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What is this all about?

» You would like to communicate over the internet.
» It should be secure, so you want to use encryption.

» But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.

There is also a notion of active attackers who mess with data on the wire.)
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element ¢ € G of prime order g

Alice public Bob
a & 00...9-1} b & 10...9—1}
gl:><>gl7
s:= (") s:=(g")

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«+t-g.
b—2. Sett<t-g.

b—1. Sett«+t-g.
b. PublishB «t-g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett < g.
Sett«t-g.
Sett<t-g.

L A .

Sett<«t-g.

: .2

b2 Sette t.g Is this a good idea
b—1. Sett<+t-g.

b. PublishB «t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett«+ g. Ift=Breturnl.

2. Sett<t-g. 2. Sett«t-g. Ift = Breturn2.

3. Sett<+t-g. 3. Sett < t-g. Ift = Breturn 3.

4. Sett«+t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett « t-g. If t = B return b—2.
b—1. Sett <« t-g. b—1. Sett < t-g. If t = B return b—1.

b. Publish B «t-g. b. Sett <« t-g. If t = B return b.

b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.
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Diffie-Hellman: Bob vs. Eve

b-2.
b—1.
. PublishB «t-g.

L A .

Bob
Sett < g.
Sett«t-g.
Sett<t-g.
Sett<«+t-g.

Sett«t-g.
Sett<t-g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift =Breturn2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett <« t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = B return b.
b+1. Sett«+t-g. Ift = Breturnb+ 1.
b+2. Sett < t-g. Ift=Breturnb+2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Square-and-multiply-and-square-and-multiply-and-squ
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With square-and-multiply, applying b takes ©(log #G).
For well-chosen groups, recovering b takes ©(/#G).

~+ Exponential separation!
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With square-and-multiply, applying b takes ©(log #G).
For well-chosen groups, recovering b takes ©(/#G).

~+ Exponential separation!

...and they lived happily ever after?
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Shor’s algorithm quantumly computes x from g*
in any group in polynomial time.
T
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Square-and-multiply as a graph
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Square-and-multiply as a graph

Fast mixing: paths of length log(# nodes) to everywhere.
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: Get r1d of the group, keep the graph
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Big picture 2@ 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No efficient* algorithms to recover paths from endpoints.
(Both classical and quantum!)

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:
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Which of these is good for crypto? Both.
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The beauty and the beast

At this time, there are two distinct families of systems:
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https://csidh.isogeny.org https://sike.org
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Isogeny key exchange: High-level view

E s E/A
¥B B/

E/B

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4: E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := shift_¢p(A). (Similar for Bob.)

v
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Isogeny key exchange: High-level view

E s E/A
¥B wp/
E/B ———— E/[A,B]

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4: E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := shift_¢p(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A' = E/[A,B] = (E/A)/B.
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A brief history of the seaside
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A brief history of the seaside

And God said, Let the waters under the heaven be gathered together
unto one place, and let the dry land appear: and it was so.

And God called the dry land Earth; and the gathering together of the
waters called he Seas: and God saw that it was good.

[King James Bible, Genesis 1:9-10]
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A brief history of theseaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.
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A brief history of theseaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes '97/°06], independently [Rostovtsev—Stolbunov "06]:

’ Use this group action on ordinary curves for Diffie-Hellman. ‘

[De Feo—Kieffer-Smith "18]:

’ Massive speedups, but still unbearably slow. ‘

[Castryck-Lange-Martindale-Panny-Renes "18]:

’ Switch to supersingular curves = “practical” performance. ‘
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4-/;---{, — 1is prime.

Let X = {y? = x*+Ax*+x over F, with p+1 points}.
Look at the /;-isogenies defined over I, within X.

vV v.v v

p =419
0 =3
6=5

05 =
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CSIDH in one slide

Choose some small odd primes /1, ..., ;.

Make surep =4-/;---{, — 1is prime.

Let X = {y? = x*+Ax*+x over F, with p+1 points}.
Look at the /;-isogenies defined over I, within X.

vV v.v v

g. “\,
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» Walking “left” and “right” on any ¢;-subgraph is efficient.
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Walking in the CSIDH graph

» Recallp+1=4-01---4,.
Special p yields supersingular curves of very smooth order.

» Note 72 = —p, so the ideals (¢;) split as (¢;, 7—1) - (¢;, 7+1).
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Walking in the CSIDH graph

» Recallp+1=4-01---4,.
Special p yields supersingular curves of very smooth order.

» Note 72 = —p, so the ideals (¢;) split as (¢;, 7—1) - (¢;, 7+1).

Computing the action of [; = (¢;, 7 — 1):
1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).

Computing the action of [; = (¢;, 7 + 1):
1. Find a point (x,y) € E of order /; with x € FF, buty ¢ [F,..
2. Compute the isogeny with kernel ((x,y)).

