Introduction to isogeny-based cryptography

Lorenz Panny

Technische Universität München

PQCSA summer school "PQC fundamentals", Albena, 17 June 2025

Big picture $\rho \rho$

• <u>Isogenies</u> are a type of maps between elliptic curves.

Big picture $\mathcal{P}\mathcal{P}$

- <u>Isogenies</u> are a type of maps between elliptic curves.
- Sampling an isogeny *from* some curve is easy, recovering an isogeny *between* given curves seems very hard.

Big picture $\mathcal{P}\mathcal{P}$

- <u>Isogenies</u> are a type of maps between elliptic curves.
- Sampling an isogeny *from* some curve is easy, recovering an isogeny *between* given curves seems very hard.

~ Cryptography!

Big picture $\mathcal{P}\mathcal{P}$

- ► <u>Isogenies</u> are a type of maps between elliptic curves.
- Sampling an isogeny *from* some curve is easy, recovering an isogeny *between* given curves seems very hard.

~ Cryptography!

[<u>Modern</u> isogeny-based cryptography uses not just elliptic curves, but also higher-dimensional abelian varieties. → *Friday*. ::]

Plan for this talk

- ► Some high-level intuition.
- ► Elliptic curves & isogenies.
- Isogeny group actions.
- Signatures from isogenies.

Diffie–Hellman key exchange (1976)

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie–Hellman key exchange (1976)

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie–Hellman key exchange (1976)

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: ^{*a*} and ^{*b*} are commutative!

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

•••

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - *b*. Publish $B \leftarrow t \cdot g$.

Is this a good idea?

Bob	Attacker Eve
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b</i> . Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

•••

Bob	<u>Attacker Eve</u>
1. Set $t \leftarrow g$.	1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$.	2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$.	3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$.	4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$.	$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$.	$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
<i>b</i> . Publish $B \leftarrow t \cdot g$.	<i>b</i> . Set $t \leftarrow t \cdot g$. If $t = B$ return <i>b</i> .
	$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
	$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b + 2$.

Effort for both: O(#G). Bob needs to be smarter.

(This attacker is also kind of dumb, but that doesn't matter for my point here.)

Bob computes his public key g^{13} from g.

multiply

Bob computes his public key g^{13} from g.

Square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply

Bob computes his public key g^{13} from g.

Square-and-multiply-and-square-and-multiply-and-squ

Bob computes his public key g^{13} from g.

Fast mixing: paths of length log(# nodes) to everywhere.

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Shor's algorithm vs. DLP

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

 \rightsquigarrow <u>New plan</u>: Get rid of the group, keep the graph.

Plan for this talk

- ► Some high-level intuition.
- ► Elliptic curves & isogenies.
- Isogeny group actions.
- Signatures from isogenies.

Stand back!

We're going to do math.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

An elliptic curve over a field *F* of characteristic $\notin \{2,3\}$ is^{*} an equation of the form

$$E: y^2 = x^3 + ax + b$$

with $a, b \in F$ such that $4a^3 + 27b^2 \neq 0$. A point on *E* is a solution (x, y), or the "fake" point ∞ .

E is an abelian group: we can "add" points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is

e of
$$(x, y)$$
 is $(x, -y)$.
 $f(x_1, y_1)$ and (x_2, y_2) is
$$\begin{pmatrix} a_0 & \mathbf{n}_{ot} \\ \delta h_{e_{S_e}} & \mathbf{n}_{ot} \\ \delta h_{e_{S_e}} & \delta h_{e_{T_e}} \\ \delta h_{e_{T_e}} & \mathbf{n}_{ot} \\ \delta h_{e_{T_e}} & \mathbf{n}_{ot}$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

Elliptic curves (picture over \mathbb{R})

The elliptic curve $y^2 = x^3 - x + 1$ over \mathbb{R} .

Elliptic curves (picture over \mathbb{R})

 $\frac{\text{Addition law:}}{P + Q + R} \iff \{P, Q, R\} \text{ on a straight line.}$

Elliptic curves (picture over \mathbb{R})

The *point at infinity* ∞ lies on every vertical line.
Elliptic curves (picture over \mathbb{F}_p)

The same curve $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

Elliptic curves (picture over \mathbb{F}_p)

The <u>addition law</u> of $y^2 = x^3 - x + 1$ over the finite field \mathbb{F}_{79} .

