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...was a well-known isogeny-based key exchange scheme:
» The “isogeny poster child” from ~ 2011 to ~ 2022.
» Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.
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The SIDH /SIKE attacks

» Not a case of everyone overlooking something stupid.
» The attack uses an unexpected profound new technique.

» SIKE revealed how a secret isogeny acts on lots of points.

« T LS .
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This isogeny interpolation problem turns out to be easy!
(at least in some cases —it’s complicated, etc., etc.)

» It has since found groundbreaking constructive uses.

» The general isogeny problem is entirely unaffected!

~+ The best thing to ever happen to isogenies! s
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Isogeny-based key exchange: High-level view
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» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds g : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?
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SIKE’s solution:
The isogeny 5 is a group homomorphism! (and A N B = {oc})

5/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

6/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

p v5(P)

6/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

P v5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.

6/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

P v5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢ (P) and ¢3(Q) in his public key.

6/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

P v5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢ (P) and ¢3(Q) in his public key.

—> Now Alice can compute A" = pp(A) as (pg(P) + [a]¢s(Q)).
(Similarly for Bob.)

6/32



How to find “parallel” isogenies?

SIKE’s solution:
The isogeny ¢p is a group homomorphism! (and AN B = {oc})

Q v5(Q)

P v5(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢ (P) and ¢3(Q) in his public key.

—> Now Alice can compute A" = pp(A) as (pg(P) + [a]¢s(Q)).
(Similarly for Bob.)

1. This reveals the restriction of ¢ to (P, Q)!

(~ Two-dimensional discrete-logarithm computation modulo deg(pa), which is smooth.)
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Higher-dimensional isogenies

Main technique underlying attack:

Computing isogenies between
products of elliptic curves

» The product E x E’ is an abelian surface.
Compare: A product of two lines is a plane!

» Similar to elliptic curves in many ways:

» Points form an abelian group.
» Similar group structure, but more components.
» Can define isogenies from kernel subgroups.
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Kani’s lemma

Kani (1997): Under which circumstances does an isogeny
E x E” — __ lead to another product E’ x E"?
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Kani’s lemma

Kani (1997): Under which circumstances does an isogeny
E x E” — __ lead to another product E’ x E"?

? Generic case: Codomain is a Jacobian of a genus-2 curve.

II' “Kani” case: Codomain is a product of two elliptic curves.
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The embedding lemma
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The embedding lemma

» Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

2.1. The embedding lemma. If &, a5 are two endomorphisms of an elliptic curve E of
degree a, and a,, then oy o a, is of degree a;a4,. However it is harder to control the degree
of the sum; by Cauchy-Schwartz we can bound it as: (a%”2 — a;/Z)z < deg(ag + ap) <
(a}"z + a;fz)z (unless 4y = —a5). And &y + a; is of degree a; + a5 if and only if #1 &, is of
trace 0.

If &, commutes with @, we can instead use Kanis lemma [Kangy, § 2] to build an
endomorphism F in dimension 2 on E? which is an (a; + a,)-isogeny (so is of degree
(a1 + a,)? since we are in dimension 2). So by going to higher dimension we can combine
degrees additively. The proof of this lemma is very simple (a simple two by two matrix
computation), but its powerful algorithmic potential went unnoticed until Castrick and
Decru applied it in [CD22] to attack on SIDH.

— Damien Robert [ePrint 2022/1704]
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The embedding lemma

Consider a commutative diagram of isogenies

E—2 L F
% lw’
E// ) El//

%}

where g := deg ¢ and b := deg are coprime, and let N :=a + b.
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The embedding lemma

Consider a commutative diagram of isogenies

E—2 L F
% Jw’
E// ) E///

%}

where g := deg ¢ and b := deg are coprime, and let N :=a + b.

Lemma. Then

@ = (—@w :g) (P,Q) = (¢(P) +#(Q), ~¥(P) +F(Q)

defines an N-isogeny E x E” — E’' x E".
Its kernel is ker(®) = {(3(T),¢'(T)) | T € E'[N] }.
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The HD representation

...1s an efficient representation of any (/)
isogeny between two elliptic curves.

