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Abstract

Isabelle/HOL has lately been extended with a definitional package supporting modular
(co)datatypes based on category theoretical constructions. The implementation generates
the specified types and associated theorems and constants, notably (co)recursors, but ini-
tially, there was no convenient way of specifying functions over these types. This thesis
introduces the high-level commands primrec, primcorec and primcorecursive that can be
used to define primitively (co)recursive functions over Isabelle’s new (co)datatypes using
an intuitive syntax. Automating a tedious process, a user specification is internally re-
duced to a (co)recursor-based definition. Using the (co)recursor theorems, it is then proved
and introduced as theorems that the definition does in fact fulfill the specified properties.

Zusammenfassung

Isabelle/HOL wurde kürzlich um ein definitorisches Modul zur Unterstützung modula-
rer Ko-/Datentypen, basierend auf einer kategorientheoretischen Konstruktion, erweitert.
Die Implementierung generiert die spezifizierten Typen sowie zugehörige Theoreme und
Konstanten (insbesondere Ko-/Rekursoren), aber zunächst stand keine bequeme Methode
zum Erzeugen von Funktionen über diesen Typen zur Verfügung. In dieser Arbeit werden
die Befehle primrec, primcorec und primcorecursive vorgestellt, mit deren Hilfe unter
Benutzung intuitiver Syntax primitiv-(ko)rekursive Funktionen über Isabelles neuen Ko-
/Datentypen definiert werden können. Intern automatisieren sie die mühsame Konversi-
on von lesbaren Spezifikationen zu technischen Definitionen unter Verwendung des Ko-
/Rekursors. Mithilfe der Ko-/Rekursor-Theoreme wird anschließend bewiesen und als
Theorem vermerkt, dass die generierte Definition tatsächlich die Benutzereingabe erfüllt.
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1 Introduction

Recursive functions are a substantial means of expressing recurring computations in func-
tional programming languages. One such language is higher-order logic (HOL), forming the
foundation of the popular theorem proving environment Isabelle/HOL. Isabelle is a generic
theorem prover and proof checker [10] capable of reasoning about different object logics
including, but not limited to, HOL. It follows the LCF philosophy [6], featuring a small
inference kernel, and uses a definitional approach which discourages the introduction of
additional axioms and instead strives to use definitions whenever possible. This is tedious,
but there is hope that minimizing the amount of code and axiomatization that needs to be
trusted avoids inconsistencies. Thus, unlike in other theorem provers, Isabelle/HOL’s al-
gebraic (co)datatypes are not intrinsic to the object logic (such as in Coq [5]) or brought into
being by axiomatization (as in PVS [11]), but explicitly constructed in HOL and checked by
Isabelle’s inference kernel. The method of choice for this construction is the category the-
oretical notion of a bounded natural functor (BNF), “an enriched type constructor satisfying
specific properties preserved by interesting categorical operations.” [13]

Isabelle/HOL’s new (co)datatype package [13] provides means to define compositional
algebraic (co)datatypes, but until recently, there was no convenient way of iterating (co)re-
cursively over these types. For some cases, there have been methods to do so, including
limited commands covering special cases or directly using low-level constructions and
theorems generated by datatype and codatatype.

When trying to define (co)recursive functions, there is a central problem. Users could, in
principle, introduce functions axiomatically, but this is dangerous: consider the example
wrong :: nat ⇒ nat over the datatype nat of natural numbers specified by

wrong n = 1 + wrong n.

This definition is clearly inconsistent with the properties of nat since it implies 0 = 1, and
therefore must not be established as an axiom. Because it is impossible to decide whether
an arbitrary recursive specification is consistent (as a consequence to Rice’s theorem), the
definitional approach is justified: We do not postulate the existence of a function that ful-
fills the user specification, but rather construct one that does (i.e. find a definition f = rhs
for f such that rhs does not contain f). The primitive prefix to (co)recursion denotes useful
classes of functions where constructing such a definition is always possible, which is why
they’re detached as an important special case.

