Isogeny-based key exchange: High-level view

- Alice \& Bob pick secret $\varphi_{A}: E \rightarrow E_{A}$ and $\varphi_{B}: E \rightarrow E_{B}$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_{A} and E_{B}.
- Alice somehow finds a "parallel" $\varphi_{A^{\prime}}: E_{B} \rightarrow E_{B A}$, and Bob somehow finds $\varphi_{B^{\prime}}: E_{A} \rightarrow E_{A B}$, such that $E_{A B} \cong E_{B A}$.

How to find "parallel" isogenies?

How to find "parallel" isogenies?

CSIDH's solution:
Use special isogenies φ_{A} which can be transported to the curve E_{B} totally independently of the secret isogeny φ_{B}.
(Similarly with reversed roles, of course.)

"Special" isogenies

Let E / \mathbb{F}_{p} be supersingular and recall $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$.

"Special" isogenies

Let E / \mathbb{F}_{p} be supersingular and recall $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$.
\Rightarrow For every $\ell \mid(p+1)$ exists a unique order- ℓ subgroup H_{ℓ}.

"Special" isogenies

Let E / \mathbb{F}_{p} be supersingular and recall $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$.
\Rightarrow For every $\ell \mid(p+1)$ exists a unique order- ℓ subgroup H_{ℓ}.
\rightsquigarrow For all such E can canonically find an isogeny $\varphi_{\ell}: E \rightarrow E^{\prime}$.

"Special" isogenies

Let E / \mathbb{F}_{p} be supersingular and recall $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$.
\Rightarrow For every $\ell \mid(p+1)$ exists a unique order- ℓ subgroup H_{ℓ}.
\rightsquigarrow For all such E can canonically find an isogeny $\varphi_{\ell}: E \rightarrow E^{\prime}$.
We consider prime ℓ and refer to φ_{ℓ} as a "special" isogeny.

Cycles from "special" isogenies

What happens when we iterate such a "special" isogeny?

Cycles from "special" isogenies

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

!! The "tail" $E \rightarrow E_{\ell^{3}}$ can't exist: Backwards arrow is unique.

What happens when we iterate such a "special" isogeny?

!! The "tail" $E \rightarrow E_{\ell^{3}}$ can't exist: Backwards arrow is unique.
\Longrightarrow The "special" isogenies φ_{ℓ} form isogeny cycles!

ノ Compatible cycles from "special" isogenies

What happens when we compose those "special" isogenies?
$\boldsymbol{\gamma}$ Compatible cycles from "special" isogenies

What happens when we compose those "special" isogenies?

ノ Compatible cycles from "special" isogenies

What happens when we compose those "special" isogenies?

- Exercise: $\operatorname{ker}\left(\varphi_{\ell}^{\prime} \circ \varphi_{m}^{\prime}\right)=\operatorname{ker}\left(\varphi_{m} \circ \varphi_{\ell}\right)=\left\langle\operatorname{ker} \varphi_{\ell}, \operatorname{ker} \varphi_{m}^{\prime}\right\rangle$.

Compatible cycles from "special" isogenies

What happens when we compose those "special" isogenies?

- Exercise: $\operatorname{ker}\left(\varphi_{\ell}^{\prime} \circ \varphi_{m}^{\prime}\right)=\operatorname{ker}\left(\varphi_{m} \circ \varphi_{\ell}\right)=\left\langle\operatorname{ker} \varphi_{\ell}, \operatorname{ker} \varphi_{m}^{\prime}\right\rangle$.
$!!$ The order cannot matter \Longrightarrow cycles must be compatible.

CSIDH in one slide

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ supersingular with $\left.A \in \mathbb{F}_{p}\right\}$.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ supersingular with $\left.A \in \mathbb{F}_{p}\right\}$.
- Look at the "special" ℓ_{i}-isogenies within X.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ supersingular with $\left.A \in \mathbb{F}_{p}\right\}$.
- Look at the "special" ℓ_{i}-isogenies within X.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ supersingular with $\left.A \in \mathbb{F}_{p}\right\}$.
- Look at the "special" ℓ_{i}-isogenies within X.

$$
\begin{aligned}
& p=419 \\
& \ell_{1}=3 \\
& \ell_{2}=5 \\
& \ell_{3}=7
\end{aligned}
$$

- Walking "left" and "right" on any ℓ_{i}-subgraph is efficient.

