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Big picture 2@ 2

» Isogenies are a type of maps between elliptic curves.

» Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

~» Cryptography!

[Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties. ~ Friday. =]
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Plan for this talk

v

Some high-level intuition.

v

Elliptic curves & isogenies.

v

Isogeny group actions.

v

Signatures from isogenies.
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Diffie-Hellman key exchange (1976)

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g
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Diffie-Hellman key exchange (1976)

Public parameters:
» a finite group G (traditionally FF,, today elliptic curves)

» an element g € G of prime order g

Alice public Bob
g &ndom {0...g—1} p {LEdom {0...q—1}
g >_<gl’
s:=(g")" s:=(g")"

Fundamental reason this works: -% and -’ are commutative!
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Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.
Sett+«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«+t-g.
Publish B «t - g.
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Diffie-Hellman: Bob vs. Eve

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.

L N

Sett<«t-g.

Is this a good idea?

b—2. Sett<«t-g.
b—1. Sett <« t-g.

b. PublishB «+t-g.
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Diffie-Hellman: Bob vs. Eve

Bob Attacker Eve

1. Sett+g. 1. Sett<+g. Ift=Breturnl.

2. Sett<+t-g. 2. Sett <« t-g. Ift = Breturn?2.

3. Sett«+t-g. 3. Sett <« t-g. Ift = Breturn3.

4. Sett«t-g. 4. Sett < t-g. Ift = Breturn3.
b—2. Sett<«t-g. b—2. Sett < t-g. If t = B return b—2.
b—1. Sett«+t-g. b—1. Sett < t-g. Ift = B return b—1.

b. PublishB < t-g. b. Sett < t-g. Ift = Breturnb.

b+1. Sett <+ t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.
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Diffie-Hellman: Bob vs. Eve

L N

Bob
Sett + g.
Sett«+t-g.
Sett<«t-g.
Sett<«t-g.

. Sett<«t-g.
b—-1.
b.

Sett<«t-g.
Publish B «t - g.

Attacker Eve

1. Sett <+ g. Ift=Breturnl.

2. Sett <« t-g. Ift = Breturn?2.

3. Sett <« t-g. Ift = Breturn3.

4. Sett < t-g. Ift = Breturn3.
b—2. Sett «+t-g. Ift = B return b—2.
b—1. Sett < t-g. Ift = B return b—1.

b. Sett < t-g. Ift = Breturnb.
b+1. Sett <+ t-g. Ift =Breturnb+ 1.
b+2. Sett«+t-g. Ift = Breturnb+ 2.

Effort for both: O(#G).

Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn’t matter for my point here.)
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Bob computes his public key ¢'* from g.
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Bob computes his public key ¢'* from g.
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Square-and-multiply
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Bob computes his public key ¢'* from g.
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Square-and-multiply-and-square-and-multiply

Bob computes his public key ¢'* from g.
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Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key ¢'* from g.

5/51



Square-and-multiply as graphs
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Square-and-multiply as a graph
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Square-and-multiply as a graph

Fast mixing: paths of length log(# nodes) to everywhere.
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Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes a from g in any group
in polynomial time.
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Shor’s quantum algorithm computes a from g in any group
in polynomial time.
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f: 72 =G, (x,y) — ¢ -H.
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Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes o from h = g* by finding the kernel of the map

f: 72 =G, (x,y) — ¢ -H.

~+ New plan: Get rid of the group, keep the graph.
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Plan for this talk

v

Some high-level intuition. v

v

Elliptic curves & isogenies.

v

Isogeny group actions.

v

Signatures from isogenies.
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Stand back!

We’re going to do math.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: P =x+ax+b

with a, b € F such that 443 + 27b° # 0.
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Elliptic curves

An elliptic curve over a field F of characteristic ¢ {2,3} is* an
equation of the form

E: y*=x+ax+b

with a,b € F such that 44> + 2752 + 0.

A point on E is a solution (x,y), or the “fake” point co.

E is an abelian group: we can “add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y). Z;o 2,
¢

» The sum of (x1,y1) and (x2,¥2) is 8‘9@@;61’;7?;@%

O Cr

()\2 — X1 — X7, )\(23(1 —+ Xy — )\2) — ]/1) s

2
3x7+a

o otherwise.

