
Advances in isogeny-based cryptography

Lorenz Panny

Technische Universität München

PQCSA summer school “PQC fundamentals”,
Albena, 20 June 2025

Plan for this talk

▶ The SIKE attacks.
▶ Transcending to higher dimensions.

▶ Isogeny group actions (+ HD).

▶ Signatures from isogenies (+ HD).

1 / 32

SIDH/SIKE

2 / 32

SIDH/SIKE

2 / 32

SIDH/SIKE

...was a well-known isogeny-based key exchange scheme:
▶ The “isogeny poster child” from ≈ 2011 to ≈ 2022.
▶ Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.

2 / 32

SIDH/SIKE

...was a well-known isogeny-based key exchange scheme:
▶ The “isogeny poster child” from ≈ 2011 to ≈ 2022.
▶ Part of NISTPQC, which found no security flaws.

It was catastrophically broken in 2022.

2 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.

▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.
▶ The attack uses an unexpected profound new technique.

▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.
▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.
▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.
▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

The SIDH/SIKE attacks

▶ Not a case of everyone overlooking something stupid.
▶ The attack uses an unexpected profound new technique.
▶ SIKE revealed how a secret isogeny acts on lots of points.

P0

Q0

P

Q

φ

This isogeny interpolation problem turns out to be easy!
(at least in some cases — it’s complicated, etc., etc.)

▶ It has since found groundbreaking constructive uses.
▶ The general isogeny problem is entirely unaffected!

⇝ The best thing to ever happen to isogenies!

3 / 32

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E → EA and φB : E → EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

4 / 32

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

5 / 32

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

5 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.

▶ Bob includes φB(P) and φB(Q) in his public key.
=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.

(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

How to find “parallel” isogenies?

SIKE’s solution:
The isogeny φB is a group homomorphism! (and A ∩ B = {∞})

P

Q

A

φB(P)

φB(Q)

A′φB

▶ Alice picks A as ⟨P + [a]Q⟩ for fixed public P,Q ∈ E.
▶ Bob includes φB(P) and φB(Q) in his public key.

=⇒ Now Alice can compute A′ = φB(A) as ⟨φB(P) + [a]φB(Q)⟩.
(Similarly for Bob.)

This reveals the restriction of φB to ⟨P,Q⟩!
(⇝ Two-dimensional discrete-logarithm computation modulo deg(φA), which is smooth.)

6 / 32

Higher-dimensional isogenies

Main technique underlying attack:

Computing isogenies between
products of elliptic curves

▶ The product E × E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

7 / 32

Higher-dimensional isogenies

Main technique underlying attack:

Computing isogenies between
products of elliptic curves

▶ The product E × E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

7 / 32

Higher-dimensional isogenies

Main technique underlying attack:

Computing isogenies between
products of elliptic curves

▶ The product E × E′ is an abelian surface.
Compare: A product of two lines is a plane!

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

7 / 32

Kani’s lemma

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

? Generic case: Codomain is a Jacobian of a genus-2 curve.

!! “Kani” case: Codomain is a product of two elliptic curves.

8 / 32

Kani’s lemma

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

? Generic case: Codomain is a Jacobian of a genus-2 curve.

!! “Kani” case: Codomain is a product of two elliptic curves.

8 / 32

Kani’s lemma

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

? Generic case: Codomain is a Jacobian of a genus-2 curve.

!! “Kani” case: Codomain is a product of two elliptic curves.

8 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.

Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

The Castryck–Decru attack

Kani (1997): Under which circumstances does an isogeny
E × E′′′ → __ lead to another product E′ × E′′?

Castryck–Decru (2022): Kani’s criterion can be used to
check whether SIDH public keys are valid.

+ known reduction from private-key search to public-key validation

+ later generalizations & improvements (Maino–Martindale, Wesolowski, Robert, etc.)

⇝ Unconditional polynomial-time attack.
Original Magma attack code breaks SIKEp751 in < 21 hours on a single laptop core.
Subsequent SageMath implementation (Pope–Oudompheng–...) takes < 2 hours.

The attack crucially depends on knowing φB(P), φB(Q).

⇝

:) The general isogeny problem is entirely unaffected!

9 / 32

Plan for this talk

▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions.

▶ Isogeny group actions (+ HD).

▶ Signatures from isogenies (+ HD).

10 / 32

The embedding lemma

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

— Damien Robert [ePrint 2022/1704]

11 / 32

The embedding lemma

▶ Fallout from the SIDH attack: New tools.
“One man’s a-ttack is another man’s a-treasure.”

— Damien Robert [ePrint 2022/1704]

11 / 32

The embedding lemma

Consider a commutative diagram of isogenies

E E′

E′′ E′′′

φ

ψ ψ′

φ′

where a := degφ and b := degψ are coprime, and let N := a + b.