CSIDH key exchange

Alice
$$
[+,+,-,-]
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[++,+-,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-,]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

> Bob
> $[-,+,-,-,-]$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,--]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[-,+,-\frac{-}{\uparrow},-\right]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{\left[+,+,-,-\frac{1}{\uparrow}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[-,+,-,-\frac{-1}{\uparrow}\right.}
\end{gathered}
$$

CSIDH key exchange

Alice	Bob
$[\boldsymbol{+}, \boldsymbol{+},-,-]$,	$[-,+,-,--]$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[++,+-,-]}
\end{gathered}
$$

> Bob
> $[-,+,-,-$,

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-]}
\end{gathered}
$$

> Bob
> $[-,+,-,-$,

CSIDH key exchange

Alice
$[+,+,-,-]$

> Bob
> $\left[-,+,-\frac{-}{\uparrow},-\right]$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-\bar{\uparrow}]}
\end{gathered}
$$

> Bob
> $\left[-,+,-,-\frac{-1}{\uparrow}\right.$

CSIDH key exchange

Alice
$$
[+,+,-,-]
$$

> Bob
> $[-,+,-,-]$

And... action!

Cycles are compatible: [right then left] $=$ [left then right $]$

And... action!

Cycles are compatible: [right then left] $=$ [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.

And... action!

Cycles are compatible: [right then left] $=$ [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.

There is a group action of $\left(\mathbb{Z}^{n},+\right)$ on our set of curves X !

The class group

Recall: Group action of $\left(\mathbb{Z}^{n},+\right)$ on set of curves X.

The class group

Recall: Group action of $\left(\mathbb{Z}^{n},+\right)$ on set of curves X.
!! The set X is finite \Longrightarrow The action is not free.
There exist vectors $\underline{v} \in \mathbb{Z}^{n} \backslash\{0\}$ which act trivially.

The class group

Recall: Group action of $\left(\mathbb{Z}^{n},+\right)$ on set of curves X.
!! The set X is finite \Longrightarrow The action is not free.
There exist vectors $\underline{v} \in \mathbb{Z}^{n} \backslash\{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^{n}$.

The class group

Recall: Group action of $\left(\mathbb{Z}^{n},+\right)$ on set of curves X.
!! The set X is finite \Longrightarrow The action is not free.
There exist vectors $\underline{v} \in \mathbb{Z}^{n} \backslash\{0\}$ which act trivially.
Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^{n}$.

We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^{n} / Λ is the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

The class group

Recall: Group action of $\left(\mathbb{Z}^{n},+\right)$ on set of curves X.
!! The set X is finite \Longrightarrow The action is not free.
There exist vectors $\underline{v} \in \mathbb{Z}^{n} \backslash\{0\}$ which act trivially.
Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^{n}$.

We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^{n} / Λ is the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.
!! This group characterizes when two paths lead to the same curve.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h=g^{\alpha}$ by finding the kernel of the map

$$
f: \mathbb{Z}^{2} \rightarrow G,(x, y) \mapsto g^{x} \cdot h^{y}
$$

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h=g^{\alpha}$ by finding the kernel of the map

$$
f: \mathbb{Z}^{2} \rightarrow G,(x, y) \mapsto g^{x} ; h^{y}
$$

For group actions, we simply cannot compose $a * s$ and $b * s$!

Plan for this talk

- High-level overview for intuition.
- Elliptic curves \& isogenies.
- The CGL hash function.
- The CSIDH non-interactive key exchange.
- The SQIsign signature scheme.

Now:
Supersingular isogeny graphs over $\mathbb{F}_{p^{2}}$.

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: $\operatorname{ker} \varphi_{\ell}=\operatorname{ker}[\ell] \cap \operatorname{ker}(\pi-1)$. (Recall the Frobenius endomorphism $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.)

