
Introduction to isogeny-based cryptography

Lorenz Panny

Technische Universität München

PQCSA summer school “PQC fundamentals”,
Albena, 17 June 2025

Big picture

▶ Isogenies are a type of maps between elliptic curves.

▶ Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

⇝ Cryptography!

[Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties. ⇝ Friday. :)]

1 / 51

Big picture

▶ Isogenies are a type of maps between elliptic curves.

▶ Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

⇝ Cryptography!

[Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties. ⇝ Friday. :)]

1 / 51

Big picture

▶ Isogenies are a type of maps between elliptic curves.

▶ Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

⇝ Cryptography!

[Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties. ⇝ Friday. :)]

1 / 51

Big picture

▶ Isogenies are a type of maps between elliptic curves.

▶ Sampling an isogeny from some curve is easy, recovering
an isogeny between given curves seems very hard.

⇝ Cryptography!

[Modern isogeny-based cryptography uses not just elliptic curves,
but also higher-dimensional abelian varieties. ⇝ Friday. :)]

1 / 51

Plan for this talk

▶ Some high-level intuition.

▶ Elliptic curves & isogenies.

▶ Isogeny group actions.

▶ Signatures from isogenies.

2 / 51

Diffie–Hellman key exchange (1976)

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 51

Diffie–Hellman key exchange (1976)

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 51

Diffie–Hellman key exchange (1976)

Public parameters:
▶ a finite group G (traditionally F∗

p , today elliptic curves)

▶ an element g ∈ G of prime order q

Alice public Bob

a random←−−− {0...q−1} b random←−−− {0...q−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

3 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 51

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t← g.

2. Set t← t · g.

3. Set t← t · g.

4. Set t← t · g.

...

b−2. Set t← t · g.

b−1. Set t← t · g.

b. Publish B← t · g.

Attacker Eve
1. Set t← g. If t = B return 1.

2. Set t← t · g. If t = B return 2.

3. Set t← t · g. If t = B return 3.

4. Set t← t · g. If t = B return 3.

...

b−2. Set t← t · g. If t = B return b−2.

b−1. Set t← t · g. If t = B return b−1.

b. Set t← t · g. If t = B return b.

b+1. Set t← t · g. If t = B return b + 1.

b+2. Set t← t · g. If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(This attacker is also kind of dumb, but that doesn’t matter for my point here.)

4 / 51

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 51

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 51

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 51

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 51

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

?

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Bob computes his public key g13 from g.

5 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Square-and-multiply as graphs

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Square-and-multiply as a graph

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Fast mixing: paths of length log(#nodes) to everywhere.

5 / 51

Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx · hy .

⇝ New plan: Get rid of the group, keep the graph.

6 / 51

Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx · hy .

⇝ New plan: Get rid of the group, keep the graph.

6 / 51

Shor’s algorithm vs. DLP

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx · hy .

⇝ New plan: Get rid of the group, keep the graph.

6 / 51

Plan for this talk

▶ Some high-level intuition. ✓
▶ Elliptic curves & isogenies.

▶ Isogeny group actions.

▶ Signatures from isogenies.

7 / 51

Stand back!

We’re going to do math.

8 / 51

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

9 / 51

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

9 / 51

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.

▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

9 / 51

Elliptic curves

An elliptic curve over a field F of characteristic /∈{2, 3} is∗ an
equation of the form

E : y2 = x3 + ax + b

with a, b ∈ F such that 4a3 + 27b2 ̸= 0.

A point on E is a solution (x, y), or the “fake” point∞.

E is an abelian group: we can “add” points.
▶ The neutral element is∞.
▶ The inverse of (x, y) is (x,−y). do not remember

these formulas!

▶ The sum of (x1, y1) and (x2, y2) is(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 ̸= x2 and λ =
3x2

1+a
2y1

otherwise.

9 / 51

Elliptic curves (picture over R)

The elliptic curve y2 = x3 − x + 1 over R.

10 / 51

Elliptic curves (picture over R)

•

•

•

Addition law:

P + Q + R =∞ ⇐⇒ {P,Q,R} on a straight line.

10 / 51

Elliptic curves (picture over R)

•

•

•∞

The point at infinity∞ lies on every vertical line.

10 / 51

Elliptic curves (picture over Fp)

x

y ∞

The same curve y2 = x3 − x + 1 over the finite field F79.