Lemma. Then

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: (P,Q) 7→

(
φ(P)+ ψ̂′(Q),−ψ(P)+ φ̂′(Q)

)
defines an N-isogeny E × E′′′ → E′ × E′′.

Its kernel is ker(Φ) =
{
(φ̂(T), ψ′(T)) | T ∈ E′[N]

}
.

12 / 32

The embedding lemma

Consider a commutative diagram of isogenies

E E′

E′′ E′′′

φ

ψ ψ′

φ′

where a := degφ and b := degψ are coprime, and let N := a + b.

Lemma. Then

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: (P,Q) 7→

(
φ(P)+ ψ̂′(Q),−ψ(P)+ φ̂′(Q)

)
defines an N-isogeny E × E′′′ → E′ × E′′.

Its kernel is ker(Φ) =
{
(φ̂(T), ψ′(T)) | T ∈ E′[N]

}
.

12 / 32

The HD representation

...is an efficient representation of any (!)
isogeny between two elliptic curves.

(Recall: Using Vélu/
√

élu techniques, only smooth-degree isogenies are efficient.)

Simply encode φ : E → E′ as a higher-dimensional isogeny

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: E × E′′′ → E′ × E′′ .

:(Issue: Need to find suitable ψ. Not always easy/possible!

⇝ For full generality, need to embed in even higher dimension.

13 / 32

The HD representation

...is an efficient representation of any (!)
isogeny between two elliptic curves.

(Recall: Using Vélu/
√

élu techniques, only smooth-degree isogenies are efficient.)

Simply encode φ : E → E′ as a higher-dimensional isogeny

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: E × E′′′ → E′ × E′′ .

:(Issue: Need to find suitable ψ. Not always easy/possible!

⇝ For full generality, need to embed in even higher dimension.

13 / 32

The HD representation

...is an efficient representation of any (!)
isogeny between two elliptic curves.

(Recall: Using Vélu/
√

élu techniques, only smooth-degree isogenies are efficient.)

Simply encode φ : E → E′ as a higher-dimensional isogeny

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: E × E′′′ → E′ × E′′ .

:(Issue: Need to find suitable ψ. Not always easy/possible!

⇝ For full generality, need to embed in even higher dimension.

13 / 32

The HD representation

...is an efficient representation of any (!)
isogeny between two elliptic curves.

(Recall: Using Vélu/
√

élu techniques, only smooth-degree isogenies are efficient.)

Simply encode φ : E → E′ as a higher-dimensional isogeny

Φ :=

(
φ ψ̂′

−ψ φ̂′

)
: E × E′′′ → E′ × E′′ .

:(Issue: Need to find suitable ψ. Not always easy/possible!

⇝ For full generality, need to embed in even higher dimension.

13 / 32

The full HD representation

Every E × E × E × E has an endomorphism of any degree.
(Proof: Sum-of-four-squares theorem + quaternions! :))

⇝ The endomorphism of E4 × E′4 given by

t u v w −φ̂ 0 0 0
−u t −w v 0 −φ̂ 0 0
−v w t −u 0 0 −φ̂ 0
−w −v u t 0 0 0 −φ̂

φ 0 0 0 t −u −v −w
0 φ 0 0 u t w −v
0 0 φ 0 v −w t u
0 0 0 φ w v −u t

is an N-isogeny, where N = deg(φ) + t2 + u2 + v2 + w2.

:) It can be explicitly computed from knowledge of φ|E[N].

Requires isogeny formulas for principally polarized abelian varieties of
dimension > 2. Highly non-trivial matter, but doable and efficient once ∃.

14 / 32

The full HD representation

Every E × E × E × E has an endomorphism of any degree.
(Proof: Sum-of-four-squares theorem + quaternions! :))

⇝ The endomorphism of E4 × E′4 given by

t u v w −φ̂ 0 0 0
−u t −w v 0 −φ̂ 0 0
−v w t −u 0 0 −φ̂ 0
−w −v u t 0 0 0 −φ̂

φ 0 0 0 t −u −v −w
0 φ 0 0 u t w −v
0 0 φ 0 v −w t u
0 0 0 φ w v −u t

is an N-isogeny, where N = deg(φ) + t2 + u2 + v2 + w2.

:) It can be explicitly computed from knowledge of φ|E[N].

Requires isogeny formulas for principally polarized abelian varieties of
dimension > 2. Highly non-trivial matter, but doable and efficient once ∃.