Primitive recursion means that in each recursive descent, exactly one constructor is peeled
off the function argument through which recursion is performed. In particular, for finite
inputs, i.e. having only a finite number of constructors (like all datatype values), this forces
the recursion to terminate1 in any case. As a consequence, no inconsistencies can be intro-
duced: Termination implies that a function application can at some point be written as

1 Note that Isabelle does not have any notion of computation — whenever this thesis mentions “termination”
of a function, it should strictly say “termination of a recursive specification”, i.e. if we were to repeatedly
unfold the specification, this would eventually yield a term not containing the recursive function. More
formally, this means that there is a well-founded partial order on the function arguments such that the
arguments become smaller with each unfolding, rendering the function’s result fully specified.
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1 Introduction

a term not containing the original invocation, and since this term is unambiguous, the
definition preserves consistency. A well-known example is the length function over lists,
which can be defined as follows:

primrec length :: α list ⇒ int where
length Nil = 0
| length (Cons xs) = 1 + length xs

Primitive corecursion is dual in the sense that while primitive recursion removes one con-
structor per iteration, primitive corecursion adds one layer of constructors during each co-
recursive descent. We shall call this property productivity. The main difference to datatypes
is that codatatypes can have infinite values and thus, it is desirable to not require a core-
cursive function to terminate. Consistency is guaranteed nonetheless due to productivity:
Since arbitrarily precise finite approximations of a primitively corecursive function’s re-
sult can be obtained by repeatedly unfolding its specification, and codatatype values are
uniquely characterized by their observations, there is exactly one value that matches the
specification for each given input.

An example is the function nats, which takes a natural number n and outputs an infinite
stream of all numbers that are greater than or equal to n:

primcorec nats :: nat ⇒ nat stream where
shd (nats n) = n
| stl (nats n) = nats (n+ 1)

To demonstrate that there is a non-productive specification that implies False, consider
the simple example

f :: bool stream
f = smap Not f

that is not primitively corecursive. Since streams are always infinite and thus non-empty,
this identity implies b = ¬ b for some boolean b. On the other hand, there are non-
productive corecursive specifications hat do not lead to a contradiction. Lochbihler and
Hölzl recently showed how to generalize the well-known filter function (which is not pro-
ductive) to infinite lists in a consistent way [8].

The command primrec is intended as a compatible analogue and, eventually, replace-
ment for Berghofer and Wenzel’s homonymous primrec [2] for the old datatype package.

The command primcorec and its more powerful variant primcorecursive are capable
of defining potentially non-terminating corecursive functions over codatatypes, using a
variety of syntaxes suitable to different kinds of tasks and personal preferences.

The author’s contribution within the scope of this thesis was the implementation of both commands’ term-
level functionality, some details of which are described in sections 4 and 7. His advisors provided the
underlying requirements, notably: nested-to-mutual reduction, proof tactics and interfaces to the BNF
data structures.

The ITP 2014 conference paper “Truly modular (co)datatypes for Isabelle/HOL” [3] describes some of
this work along with other recent Isabelle development concerning (co)datatypes.

The Isabelle Workshop 2014 paper “Primitively (co)recursive definitions for Isabelle/HOL” [9] is based on
a draft of this thesis.

2



2 Datatypes

One of the most fundamental concepts in most functional programming languages is that
of an algebraic datatype. For most purposes, they are the preferred way of creating new
types and combining existing ones into more complex (and useful) composite types. Prob-
ably the most popular example is the datatype of finite lists, which can be defined by

datatype α list (map : map) = null : Nil
| Cons (hd : α) (tl : α list)

using Isabelle’s datatype1 command. This invocation defines a new type α list with one
type parameter α, together with two constructors:

• Nil, which indicates an empty list and can be detected using the discriminator null ::
α list ⇒ bool;

• Cons, taking two parameters of type α and α list , which constructs a new list from
a single item (the new list’s head) and the rest of the list (its tail). The functions
hd :: α list ⇒ α and tl :: α list ⇒ α list that extract Cons’s arguments are called
selectors.

This simple example shows a basic concept of algebraic datatypes: They can recursively
contain a number of other types (including themselves). A function that takes a (recur-
sive) datatype as one of its argument types can thus re-apply itself (or, in general, another
function) to some term containing the value of the datatype that is enclosed in the func-
tion argument. Inevitably, the problem of possible non-termination (and thus, potential
inconsistency) arises.

Isabelle can solve this problem by requiring the user to provide proof that their specifica-
tion will definitely terminate. However, many important functions over datatypes fall into
a class for which there are simple (easily automatable) criteria that guarantee termination.
This class is the set of primitively recursive functions, described in detail in section 3.

The datatype command allows the definition of mutually recursive datatypes. These are
characterised by the simultaneous specification of two or more datatypes that recursively
contain each other in some of their constructor arguments. A typical example is a type of
finitely branching trees of finite depth and associated (finite) forests:

datatype α treeM = TEmptyM
| TNodeM (tvalM : α) (childrenM : α forest)

and α forest = fempty : FNil
| FCons (fhd : α treeM) (�l : α forest)

1 In the current Isabelle release, the new datatype is suffixed with “ new” to distinguish it from the old
command. In this thesis, the suffix is omitted and datatype shall always denote datatype new.
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2 Datatypes

The internal constructions require that each set of mutually recursive datatypes have iden-
tical type parameters (in this case, α treeM and α forest share α).

