Isogeny-based key exchange

Lorenz Panny

Technische Universiteit Eindhoven

Birmingham, European Union, 16 September 2019

• You would like to communicate over the internet.

- ► You would like to communicate over the internet.
- ► It should be secure, so you want to use encryption.

- ► You would like to communicate over the internet.
- ► It should be secure, so you want to use encryption.
- But you haven't agreed on a secret key yet!

- ► You would like to communicate over the internet.
- ► It should be secure, so you want to use encryption.
- But you haven't agreed on a secret key yet!

A *key exchange* is a method for (typically) two parties to negotiate a shared secret key over an insecure channel.

- ► You would like to communicate over the internet.
- ► It should be secure, so you want to use encryption.
- But you haven't agreed on a secret key yet!

A *key exchange* is a method for (typically) two parties to negotiate a shared secret key over an insecure channel.

(For now, "insecure" means someone is listening in on everything being sent. There is also a notion of *active* attackers who mess with data on the wire.)

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Diffie-Hellman: Bob vs. Eve

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

•••

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Diffie-Hellman: Bob vs. Eve

Is this a good idea?

Diffie–Hellman: Bob vs. Eve

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b.</i> Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

Diffie-Hellman: Bob vs. Eve

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b.</i> Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b + 2$.

Effort for both: O(#G). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)

multiply

Square-and-multiply

Square-and-multiply-and-square-and-multiply

Square-and-multiply-and-square-and-multiply-and-squ

With square-and-multiply, applying *b* takes $\Theta(\log \# G)$. For well-chosen groups, recovering *b* takes $\Theta(\sqrt{\# G})$.

→ Exponential separation!

With square-and-multiply, applying *b* takes $\Theta(\log \# G)$. For well-chosen groups, recovering *b* takes $\Theta(\sqrt{\# G})$. \rightsquigarrow Exponential separation!

...and they lived happily ever after?

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Fast mixing: paths of length log(# nodes) to everywhere.

New plan: Get rid of the group, keep the graph.

Big picture $\rho \rho$

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\rho \rho$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture $\rho \rho$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.
Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (*Both* classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* "directions" to describe paths.

It is easy to construct graphs that satisfy *almost* all of these — but getting all at once seems rare. Isogenies!

Components of well-chosen isogeny graphs look like this:

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

At this time, there are two distinct families of systems:

Ε

• Alice & Bob pick secret subgroups *A* and *B* of *E*.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/[A, B] \cong (E/A)/B'.$

CSIDH ['siːˌsaɪd]

Martin Million and

And God said, Let the waters under the heaven be gathered together unto one place, and let the dry land appear: and it was so.

And God called the dry land Earth; and the gathering together of the waters called he Seas: and God saw that it was good.

[King James Bible, Genesis 1:9-10]

Recall from Luca's talk:

Sometimes, there is a (free & transitive) group action of cl(O) on a set of curves with endomorphism ring O.

Recall from Luca's talk:

Sometimes, there is a (free & transitive) group action of cl(O) on a set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

Recall from Luca's talk:

Sometimes, there is a (free & transitive) group action of cl(O) on a set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo-Kieffer-Smith '18]:

Massive speedups, but still unbearably slow.

Recall from Luca's talk:

Sometimes, there is a (free & transitive) group action of cl(O) on a set of curves with endomorphism ring O.

[Couveignes '97/'06], independently [Rostovtsev–Stolbunov '06]:

Use this group action on ordinary curves for Diffie-Hellman.

[De Feo-Kieffer-Smith '18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes '18]:

Switch to supersingular curves \implies "practical" performance.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within *X*.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

• Walking "left" and "right" on any ℓ_i -subgraph is efficient.

▶ Recall p + 1 = 4 · ℓ₁ · · · ℓ_n.
 Special p yields supersingular curves of very smooth order.

• Note $\pi^2 = -p$, so the ideals (ℓ_i) split as $(\ell_i, \pi-1) \cdot (\ell_i, \pi+1)$.

- ▶ Recall p + 1 = 4 · ℓ₁ · · · ℓ_n.
 Special p yields supersingular curves of very smooth order.
- Note $\pi^2 = -p$, so the ideals (ℓ_i) split as $(\ell_i, \pi-1) \cdot (\ell_i, \pi+1)$.

Computing the action of $l_i = (\ell_i, \pi - 1)$:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- ▶ Recall p + 1 = 4 · ℓ₁ · · · ℓ_n.
 Special p yields supersingular curves of very smooth order.
- Note $\pi^2 = -p$, so the ideals (ℓ_i) split as $(\ell_i, \pi-1) \cdot (\ell_i, \pi+1)$.