ECDH (not post-quantum)

Public parameters:

an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

ECDH (not post-quantum)

<u>Public parameters</u>: an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication $[n]P := \underbrace{P + \dots + P}_{n \text{ times}}$. (Use double-and-add!)

ECDH (not post-quantum)

<u>Public parameters</u>: an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication $[n]P := \underbrace{P + \dots + P}_{n \text{ times}}$. (Use double-and-add!)

... are just fancily-named

nice maps

between elliptic curves.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

An isogeny of elliptic curves is a non-zero map *E* → *E*' that is:
given by rational functions.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where f, g are polynomials.

A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Reminder:

A rational function is f(x, y)/g(x, y) where *f*, *g* are polynomials.

A group homomorphism φ satisfies $\varphi(P + Q) = \varphi(P) + \varphi(Q)$.

The kernel of an isogeny $\varphi : E \to E'$ is $\{P \in E : \varphi(P) = \infty\}$. The degree of a separable^{*} isogeny is the size of its kernel. (This matches the degree of φ in *x* when written in lowest terms.)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #1:
$$(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #2: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$

is a degree- m^2 isogeny. Notation: E[m] := ker[m].

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #3: For E/\mathbb{F}_q , the map

$$\pi\colon (x,y)\mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #3: For E/\mathbb{F}_q , the map

$$\pi\colon (x,y)\mapsto (x^q,y^q)$$

is a degree-q isogeny, the *Frobenius endomorphism*.

The kernel of π –1 is precisely the set of rational points $E(\mathbb{F}_q)$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

Example #3: For E/\mathbb{F}_q , the map

$$\pi\colon (x,y)\mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

The kernel of π -1 is precisely the set of rational points $E(\mathbb{F}_q)$. Important <u>fact</u>: An isogeny φ is \mathbb{F}_q -rational iff $\pi \circ \varphi = \varphi \circ \pi$.

Isogenies between distinct curves are "rare". We say *E* and *E*′ are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Isogenies between distinct curves are "rare".

We say *E* and *E*' are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Isogenies between distinct curves are "rare".

We say *E* and *E*' are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

(The Schoof–Elkies–Atkin algorithm can compute $#E(\mathbb{F}_q)$ efficiently!)

Isogenies between distinct curves are "rare".

We say *E* and *E*' are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

(The Schoof–Elkies–Atkin algorithm can compute $#E(\mathbb{F}_q)$ efficiently!)

 \implies Bottom line: Being isogenous is an equivalence relation. Over finite fields, we can easily test it.

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve *E*' is denoted by E/G. (cf. quotient groups)

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

 \rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*. The curve *E'* is denoted by *E/G*. (cf. quotient groups)

 \rightsquigarrow To choose an isogeny, simply choose a finite subgroup.

We have formulas to compute and evaluate isogenies.
 (...but they are only efficient for "small" degrees!)

For any finite subgroup *G* of *E*, there exists a unique^{*} separable^{*} isogeny $\varphi_G \colon E \to E'$ with kernel *G*. The curve *E'* is denoted by *E/G*. (cf. quotient groups)

- → To choose an isogeny, simply choose a finite subgroup.
 - We have formulas to compute and evaluate isogenies.
 (...but they are only efficient for "small" degrees!)
- → Decompose large-degree isogenies into prime steps. That is, walk in an isogeny graph.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for

- ► computing the defining equation of *E*/*G*;
- evaluating the isogeny $E \rightarrow E/G$ at a point.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \\ y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel G.

This leads to formulas for

- ► computing the defining equation of *E*/*G*;
- evaluating the isogeny $E \rightarrow E/G$ at a point.