Another, more involved example is the following representation for a simple arithmetic
expression language:

datatype expr = Expr Sum expr sum
| Expr Prod expr prod
| Expr Const nat

and expr sum = Sum expr expr
and expr prod = Prod expr expr

In addition to mutual recursion, it is often desirable to incorporate existing datatypes
into newly defined types. This enables reuse of existing datatypes and, notably, theorems
and functions concerning these types. In many cases, it also enables a more intuitive way
of specifying a datatype and eases understanding the type’s structure. For example, a type
equivalent to α treeM can be obtained by reusing the generic list type instead of creating a
dedicated forest type:

datatype α tree = tempty : TEmpty | TNode (tval : α) (children : α tree list)

This construction is an example of a nested recursive datatype. In general, we speak of nested
recursion when a datatype (in this case: α tree) recursively occurs under an existing type
constructor (list). As a second example, non-empty binary trees can be defined via

datatype α option = is none : None | Some (the : α)
datatype α btree = BNode (bval : α) (le� : α btree option) (right : α btree option),

where the α btree type is nested inside the option type constructor.
The internal constructions support arbitrary combinations of mutual and nested recur-

sion, with one notable exception: Whenever types occur nested inside the function type
α ⇒ β, they must appear on the function’s right-hand side, that is, in its result type. For
example,

datatype α wrong = L α | N (α wrong ⇒ α)

is rejected by the datatype command, whereas

datatype α �ree = FTLeaf α | FTNode (α⇒ α �ree)

is permitted.

4



3 Primitively recursive functions

As noted in section 2, primitively recursive functions are always guaranteed to terminate.
This stems from the requirement that the recursion keeps pattern-matching the same ar-
gument position and the argument passed in this position becomes smaller (in terms of
the total number of nested constructors) in each recursive descent. Since datatype values
always have a finite number of constructors, this implies that at some point, recursion will
hit a base case and terminate, thus ensuring consistency.

3.1 Simple recursion

A primitively recursive function f over a datatype (α1 . . . ατ ) t is characterised by peeling
off one of (α1 . . . ατ ) t ’s constructors in each recursive descent. The definition of such
functions via the primrec command is of the general form

primrec f :: . . . ⇒ (α1 . . . ατ ) t ⇒ . . . ⇒ β where
f . . . (C a1 . . . ai) . . . = . . .
| f . . . (D a1 . . . aj) . . . = . . .
| . . . ,

where C, D, etc. are distinct constructors of the recursive type. The right-hand sides may
involve recursively passing some of the constructor arguments a1 to ak to f. To be able
to guarantee that the recursive function argument becomes syntactically smaller in each
descent, it is required that the constructor arguments shall not be modified by passing
them to a different function — especially not by introducing a constructor, as this would
permit inconsistent definitions like

wrong (C x) = wrong (C x) + 1.

The usage of other arguments that are not contained in the constructor pattern is not con-
strained in any way; they may vary arbitrarily.

The constructor pattern (C a1 . . . an) may be located at an arbitrary argument position,
but its position needs to be consistent throughout the whole function. To keep the imple-
mentation simple, no further pattern matching in the constructor pattern is allowed — the
pattern needs to be a single, fully applied constructor.

Other examples are the app and rev functions on lists that append two lists over the same
type or reverse the order of a list’s elements, respectively:

primrec app :: α list ⇒ α list ⇒ α list where
app Nil = id
| app (Cons x xs) = Cons x ◦ app xs

primrec rev :: α list ⇒ α list where
rev Nil = Nil
| rev (Cons x xs) = app (rev xs) (Cons x xs)

5



3 Primitively recursive functions

The primrec command expects to find an equation for each of the recursive datatype’s
constructors — otherwise, a warning is printed. Since there are cases where the specifi-
cation is intended to be incomplete, the nonexhaustive option can be used to suppress this
warning. For example:

primrec (nonexhaustive) last :: α list ⇒ α where
last (Cons x xs) = (if null xs then x else last xs)

The behaviour of last on input Nil is then unspecified.

3.2 Mutual recursion

In the case of mutually recursive datatypes (α1 . . . ατ ) t1 to (α1 . . . ατ ) tµ (that is, they
contain one another, wrapped in constructors), one can define mutually recursive functions.
This is done by the following general command:

primrec
f1 :: . . .⇒ (α1 . . . ατ ) t1 ⇒ β1 and
. . . and
fµ :: . . .⇒ (α1 . . . ατ ) tµ ⇒ βµ

where
f1 . . . (C a1 . . . ai) . . . = . . .
| f1 . . . (D a1 . . . aj) . . . = . . .
| . . .
| fµ . . . (E a1 . . . ak) . . . = . . .
| fµ . . . (F a1 . . . a`) . . . = . . .
| . . .

