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What is this all about?

I You would like to communicate over the internet.
I It should be secure, so you want to use encryption.
I But you haven’t agreed on a secret key yet!

A key exchange is a method for (typically) two parties
to negotiate a shared secret key over an insecure channel.

(For now, “insecure” means someone is listening in on everything being sent.
There is also a notion of active attackers who mess with data on the wire.)
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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!
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Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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With square-and-multiply, applying b takes Θ(log #G).

For well-chosen groups, recovering b takes Θ(
√

#G).

 Exponential separation!

...and they lived happily ever after?
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Shor’s algorithm quantumly computes x from gx

in any group in polynomial time.
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Square-and-multiply as graphs
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Fast mixing: paths of length log(# nodes) to everywhere.
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New plan: Get rid of the group, keep the graph.
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths.

It is easy to construct graphs that satisfy almost all of these —
but getting all at once seems rare. Isogenies!
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The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.
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The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

8 / 26
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Isogeny key exchange: High-level view

E

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/dA,Bc ∼= (E/A)/B′.
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CSIDH ["si:­saId]
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A brief history of the seaside

And God said, Let the waters under the heaven be gathered together
unto one place, and let the dry land appear: and it was so.

And God called the dry land Earth; and the gathering together of the
waters called he Seas: and God saw that it was good.

[King James Bible, Genesis 1:9–10]
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A brief history of the seaside CSIDH

Recall from Luca’s talk:

Sometimes, there is a (free & transitive) group action of cl(O)
on a set of curves with endomorphism ring O.

[Couveignes ’97/’06], independently [Rostovtsev–Stolbunov ’06]:

Use this group action on ordinary curves for Diffie–Hellman.

[De Feo–Kieffer–Smith ’18]:

Massive speedups, but still unbearably slow.

[Castryck–Lange–Martindale–Panny–Renes ’18]:

Switch to supersingular curves =⇒ “practical” performance.
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CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i-isogenies defined over Fp within X.

m
at

h
ha

pp
en

s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i-subgraph is efficient.
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Walking in the CSIDH graph

I Recall p + 1 = 4 · `1 · · · `n.
Special p yields supersingular curves of very smooth order.

I Note π2 = −p, so the ideals (`i) split as (`i, π−1) · (`i, π+1).

Computing the action of li = (`i, π − 1):
1. Find a point (x, y) ∈ E of order `i with x, y ∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Computing the action of li = (`i, π + 1):
1. Find a point (x, y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel 〈(x, y)〉.

Net result: With x-only arithmetic everything happens over Fp.
=⇒ Efficient to implement!
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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What is this magic?

I The Frobenius action “carves out” distinguished
one-dimensional subgroups of the `i-torsion.

I Rational isogenies commute with π, hence the choice of
these subgroups is compatible between different curves.

I In particular, this allows us to construct “commuting”
isogenies from local information only.

I Fun fact: There’s really nothing too special about π here;
it’s just the one endomorphism we can always find easily.

 Generalization “OSIDH” [Colò–Kohel ’19].
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Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

↑

hy .

For group actions, we generally cannot compose a ∗ s and b ∗ s!
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Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[
√−p]) ≈√p.

 best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

 non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).
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Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

19 / 26



Can we avoid Kuperberg’s algorithm?

The supersingular isogeny graph over Fp2 has less structure.

I SIDH uses the full Fp2-isogeny graph. No group action!

I Problem: also no more intrinsic sense of direction.
“It all bloody looks the same!” — a famous isogeny cryptographer

 need extra information to let Alice & Bob’s walks commute.

19 / 26



Now: SIDH (Jao, De Feo; 2011)
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Reminder: High-level view

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := shift_ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

“Alice somehow obtains A′ := shift_ϕB(A).”
...but Alice knows only A, Bob knows only ϕB. Hm.
CSIDH’s solution: use distinguished subgroups (eigenspaces of π).

SIDH’s solution: ϕB is a group homomorphism!

(and A ∩ B = {∞})

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉.
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Computational aspects of SIDH

I In SIDH, #A

= 2n

and #B

= 3m

are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26



Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26



Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26



Computational aspects of SIDH

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”.

Vélu’s formulas take Θ(#G) to compute ϕG : E→ E/G.

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k, set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k!
“Optimal strategy” improves this to O(k log k · `).

I Also choose special p such that everything stays over Fp2 .

23 / 26



SIDH in one slide

Public parameters:
I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (P,Q) and (R,S) of E[2n] and E[3m] (recall E[k] ∼= Z/k× Z/k)

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E→ E/A

B := 〈R + [b]S〉
compute ϕB : E→ E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B′

)
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Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).
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I Collision finding: Õ(p3/8/
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√memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6).

[JS19] says this is more expensive than classical attacks.

Bottom line: Fully exponential. Complexity exp
(
(log p)1+o(1)).

25 / 26



Security of SIDH

The SIDH graph has size bp/12c+ ε.
Alice & Bob can choose from about

√p secret keys each.

Classical attacks:
I Meet-in-the-middle: Õ(p1/4) time & space.
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Questions?
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