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: $\operatorname{ker} \varphi_{\ell}=\operatorname{ker}[\ell] \cap \operatorname{ker}(\pi-1)$. (Recall the Frobenius endomorphism $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.)
!! Over $\mathbb{F}_{p^{2}}$, we can have more endomorphisms.
Example: $y^{2}=x^{3}+x$ has $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$.

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: $\operatorname{ker} \varphi_{\ell}=\operatorname{ker}[\ell] \cap \operatorname{ker}(\pi-1)$. (Recall the Frobenius endomorphism $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.)
!! Over $\mathbb{F}_{p^{2}}$, we can have more endomorphisms.
Example: $y^{2}=x^{3}+x$ has $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

Every isogeny $\varphi: E \rightarrow E^{\prime}$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: $\operatorname{ker} \varphi_{\ell}=\operatorname{ker}[\ell] \cap \operatorname{ker}(\pi-1)$. (Recall the Frobenius endomorphism $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.)
!! Over $\mathbb{F}_{p^{2}}$, we can have more endomorphisms. Example: $y^{2}=x^{3}+x$ has $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

Every isogeny $\varphi: E \rightarrow E^{\prime}$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.
$\ddot{\because}$ We understand the structure of $\operatorname{End}(E)$.

More "special" isogenies

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: $\operatorname{ker} \varphi_{\ell}=\operatorname{ker}[\ell] \cap \operatorname{ker}(\pi-1)$. (Recall the Frobenius endomorphism $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.)
!! Over $\mathbb{F}_{p^{2}}$, we can have more endomorphisms. Example: $y^{2}=x^{3}+x$ has $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

Every isogeny $\varphi: E \rightarrow E^{\prime}$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.
$\ddot{\sim}$ We understand the structure of $\operatorname{End}(E)$.
\because We understand how I_{φ}, I_{ψ} relate for isogenies $\varphi, \psi: E \rightarrow E^{\prime}$.
(NB: Same E^{\prime}.)

The Deuring correspondence

...is the formal version of what I just said.

The Deuring correspondence

...is the formal version of what I just said.
a priori
...is a strong connection between two ${ }^{\curlyvee}$ very different worlds:

The Deuring correspondence

...is the formal version of what I just said.
...is a strong connection between two $\stackrel{\text { a priori }}{\text { very }}$ different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.

The Deuring correspondence

...is the formal version of what I just said.
a priori
...is a strong connection between two ${ }^{\curlyvee}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$.

The Deuring correspondence

...is the formal version of what I just said.
a priori
...is a strong connection between two ${ }^{\curlyvee}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$.

Isogenies become "connecting ideals" in quaternion land.

The Deuring correspondence

...is the formal version of what I just said.
a priori
...is a strong connection between two ${ }^{\curlyvee}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$.

Isogenies become "connecting ideals" in quaternion land.
$\ddot{-}$ One direction is easy, the other seems hard! \rightsquigarrow Cryptography!

The Deuring correspondence (examples)

Let $p=7799999$ and let \mathbf{i}, \mathbf{j} satisfy $\mathbf{i}^{2}=-1, \mathbf{j}^{2}=-p, \mathbf{j i}=-\mathbf{i} \mathbf{j}$.

The ring $\mathcal{O}_{0}=\mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{1+\mathbf{i j}}{2}$ corresponds to the curve $E_{0}: y^{2}=x^{3}+x$.

The ring $\mathcal{O}_{1}=\mathbb{Z} \oplus \mathbb{Z} 4947 \mathbf{i} \oplus \mathbb{Z} \frac{4947 \mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+32631010 \mathbf{i}+\mathbf{i j}}{9894}$ corresponds to the curve $E_{1}: y^{2}=x^{3}+1$.

The ideal $I=\mathbb{Z} 4947 \oplus \mathbb{Z} 4947 \mathbf{i} \oplus \mathbb{Z} \frac{598+4947 \mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+598 \mathbf{i}+\mathbf{i j}}{2}$ defines an isogeny $E_{0} \rightarrow E_{1}$ of degree $4947=3 \cdot 17 \cdot 97$.

