The state of the isogeny

Lorenz Panny

Technische Universitdt Miinchen

Berlin Crypto Meetup, 23 September 2024



Big picture © 2

» Isogenies are a type of maps between elliptic curves.

1/43



Big picture 2@ 2

» Isogenies are a type of maps between elliptic curves.

» Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

1/43



Big picture 2@ 2

» Isogenies are a type of maps between elliptic curves.

» Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

~» Cryptography!
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Diffie-Hellman key exchange 1976

Public parameters:
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Diffie-Hellman key exchange 1976

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g

Alice public Bob
g &ndom {0...q—1} p {LEdom {0...g—1}
g >_<gl’
s:=(g")" s:=(g")"

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett « g.
Sett«+t-g.
Sett<+t-g.
Sett+«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«t-g.
Publish B «t - g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett « g.
Sett«+t-g.
Sett<«t-g.

L N

Sett<«t-g.

Is this a good idea?

b—2. Sett<«t-g.
b—1. Sett<«t-g.

b. PublishB «+t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett<+g. Ift=Breturnl.

2. Sett<+t-g. 2. Sett <« t-g. Ift = Breturn2.

3. Sett«+t-g. 3. Sett <« t-g. Ift = Breturn3.

4. Sett<«t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett < t-g. If t = B return b—2.
b—1. Sett«+t-g. b—1. Sett < t-g. Ift = B return b—1.

b. PublishB < t-g. b. Sett < t-g. Ift = Breturnb.

b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.
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Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett « g.
Sett«+t-g.
Sett<«t-g.
Sett+«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«t-g.
Publish B «t - g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift = Breturn2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett «+t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = Breturnb.
b+1. Sett«+t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Bob computes his public key ¢'* from g.
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Bob computes his public key ¢'* from g.
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Square-and-multiply
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Bob computes his public key ¢'* from g.
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Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'* from g.
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Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'* from g.
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Square-and-multiply as graphs
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Square-and-multiply as a graph
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Square-and-multiply as a graph

Fast mixing: paths of length log(# nodes) to everywhere.
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Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes a from g in any group
in polynomial time.
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Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes o from h = g* by finding the kernel of the map

f: 72 =G, (x,y) — ¢ -H.

~+ New plan: Get rid of the group, keep the graph.
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Stand back!

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: ¥ =x+ax+b

with a, b € F such that 443 + 27 # 0.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: y*=x+ax+b

with a,b € F such that 4a° + 272 # 0.

A point on E is a solution (x,y), or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y). Z;o 2,
¢

» The sum of (x1,y1) and (x2,12) is 8‘9@@;61’;7?;@%

(2795l

()\2 — X1 — X7, )\(le —+ X7 — )\2) — ]/1) s

2
3x7+a

o otherwise.

_ Y2= s _
where \ = Fom— if x1 #xpand A =
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Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F})

v o,

The same curve y*> = x> — x + 1 over the finite field Frg.
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Elliptic curves (picture over [F})

v o,

The addition law of y?> = x> — x + 1 over the finite field F.
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Isogenies
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Isogenies

...are just fancily-named
o
between elliptic curves.
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Isogenies
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.
A group homomorphism ¢ satisfies ¢(P 4+ Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.
The degree of a separable* isogeny is the size of its kernel.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.
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Isogenies (examples)

» given by rational functions.

» a group homomorphism.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is

Em] = Z/m x Z/m.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #2: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {¥¥=2"-3x+3}

over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique*
separable* isogeny ¢ : E — E’ with kernel G.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique*
separable* isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.
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One-wayness from isogenies

YR STORMCLOLDZ

EinbahnstraBe

LOvE
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One-wayness from isogenies

YR(STORMCLOLDZ

Keep in mind: Constructing isogenies E — _ is (usually) easy,
constructing an isogeny E — E’ given (E, E’) is (usually) hard.
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Isogeny-based key exchange: High-level view
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Isogeny-based key exchange: High-level view

©a E
E A
s
‘s
‘s
‘s
‘s
///
e 7
i *B
, 2
¥B s
td
‘s
‘s
L
g
L Eap
e
‘s
K
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,
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Isogeny-based key exchange: High-level view

E A E
A
T
///
///
Lo
g
(2 o
o B
et
¥B s
‘s
‘s
3
i
g
g
/::/ EAB
.
/‘;/ /
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds g : E4 — Eap, such that E4g = Ega.

18/43



How to find “parallel” isogenies?

E ©A E,

Eap

N\
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How to find “parallel” isogenies?