(Recall: Using Vélu/+/&lu techniques, only smooth-degree isogenies are efficient.)

£

£ Simply encode y: E — E’ as a higher-dimensional isogeny

AI
@::(‘P 7f>:13><E”’—>E’><E”.
- ¢

~ Issue: Need to find suitable . Not always easy/possible!

~+ For full generality, need to embed in even higher dimension.
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The full HD representation
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& Every E x E x E x E has an endomorphism of any degree.

(Proof: Sum-of-four-squares theorem + quaternions! )
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4‘% Every E x E x E x E has an endomorphism of any degree.

(Proof: Sum-of-four-squares theorem + quaternions! )

~~ The endomorphism of E* x E"* given by
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is an N-isogeny, where N = deg(y) + 2 + 1% + 0% + w?.
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@% Every E x E x E x E has an endomorphism of any degree.

(Proof: Sum-of-four-squares theorem + quaternions! )

~~ The endomorphism of E* x E"* given by

fu v wl—-p 0 0 0
~u t—w v|0 —p 0 0
v ow t —ul 0 0 —p 0
—w-v u t{0 0 0 —p
¢ 0 0 O —u—v-—w
0 ¢ 0 0| u  w —t
0 0 ¢ 0] ¢ w t u
0 0 0 | w o —u tft

is an N-isogeny, where N = deg(y) + 2 + 1% + 0% + w?.
2 It can be explicitly computed from knowledge of o|g|y]-

1. Requires isogeny formulas for principally polarized abelian varieties of
dimension > 2. Highly non-trivial matter, but doable and efficient once 3.

14 /32



Plan for this talk

The SIKE attacks. \/

Transcending to higher dimensions. v

v

v

v

Isogeny group actions (+ HD).

v

Signatures from isogenies (+ HD).

15/32



Recap: CSIDH

Recall (~ Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
¢-isogeny steps for small /.

16 /32



Recap: CSIDH

Recall (&~ Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
¢-isogeny steps for small /.

This is good enough for DH-style key exchange, but to get an
unrestricted effective group action, we need more.

16 /32



Recap: CSIDH

Recall (~ Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
¢-isogeny steps for small /.

This is good enough for DH-style key exchange, but to get an
unrestricted effective group action, we need more.

Recall (¢~ Tuesday):

Isogeny paths leading to the same curve are characterized by
the class group cl(O) where O = Z[rn] = Z[,/=p].
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The basic problem with the basic strategy

Issue:

» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~» Cost of evaluating after k operations is O(exp(k)).

» Representing cl(O) as reduced ideals allows computing in

cl(O) efficiently, but evaluation becomes superpolynomial.

~+ A priori not an effective group action when done either way!

17/32



The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

The strategy to act by a given, arbitrarily long and ugly exponent vector v € Zd consists of the following steps:

1. "Computing_the class group": Find a basis of the relation lattice A C Zd with respect to [1,...,[,1.
[Classically subexponential-time, quantumly polynomial-time. Precomputation.]

2. "Lattice reduction": Prepare a "good" basis of A using a lattice-reduction algorithm such as BKZ.
[Configurable complexity-quality tradeoff by varying the block size. Precomputation.]

3. "Approximate CVP": Obtain a vector w € A such that ”E*EHI is "small", using the reduced basis.
[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of (i-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html
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3. "Approximate CVP": Obtain a vector w € A such that ”E*EHI is "small", using the reduced basis.

[Polynomial-time, but the quality depends on the quality of step 2.]

4. "Isogeny steps": Evaluate the action of the vector v —w € Zd as a sequence of (i-steps.

[Complexity depends entirely on the output quality of step 3.]

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?
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Tradeoff: Lattice part vs. isogeny part

» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.
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Tradeoff: Lattice part vs. isogeny part

» By increasing the number n of ideals [;, we can trade off
some “isogeny effort” for “lattice effort”.

~+ Sweet spot: Minimize total cost.

