The state of the isogeny

Lorenz Panny

Technische Universität München

Berlin Crypto Meetup, 23 September 2024

Big picture $\rho \rho$

• <u>Isogenies</u> are a type of maps between elliptic curves.

Big picture $\mathcal{P}\mathcal{P}$

- <u>Isogenies</u> are a type of maps between elliptic curves.
- Sampling an isogeny *from* some curve is easy, recovering an isogeny *between* given curves seems very hard.

Big picture $\rho \rho$

- ► <u>Isogenies</u> are a type of maps between elliptic curves.
- Sampling an isogeny *from* some curve is easy, recovering an isogeny *between* given curves seems very hard.

~ Cryptography!

Plan for this talk

- ► Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange 1976

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: ^{*a*} and ^{*b*} are commutative!

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

•••

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Is this a good idea?

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b</i> . Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

•••

Bob	<u>Attacker Eve</u>
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b</i> . Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

Effort for both: O(#G). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)

Bob computes his public key g^{13} from g.

multiply

Bob computes his public key g^{13} from g.

Square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key g^{13} from g.

Fast mixing: paths of length log(# nodes) to everywhere.

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

 \rightsquigarrow <u>New plan</u>: Get rid of the group, keep the graph.

Plan for this talk

- Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

Stand back!

We're going to do math.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$. A point on *E* is a solution (x, y), or the "fake" point ∞ .

E is an abelian group: we can "add" points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is

e of
$$(x, y)$$
 is $(x, -y)$.
 $f(x_1, y_1)$ and (x_2, y_2) is
$$\begin{pmatrix} a_0 & \mathbf{n}_{ot} \\ \delta h_{e_{S_e}} & \mathbf{n}_{o} \\ \delta h_{e_{S_e}} & \mathbf{n}_{o}$$

where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

Elliptic curves (picture over \mathbb{R})

The elliptic curve $y^2 = x^3 - x + 1$ over \mathbb{R} .

Elliptic curves (picture over \mathbb{R})

Addition law: $P + Q + R = \infty \iff \{P, Q, R\}$ on a straight line.

Elliptic curves (picture over \mathbb{R})

The *point at infinity* ∞ lies on every vertical line.

Elliptic curves (picture over \mathbb{F}_p)

The same curve $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .
Elliptic curves (picture over \mathbb{F}_p)

The <u>addition law</u> of $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

... are just fancily-named

nice maps

between elliptic curves.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

An isogeny of elliptic curves is a non-zero map *E* → *E*' that is:
given by rational functions.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where f, g are polynomials.

A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where f, g are polynomials. A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

The kernel of an isogeny $\varphi : E \to E'$ is $\{P \in E : \varphi(P) = \infty\}$. The degree of a separable^{*} isogeny is the size of its kernel.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #2:
$$(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve *E*' is denoted by E/G. (cf. quotient groups)

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

 \rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*. The curve *E'* is denoted by *E/G*. (cf. quotient groups)

 \rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

We have formulas to compute and evaluate isogenies.
 (...but they are only efficient for "small" degrees!)

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*. The curve *E'* is denoted by *E/G*. (cf. quotient groups)

- → To choose an isogeny, simply choose a finite subgroup.
 - We have formulas to compute and evaluate isogenies.
 (...but they are only efficient for "small" degrees!)
- → Decompose large-degree isogenies into prime steps. That is, walk in an isogeny graph.

One-wayness from isogenies

One-wayness from isogenies

<u>Keep in mind</u>: Constructing isogenies $E \rightarrow _$ is (usually) easy, constructing an isogeny $E \rightarrow E'$ given (E, E') is (usually) hard.

Plan for this talk

- ► Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

CSIDH ['sir,said]

A REAL PROPERTY &

[Castryck–Lange–Martindale–Panny–Renes 2018]

Ε

► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- ► Alice and Bob transmit the end curves *E*_{*A*} and *E*_{*B*}.

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_A and E_B .
- ► Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$,

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_A and E_B .
- ► Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$, such that $E_{AB} \cong E_{BA}$.

How to find "parallel" isogenies?

How to find "parallel" isogenies?

CSIDH's solution:

Use special isogenies φ_A which can be transported to the curve E_B totally independently of the secret isogeny φ_B . (Similarly with reversed roles, of course.)

"Special" isogenies

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

"Special" isogenies

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

 \Rightarrow For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} .

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

⇒ For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} . \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$. We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

⇒ For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} . \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$.

We consider prime ℓ and refer to φ_{ℓ} as a "special" isogeny.

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

► Fact: Each curve has only one other rational *l*-isogeny.

What happens when we iterate such a "special" isogeny?

- ► Fact: Each curve has only one other rational *l*-isogeny.
- **!!** Reverse arrows are unique; the "tail" $E \to E_{\ell^3}$ cannot exist.

What happens when we iterate such a "special" isogeny?