Elliptic curves in general can be very annoying

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- E/\mathbb{F}_p is *supersingular* if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ or $E(\mathbb{F}_p) \cong \mathbb{Z}/\frac{p+1}{2} \times \mathbb{Z}/2$, and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- E/\mathbb{F}_p is *supersingular* if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ or $E(\mathbb{F}_p) \cong \mathbb{Z}/\frac{p+1}{2} \times \mathbb{Z}/2$, and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

→ Easy method to control the group structure by choosing *p*!
 → Cryptography works well using supersingular curves.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- E/\mathbb{F}_p is *supersingular* if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ or $E(\mathbb{F}_p) \cong \mathbb{Z}/\frac{p+1}{2} \times \mathbb{Z}/2$, and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

→ Easy method to control the group structure by choosing *p*!
 → Cryptography works well using supersingular curves.

(All curves are supersingular for the rest of the lecture.)

<u>Keep in mind</u>: Constructing isogenies $E \rightarrow _$ is (usually) easy, constructing an isogeny $E \rightarrow E'$ given (E, E') is (usually) hard.

Plan for this talk

- ► Some high-level intuition.
- ► Elliptic curves & isogenies.
- ► Isogeny group actions.
- Signatures from isogenies.

Ε

► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_A and E_B .

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_A and E_B .
- ► Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$,

- ► Alice & Bob pick secret \(\varphi_A: E \rightarrow E_A\) and \(\varphi_B: E \rightarrow E_B\). (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the end curves E_A and E_B .
- ► Alice <u>somehow</u> finds a "parallel" $\varphi_{A'}$: $E_B \to E_{BA}$, and Bob <u>somehow</u> finds $\varphi_{B'}$: $E_A \to E_{AB}$, such that $E_{AB} \cong E_{BA}$.

How to find "parallel" isogenies?

How to find "parallel" isogenies?

CSIDH's solution:

Use special isogenies φ_A which can be transported to the curve E_B totally independently of the secret isogeny φ_B .

(Similarly with reversed roles, of course.)

CSIDH ['sir,said]

And the Manual of the State of

[Castryck–Lange–Martindale–Panny–Renes 2018]

"Special" isogenies

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

"Special" isogenies

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

 \Rightarrow For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} .

We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

⇒ For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} . \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$. We fix an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$.

⇒ For every $\ell \mid (p+1)$ exists a unique order- ℓ subgroup H_{ℓ} . \rightsquigarrow For all such *E* can canonically find an isogeny $\varphi_{\ell} \colon E \to E'$.

We consider prime ℓ and refer to φ_{ℓ} as a "special" isogeny.

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

What happens when we iterate such a "special" isogeny?

► Fact: Each curve has only one other rational ℓ -isogeny. It is defined by the kernel $\{P \in E(\mathbb{F}_{p^2}) : [\ell_i]P = \infty \land \pi(P) = -P\}.$

What happens when we iterate such a "special" isogeny?

- ► Fact: Each curve has only one other rational ℓ -isogeny. It is defined by the kernel $\{P \in E(\mathbb{F}_{p^2}) : [\ell_i]P = \infty \land \pi(P) = -P\}.$
- **!!** Reverse arrows are unique; the "tail" $E \to E_{\ell^3}$ cannot exist.

What happens when we iterate such a "special" isogeny?

- Fact: Each curve has only one other rational ℓ-isogeny. It is defined by the kernel {P ∈ E(𝔽_p2) : [ℓ_i]P = ∞ ∧ π(P) = −P}.
- **!!** Reverse arrows are unique; the "tail" $E \to E_{\ell^3}$ cannot exist.
- \implies The "special" isogenies φ_{ℓ} form isogeny cycles!

What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

What happens when we compose those "special" isogenies?

• Fact: $\ker(\varphi'_{\ell} \circ \varphi'_m) = \ker(\varphi_m \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_m \rangle.$

What happens when we compose those "special" isogenies?

► Fact: $\ker(\varphi'_{\ell} \circ \varphi'_m) = \ker(\varphi_m \circ \varphi_{\ell}) = \langle \ker \varphi_{\ell}, \ker \varphi'_m \rangle$. !! The order cannot matter \implies cycles must be compatible.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ supersingular with } A \in \mathbb{F}_p\}.$
- Look at the "special" ℓ_i -isogenies within X.