Computing the action of $l_i = (\ell_i, \pi - 1)$:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing the action of $\bar{l}_i = (\ell_i, \pi + 1)$:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- ▶ Recall p + 1 = 4 · ℓ₁ · · · ℓ_n.
 Special p yields supersingular curves of very smooth order.
- Note $\pi^2 = -p$, so the ideals (ℓ_i) split as $(\ell_i, \pi-1) \cdot (\ell_i, \pi+1)$.

Computing the action of $l_i = (\ell_i, \pi - 1)$:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing the action of $\bar{l}_i = (\ell_i, \pi + 1)$:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

<u>Net result</u>: With *x*-only arithmetic everything happens over \mathbb{F}_p . \implies Efficient to implement!

CSIDH key exchange

CSIDH key exchange

CSIDH key exchange

► The Frobenius action "carves out" distinguished one-dimensional subgroups of the l_i-torsion.

- ► The Frobenius action "carves out" distinguished one-dimensional subgroups of the *l_i*-torsion.
- Rational isogenies commute with π, hence the choice of these subgroups is compatible between different curves.

- ► The Frobenius action "carves out" distinguished one-dimensional subgroups of the *l_i*-torsion.
- Rational isogenies commute with π, hence the choice of these subgroups is compatible between different curves.
- In particular, this allows us to construct "commuting" isogenies from local information only.

- ► The Frobenius action "carves out" distinguished one-dimensional subgroups of the *l_i*-torsion.
- Rational isogenies commute with π, hence the choice of these subgroups is compatible between different curves.
- In particular, this allows us to construct "commuting" isogenies from local information only.
- Fun fact: There's really nothing too special about π here; it's just the one endomorphism we can always find easily.
 ~> Generalization "OSIDH" [Colò–Kohel '19].

Why no Shor?

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{,} h^y.$$

For group <u>actions</u>, we generally cannot compose a * s and b * s!

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

→ non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$.

Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!

Can we avoid Kuperberg's algorithm?

The supersingular isogeny graph over \mathbb{F}_{p^2} has less structure.

- ▶ **SIDH** uses the full \mathbb{F}_{p^2} -isogeny graph. No group action!
- Problem: also no more intrinsic sense of direction.
 "It all bloody looks the same!" a famous isogeny cryptographer
 meed extra information to let Alice & Bob's walks commute.

Now: SIDH (Jao, De Feo; 2011)

Reminder: High-level view

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$."

...but Alice knows only A, Bob knows only φ_B . Hm.

<u>CSIDH's solution: use distinguished subgroups</u> (eigenspaces of π).

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$." ...but Alice knows only A, Bob knows only φ_B . Hm. CSIDH's solution: use distinguished subgroups (eigenspaces of π).

<u>SIDH's solution</u>: φ_B is a group homomorphism!

SIDH's auxiliary points

"Alice <u>somehow</u> obtains $A' := \text{shift}_{\varphi_B}(A)$." ...but Alice knows only A, Bob knows only φ_B . Hm. CSIDH's solution: use distinguished subgroups (eigenspaces of π).

<u>SIDH's solution</u>: φ_B is a group homomorphism! (and $A \cap B = \{\infty\}$)

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$.

► In SIDH, #*A* and #*B* are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G \colon E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.

- ► In SIDH, $\#A = 2^n$ and $\#B = 3^m$ are "crypto-sized". Vélu's formulas take $\Theta(\#G)$ to compute $\varphi_G : E \to E/G$.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- → Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.
 - Also choose special *p* such that everything stays over \mathbb{F}_{p^2} .

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P, Q) and (R, S) of $E[2^n]$ and $E[3^m]$ (recall $E[k] \cong \mathbb{Z}/k \times \mathbb{Z}/k$)

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$\boldsymbol{A} := \langle \boldsymbol{P} + [\boldsymbol{a}] \boldsymbol{Q} \rangle$	$B := \langle R + [b]S \rangle$
compute $\varphi_{\mathbf{A}} \colon E \to E/\mathbf{A}$	compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(R), \varphi_A(S)$	$E/B, \varphi_B(P), \varphi_B(Q)$
$A' := \langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$ $s := j((E/B)/A')$	$B' := \langle \varphi_{\mathbf{A}}(R) + [b]\varphi_{\mathbf{A}}(S) \rangle$ $s := j((E/\mathbf{A})/B')$

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

Claw finding: claimed
 O(p^{1/6}).
 [JS19] says this is more expensive than classical attacks.

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Alice & Bob can choose from about \sqrt{p} secret keys each.

<u>Classical</u> attacks:

- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

Claw finding: claimed Õ(p^{1/6}).
 [JS19] says this is more expensive than classical attacks.

<u>Bottom line</u>: Fully exponential. Complexity $\exp((\log p)^{1+o(1)})$.

Questions?