- ► Fact: Each curve has only one other rational *l*-isogeny.
- **!!** Reverse arrows are unique; the "tail" $E \to E_{\ell^3}$ cannot exist.
- \implies The "special" isogenies φ_{ℓ} form isogeny cycles!
What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

• Fact: $\ker(\varphi'_{\ell} \circ \varphi'_m) = \ker(\varphi_m \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_m \rangle.$

What happens when we compose those "special" isogenies?

► Fact: $\ker(\varphi'_{\ell} \circ \varphi'_m) = \ker(\varphi_m \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_m \rangle$. !! The order cannot matter \implies cycles must be compatible.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

• Walking "left" and "right" on any l_i -subgraph is efficient.

Walking in the CSIDH graph (in SageMath)

Walking in the CSIDH graph (in SageMath)

```
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
        over Finite Field in z2 of size 419^2
sage: while True:
\dots x = GF(419).random_element()
....: try:
              P = E.lift_x(x)
. . . . :
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
              break
. . . . :
. . . . :
sage: P
(218 : 403 : 1)
```

Walking in the CSIDH graph (in SageMath)

```
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
        over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element()
....: try:
              P = E.lift_x(x)
. . . . :
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
             break
. . . . :
sage: P
(218 : 403 : 1)
sage: P.order().factor()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285 \times x + 87
        over Finite Field in z2 of size 419^2
```


Cycles are compatible: [right then left] = [left then right]

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set *X* is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set *X* is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

!! We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n /ker is the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set *X* is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

!! We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n /ker is the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

!! This group characterizes when two paths lead to the same curve.

► <u>Key sizes</u>: Public keys are 4λ bits, where λ is the *classical* security level. (For λ-bit *quantum* security, need Θ(λ²) bits.)

- <u>Key sizes</u>: Public keys are 4λ bits, where λ is the *classical* security level. (For λ-bit *quantum* security, need Θ(λ²) bits.)
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.

1 Concrete security estimates vary wildly.

- ► <u>Key sizes</u>: Public keys are 4λ bits, where λ is the *classical* security level. (For λ-bit *quantum* security, need Θ(λ²) bits.)
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.

Concrete security estimates vary wildly.

► <u>Performance</u>: Some tens of milliseconds per group-action evaluation at the 128-bit *classical* security level.

- ► <u>Key sizes</u>: Public keys are 4λ bits, where λ is the *classical* security level. (For λ-bit *quantum* security, need Θ(λ²) bits.)
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.

Concrete security estimates vary wildly.

- ► <u>Performance:</u> Some tens of milliseconds per group-action evaluation at the 128-bit *classical* security level.
- <u>New:</u> "Clapoti" a polynomial-time algorithm for arbitrary combinations of operations in the group and evaluations of the action. (Previously, only restricted sequences of operations were efficient.)

Plan for this talk

- Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

SIDH/SIKE

SIDH/SIKE

...was another well-known isogeny-based key exchange scheme:

- The "isogeny poster child" from \approx 2011 to \approx 2022.
- ► Part of NISTPQC, which found no security flaws.

...was another well-known isogeny-based key exchange scheme:

- The "isogeny poster child" from \approx 2011 to \approx 2022.
- ► Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.

• <u>Not</u> a case of everyone overlooking something stupid.

- <u>Not</u> a case of everyone overlooking something stupid.
- The attack uses an unexpected profound new technique.

- <u>Not</u> a case of everyone overlooking something stupid.
- The attack uses an unexpected profound new technique.
- ► SIKE revealed how a secret isogeny acts on lots of points.

- <u>Not</u> a case of everyone overlooking something stupid.
- The attack uses an unexpected profound new technique.
- ► SIKE revealed how a secret isogeny acts on lots of points.

This **isogeny interpolation** problem turns out to be **easy!** (at least in some cases—it's complicated, etc., etc.)

- <u>Not</u> a case of everyone overlooking something stupid.
- ► The attack uses an unexpected profound new technique.
- ► SIKE revealed how a secret isogeny acts on lots of points.

This **isogeny interpolation** problem turns out to be **easy!** (at least in some cases—it's complicated, etc., etc.)

- ► It has since found groundbreaking constructive uses.
- The general isogeny problem is entirely unaffected!

- <u>Not</u> a case of everyone overlooking something stupid.
- ► The attack uses an unexpected profound new technique.
- ► SIKE revealed how a secret isogeny acts on lots of points.

This **isogeny interpolation** problem turns out to be **easy!** (at least in some cases—it's complicated, etc., etc.)

- ► It has since found groundbreaking constructive uses.
- The general isogeny problem is entirely unaffected!
- \rightsquigarrow The <u>best thing</u> to ever happen to isogenies!

SoK: Isogeny problems

Is SIKE broken yet?