• Walking "left" and "right" on any l_i -subgraph is efficient.

 <u>Recall</u>: "Left" and "right" steps correspond to isogenies with special subgroups of *E* as kernels.

 <u>Recall</u>: "Left" and "right" steps correspond to isogenies with special subgroups of *E* as kernels.

Computing a "left" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- <u>Recall</u>: "Left" and "right" steps correspond to isogenies with special subgroups of *E* as kernels.
- Computing a "left" step:
 - 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
 - 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.
- Computing a "right" step:
 - 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
 - 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

- Recall: "Left" and "right" steps correspond to isogenies with special subgroups of *E* as kernels.
- Computing a "left" step:
 - 1. Find a point $(x, y) \in E$ of order ℓ_i with $x, y \in \mathbb{F}_p$.
 - 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

Computing a "right" step:

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$.

(Finding a point of order ℓ_i : Pick $x \in \mathbb{F}_p$ random. Find $y \in \mathbb{F}_{p^2}$ such that $P = (x, y) \in E$. Compute $Q = [\frac{p+1}{\ell_i}]P$. Hope that $Q \neq \infty$, else retry.)

Walking in the CSIDH graph (in SageMath)

Walking in the CSIDH graph (in SageMath)

```
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
        over Finite Field in z2 of size 419^2
sage: while True:
\dots x = GF(419).random_element()
....: try:
              P = E.lift_x(x)
. . . . :
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
              break
. . . . :
. . . . :
sage: P
(218 : 403 : 1)
```

Walking in the CSIDH graph (in SageMath)

```
sage: E = EllipticCurve(GF(419^2), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x
        over Finite Field in z2 of size 419^2
sage: while True:
....: x = GF(419).random_element()
....: try:
              P = E.lift_x(x)
. . . . :
....: except ValueError: continue
....: if P[1] in GF(419): # "right" step: invert
             break
. . . . :
. . . . :
sage: P
(218 : 403 : 1)
sage: P.order().factor()
2 * 3 * 7
sage: EE = E.isogeny_codomain(2*3*P) # "left" 7-step
sage: EE
Elliptic Curve defined by y^2 = x^3 + 285 \times x + 87
        over Finite Field in z2 of size 419^2
```


Cycles are compatible: [right then left] = [left then right]

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

Cycles are compatible: [right then left] = [left then right] \rightarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves *X*!

Cycles are compatible: [right then left] = [left then right] ~> only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes (+1, 0, -3) $\in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

(An action of a group (G, \cdot) on a set *X* is a map $*: G \times X \to X$ such that id * x = x and $g * (h * x) = (g \cdot h) * x$ for all $g, h \in G$ and $x \in X$.)

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves X.</u>

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves *X*.</u>

!! The set *X* is **finite** \implies The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially.

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves *X*.</u>

!! The set *X* is **finite** \implies The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves *X*.</u>

!! The set X is **finite** \implies The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

!! We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n/Λ is the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves *X*.</u>

!! The set *X* is **finite** \implies The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

!! We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n/Λ is the ideal-class group $cl(\mathbb{Z}[\sqrt{-p}])$.

!! This group characterizes when two paths lead to the same curve.

<u>**Recall</u>:** Group action of $(\mathbb{Z}^n, +)$ on set of curves *X*.</u>

!! The set *X* is **finite** \implies The action is **not free**. There exist vectors $\underline{v} \in \mathbb{Z}^n \setminus \{0\}$ which act trivially. Such \underline{v} form a full-rank subgroup $\Lambda \subseteq \mathbb{Z}^n$, the relation lattice.

!! We understand the structure: By complex-multiplication theory, the quotient \mathbb{Z}^n/Λ is the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

!! This group characterizes when two paths lead to the same curve.

The lattice Λ is computable in subexponential time classically, and in polynomial time using a quantum computer. It is used to construct more advanced schemes ("*CSI-FiSh*").

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \cdot h^y.$$

Why no Shor?

Shor's quantum algorithm computes α from g^{α} in any group in polynomial time.

