
Isogeny-based key exchange

Lorenz Panny

Technische Universiteit Eindhoven

Birmingham, European Union, 16 September 2019

What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

What is this all about?

I You would like to communicate over the internet.

I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.

I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)

1 / 26

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 26

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 26

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 26

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

2 / 26

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 26

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 26

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 26

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

3 / 26

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 26

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 26

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 26

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 26

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 26

With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?

5 / 26

With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?

5 / 26

5 / 26

Shor’s algorithm quantumly computes x from gx

in any group in polynomial time.

5 / 26

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(# nodes) to everywhere.

6 / 26

New plan: Get rid of the group, keep the graph.

6 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!

7 / 26

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

8 / 26

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

8 / 26

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

8 / 26

The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

8 / 26

https://csidh.isogeny.org
https://sike.org

Isogeny key exchange: High-level view

E

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

Isogeny key exchange: High-level view

E
ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.

I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

Isogeny key exchange: High-level view

E E/A

E/B

ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

Isogeny key exchange: High-level view

E E/A

E/B

ϕA

ϕB

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.

I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

Isogeny key exchange: High-level view

E E/A

E/B

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

Isogeny key exchange: High-level view

E E/A

E/B E/dA,Bc

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.

9 / 26

CSIDH ["si:­saId]

10 / 26

A brief history of the seaside

And God said, Let the waters under the heaven be gathered together
unto one place, and let the dry land appear: and it was so.

And God called the dry land Earth; and the gathering together of the
waters called he Seas: and God saw that it was good.

[King James Bible, Genesis 1:9–10]

11 / 26

A brief history of the seaside

And God said, Let the waters under the heaven be gathered together
unto one place, and let the dry land appear: and it was so.

And God called the dry land Earth; and the gathering together of the
waters called he Seas: and God saw that it was good.

[King James Bible, Genesis 1:9–10]

11 / 26

A brief history of the seaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

12 / 26

A brief history of the seaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

12 / 26

A brief history of the seaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

12 / 26

A brief history of the seaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.

12 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.

I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.

13 / 26

Walking in the CSIDH graph

I Recall p + 1 = 4 · `1 · · · `n.
Special p yields supersingular curves of very smooth order.

I Note π2 = −p, so the ideals (`i) split as (`i, π−1) · (`i, π+1).

Computing the action of li = (`i, π − 1):
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing the action of li = (`i, π + 1):
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 26

Walking in the CSIDH graph

I Recall p + 1 = 4 · `1 · · · `n.
Special p yields supersingular curves of very smooth order.

I Note π2 = −p, so the ideals (`i) split as (`i, π−1) · (`i, π+1).

Computing the action of li = (`i, π − 1):
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing the action of li = (`i, π + 1):
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 26

Walking in the CSIDH graph

I Recall p + 1 = 4 · `1 · · · `n.
Special p yields supersingular curves of very smooth order.

I Note π2 = −p, so the ideals (`i) split as (`i, π−1) · (`i, π+1).

Computing the action of li = (`i, π − 1):
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing the action of li = (`i, π + 1):
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 26

Walking in the CSIDH graph

I Recall p + 1 = 4 · `1 · · · `n.
Special p yields supersingular curves of very smooth order.

I Note π2 = −p, so the ideals (`i) split as (`i, π−1) · (`i, π+1).

Computing the action of li = (`i, π − 1):
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing the action of li = (`i, π + 1):
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!

14 / 26

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

15 / 26

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

15 / 26

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

15 / 26

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

15 / 26

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

15 / 26

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

15 / 26

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

15 / 26

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

15 / 26

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

15 / 26

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

15 / 26

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

15 / 26

What is this magic?

I The Frobenius action “carves out” distinguished
one-dimensional subgroups of the `i-torsion.

I Rational isogenies commute with π, hence the choice of
these subgroups is compatible between different curves.

I In particular, this allows us to construct “commuting”
isogenies from local information only.

I Fun fact: There’s really nothing too special about π here;
it’s just the one endomorphism we can always find easily.

 Generalization “OSIDH” [Colò–Kohel ’19].

16 / 26

What is this magic?

I The Frobenius action “carves out” distinguished
one-dimensional subgroups of the `i-torsion.

I Rational isogenies commute with π, hence the choice of
these subgroups is compatible between different curves.

I In particular, this allows us to construct “commuting”
isogenies from local information only.

I Fun fact: There’s really nothing too special about π here;
it’s just the one endomorphism we can always find easily.

 Generalization “OSIDH” [Colò–Kohel ’19].

16 / 26

What is this magic?

I The Frobenius action “carves out” distinguished
one-dimensional subgroups of the `i-torsion.

I Rational isogenies commute with π, hence the choice of
these subgroups is compatible between different curves.

I In particular, this allows us to construct “commuting”
isogenies from local information only.

I Fun fact: There’s really nothing too special about π here;
it’s just the one endomorphism we can always find easily.

 Generalization “OSIDH” [Colò–Kohel ’19].

16 / 26

What is this magic?

I The Frobenius action “carves out” distinguished
one-dimensional subgroups of the `i-torsion.

I Rational isogenies commute with π, hence the choice of
these subgroups is compatible between different curves.

I In particular, this allows us to construct “commuting”
isogenies from local information only.

I Fun fact: There’s really nothing too special about π here;
it’s just the one endomorphism we can always find easily.

 Generalization “OSIDH” [Colò–Kohel ’19].

16 / 26

Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

↑

hy .

For group actions, we generally cannot compose a ∗ s and b ∗ s!

17 / 26

Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·
↑

hy .

For group actions, we generally cannot compose a ∗ s and b ∗ s!

17 / 26

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

18 / 26

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

18 / 26

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

18 / 26

Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

19 / 26

Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

19 / 26

Now: SIDH (Jao, De Feo; 2011)

20 / 26

Reminder: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.

21 / 26

SIDH’s auxiliary points

“Alice somehow obtains A′ := shift_ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups (eigenspaces of π).

SIDH’s solution: ϕB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

22 / 26

SIDH’s auxiliary points

“Alice somehow obtains A′ := shift_ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups (eigenspaces of π).

SIDH’s solution: ϕB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

22 / 26

SIDH’s auxiliary points

“Alice somehow obtains A′ := shift_ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups (eigenspaces of π).

SIDH’s solution: ϕB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.

22 / 26

Computational aspects of SIDH

I In SIDH, #A

= 2n

and #B

= 3m

are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26

Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26

Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26

Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26

SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
24 / 26

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

25 / 26

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

25 / 26

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

25 / 26

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

25 / 26

Questions?

26 / 26