Home Abou

Schemes

Name	Туре	Classical Security	Quantum Security	References	Additional Information
SIDH	Key Exchange			J <u>DF11 DJP14</u> CLN16	Comment
SIKE	КЕМ				▷ Comment
B-SIDH	Key Exchange			<u>Cos19</u>	▷ Comment
CRS	Key Exchange, Non Interactive Key Exchange			<u>Cou06 RS06</u> DKS18	▷ Comment
CSIDH	Key Exchange, Non Interactive Key Exchange	exp(n) ^{1/2}	<u>L(1/2)</u>	<u>CL+18 CD19</u>	▷ Comment

https://issikebrokenyet.github.io

Plan for this talk

- Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- A new and very hot post-quantum signature scheme.
- ► Based on a super cool part of number theory/geometry. ::

• Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota : (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

Every isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \text{End}(E)$.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

<u>Every</u> isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \operatorname{End}(E)$.

 \because We understand the structure of End(E).

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

Every isogeny $\varphi \colon E \to E'$ comes from a subset $I_{\varphi} \subseteq \text{End}(E)$.

- \because We understand the structure of End(E).
- \because We understand how I_{φ}, I_{ψ} relate for isogenies $\varphi, \psi \colon E \to E'$. (NB: Same E'.)

... is the formal version of what I just said.

... is the formal version of what I just said.

...is a strong connection between two^Yvery different worlds:

... is the formal version of what I just said.

... is a strong connection between two $\dot{\gamma}$ very different worlds:

a priori

• Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

... is the formal version of what I just said.

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

... is the formal version of what I just said.

...is a strong connection between two^Yvery different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

... is the formal version of what I just said.

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

∵ One direction is easy, the other seems hard! ~→ *Cryptography*!

The Deuring correspondence (examples)

Let p = 7799999 and let **i**, **j** satisfy $i^2 = -1$, $j^2 = -p$, ji = -ij.

The ring $\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{1+\mathbf{i}\mathbf{j}}{2}$ corresponds to the curve $E_0: y^2 = x^3 + x$.

The ring $\mathcal{O}_1 = \mathbb{Z} \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+32631010\mathbf{i}+\mathbf{ij}}{9894}$ corresponds to the curve $E_1: y^2 = x^3 + 1$.

The ideal $I = \mathbb{Z} 4947 \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{598+4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+598\mathbf{i}+\mathbf{i}\mathbf{j}}{2}$ defines an isogeny $E_0 \to E_1$ of degree $4947 = 3 \cdot 17 \cdot 97$.

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

 $E_0 \xrightarrow{secret} E_A$

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

• Easy signature: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. Obviously broken.

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

- ► Easy signature: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- **SQIsign's** solution: Construct new path $E_A \rightarrow E_2$ (using secret).

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

- ► Easy signature: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- **SQIsign's** solution: Construct new path $E_A \rightarrow E_2$ (using secret).
- ► It relies on an explicit form of the Deuring correspondence.

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

SQIsign (original version): Numbers

sizes

parameter set	public keys	signatures	
NIST-I	64 bytes	177 bytes	
NIST-III	96 bytes	263 bytes	
NIST-V	128 bytes	335 bytes	

performance

Cycle counts for a *generic C implementation* running on an Intel *Ice Lake* CPU. Optimizations are certainly possible and work in progress.

parameter set	keygen	signing	verifying
NIST-I	3728 megacycles	5779 megacycles	108 megacycles
NIST-III	23734 megacycles	43760 megacycles	654 megacycles
NIST-V	91049 megacycles	158544 megacycles	2177 megacycles

Source: https://sqisign.org

SQIsign (original version): Comparison

Source: https://pqshield.github.io/nist-sigs-zoo
SQIsign2D-West: New and dramatically improved!

Table 1. Parameter sizes and performance of SQIsign2D-West. Average running times computed using an Intel Xeon Gold 6338 (Ice Lake, 2GHz) using finite field arithmetic optimised for the x64 architecture, turbo boost disabled. See Section 7 for details.

	Sizes (bytes)		Timings (ms)		
	Public key	Signature	Keygen	Sign	Verify
NIST I	66	148	30	80	4.5
NIST III	98	222	85	230	14.5
NIST V	130	294	180	470	31.0

SQIsign2D-West: New and dramatically improved!

Table 1. Parameter sizes and performance of SQIsign2D-West. Average running times computed using an Intel Xeon Gold 6338 (Ice Lake, 2GHz) using finite field arithmetic optimised for the x64 architecture, turbo boost disabled. See Section 7 for details.

	Sizes (bytes)		Timings (ms)		
	Public key	Signature	Keygen	Sign	Verify
NIST I	66	148	30	80	4.5
NIST III	98	222	85	230	14.5
NIST V	130	294	180	470	31.0

► The ≈ 10 × speedup over the original version of SQIsign comes from the new tools underlying the SIKE attacks.

Plan for this talk

- Some high-level intuition.
- Elliptic curves & isogenies.
- The CSIDH non-interactive key exchange.
- ► The SIKE attacks.
- The SQIsign signature scheme.

Questions?

(Also feel free to email me: lorenz@yx7.cc)