10 / 51

Elliptic curves (picture over Fp)

x

y ∞

The addition law of y2 = x3 − x + 1 over the finite field F79.

10 / 51

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

11 / 51

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

11 / 51

ECDH (not post-quantum)

Public parameters:
an elliptic curve E and a point P ∈ E of large prime order ℓ.

Define scalar multiplication [n]P := P + · · ·+ P︸ ︷︷ ︸
n times

. (Use double-and-add!)

Alice public Bob

a random←−−− {0...ℓ−1} b random←−−− {0...ℓ−1}

[a]P [b]P

s := [a]([b]P) s := [b]([a]P)
equal!

11 / 51

Isogenies

...are just fancily-named

nice maps
between elliptic curves.

12 / 51

Isogenies

...are just fancily-named

nice maps
between elliptic curves.

12 / 51

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:

▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.

A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

(This matches the degree of φ in x when written in lowest terms.)

13 / 51

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.

▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.

A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

(This matches the degree of φ in x when written in lowest terms.)

13 / 51

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.

A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

(This matches the degree of φ in x when written in lowest terms.)

13 / 51

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.

A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

(This matches the degree of φ in x when written in lowest terms.)

13 / 51

Isogenies

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Reminder:
A rational function is f (x, y)/g(x, y) where f , g are polynomials.

A group homomorphism φ satisfies φ(P + Q) = φ(P) + φ(Q).

The kernel of an isogeny φ : E→ E′ is {P ∈ E : φ(P) =∞}.
The degree of a separable∗ isogeny is the size of its kernel.

(This matches the degree of φ in x when written in lowest terms.)

13 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

14 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #1: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

14 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #2: For each m ̸= 0, the multiplication-by-m map

[m] : E→ E

is a degree-m2 isogeny. Notation: E[m] := ker[m].

14 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

14 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).

14 / 51

Isogenies (examples)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
▶ given by rational functions.
▶ a group homomorphism.

Example #3: For E/Fq, the map

π : (x, y) 7→ (xq, yq)

is a degree-q isogeny, the Frobenius endomorphism.

The kernel of π−1 is precisely the set of rational points E(Fq).
Important fact: An isogeny φ is Fq-rational iff π ◦ φ = φ ◦ π.

14 / 51

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

15 / 51

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

15 / 51

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

15 / 51

The isogeny relation

Isogenies between distinct curves are “rare”.
We say E and E′ are isogenous if there exists an isogeny E→ E′.

Each isogeny φ : E→ E′ has a unique dual isogeny φ̂ : E′ → E
characterized by φ̂ ◦ φ = [degφ] and φ ◦ φ̂ = [degφ].

Tate’s theorem:
E,E′/Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

(The Schoof–Elkies–Atkin algorithm can compute #E(Fq) efficiently!)

=⇒ Bottom line: Being isogenous is an equivalence relation.
Over finite fields, we can easily test it.

15 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.

16 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.

16 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.

16 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.

16 / 51

Isogenies and kernels

For any finite subgroup G of E, there exists a unique∗

separable∗ isogeny φG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

⇝ To choose an isogeny, simply choose a finite subgroup.

▶ We have formulas to compute and evaluate isogenies.
(...but they are only efficient for “small” degrees!)

⇝ Decompose large-degree isogenies into prime steps.
That is, walk in an isogeny graph.

16 / 51

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.
The

√
élu algorithm reduces the cost to Õ(

√
#G).

17 / 51

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.
The

√
élu algorithm reduces the cost to Õ(

√
#G).

17 / 51

Computing isogenies: Vélu’s formulas (1971)

Let G be a finite subgroup of an elliptic curve E. Then

P 7→
(

x(P) +
∑

Q∈G\{∞}

(
x(P + Q)− x(Q)

)
,

y(P) +
∑

Q∈G\{∞}

(
y(P + Q)− y(Q)

))

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for
▶ computing the defining equation of E/G;
▶ evaluating the isogeny E→ E/G at a point.

Complexity: Θ(#G) ⇝ only suitable for small degrees.
The

√
élu algorithm reduces the cost to Õ(

√
#G).

17 / 51

Predictable groups

Elliptic curves in general can be very annoying

computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.

▶ In that case, E(Fp) ∼= Z/(p+1) or E(Fp) ∼= Z/p+1)
2 × Z/2,

and E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

18 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.

▶ In that case, E(Fp) ∼= Z/(p+1) or E(Fp) ∼= Z/p+1)
2 × Z/2,

and E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

18 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.