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y.$$

For group <u>actions</u>, we simply cannot compose a * s and b * s!

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is
$$\#$$
cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Security of CSIDH

<u>Core problem</u>: Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

The size of *X* is #cl $(\mathbb{Z}[\sqrt{-p}]) = 3 \cdot h(-p) \approx \sqrt{p}$.

→ best known <u>classical</u> attack: meet-in-the-middle, $\tilde{\mathcal{O}}(p^{1/4})$. Fully exponential: Complexity $\exp((\log p)^{1+o(1)})$.

Solving abelian hidden shift breaks CSIDH.

→ non-devastating <u>quantum</u> attack (Kuperberg's algorithm). Subexponential: Complexity $\exp((\log p)^{1/2+o(1)})$.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical *and* quantum operations.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical *and* quantum operations.
 How to compare costs?
 (Is one qubit operation ≈ one bit operation? a hundred? millions?)

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- Oracle calls are expensive.
- The sieving phase has classical and quantum operations.
 How to compare costs? (Is one qubit operation ≈ one bit operation? a hundred? millions?)

 \implies Security estimates for CSIDH & friends vary wildly.

• <u>Classical security</u>: $\widetilde{O}(\sqrt[4]{p})$; attacks are basically brute force.

- <u>Classical security</u>: $\widetilde{O}(\sqrt[4]{p})$; attacks are basically brute force.
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.

- <u>Classical security</u>: $\widetilde{O}(\sqrt[4]{p})$; attacks are basically brute force.
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.
- $\implies \underline{\text{Key sizes:}} \text{ Public keys are } 4\lambda \text{ bits for } classical \lambda \text{-bit security.} \\ (For \lambda \text{-bit } quantum \text{ security, need } \Theta(\lambda^2) \text{ bits.})$

- <u>Classical security</u>: $\widetilde{O}(\sqrt[4]{p})$; attacks are basically brute force.
- ► <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.
- $\implies \underline{\text{Key sizes:}} \text{ Public keys are } 4\lambda \text{ bits for } classical \lambda \text{-bit security.} \\ (\text{For } \lambda \text{-bit } quantum \text{ security, need } \Theta(\lambda^2) \text{ bits.})$
 - ► <u>Performance:</u> Some tens of milliseconds per group-action evaluation at the 128-bit *classical* security level.

- <u>Classical security</u>: $\widetilde{O}(\sqrt[4]{p})$; attacks are basically brute force.
- <u>Quantum security</u>: Asymptotically exp((log p)^{1/2+o(1)}) due to Kuperberg's quantum algorithm.
- $\implies \underline{\text{Key sizes:}} \text{ Public keys are } 4\lambda \text{ bits for } classical \lambda \text{-bit security.} \\ (\text{For } \lambda \text{-bit } quantum \text{ security, need } \Theta(\lambda^2) \text{ bits.})$
 - ► <u>Performance</u>: Some tens of milliseconds per group-action evaluation at the 128-bit *classical* security level.
 - <u>2023</u>: "Clapoti" a polynomial-time algorithm for arbitrary combinations of operations in the group and evaluations of the action. ~> "KLaPoTi", "PEGASIS". (Previously, only restricted sequences of operations were efficient.)
 ~> Friday. ::
Other isogeny group actions

There are many ways of building isogeny group actions.

Other isogeny group actions

There are many ways of building isogeny group actions.

Other isogeny group actions

There are many ways of building isogeny group actions.

 \rightsquigarrow Friday. \because

Plan for this talk

- ► Some high-level intuition.
- ► Elliptic curves & isogenies. √
- Isogeny group actions.
- Signatures from isogenies.

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- A new-ish and very hot post-quantum signature scheme.
- ► Based on super cool mathematics. ∵

• Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

<u>Every</u> isogeny $\varphi \colon E \to E'$ comes from an ideal $I_{\varphi} \subseteq \operatorname{End}(E)$.

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

<u>Every</u> isogeny $\varphi \colon E \to E'$ comes from an ideal $I_{\varphi} \subseteq \operatorname{End}(E)$.

 \because We understand the structure of End(E).