. . ' . .
CSI-F1iSh really 1sn't polynomial-time

It is fairly well-known that CSIDH' in its basic form is merely a restricted effective
group action G X X — X: There is a small number of group elements [1,...,[; € G whose
action can be applied to arbitrary elements of X efficiently, but applying other elements
(say, large products [;31 [Zd of the [i) quickly becomes infeasible as the exponents grow.

The only known method to circumvent this issue consists of a folklore strategy first
employed in practice by the signature scheme CSI-FiSh. The core of the technique is to
rewrite any given group element as a short product combination of the [;, whose action can
then be computed in the usual way much more affordably. (Notice how this is philosophically
similar to the role of the square-and-multiply algorithm in discrete-logarithm land!)

The main point of this post is to remark that this approach is not asymptotically
efficient, even when a quantum computer can be used, contradicting a false belief that
appears to be rather common among isogeny aficionados.

« Classically: Evaluation LP[I/Z]. Attack Lp[l]‘
N
« Quantumly: Evaluation Lp[l/?)}. Attack Lp[l/z].

https://yx7.cc/blah/2023-04-14.html
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Alternative approach: Clapoti (Page-Robert 2023)

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
(That is, solve f (x1,11) + f(x2,2) = N over Z where f is a binary quadratic form.)
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» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).
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» Kani: This gives an N-isogeny
¢:EXE—EixEg, _ R
(P,Q) = (¢6(P) + ¢e(Q), —¢c(P) + ¢(Q)) -
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» Issue: Evaluating this formula seems to require a-priori
knowledge of ¢y, 1.

/" The kernel is equal to the alternative description
ker(®) = {([norm(b)|R,7(R)) | R € E[N]}
where v € End(E) is a generators of the principal ideal br.

Doing all this in dimension 8 instead of 2, as before.

by

The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

— Isogenies yield true effective group actions, at last!

21/32



Efficient in theory and practice: PEGASIS

PEGASIS: Practical Effective Class Group
Action using 4-Dimensional Isogenies

Pierrick Dartois!2, Jonathan Komada Eriksen®, Tako Boris Fouotsa®, Arthur
Herlédan Le Merdy?, Riccardo Invernizzi®, Damien Robert™?2, Ryan Rueger®”,
Frederik Vercauteren® and Benjamin Wesolowski*
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Polynomial-time group action: PEGASIS

PEGASIS applies Clapoti in dimension 4 to essentially
the CSIDH construction (but with p = f - 2° — 1 where f is small).
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Polynomial-time group action: PEGASIS

PEGASIS applies Clapoti in dimension 4 to essentially
the CSIDH construction (but with p = f - 2° — 1 where f is small).

The results of our SageMath 10.5 implementation can be found in Table 2;
timings for each steps are in seconds, and are obtained by averaging 100 runs on
an Intel Core i5-1235U clocked at 4.0 GHz.

Parameter set Step 1 Step 2 Step 3 Tot. Time

500 0.097 s 0.48 s 0.96 s 1.53s
1000 0.21s 1.16 s 2.84s 4.21s
1500 1.19s 2.85 s 6.49 s 10.5 s
2000 1.68 s 8.34s 113 s 21.3 s
4000 15.6 s 52.8 s 53.5 s 122 s

Table 2. SageMath 10.5 timings on Intel Core i5-1235U at 4.0 GHz, where s denotes
the number of seconds in wall-clock time. Step 1 is the time used to solve the norm
equation, Step 2 is the time used to derive the kernel of the dimension 4 isogeny, and
Step 3 is the time used to compute the dimension 4 isogeny.
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Plan for this talk

The SIKE attacks. \/

Transcending to higher dimensions. v

v

v

Isogeny group actions (+ HD). v

v

v

Signatures from isogenies (+ HD).
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SQIsign (current version): Dramatically improved!

» A > 20 x speedup over the original version of SQIsign
coming from the new tools underlying the SIKE attacks.

» Also, it has even smaller signatures.
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SQIsign (current version): Dramatically improved!