▶ In that case, E(Fp) ∼= Z/(p+1) or E(Fp) ∼= Z/p+1)
2 × Z/2,

and E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

18 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.

▶ In that case, E(Fp) ∼= Z/(p+1) or E(Fp) ∼= Z/p+1)
2 × Z/2,

and E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

18 / 51

Predictable groups

Elliptic curves in general can be very annoying computationally:
Points in E[ℓ] have a tendency to live in large extension fields.

Solution:

Let p ≥ 5 be prime.
▶ E/Fp is supersingular if and only if #E(Fp) = p+1.

▶ In that case, E(Fp) ∼= Z/(p+1) or E(Fp) ∼= Z/p+1)
2 × Z/2,

and E(Fp2) ∼= Z/(p+1)× Z/(p+1).

⇝ Easy method to control the group structure by choosing p!
⇝ Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

18 / 51

“Computing an isogeny”

Keep in mind: Constructing isogenies E→ is (usually) easy,
constructing an isogeny E→ E′ given (E,E′) is (usually) hard.

19 / 51

“Computing an isogeny”

Keep in mind: Constructing isogenies E→ is (usually) easy,
constructing an isogeny E→ E′ given (E,E′) is (usually) hard.

19 / 51

Plan for this talk

▶ Some high-level intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ Isogeny group actions.

▶ Signatures from isogenies.

20 / 51

Isogeny-based key exchange: High-level view

E

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

21 / 51

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

21 / 51

Isogeny-based key exchange: High-level view

E EA

EB

φA

φB

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.

▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and
Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

21 / 51

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB,

such that EAB ∼= EBA.

21 / 51

Isogeny-based key exchange: High-level view

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

▶ Alice & Bob pick secret φA : E→ EA and φB : E→ EB.
(These isogenies correspond to walking on the isogeny graph.)

▶ Alice and Bob transmit the end curves EA and EB.
▶ Alice somehow finds a “parallel” φA′ : EB → EBA, and

Bob somehow finds φB′ : EA → EAB, such that EAB ∼= EBA.

21 / 51

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.

(Similarly with reversed roles, of course.)

22 / 51

How to find “parallel” isogenies?

E EA

EAB

EB EBA

φA

φB

φ′
B

φ′
A

CSIDH’s solution:
Use special isogenies φA which can be transported to the
curve EB totally independently of the secret isogeny φB.

(Similarly with reversed roles, of course.)

22 / 51

CSIDH ["si:saId]

[Castryck–Lange–Martindale–Panny–Renes 2018]
23 / 51

“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51

“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.

⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51

“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51

“Special” isogenies

We fix an elliptic curve E/Fp such that E(Fp) ∼= Z/(p+ 1).

⇒ For every ℓ | (p+ 1) exists a unique order-ℓ subgroup Hℓ.
⇝ For all such E can canonically find an isogeny φℓ : E→ E′.

We consider prime ℓ and refer to φℓ as a “special” isogeny.

24 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
It is defined by the kernel {P ∈ E(Fp2) : [ℓi]P =∞∧ π(P) = −P}.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

25 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
It is defined by the kernel {P ∈ E(Fp2) : [ℓi]P =∞∧ π(P) = −P}.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

25 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
It is defined by the kernel {P ∈ E(Fp2) : [ℓi]P =∞∧ π(P) = −P}.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

25 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
It is defined by the kernel {P ∈ E(Fp2) : [ℓi]P =∞∧ π(P) = −P}.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

25 / 51

Cycles from “special” isogenies

What happens when we iterate such a “special” isogeny?

Eℓ3

Eℓ4

Eℓ5

Eℓ6

. . .

Eℓr−1

Eℓr

E Eℓ Eℓ2

E Eℓ Eℓ2

▶ Fact: Each curve has only one other rational ℓ-isogeny.
It is defined by the kernel {P ∈ E(Fp2) : [ℓi]P =∞∧ π(P) = −P}.

!! Reverse arrows are unique; the “tail” E→ Eℓ3 cannot exist.

=⇒ The “special” isogenies φℓ form isogeny cycles!

25 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Fact: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

26 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Fact: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

26 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Fact: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

26 / 51

Compatible cycles from “special” isogenies

What happens when we compose those “special” isogenies?