_ Y2= s _
where \ = Fom— if x1 #xpand A =
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Elliptic curves (picture over R)

[
_

The elliptic curve y? = x> — x + 1 over R.
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Elliptic curves (picture over R)

[
A

Addition law:
P+Q+R=00 <= {P,Q,R} onastraight line.
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Elliptic curves (picture over R)

C)()o

[
_

The point at infinity oo lies on every vertical line.
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Elliptic curves (picture over [F,)

v o,

The same curve y?> = x> — x + 1 over the finite field Fzg.
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Elliptic curves (picture over [F,)

v o,

The addition law of y?> = x> — x + 1 over the finite field F.
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.
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n times
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ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P € E of large prime order /.

Define scalar multiplication [n]P := P+ --- + P.  (Use doubleand-add
—_————

Alice public Bob
a & 00,01} b & 00,01}
[a]P [P
(><}
s := [a)([b]P) < et » 5 := [0)((a]P)
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Isogenies
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Isogenies

...are just fancily-named
o
between elliptic curves.
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.

A group homomorphism ¢ satisfies (P + Q) = ¢(P) + ¢(Q).
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Isogenies

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Reminder:
A rational function is f(x,y)/g(x,y) where f, g are polynomials.

A group homomorphism ¢ satisfies (P + Q) = ¢(P) + ¢(Q).

The kernel of an isogeny ¢: E — E'is {P € E : ¢(P) = oo}.

The degree of a separable* isogeny is the size of its kernel.
(This matches the degree of ¢ in x when written in lowest terms.)
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

Example #1: (x,y) — (x3—4x2+30x—12 B—6x2—14x+35 y)

=22 (x—2)p
defines a degree-3 isogeny of the elliptic curves
V=X +x} — {y¥¥=2"-3x+3}

over F7. Its kernel is {(2,9), (2, -9), oo}.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #2: For each m # 0, the multiplication-by-m map
[m]: E—E

is a degree-m? isogeny. Notation: E[m] := ker[m].
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

T (x,y) = (x7,y7)

is a degree-q isogeny, the Frobenius endomorphism.
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Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

m: (6 y) e (oY)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).

14 /51



Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E — E’ that is:

» given by rational functions.

» a group homomorphism.

Example #3: For E/IF;, the map

™ (%y) = (xT, y)
is a degree-q isogeny, the Frobenius endomorphism.

The kernel of m—1 is precisely the set of rational points E(IF,).
Important fact: An isogeny ¢ is F;-rational iff 7 0 o = p o 7.

14 /51



The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.
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The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E’ are isogenous if there exists an isogeny E — E'.

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by @ o ¢ = [deg ¢] and ¢y 0 § = [deg ).

Tate’s theorem:
E,E'/F, are isogenous over F, if and only if #E(F,;) = #E'(F,).

(The Schoof-Elkies—-Atkin algorithm can compute #E(F,) efficiently!)

— Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

15/51



Isogenies and kernels

For any finite subgroup G of E, there exists a unique*
separable* isogeny ¢ : E — E’ with kernel G.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique*
separable* isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

~+ To choose an isogeny, simply choose a finite subgroup.

» We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

~+ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.
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Computing isogenies: Vélu’'s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

( )+ > (x(P+Q) - x(Q),

QeG\{oco}

P)+> yP+Q) - Q)))

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.
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Computing isogenies: Vélu’'s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

( )+ > (x(P+Q) - x(Q),

QeG\{oco}

P)+> yP+Q) - Q))>

QeG\{oo}

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
» computing the defining equation of E/G;
» evaluating the isogeny E — E/G at a point.
Complexity: O(#G) ~ only suitable for small degrees.
The v/&lu algorithm reduces the cost to O(/#G).

17 /51



Predictable groups

Elliptic curves in general can be very annoying
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Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.

> In that case, E(F,) & Z/(p+1) or E(F,) = Z/251 < 7/2,
and E(F2) = Z/(p+1) x Z/(p+1).
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Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[/] have a tendency to live in large extension fields.

Solution:

Let p > 5 be prime.
» E/F, is supersingular if and only if #E(F,) = p+1.

> In that case, E(F,) & Z/(p+1) or E(F,) = Z/251 < 7/2,
and E(F2) = Z/(p+1) x Z/(p+1).

~» Easy method to control the group structure by choosing p!
~+ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)
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1. “Computing an isogeny”

Y STORMCLOUDZ

stra Be
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1. “Computing an isogeny”

Y STORMCLOUDZ

Keep in mind: Constructing isogenies E — _ is (usually) easy,
constructing an isogeny E — E’ given (E, E’) is (usually) hard.
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Plan for this talk

» Some high-level intuition. v
» Elliptic curves & isogenies. v
» Isogeny group actions.