» A > 20 x speedup over the original version of SQIsign
coming from the new tools underlying the SIKE attacks.

» Also, it has even smaller signatures.

Main idea (from “SQisign[H2]D” papers): Use HD representation.
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core properties

+ Very compact keys and signatures.

SQIsign (current version): Numbers

+ Confident tuning of security parameters.

+ No longer slow!
- A complex signing procedure.
¥ The coolest team!

-- sizes --
parameter set public keys signatures
NIST -1 65 bytes 148 bytes
NIST - m 97 bytes 224 bytes
NIST - V 129 bytes 292 bytes

-- performance --

Cycle counts for an optimized implementation using platform-specific assembly running

on an Intel Raptor Lake CPU:

signing

verifying
5.1 megacycles

parameter set keygen
NIST -1 43.3 megacycles
NIST - m 134.0 megacycles
NIST - V 212.0 megacycles

101.6 megacycles
309.2 megacycles
507.5 megacycles

18.6 megacycles
35.7 megacycles

Source: https://sqisign.org (2025-?)



https://sqisign.org

SQIsign (current version): Comparison

+ Signature size (bytes)

- +
50k — +
40k = * * }

a + +
30k B
e 3;¥ +‘++ +
ot *:ﬁ% T+
Ry +
10k = 'H' =+
+ + +
ﬂ% + 14 +
*
4k =+
ok *
* +
2%k- +
k *+ il
s +
- +
z * + + +
500 = ++ + +
400 - + +++ :
7 47 e + + i - +
200 = + + -’—|-+ + +
i + +
lﬂ(]: + + +
iuunuuum ay 4 [NERRIYN e [ Y |

M
Public key size (bytes) >

Source: https://pgshield.github.io/nist-sigs-zoo
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https://pqshield.github.io/nist-sigs-zoo

SQIsign (current version): Security

Just as before, we require two main properties:
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SQIsign (current version): Security

Just as before, we require two main properties:

» Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ~ Same reasoning as before.

» Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult... ~

27 /32



Signing with isogenies —another way

Issue: Original security proofs for HD variants of SQlsign
require access to an oracle for producing random isogenies
of bounded degrees.
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Signing with isogenies —another way

Issue: Original security proofs for HD variants of SQlsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man'’s treasure.”

PRISM builds a two-round identification scheme as follows:

» Public key: Random supersingular elliptic curve E;
prover knows a secret isogeny Ey — E.

» Challenge: A large prime g.

» Response: Anisogeny ¢: E — _of degree .
How? Create HD representation of ¢ using knowledge of End(E)!
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PRISM: Parameters

Protocol This Work SQIsi(g;H SQIsign2D-East SQIsign2D-West SQIPrime
Sig. size (bits) 12X ~11A 12X 9\ 19X

Table 3. Signature sizes for the signature scheme given in this work, SQIsign, and its
most efficient variants.
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PRISM: Parameters

Protocol This Work SQIsi(g;H SQIsign2D-East SQIsign2D-West SQIPrime
Sig. size (bits) 12X ~11A 12X 9\ 19X

Table 3. Signature sizes for the signature scheme given in this work, SQIsign, and its
most efficient variants.

Table 5. Run time comparison in millions of clockcycles between our signature scheme
and SQIsign2D-West at NIST-I security, with optimized finite field arithmetic. Average
run time over 100 iterations on an Intel Core i7 at 2.30 GHz with turbo-boost disabled.

KeyGen 77.4
SQIsign2D-West ~ Sign  285.7
Verify 11.9
KeyGen 78.2
This work Sign  157.6
Verify  16.9
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Plan for this talk

The SIKE attacks. \/

>

» Transcending to higher dimensions. v
» Isogeny group actions (+ HD). v

» Signatures from isogenies (+ HD). v

30/32



Ad break

CRYPTOHACK

A fun, free platform for learning modern cryptography

https://cryptohack.org
(There is an isogeny category!!)

31/32


https://cryptohack.org

Questions?

lorenz@yx7.cc

32/32