- Earlier: "Special" isogenies φ_{ℓ} with rational kernel points.
- In other words: ker φ_ℓ = ker[ℓ] ∩ ker(π − 1). (Here π is the Frobenius endomorphism π: (x, y) ↦ (x^p, y^p).)
- **!!** Over \mathbb{F}_{p^2} , we can have more endomorphisms. Example: $y^2 = x^3 + x$ has $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$.
- Extremely non-obvious fact in this setting:

<u>Every</u> isogeny $\varphi \colon E \to E'$ comes from an ideal $I_{\varphi} \subseteq \text{End}(E)$.

- \because We understand the structure of End(E).
- $:: We understand how I_{\varphi}, I_{\psi} \text{ relate for isogenies } \varphi, \psi \colon E \to E'.$ $\implies \text{ one-sided ideal class set of } End(E), \text{ etc.}$

... is the formal version of what I just said.

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

a priori

A strong connection between two^{γ} very different worlds:

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

a priori

- A strong connection between two γ very different worlds:
 - Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

a priori

- A strong connection between two^{γ} very different worlds:
 - Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
 - Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

a priori

- A strong connection between two^{γ} very different worlds:
 - Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
 - Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

... is the formal version of what I just said.

Theorem. Fix E_0 supersingular. The (contravariant) functor $E \longmapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- ► invertible left End(*E*₀)-modules with nonzero left End(*E*₀)-module homomorphisms.

a priori

A strong connection between two γ very different worlds:

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$. Isogenies become "connecting ideals" in quaternion land.
- ∵ One direction is easy, the other seems hard! → *Cryptography*!

The Deuring correspondence (examples)

Let p = 7799999 and let **i**, **j** satisfy $i^2 = -1$, $j^2 = -p$, ji = -ij.

The ring $\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{1+\mathbf{i}\mathbf{j}}{2}$ corresponds to the curve $E_0: y^2 = x^3 + x$.

The ring $\mathcal{O}_1 = \mathbb{Z} \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+32631010\mathbf{i}+\mathbf{ij}}{9894}$ corresponds to the curve $E_1: y^2 = x^3 + 1$.

The ideal $I = \mathbb{Z} 4947 \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{598+4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+598\mathbf{i}+\mathbf{i}\mathbf{j}}{2}$ defines an isogeny $E_0 \to E_1$ of degree $4947 = 3 \cdot 17 \cdot 97$.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

• \approx All isogeny security reduces to the " \implies " direction.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny security reduces to the " \implies " direction.
- ► **SQIsign** builds on the "←" direction constructively.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny security reduces to the " \implies " direction.
- ► **SQIsign** builds on the "←" direction constructively.
- Essential tool for *both* constructions and attacks.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny security reduces to the " \implies " direction.
- ► **SQIsign** builds on the "←" direction constructively.
- Essential tool for *both* constructions and attacks.

Constructively, *partially* known endomorphism rings are useful. ~> (**Oriented curves** and) **isogeny group actions**.

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

 $E_0 \xrightarrow{secret} E_{pk}$

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

► <u>Fiat-Shamir</u>: signature scheme from identification scheme.

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

• Easy signature: $E_{pk} \rightarrow E_0 \rightarrow E_{com} \rightarrow E_{chl}$. Obviously broken.

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

- ► Easy signature: $E_{pk} \rightarrow E_0 \rightarrow E_{com} \rightarrow E_{chl}$. Obviously broken.
- **<u>SQIsign</u>**: Construct new path $E_{pk} \rightarrow E_{chl}$ (using secret).

► <u>Fiat–Shamir</u>: signature scheme from identification scheme.

- ► Easy signature: $E_{pk} \rightarrow E_0 \rightarrow E_{com} \rightarrow E_{chl}$. Obviously broken.
- **<u>SQIsign</u>**: Construct new path $E_{pk} \rightarrow E_{chl}$ (using secret).
- ► It relies on an explicit form of the Deuring correspondence.

Via the Deuring correspondence:

▶ From End(E), End(E'), can randomize within Hom(E, E').