E

Eℓ

Em

EℓmEmℓ

E ℓm

φℓ

φ′
m

φm
φ′

ℓ

φm
φ′

ℓ

▶ Fact: ker(φ′
ℓ ◦ φ′

m) = ker(φm ◦ φℓ) = ⟨kerφℓ, kerφ′
m⟩.

!! The order cannot matter =⇒ cycles must be compatible.

26 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.

▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.

▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

CSIDH in one slide

▶ Choose some small odd primes ℓ1, ..., ℓn.
▶ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.
▶ Let X = {y2 = x3+Ax2+x supersingular with A ∈ Fp}.
▶ Look at the “special” ℓi-isogenies within X.

m
at

h
ha

pp
en

s!

p = 419
ℓ1 = 3
ℓ2 = 5
ℓ3 = 7

▶ Walking “left” and “right” on any ℓi-subgraph is efficient.

27 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

28 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

28 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

28 / 51

Walking in the CSIDH graph

▶ Recall: “Left” and “right” steps correspond to isogenies
with special subgroups of E as kernels.

Computing a “left” step:
1. Find a point (x, y) ∈ E of order ℓi with x, y ∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

Computing a “right” step:
1. Find a point (x, y) ∈ E of order ℓi with x ∈ Fp but y /∈ Fp.
2. Compute the isogeny with kernel ⟨(x, y)⟩.

(Finding a point of order ℓi: Pick x ∈ Fp random. Find y ∈ Fp2 such that
P = (x, y) ∈ E. Compute Q = [p+1

ℓi
]P. Hope that Q ̸=∞, else retry.)

28 / 51

Walking in the CSIDH graph (in SageMath)
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2

sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

29 / 51

Walking in the CSIDH graph (in SageMath)
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)

sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

29 / 51

Walking in the CSIDH graph (in SageMath)
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x

over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element ()
....: try:
....: P = E.lift_x(x)
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
....: break
....:
sage: P
(218 : 403 : 1)
sage: P.order().factor ()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285*x + 87

over Finite Field in z2 of size 419^2

29 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

30 / 51

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

30 / 51

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

30 / 51

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

30 / 51

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

30 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

30 / 51

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

30 / 51

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

30 / 51

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

30 / 51

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

30 / 51

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

30 / 51

Action!

Cycles are compatible: [right then left] = [left then right]

⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

31 / 51

Action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

31 / 51

Action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

31 / 51

Action!

Cycles are compatible: [right then left] = [left then right]
⇝ only need to keep track of total step counts for each ℓi.

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X!

(An action of a group (G, ·) on a set X is a map ∗ : G× X→ X
such that id ∗ x = x and g ∗ (h ∗ x) = (g · h) ∗ x for all g, h ∈ G and x ∈ X.)

31 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.

Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

The class group

Recall: Group action of (Zn,+) on set of curves X.

!! The set X is finite =⇒ The action is not free.
There exist vectors v ∈ Zn\{0}which act trivially.
Such v form a full-rank subgroup Λ ⊆ Zn, the relation lattice.

!! We understand the structure: By complex-multiplication
theory, the quotient Zn/Λ is the ideal-class group cl(Z[√−p]).

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically,
and in polynomial time using a quantum computer.
It is used to construct more advanced schemes (“CSI-FiSh”).

32 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

33 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·

x

hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

33 / 51

Why no Shor?

Shor’s quantum algorithm computes α from gα in any group
in polynomial time.

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G, (x, y) 7→ gx ·x hy .

For group actions, we simply cannot compose a ∗ s and b ∗ s!

33 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

34 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

34 / 51

Security of CSIDH

Core problem:
Given E,E′ ∈ X, find a smooth-degree isogeny E→ E′.

The size of X is #cl(Z[√−p]) = 3 · h(−p) ≈√p.

⇝ best known classical attack: meet-in-the-middle, Õ(p1/4).

Fully exponential: Complexity exp
(
(log p)1+o(1)).

Solving abelian hidden shift breaks CSIDH.

⇝ non-devastating quantum attack (Kuperberg’s algorithm).

Subexponential: Complexity exp
(
(log p)1/2+o(1)).

34 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.

35 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.

35 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.

35 / 51

CSIDH vs. Kuperberg

Kuperberg’s algorithm consists of two components:
1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

▶ The algorithm admits many different tradeoffs.
▶ Oracle calls are expensive.
▶ The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ Security estimates for CSIDH & friends vary wildly.