» Signatures from isogenies.
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Isogeny-based key exchange: High-level view

E
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Isogeny-based key exchange: High-level view

E ©A E,

Eg

» Alice & Bob pick secret p4: E — E4 and p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
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Isogeny-based key exchange: High-level view

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)

» Alice and Bob transmit the end curves E4 and Ejp.
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Isogeny-based key exchange: High-level view

©a E
E A
s
‘s
‘s
‘s
‘s
///
e 7
i *B
, 2
¥B s
td
‘s
‘s
L
g
L Eap
e
‘s
K
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and
Bob somehow finds pp : E4 — Eap,
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Isogeny-based key exchange: High-level view

E A E
A
T
///
///
Lo
g
(2 o
o B
et
¥B s
‘s
‘s
3
i
g
g
/::/ EAB
.
/‘;/ /
Eg — Epa
PA

» Alice & Bob pick secret p4: E — E4 and ¢p: E — Ep.

(These isogenies correspond to walking on the isogeny graph.)
» Alice and Bob transmit the end curves E4 and Ejp.

» Alice somehow finds a “parallel” 4 : Eg — Eps, and

Bob somehow finds pp : E4 — Eap, such that E4g = Ega.
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How to find “parallel” isogenies?

E ©A E,

Eap

N\
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How to find “parallel” isogenies?

E o EL

s

©B
Eap
=z
Ep - Ega
YA

CSIDH'’s solution:

Use special isogenies ¢4 which can be transported to the
curve Ep totally independently of the secret isogeny 5.

(Similarly with reversed roles, of course.)
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) 2 Z/(p +1).
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“Special” isogenies

We fix an elliptic curve E/F, such that E(F,) 2 Z/(p +1).

= Forevery ¢ | (p+1) exists a unique order-¢ subgroup H;,.

~+ For all such E can canonically find an isogeny ¢;: E — E'.

We consider prime ¢ and refer to ¢, as a “special” isogeny.

24 /51



/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- e Ezé
Eer—l /
E / E@S
| /
\ - Ee4

E"EKHEZZHEﬁ
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- e Ezé
Eer—l /
E / E@S
| /
\ - Ee4

E—>E5—>E[2—>Eg3

» Fact: Each curve has only one other rational ¢-isogeny.
Itis defined by the kernel {P € E(FF,») : [4]P = oo A7m(P) = —P}.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- e Ezé
Eer—l /
E / E@S
| /
\Eﬁ - Ee4

» Fact: Each curve has only one other rational ¢-isogeny.
Itis defined by the kernel {P € E(FF,») : [4]P = oo A7m(P) = —P}.

I! Reverse arrows are unique; the “tail” E — E s cannot exist.
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/7 Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

- e Ezé
Eer—l /
E / E@S
| /
\Eﬁ - Ee4

» Fact: Each curve has only one other rational ¢-isogeny.
Itis defined by the kernel {P € E(FF,») : [4]P = oo A7m(P) = —P}.

I! Reverse arrows are unique; the “tail” E — E s cannot exist.

= The “special” isogenies ¢, form isogeny cycles!
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

/%/” W/
E/

» Fact: ker(y) o ¢;,) = ker(y,, 0 pr) = (ker @y, ker ¢),).
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7 Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

sﬂ’z/fElﬁ

. / 7111
f Ey
P /

|

» Fact: ker(@% o y,) = ker (i, 0 pp) = (ker g, ker oy,).
!! The order cannot matter = cycles must be compatible.
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» Choose some small odd primes 41, ..., ¢,.

» Makesurep =4-/;---{, —11is prime.

» Let X = {y* =x>+Ax>+x supersingular with A € F,}.
» Look at the “special” /;-isogenies within X.
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CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
=5

U3 =

27 /51



CSIDH in one slide

Choose some small odd primes /1, ..., £;.

Make surep =4 -/;---{, — 1is prime.

Let X = {y? = x>+Ax?>+x supersingular with A € F,}.
Look at the “special” /;-isogenies within X.

vV v.vYy

p =419
0 =
0 =
03 =

» Walking “left” and “right” on any /;-subgraph is efficient.
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with special subgroups of E as kernels.
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Walking in the CSIDH graph

» Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x,y) € E of order /; with x,y € ..
2. Compute the isogeny with kernel ((x,y)).