Via the Deuring correspondence:

▶ From End(E), End(E'), can randomize within Hom(E, E').

Main technical tool: The KLPT algorithm.

▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.

Via the Deuring correspondence:

▶ From End(E), End(E'), can randomize within Hom(E, E').

Main technical tool: The KLPT algorithm.

▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.

→ SQIsign rewrites the "broken" signature $E_{pk} \rightarrow E_0 \rightarrow E_{com} \rightarrow E_{chl}$ into a random (smooth) isogeny $E_{pk} \rightarrow E_{chl}$.

Via the Deuring correspondence:

▶ From End(E), End(E'), can randomize within Hom(E, E').

Main technical tool: The KLPT algorithm.

▶ From End(E), End(E'), can find *smooth* isogeny $E \rightarrow E'$.

→ SQIsign rewrites the "broken" signature $E_{pk} \rightarrow E_0 \rightarrow E_{com} \rightarrow E_{chl}$ into a random (smooth) isogeny $E_{pk} \rightarrow E_{chl}$.

"If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign." — Yan Bo Ti
For SQIsign to be secure, we require two main properties:

For SQIsign to be secure, we require two main properties:

 <u>Soundness</u>: Creating valid signatures requires either knowing the private key or solving a hard problem.

For SQIsign to be secure, we require two main properties:

 <u>Soundness</u>: Creating valid signatures requires either knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges means you have a (nontrivial) endomorphism of E_{pk} . (Recall that finding endomorphisms is supposedly hard.)

For SQIsign to be secure, we require two main properties:

 <u>Soundness</u>: Creating valid signatures requires either knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges means you have a (nontrivial) endomorphism of E_{pk} . (Recall that finding endomorphisms is supposedly hard.)

 <u>Zero-knowledge</u>: Signatures are (very close to) statistically independent of the secret key.

For SQIsign to be secure, we require two main properties:

 <u>Soundness</u>: Creating valid signatures requires either knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges means you have a (nontrivial) endomorphism of E_{pk} . (Recall that finding endomorphisms is supposedly hard.)

 <u>Zero-knowledge</u>: Signatures are (very close to) statistically independent of the secret key.

In SQIsign: Somewhat *ad-hoc & heuristic* arguments that "KLPT output is a random isogeny" (from some restricted set).

For SQIsign to be secure, we require two main properties:

 <u>Soundness</u>: Creating valid signatures requires either knowing the private key or solving a hard problem.

In SQIsign: Having responses to two distinct challenges means you have a (nontrivial) endomorphism of E_{pk} . (Recall that finding endomorphisms is supposedly hard.)

 <u>Zero-knowledge</u>: Signatures are (very close to) statistically independent of the secret key.

In SQIsign: Somewhat *ad-hoc & heuristic* arguments that "KLPT output is a random isogeny" (from some restricted set).

Known <u>attacks</u> for endomorphism-ring problem: $O(\sqrt{p})$ classically, $O(\sqrt[4]{p})$ quantumly. Fully exponential!

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance only gets better!

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance only gets better!

SQIsign (original version): Numbers

sizes

parameter set	public keys	signatures
NIST-I	64 bytes	177 bytes
NIST-III	96 bytes	263 bytes
NIST-V	128 bytes	335 bytes

performance

Cycle counts for a *generic C implementation* running on an Intel *Ice Lake* CPU. Optimizations are certainly possible and work in progress.

parameter set	keygen	signing	verifying
NIST-I	3728 megacycles	5779 megacycles	108 megacycles
NIST-III	23734 megacycles	43760 megacycles	654 megacycles
NIST- V	91049 megacycles	158544 megacycles	2177 megacycles

Source: https://sqisign.org (2023-2024)

 \because Timings have gotten *much* better since. \rightsquigarrow *Friday*. \because

Plan for this talk

- ► Some high-level intuition.
- Elliptic curves & isogenies. \checkmark
- Isogeny group actions.
- Signatures from isogenies.

Ad break

THE sogeny club

Seminar Sessions

A seminar session for young isogenists.

https://isogeny.club

Questions?

lorenz@yx7.cc