35 / 51

CSIDH: Where things stand

▶ Classical security: Õ(4
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

⇝ Friday. :)

36 / 51

CSIDH: Where things stand

▶ Classical security: Õ(4
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

⇝ Friday. :)

36 / 51

CSIDH: Where things stand

▶ Classical security: Õ(4
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

⇝ Friday. :)

36 / 51

CSIDH: Where things stand

▶ Classical security: Õ(4
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

⇝ Friday. :)

36 / 51

CSIDH: Where things stand

▶ Classical security: Õ(4
√p); attacks are basically brute force.

▶ Quantum security: Asymptotically exp
(
(log p)1/2+o(1))

due to Kuperberg’s quantum algorithm.

=⇒ Key sizes: Public keys are 4λ bits for classical λ-bit security.
(For λ-bit quantum security, need Θ(λ2) bits.)

▶ Performance: Some tens of milliseconds per group-action
evaluation at the 128-bit classical security level.

▶ 2023: “Clapoti” — a polynomial-time algorithm for
arbitrary combinations of operations in the group and
evaluations of the action. ⇝ “KLaPoTi”, “PEGASIS”.
(Previously, only restricted sequences of operations were efficient.)

⇝ Friday. :)

36 / 51

Other isogeny group actions

There are many ways of building isogeny group actions.

CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP

Couveignes/Rostovtsev–Stolbunov

De Feo–Kieffer–Smith

SCALLOP‑HDPEARL‑SCALLOP

KLaPoTi

higher dimensions

Clapoti

orientations

⇝ Friday. :)

37 / 51

Other isogeny group actions

There are many ways of building isogeny group actions.

CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP

Couveignes/Rostovtsev–Stolbunov

De Feo–Kieffer–Smith

SCALLOP‑HDPEARL‑SCALLOP

KLaPoTi

higher dimensions

Clapoti

orientations

⇝ Friday. :)

37 / 51

Other isogeny group actions

There are many ways of building isogeny group actions.

CSIDH

PEGASIS

CSI‑FiShOSIDH

SCALLOP

Couveignes/Rostovtsev–Stolbunov

De Feo–Kieffer–Smith

SCALLOP‑HDPEARL‑SCALLOP

KLaPoTi

higher dimensions

Clapoti

orientations

⇝ Friday. :)

37 / 51

Plan for this talk

▶ Some high-level intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ Isogeny group actions. ✓
▶ Signatures from isogenies.

38 / 51

SQIsign: What?

https://sqisign.org

▶ A new-ish and very hot post-quantum signature scheme.
▶ Based on super cool mathematics. :)

39 / 51

https://sqisign.org

SQIsign: What?

https://sqisign.org

▶ A new-ish and very hot post-quantum signature scheme.
▶ Based on super cool mathematics. :)

39 / 51

https://sqisign.org

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.

▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).
(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

More “special” isogenies

▶ Earlier: “Special” isogenies φℓ with rational kernel points.
▶ In other words: kerφℓ = ker[ℓ] ∩ ker(π− 1).

(Here π is the Frobenius endomorphism π : (x, y) 7→ (xp, yp).)

!! Over Fp2 , we can have more endomorphisms.
Example: y2 = x3 + x has ι : (x, y) 7→ (−x,

√
−1 · y).

▶ Extremely non-obvious fact in this setting:

Every isogeny φ : E→ E′ comes from an ideal Iφ ⊆ End(E).

:) We understand the structure of End(E).

:) We understand how Iφ, Iψ relate for isogenies φ,ψ : E→ E′.
⇝ one-sided ideal class set of End(E), etc.

40 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:

▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .

▶ Quaternions: Maximal orders in a certain algebra Bp,∞.
Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence
...is the formal version of what I just said.

Theorem. Fix E0 supersingular. The (contravariant) functor
E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left End(E0)-modules

with nonzero left End(E0)-module homomorphisms.

A strong connection between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become “connecting ideals” in quaternion land.

:) One direction is easy, the other seems hard! ⇝ Cryptography!

41 / 51

The Deuring correspondence (examples)

Let p = 7799999 and let i, j satisfy i2 =−1, j2 =−p, ji=−ij.

The ring O0 = Z ⊕ Z i ⊕ Z i+j
2 ⊕ Z 1+ij

2
corresponds to the curve E0 : y2 = x3 + x.