14 / 32

The full HD representation

Every E × E × E × E has an endomorphism of any degree.
(Proof: Sum-of-four-squares theorem + quaternions! :))

⇝ The endomorphism of E4 × E′4 given by

t u v w −φ̂ 0 0 0
−u t −w v 0 −φ̂ 0 0
−v w t −u 0 0 −φ̂ 0
−w −v u t 0 0 0 −φ̂

φ 0 0 0 t −u −v −w
0 φ 0 0 u t w −v
0 0 φ 0 v −w t u
0 0 0 φ w v −u t

is an N-isogeny, where N = deg(φ) + t2 + u2 + v2 + w2.

:) It can be explicitly computed from knowledge of φ|E[N].

Requires isogeny formulas for principally polarized abelian varieties of
dimension > 2. Highly non-trivial matter, but doable and efficient once ∃.

14 / 32

The full HD representation

Every E × E × E × E has an endomorphism of any degree.
(Proof: Sum-of-four-squares theorem + quaternions! :))

⇝ The endomorphism of E4 × E′4 given by

t u v w −φ̂ 0 0 0
−u t −w v 0 −φ̂ 0 0
−v w t −u 0 0 −φ̂ 0
−w −v u t 0 0 0 −φ̂

φ 0 0 0 t −u −v −w
0 φ 0 0 u t w −v
0 0 φ 0 v −w t u
0 0 0 φ w v −u t

is an N-isogeny, where N = deg(φ) + t2 + u2 + v2 + w2.

:) It can be explicitly computed from knowledge of φ|E[N].

Requires isogeny formulas for principally polarized abelian varieties of
dimension > 2. Highly non-trivial matter, but doable and efficient once ∃.

14 / 32

Plan for this talk

▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions. ✓
▶ Isogeny group actions (+ HD).

▶ Signatures from isogenies (+ HD).

15 / 32

Recap: CSIDH

Recall (⇝Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
ℓ-isogeny steps for small ℓ.

This is good enough for DH-style key exchange, but to get an
unrestricted effective group action, we need more.

Recall (⇝Tuesday):
Isogeny paths leading to the same curve are characterized by
the class group cl(O) where O = Z[π] ∼= Z[√−p].

16 / 32

Recap: CSIDH

Recall (⇝Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
ℓ-isogeny steps for small ℓ.

This is good enough for DH-style key exchange, but to get an
unrestricted effective group action, we need more.

Recall (⇝Tuesday):
Isogeny paths leading to the same curve are characterized by
the class group cl(O) where O = Z[π] ∼= Z[√−p].

16 / 32

Recap: CSIDH

Recall (⇝Tuesday):
In CSIDH, we can (only) act efficiently by “left” and “right”
ℓ-isogeny steps for small ℓ.

This is good enough for DH-style key exchange, but to get an
unrestricted effective group action, we need more.

Recall (⇝Tuesday):
Isogeny paths leading to the same curve are characterized by
the class group cl(O) where O = Z[π] ∼= Z[√−p].

16 / 32

The basic problem with the basic strategy

Issue:

▶ Representing cl(O) by the group (Zn,+) of exponents
makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

⇝ A priori not an effective group action when done either way!

17 / 32

The basic problem with the basic strategy

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

⇝ A priori not an effective group action when done either way!

17 / 32

The basic problem with the basic strategy

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

⇝ A priori not an effective group action when done either way!

17 / 32

The basic problem with the basic strategy

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

⇝ A priori not an effective group action when done either way!

17 / 32

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?

18 / 32

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.

What about asymptotics?

18 / 32

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh approach

...combines exponent vectors with reduction by exploiting the
relation lattice of the chosen ideal classes. It works as follows:

https://yx7.cc/blah/2023-04-14.html

The CSI-FiSh paper (2019) does all this in practice for 512-bit p.
What about asymptotics?

18 / 32

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

▶ By increasing the number n of ideals li, we can trade off
some “isogeny effort” for “lattice effort”.

⇝ Sweet spot: Minimize total cost.

⇝

https://yx7.cc/blah/2023-04-14.html

19 / 32

https://yx7.cc/blah/2023-04-14.html

Tradeoff: Lattice part vs. isogeny part

▶ By increasing the number n of ideals li, we can trade off
some “isogeny effort” for “lattice effort”.

⇝ Sweet spot: Minimize total cost.

⇝

https://yx7.cc/blah/2023-04-14.html

19 / 32

https://yx7.cc/blah/2023-04-14.html

Alternative approach: Clapoti (Page–Robert 2023)

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
(That is, solve f (x1, y1) + f (x2, y2) = N over Z where f is a binary quadratic form.)

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny
Φ: E × E −→ Ea × Ea,

(P,Q) 7−→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

20 / 32

Alternative approach: Clapoti (Page–Robert 2023)

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
(That is, solve f (x1, y1) + f (x2, y2) = N over Z where f is a binary quadratic form.)