Net result: With x-only arithmetic everything happens over F,.
= Efficient to implement!
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange

Alice Bob
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange

Alice Bob
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What is this magic?
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What is this magic?
» The Frobenius action “carves out” distinguished
one-dimensional subgroups of the ¢;-torsion.

» Rational isogenies commute with 7, hence the choice of
these subgroups is compatible between different curves.

» In particular, this allows us to construct “commuting”
isogenies from local information only.

» Fun fact: There’s really nothing too special about 7 here;
it’s just the one endomorphism we can always find easily.

~+ Generalization “OSIDH” [Colo-Kohel "19].
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Why no Shor?

Shor computes « from I = g* by finding the kernel of the map

f: 7> = G, (xv,y) — g - .
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Why no Shor?

Shor computes « from I = g* by finding the kernel of the map
f: 7 =G, (x,y) '—>gx+ h.

For group actions, we generally cannot compose a * s and b * s!

17 /26



Security of CSIDH

Core problem:
Given E, E’' € X, find a smooth-degree isogeny E — E'.
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[,/=p]) ~ /P

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((log p)1+0(1)).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((log p)/ 2+"(1)) .
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over F» has less structure.

» SIDH uses the full F»-isogeny graph. No group action!

» Problem: also no more intrinsic sense of direction.
“It all blOOdy looks the same!” — a famous isogeny cryptographer

~+ need extra information to let Alice & Bob’s walks commute.
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Reminder: High-level view

E o E/A
¥B wp/
E/B ———— E/(A,B)

v

Alice & Bob pick secret subgroups A and B of E.

v

Alice computes ¢4 : E — E/A; Bob computes pp: E — E/B.

(These isogenies correspond to walking on the isogeny graph.)
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := shift_¢p(A). (Similar for Bob.)

v

v

v

They both compute the shared secret
(E/B)/A' = E/(A,B) = (E/A)/B.

21/26



SIDH’s auxiliary points

4

“Alice somehow obtains A’ := shift_gpp(A).
...but Alice knows only A, Bob knows only ¢5. Hm.
SIDH’s solution: use distinguished subgroups (eigenspaces of ).
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SIDH’s auxiliary points

“Alice somehow obtains A" := shift_pp(A).”
...but Alice knows only A, Bob knows only ¢p. Hm.

SIDH'’s solution: ¢p is a group homomorphism! (and 4 N B = {oc})

Q v5(Q)

,,,,, O - A

P w5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢p(P) and ¢5(Q) in his public key.
=—> Now Alice can compute A" as (pp(P) + [a]¢(Q))-
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Computational aspects of SIDH

» In SIDH, #A and #B are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

23/26
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» In SIDH, #A = 2" and #B = 3" are “crypto-sized”.
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!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*~¥](;_1 0 - -- 0 91)(G).
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Computational aspects of SIDH

» In SIDH, #A = 2" and #B = 3" are “crypto-sized”.
Vélu's formulas take ©(#G) to compute ¢g: E — E/G.

!! Evaluate ¢¢ as a chain of small-degree isogenies:
For G = Z/{¥, set ker ¢; := [(*~¥](;_1 0 - -- 0 91)(G).

Pr—1

E B =5 255 By 5 E/G

\/’

¥G

~~ Complexity: O(k? - /). Exponentially smaller than ¢!
“Optimal strategy” improves this to O(klogk - £).

> Also choose special p such that everything stays over IF 5.
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SIDH in one slide

Public parameters:

» alarge prime p = 2"3" — 1 and a supersingular E/IF,,

» bases (P, Q) and (R, S) of E[2"] and E[3™] (recall E[k] = Z/k x Z/k)

Alice
a &2 00,201}

A = (P + [a]Q)
compute ps: E— E/A

E/A7 (PA(R)7 (PA(S)

A= <QDB(P) + [Q]SOB(Q»
s 1= j((E/B)/A)

Bob

b &2 {0...3m -1}
B := (R + [b]S)
compute pp: E — E/B

E/B, ¢5(P), »5(Q)

B' := {pa(R) + [b]pa(S))
s:=j((E/A)/B')
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Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

25/26



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about ,/p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

25/26



Security of SIDH

The SIDH graph has size [p/12] + ¢.

Alice & Bob can choose from about ,/p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).

[JS19] says this is more expensive than classical attacks.

25/26



Security of SIDH

The SIDH graph has size [p/12] + ¢.
Alice & Bob can choose from about , /p secret keys each.

Classical attacks:
> Meet-in-the-middle: O(p'/*) time & space.
» Collision finding: O(p®/®/, /meniory/cores).

Quantum attacks:
» Claw finding: claimed O(p'/®).
[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp((logp)'*° (1)).
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Questions?
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