Computing a “right” step:

1. Find a point (x,y) € E of order /; with x € F, buty ¢ [Fp.

2. Compute the isogeny with kernel ((x,y)).

(Finding a point of order ¢;: Pick x € F, random. Find y € F,» such that
P = (x,y) € E. Compute Q = [%]P. Hope that Q # oo, else retry.)
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Walking in the CSIDH graph (in SageMath)

'sage: E = EllipticCurve(GF(419%2), [1,0]) |
'sage: E \
'Elliptic Curve defined by y*2 = x*3 + x \

|

\ over Finite Field in z2 of size 419*2

29 /51



Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
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Walking in the CSIDH graph (in SageMath)

sage: E = EllipticCurve(GF(419*2), [1,0])
sage: E
Elliptic Curve defined by y*2 = x*3 + x
over Finite Field in z2 of size 419%2
sage: while True:
R X = GF(419).random_element ()
el try:
R P = E.lift_x(x)
R except ValueError: continue
R if P[1] in GF(419): # "right"” step: invert
R break

sage: P

(218 : 403 : 1)

sage: P.order (). factor ()

2 * 3 % 7

sage: EE = E.isogeny_codomain(2x3%P) # "left"” 7-step

sage: EE

Elliptic Curve defined by y*2 = x*3 + 285%*x + 87
over Finite Field in z2 of size 419*2
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Action! W
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Action! W

Cycles are compatible: [right then left] = [left then right]
~+ only need to keep track of total step counts for each ¢;.

Example: [+,+,—,—,—,+,—, =] just becomes (+1, 0,-3) € Z>.

’ There is a group action of (Z", +) on our set of curves X! ‘

(An action of a group (G,-) onaset Xisamap *: G x X - X
such thatid «x =xand g (h+x) = (g-h) *xforallg,h € Gand x € X.)
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The class group

Recall: Group action of (Z", +) on set of curves X.

!! The set X is finite = The action is not free.
There exist vectors v € Z"\{0} which act trivially.
Such v form a full-rank subgroup A C Z", the relation lattice.

! We understand the structure: By complex-multiplication
theory, the quotient Z" /A is the ideal-class group cl(Z[,/=p]).

!! This group characterizes when two paths lead to the same curve. ‘

The lattice A is computable in subexponential time classically,
and in polynomial time using a quantum computer.

It is used to construct more advanced schemes (“CSI-FiSh”).
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Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.
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Why no Shor?

Shor’s quantum algorithm computes a from g in any group
in polynomial time.

Shor computes « from I = g* by finding the kernel of the map

f: 7? = G, (x,y) — g - h.

For group actions, we simply cannot compose a * s and b * s!

33/51



Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.
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Security of CSIDH

Core problem:
Given E, E’ € X, find a smooth-degree isogeny E — E'.

The size of X is #cl(Z[/=p]) = 3 - h(—p) = /p.

~ best known classical attack: meet-in-the-middle, O(p'/4).

Fully exponential: Complexity exp((logp)'™°M).

Solving abelian hidden shift breaks CSIDH. ‘

~+ non-devastating quantum attack (Kuperberg’s algorithm).
Subexponential: Complexity exp((logp)'/>T°M)).
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CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

» The algorithm admits many different tradeoffs.
» Oracle calls are expensive.
» The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ~ one bit operation? a hundred? millions?)

— Security estimates for CSIDH & friends vary wildly. /I
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CSIDH: Where things stand

» Classical security: (5({/;3) ; attacks are basically brute force.

» Quantum security: Asymptotically exp((logp)'/>+o)
due to Kuperberg’s quantum algorithm.

— Key sizes: Public keys are 4\ bits for classical A\-bit security.
(For \-bit quantum security, need ©()\?) bits.)

» Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

» 2023: “Clapoti” —a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ~ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

~ Friday. =
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Couveignes/Rostovtsev-Stolbunov
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Plan for this talk

» Some high-level intuition. v
» Elliptic curves & isogenies. v
» Isogeny group actions. v

» Signatures from isogenies.
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SQIsign: What?

Qs

https://sqisign.org
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SQIsign: What?

Qs

https://sqisign.org

» A new-ish and very hot post-quantum signature scheme.