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny
Φ: E × E −→ Ea × Ea,

(P,Q) 7−→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

20 / 32

Alternative approach: Clapoti (Page–Robert 2023)

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
(That is, solve f (x1, y1) + f (x2, y2) = N over Z where f is a binary quadratic form.)

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny
Φ: E × E −→ Ea × Ea,

(P,Q) 7−→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

20 / 32

Alternative approach: Clapoti (Page–Robert 2023)

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
(That is, solve f (x1, y1) + f (x2, y2) = N over Z where f is a binary quadratic form.)

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny
Φ: E × E −→ Ea × Ea,

(P,Q) 7−→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)) .

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

20 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Alternative approach: Clapoti

▶ The kernel is ker(Φ) =
{(
ϕ̂b(R), ψc(R)

)
: R ∈ Ea[N]

}
.

▶ Issue: Evaluating this formula seems to require a-priori
knowledge of ϕb, ψc.

The kernel is equal to the alternative description

ker(Φ) =
{(
[norm(b)]R, γ(R)

)
| R ∈ E[N]

}
where γ ∈ End(E) is a generators of the principal ideal bc.

+ Doing all this in dimension 8 instead of 2, as before.

=⇒ The isogeny group action can now be computed
in polynomial time even for “ugly” input ideals.

=⇒ Isogenies yield true effective group actions, at last!

21 / 32

Efficient in theory and practice: PEGASIS

22 / 32

Polynomial-time group action: PEGASIS

PEGASIS applies Clapoti in dimension 4 to essentially
the CSIDH construction (but with p = f · 2e − 1 where f is small).

22 / 32

Polynomial-time group action: PEGASIS

PEGASIS applies Clapoti in dimension 4 to essentially
the CSIDH construction (but with p = f · 2e − 1 where f is small).

22 / 32

Plan for this talk

▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions. ✓
▶ Isogeny group actions (+ HD). ✓
▶ Signatures from isogenies (+ HD).

23 / 32

SQIsign (current version): Dramatically improved!

▶ A ≥ 20× speedup over the original version of SQIsign
coming from the new tools underlying the SIKE attacks.

▶ Also, it has even smaller signatures.

Main idea (from “SQIsign[H2]D” papers): Use HD representation.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

challenge

response

−→ 1-dimensional isogeny =⇒ 2-dimensional isogeny

24 / 32

SQIsign (current version): Dramatically improved!

▶ A ≥ 20× speedup over the original version of SQIsign
coming from the new tools underlying the SIKE attacks.

▶ Also, it has even smaller signatures.

Main idea (from “SQIsign[H2]D” papers): Use HD representation.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

challenge

response

−→ 1-dimensional isogeny =⇒ 2-dimensional isogeny

24 / 32

SQIsign (current version): Numbers

Source: https://sqisign.org (2025–?)
25 / 32

https://sqisign.org

SQIsign (current version): Comparison

Source: https://pqshield.github.io/nist-sigs-zoo

26 / 32

https://pqshield.github.io/nist-sigs-zoo

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

SQIsign (current version): Security

Just as before, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In (new) SQIsign: ≈ Same reasoning as before.

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In (new) SQIsign: No more KLPT-dependent heuristics.

Only remaining issue: Simulator needs to produce
HD representations of (certain) random isogenies.

This seems difficult...

:(

27 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:

▶ Public key: Random supersingular elliptic curve E;
prover knows a secret isogeny E0 → E.

▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.

▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.

▶ Response: An isogeny φ : E → of degree q.
How? Create HD representation of φ using knowledge of End(E)!

28 / 32

Signing with isogenies — another way

Issue: Original security proofs for HD variants of SQIsign
require access to an oracle for producing random isogenies
of bounded degrees.

We don’t know how to instantiate such an oracle.

“One man’s gap-in-security-proof is another man’s treasure.”

PRISM builds a two-round identification scheme as follows:
▶ Public key: Random supersingular elliptic curve E;

prover knows a secret isogeny E0 → E.
▶ Challenge: A large prime q.
▶ Response: An isogeny φ : E → of degree q.

How? Create HD representation of φ using knowledge of End(E)!

28 / 32

PRISM: Parameters

29 / 32

PRISM: Parameters

29 / 32

Plan for this talk

▶ The SIKE attacks. ✓
▶ Transcending to higher dimensions. ✓
▶ Isogeny group actions (+ HD). ✓
▶ Signatures from isogenies (+ HD). ✓

30 / 32

Ad break

https://cryptohack.org

(There is an isogeny category!!)

31 / 32

https://cryptohack.org

Questions?

lorenz@yx7.cc

32 / 32