The ring O1 = Z ⊕ Z 4947i ⊕ Z 4947i+j
2 ⊕ Z 4947+32631010i+ij

9894
corresponds to the curve E1 : y2 = x3 + 1.

The ideal I = Z 4947 ⊕ Z 4947i ⊕ Z 598+4947i+j
2 ⊕ Z 4947+598i+ij

2
defines an isogeny E0 → E1 of degree 4947 = 3 · 17 · 97.

42 / 51

The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.
▶ SQIsign builds on the “⇐=” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ (Oriented curves and) isogeny group actions.

43 / 51

The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.

▶ SQIsign builds on the “⇐=” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ (Oriented curves and) isogeny group actions.

43 / 51

The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.
▶ SQIsign builds on the “⇐=” direction constructively.

▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ (Oriented curves and) isogeny group actions.

43 / 51

The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.
▶ SQIsign builds on the “⇐=” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ (Oriented curves and) isogeny group actions.

43 / 51

The Deuring correspondence: Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny security reduces to the “=⇒” direction.
▶ SQIsign builds on the “⇐=” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ (Oriented curves and) isogeny group actions.

43 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

response

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

response

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.

▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

response

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).

▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

Signing with isogenies à la SQIsign

▶ Fiat–Shamir: signature scheme from identification scheme.

E0 Epk

Ecom Echl

secret

co
m

m
itm

en
t

response

challenge

▶ Easy signature: Epk → E0 → Ecom → Echl. Obviously broken.
▶ SQIsign: Construct new path Epk → Echl (using secret).
▶ It relies on an explicit form of the Deuring correspondence.

44 / 51

SQIsign (original version)

Via the Deuring correspondence:
▶ From End(E),End(E′), can randomize within Hom(E,E′).

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.

⇝ SQIsign rewrites the “broken” signature
Epk → E0 → Ecom → Echl

into a random (smooth) isogeny Epk → Echl.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

45 / 51

SQIsign (original version)

Via the Deuring correspondence:
▶ From End(E),End(E′), can randomize within Hom(E,E′).

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.

⇝ SQIsign rewrites the “broken” signature
Epk → E0 → Ecom → Echl

into a random (smooth) isogeny Epk → Echl.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

45 / 51

SQIsign (original version)

Via the Deuring correspondence:
▶ From End(E),End(E′), can randomize within Hom(E,E′).

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.

⇝ SQIsign rewrites the “broken” signature
Epk → E0 → Ecom → Echl

into a random (smooth) isogeny Epk → Echl.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

45 / 51

SQIsign (original version)

Via the Deuring correspondence:
▶ From End(E),End(E′), can randomize within Hom(E,E′).

Main technical tool: The KLPT algorithm.
▶ From End(E),End(E′), can find smooth isogeny E→ E′.

⇝ SQIsign rewrites the “broken” signature
Epk → E0 → Ecom → Echl

into a random (smooth) isogeny Epk → Echl.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti

45 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign (original version): Security

For SQIsign to be secure, we require two main properties:

▶ Soundness: Creating valid signatures requires either
knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges
means you have a (nontrivial) endomorphism of Epk.

(Recall that finding endomorphisms is supposedly hard.)

▶ Zero-knowledge: Signatures are (very close to) statistically
independent of the secret key.

In SQIsign: Somewhat ad-hoc & heuristic arguments that
“KLPT output is a random isogeny” (from some restricted set).

:(This is not far from the trivial hardness assumption “the scheme is secure”...

Known attacks for endomorphism-ring problem:
O(
√p) classically, O(4

√p) quantumly. Fully exponential!

46 / 51

SQIsign: Why?

+ It’s extremely small compared to the competition.
– It’s relatively slow compared to the competition.
+ ...but performance only gets better!

47 / 51

SQIsign: Why?

+ It’s extremely small compared to the competition.
– It’s relatively slow compared to the competition.
+ ...but performance only gets better!

47 / 51

SQIsign (original version): Numbers

Source: https://sqisign.org (2023–2024)

:) Timings have gotten much better since. ⇝ Friday. :)

48 / 51

https://sqisign.org

Plan for this talk

▶ Some high-level intuition. ✓
▶ Elliptic curves & isogenies. ✓
▶ Isogeny group actions. ✓
▶ Signatures from isogenies. ✓

49 / 51

Ad break

https://isogeny.club

50 / 51

https://isogeny.club

Questions?

lorenz@yx7.cc

51 / 51