» Based on super cool mathematics. =
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More “special” isogenies

» Earlier: “Special” isogenies ¢, with rational kernel points.
» In other words: ker ¢y = ker[¢] Nker(m — 1).

(Here 7 is the Frobenius endomorphism 7: (x,y) — (¥, 3").)

I Over sz, we can have more endomorphisms.
Example: y* = x> + xhas¢: (x,y) = (—x,v/—1-y).

» Extremely non-obvious fact in this setting:

Every isogeny ¢: E — E’ comes from an ideal I, C End(E).

2 We understand the structure of End(E).

= We understand how I, I, relate for isogenies ¢, 1: E — E'.

~~ one-sided ideal class set of End(E), etc.
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The Deuring correspondence

...is the formal version of what I just said.

Theorem. Fix Eq supersingular. The (contravariant) functor
E ~— Hom(E, Ey)
defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left End(Ep)-modules
with nonzero left End(Ep)-module homomorphisms.

a priori
A strong connection between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B} .

Isogenies become “connecting ideals” in quaternion land.

Z One direction is easy, the other seems hard! ~» Cryptography!

41/51



The Deuring correspondence (examples)

Let p = 7799999 and let i,j satisfy i = —1, j? = —p, ji = —ij.

Thering Oy =Z @ Zi @ 21 ¢ 731
corresponds to the curve Eg: y? = x° + x.

Thering O = Z & Z4947i @ 7 27 g 7, P7H20100H]

corresponds to the curve E1: 32 = x° + 1.

The ideal | = Z4947 & Z4947i & 2 2207 o 7 DA
defines an isogeny Eyg — Eq of degree 4947 = 3 -17 - 97.
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The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski "21: “Orientations and the supersingular endomorphism ring problem”).
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The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski "21: “Orientations and the supersingular endomorphism ring problem”).

» ~All isogeny security reduces to the “=" direction.
» SQIsign builds on the “<=" direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~+ (Oriented curves and) isogeny group actions. 1
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Signing with isogenies a la SQIsign

» Fiat-Shamir: signature scheme from identification scheme.

seeret . > E
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Signing with isogenies a la SQIsign

» Fiat-Shamir: signature scheme from identification scheme.

seeret . > Ep

I

|

=

§ |
=} 3
= R
S| 3
CH s

I

I

v

E E

com challenge chl

» Easy signature: Eyx — Eg — Ecom — Ecni. Obviously broken.
» SQIsign: Construct new path Ey — Egpy (using secret).

» It relies on an explicit form of the Deuring correspondence.
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SQIsign (original version)

Via the Deuring correspondence:
» From End(E), End(E’), can randomize within Hom(E, E’).
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SQIsign (original version)

Via the Deuring correspondence:

» From End(E), End(E’), can randomize within Hom(E, E').

Main technical tool: The KLPT algorithm.
» From End(E), End(E’), can find smooth isogeny E — E'.

~+ SQIsign rewrites the “broken” signature
Epk — Eo = Ecom — Eci
into a random (smooth) isogeny E,i — Ey.

“If you have KLPT implemented very nicely as a black box,

then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsign (original version): Security
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For SQIsign to be secure, we require two main properties:

» Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of E .
(Recall that finding endomorphisms is supposedly hard.)

» Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that

“KLPT output is a random isogeny” (from some restricted set).
~ This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem: .
O(yp) classically, O(¢/p) quantumly. Fully exponential! <
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SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.
+ ...but performance only gets better!
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SQIsign (original version): Numbers

sizes
parameter set public keys signatures
NIST-1 64 bytes 177 bytes
NIST-HlI 96 bytes 263 bytes
NIST-V 128 bytes 335 bytes
performance

Cycle counts for a generic C implementation running on an Intel Ice Lake CPU.
Optimizations are certainly possible and work in progress.

parameter set keygen signing verifying
NIST-1 3728 megacycles 5779 megacycles 108 megacycles
NIST-HI 23734 megacycles 43760 megacycles 654 megacycles
NIST-V 91049 megacycles 158544 megacycles 2177 megacycles

Source: https://sqisign.org (2023-2024)

= Timings have gotten much better since. ~ Friday. =
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Plan for this talk

» Some high-level intuition. v

» Elliptic curves & isogenies. v
» Isogeny group actions. v

» Signatures from isogenies. v
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Ad break

Seminar Sessions

A seminar session for young isogenists.

https://isogeny.club
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Questions?

lorenz@yx7.cc
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