Signing with isogenies

$E_{0}----------1$ secret

Signing with isogenies

Signing with isogenies

Signing with isogenies

Signing with isogenies

- Fiat-Shamir: signature scheme from identification scheme.

Signing with isogenies

- Fiat-Shamir: signature scheme from identification scheme.
- Easy response: $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$. Obviously broken.

Signing with isogenies

- Fiat-Shamir: signature scheme from identification scheme.
- Easy response: $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$. Obviously broken.
- SQIsign's solution: Construct new path $E_{A} \rightarrow E_{2}$ (using secret).

SQIsign

Main idea:

- Construct the "signature square" in quaternion land.
- Project the whole situation down to the curve world.
- The verifier can check on curves that everything is correct.

SQIsign

Main idea:

- Construct the "signature square" in quaternion land.
- Project the whole situation down to the curve world.
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can find smooth isogeny $E \rightarrow E^{\prime}$.
- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.

SQIsign

Main idea:

- Construct the "signature square" in quaternion land.
- Project the whole situation down to the curve world.
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can find smooth isogeny $E \rightarrow E^{\prime}$.
- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.
\rightsquigarrow SQIsign takes the "broken" signature $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$ and rewrites it into a random isogeny $E_{A} \rightarrow E_{2}$.

SQIsign

Main idea:

- Construct the "signature square" in quaternion land.
- Project the whole situation down to the curve world.
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can find smooth isogeny $E \rightarrow E^{\prime}$.
- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.
\rightsquigarrow SQIsign takes the "broken" signature $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$ and rewrites it into a random isogeny $E_{A} \rightarrow E_{2}$.

[^0]
SQIsign: Numbers

sizes

parameter set	public keys	signatures
NIST-I	$\mathbf{6 4}$ bytes	$\mathbf{1 7 7}$ bytes
NIST-III	$\mathbf{9 6}$ bytes	$\mathbf{2 6 3}$ bytes
NIST-V	$\mathbf{1 2 8}$ bytes	$\mathbf{3 3 5}$ bytes

performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU. Optimizations are certainly possible and work in progress.

parameter set	keygen	signing	verifying
NIST-I	$\mathbf{3 7 2 8}$ megacycles	$\mathbf{5 7 7 9}$ megacycles	$\mathbf{1 0 8}$ megacycles
NIST-III	$\mathbf{2 3 7 3 4}$ megacycles	$\mathbf{4 3 7 6 0}$ megacycles	$\mathbf{6 5 4}$ megacycles
NIST-V	$\mathbf{9 1 0 4 9}$ megacycles	$\mathbf{1 5 8 5 4 4}$ megacycles	$\mathbf{2 1 7 7}$ megacycles

Source: https://sqisign.org

SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo

Plan for this talk

- High-level overview for intuition.
- Elliptic curves \& isogenies.
- The CGL hash function.
- The CSIDH non-interactive key exchange.
- The SQIsign signature scheme.

Summary

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

SQIsign...

- has remarkably tiny keys and signatures, post-quantumly.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

SQIsign...

- has remarkably tiny keys and signatures, post-quantumly.
- rests on the assumed hardness of finding endomorphisms.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

SQIsign...

- has remarkably tiny keys and signatures, post-quantumly.
- rests on the assumed hardness of finding endomorphisms.

Both...

- have tiny sizes compared to other post-quantum schemes.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

SQIsign...

- has remarkably tiny keys and signatures, post-quantumly.
- rests on the assumed hardness of finding endomorphisms.

Both...

- have tiny sizes compared to other post-quantum schemes.
- are quite slow compared to other post-quantum schemes.

Summary

CSIDH...

- is a drop-in post-quantum replacement for (EC)DH.
- is the only known somewhat efficient post-quantum non-interactive key exchange (full public-key validation).
- has a clean mathematical structure: a true group action.

SQIsign...

- has remarkably tiny keys and signatures, post-quantumly.
- rests on the assumed hardness of finding endomorphisms.

Both...

- have tiny sizes compared to other post-quantum schemes.
- are quite slow compared to other post-quantum schemes.
- are really cool!

Questions?

[^0]: "If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign."

 - Yan Bo Ti