E o EL

s
©B
Eap
=z
Ep - Ega
YA
CSIDH'’s solution:

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) = Z/(p +1).
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) = Z/(p +1).

= For every ¢ | (p+ 1) exists a unique order-¢ subgroup H;,.

~+ For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.

20/ 43



/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- T e Eeé
Eer—l f
E / EgS
\ /
\

E"E[HEgzﬂEp
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eer—l f
E / EgS
i e
vk

E-’Ez—>E52—>E£3

» Fact: Each curve has only one other rational /-isogeny.
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What happens when we iterate such a “special” isogeny?

— T Eg
Eerfl f
E@/ P Ee
S
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

— T Eg
Eerfl f
E@/ P Ee
S

» Fact: Each curve has only one other rational /-isogeny.

I! Reverse arrows are unique; the “tail” E — E 3 cannot exist.

— The “special” isogenies ¢, form isogeny cycles!

21/43



7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

/%/” W/
E/

» Fact: ker(¢) o ¢;,) = ker(p,, 0 pr) = (ker @y, ker ¢),).
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

sﬂ’z/fElﬁ

. / 7111
f Ey
P /

|

» Fact: ker(‘sz 0 oy,) = ker (i, 0 pp) = (ker g, ker oy,).
!! The order cannot matter = cycles must be compatible.
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CSIDH in one slide

» Choose some small odd primes 41, ..., ¢,.

» Makesurep =4-/;---{, —11is prime.

» Let X = {y* =x>+Ax>+x supersingular with A € F, }.
» Look at the “special” /;-isogenies within X.
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CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y* = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
=5

U3 =
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CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y* = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
0 =
03 =

» Walking “left” and “right” on any /;-subgraph is efficient.
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Walking in the CSIDH graph (in SageMath)

'sage: E = EllipticCurve(GF(419%2), [1,0]) |
'sage: E \
'Elliptic Curve defined by y"2 = x*3 + x \

|

\ over Finite Field in z2 of size 419*2
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Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right"” step:
R break

(218 : 403 : 1)

invert
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Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right” step: invert
R break

sage: P

(218 : 403 : 1)

sage: P.order (). factor ()

2 * 3 % 7

sage: EE = E.isogeny_codomain(2x3%P) # "left"” 7-step

sage: EE

Elliptic Curve defined by y*2 = x*3 + 285%xx + 87
over Finite Field in z2 of size 419*2
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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CSIDH key exchange
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Action! W

Cycles are compatible: [right then left] = [left then right]
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Example: [+,+,—,—,—,+,—,—] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

(An action of a group (G, -) onaset Xisamap x: G x X = X
such thatid xx = xand g* (h+x) = (¢-h) *xforallg,h € Gand x € X.)

! We understand the structure: By complex-multiplication
theory, the quotient Z" /ker is the ideal-class group cl(Z[\/—p]).

!! This group characterizes when two paths lead to the same curve. ‘
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CSIDH: Where things stand

» Key sizes: Public keys are 4\ bits, where A is the classical
security level. (For A-bit quantum security, need ©()\?) bits.)

» Quantum security: Asymptotically exp((logp)'/?>+o)
due to Kuperberg’s quantum algorithm.

I Concrete security estimates vary wildly.

» Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

» New: “Clapoti” —a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action.

(Previously, only restricted sequences of operations were efficient.)
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SIDH/SIKE

...was another well-known isogeny-based key exchange scheme:
» The “isogeny poster child” from ~ 2011 to ~ 2022.
» Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.
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The SIDH /SIKE attacks

» Not a case of everyone overlooking something stupid.
» The attack uses an unexpected profound new technique.

» SIKE revealed how a secret isogeny acts on lots of points.

« T LS .
LPo P

This isogeny interpolation problem turns out to be easy!
(at least in some cases —it’s complicated, etc., etc.)

» It has since found groundbreaking constructive uses.

» The general isogeny problem is entirely unaffected!

~+ The best thing to ever happen to isogenies! s
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SoK: Isogeny problems

Is SIKE broken yet?

Schemes

Quantum e o oo Additional
Security Information

Key Exchange Comme:

KEM > Comment
Key Exchange Cos19 > Comment

Key Exchange, Non - o
Interactive Key - Comment
Exchange

Key Exchange, Non
Interactive Key 9 > Comment
Exchange

https://issikebrokenyet.github.io
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SQIsign: What?

Qs

https://sqisign.org

» A new and very hot post-quantum signature scheme.

» Based on a super cool part of number theory/geometry. >
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m —1).

(Here 7 is the Frobenius endomorphism m: (x,y) — (x*,y").)

I Over sz, we can have more endomorphisms.
Example: y* = x> + xhas¢: (x,y) = (—x,v/—1-y).

» Extremely non-obvious fact in this setting:

Every isogeny ¢: E — E’ comes from a subset I, C End(E).

2 We understand the structure of End(E).

= We understand how I,,, I, relate for isogenies ¢, : E — E'.
(NB: Same E’.)

34 /43



The Deuring correspondence

...1s the formal version of what I just said.

35/43



The Deuring correspondence

...1s the formal version of what I just said.

a priori

...is a strong connection between two'very different worlds:

35/43



The Deuring correspondence

...1s the formal version of what I just said.

a priori
...is a strong connection between two'very different worlds:

> Supersingular elliptic curves defined over F ..

35/43



The Deuring correspondence

...1s the formal version of what I just said.

a priori

%

...Is a strong connection between two'very different worlds:

> Supersingular elliptic curves defined over F ..

» Quaternions: Maximal orders in a certain algebra B .

35/43



The Deuring correspondence

...1s the formal version of what I just said.

a priori

%

...Is a strong connection between two'very different worlds:

> Supersingular elliptic curves defined over F ..

» Quaternions: Maximal orders in a certain algebra B .

Isogenies become “connecting ideals” in quaternion land.

35/43



The Deuring correspondence

...1s the formal version of what I just said.

a priori
...is a strong connection between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become “connecting ideals” in quaternion land.

Z One direction is easy, the other seems hard! ~+ Cryptography!
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The Deuring correspondence (examples)

Let p = 7799999 and let i,j satisfy i = —1, j? = —p, ji = —ij.

Thering Oy =Z @ Zi @ 21 ¢ 731
corresponds to the curve Eg: y? = x° + x.

Thering O = Z & Z4947i @ 7 271 g 7, P70100H]

corresponds to the curve Ey: 32 = x° + 1.

The ideal | = Z4947 & Z4947i & 2 2207 o 7 DA
defines an isogeny Eyg — Eq of degree 4947 = 3 -17 - 97.
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Signing with isogenies

» Fiat-Shamir: signature scheme from identification scheme.

AL > Ey
!
l
H
£ &
H B
l
v
E E
1 challenge 2

» Easy signature: E4 — Ey — E1 — Ey. Obuviously broken.

» SOQIsign’s solution: Construct new path E4 — Ej (using secret).

» It relies on an explicit form of the Deuring correspondence.
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SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.
+ ...but performance is getting better by the ~ week!
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SQIsign (original version): Numbers

sizes
parameter set public keys signatures
NIST-1 64 bytes 177 bytes
NIST-HI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU.
Optimizations are certainly possible and work in progress.

parameter set keygen signing verifying
NIST-I 3728 megacycles 5779 megacycles 108 megacycles
NIST-HI 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles

Source: https://sqisign.org
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SQIsign (original version): Comparison

+ Signature size (bytes)

M

200k —

+ I_I,I_\IIIH +

100k

20k_*. +

waf P 4

k= *F X
: +
-4 oo+ ¥
100= H
® X
- LA O O A | I I LI T N O B X | | I N R A |
100 200 1k 2% 10k 20k

Public key size (bytes) »

Source: https://pgshield.github.io/nist-sigs-zoo
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SQIsign2D-West: New and dramatically improved!

Table 1. Parameter sizes and performance of SQIsign2D-West. Average running times
computed using an Intel Xeon Gold 6338 (Ice Lake, 2GHz) using finite field arithmetic
optimised for the x64 architecture, turbo boost disabled. See Section 7 for details.

Sizes (bytes) Timings (ms)
Public key  Signature Keygen Sign Verify
NIST I 66 148 30 80 4.5
NIST III 98 222 85 230 14.5
NIST V 130 294 180 470 31.0
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SQIsign2D-West: New and dramatically improved!

Table 1. Parameter sizes and performance of SQIsign2D-West. Average running times
computed using an Intel Xeon Gold 6338 (Ice Lake, 2GHz) using finite field arithmetic
optimised for the x64 architecture, turbo boost disabled. See Section 7 for details.

Sizes (bytes) Timings (ms)
Public key  Signature Keygen Sign Verify
NIST I 66 148 30 80 4.5
NIST III 98 222 85 230 14.5
NIST V 130 294 180 470 31.0

» The ~ 10 x speedup over the original version of SQIsign
comes from the new tools underlying the SIKE attacks.
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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