Note that for one single type, this reduces to the “simple recursion” described above. The
right-hand sides may contain recursive calls to any of the functions fn, passing it any
pattern-matched constructor argument.

For example, arithmetic expressions represented by the datatype introduced in section 2
can be evaluated to a natural number using

primrec
eval :: expr ⇒ nat and
eval sum :: expr sum ⇒ nat and
eval prod :: expr prod ⇒ nat

where
eval (Expr Sum s) = eval sum s
| eval (Expr Prod p) = eval prod p
| eval (Expr Const c) = c
| eval sum (Sum a b) = eval a+ eval b
| eval prod (Prod a b) = eval a ∗ eval b.

3.3 Nested recursion

In addition to the mechanisms described in the previous sections, some datatypes also
allow nested recursion. This is possible whenever a datatype contains another embedded

6



3.4 Nested-as-mutual recursion

inside an existing type constructor. An example is the datatype of non-empty, finitely
branching trees of finite depth, defined in section 2. It contains itself in the second con-
structor argument, nested inside the list type constructor. In cases like this, it is possible
to recurse through the wrapping type’s map function (which is just called map for lists), for
example:

primrec mirror :: α tree ⇒ α tree where
mirror (TNode x cs) = TNode x (rev (map mirror cs))

There are some exceptions to the rule that a recursive function must be directly applied
to an unmodified constructor argument (which generally carries over to nested recursion
in a natural way). This is due to many users preferring to write

map (g ◦ . . . ◦ f) x,

where f is one of the functions to be defined, rather than

map g (map . . . (map f x) . . . ).

The latter variant is already covered by the syntax permitted according to the above; thus,
since these specifications are equivalent, we do not risk inconsistency by additionally sup-
porting the first input style.

Similar reasoning applies to map function arguments using λ-abstraction in lieu of com-
position, resulting in (sub)terms like

map (λv. g (. . . (f v) . . . )) x.

This form is especially useful when the mapped function expects more non-recursive ar-
guments after its recursive parameter:

primrec tree apply :: (α⇒ α) tree ⇒ α⇒ α tree where
tree apply (TNode v cs) x = TNode (v x) (map (λt. tree apply t (v x)) cs)

generates a function that creates a tree of values from a tree of endomorphisms and an
initial value, storing all intermediate values along the paths from the root to the leaves.1

3.4 Nested-as-mutual recursion

The possibility to use nested recursive datatypes in function definitions as if they were
mutually recursive exists mainly for compatibility with the old datatype package, but it is
useful in its own right. Nested-to-mutual reduction [3] intuitively corresponds to unfolding
the nesting type’s definition inside the nested recursive type’s definition. For example,

1 Note that this definition would otherwise need to be written as

. . . map ((λr. r (v x)) ◦ tree apply) cs . . . ,

which is rather cumbersome, or even worse, without making use of the first exception:

. . . map (λr. r (v x)) (map tree apply cs) . . .

7



3 Primitively recursive functions

primrec
tree applyM :: (α⇒ α) tree ⇒ α⇒ α tree and
trees apply :: (α⇒ α) tree list ⇒ α⇒ α tree list

where
tree applyM (Node f cs) = Node (f x) (trees apply cs (f x))
| trees apply Nil = Nil
| trees apply (Cons t ts) x = Cons (tree applyM t x) (trees apply ts x)

is a mutually recursive implementation of tree apply over the nested recursive datatype
(α ⇒ α) tree . The types that the nested-to-mutual reduction simulates are isomorphic to
the treeM and forest types presented in section 2, instantiated with α⇒ α.

3.5 Recursion through function types

A noteworthy special case of nested recursion is recursion through⇒, the function type.
It was noted in section 2 that a datatype may only occur recursively on a function arrow’s
right-hand side, as in the �ree example. The function type’s map function is composition,
as can be seen below in FTNode’s argument:

primrec �ree map :: (α⇒ α)⇒ α �ree ⇒ α �ree where
�ree map f (FTLeaf x) = FTLeaf x
| �ree map f (FTNode ϕ) = FTNode (�ree map f ◦ ϕ)

For convenience and verbosity, specifying the equivalent expression

(λv. �ree map f (ϕ v))

as FTNode’s argument is (similarly to the special syntaxes for map function arguments
described in section 3.3) supported as well.

8



4 primrec’s implementation

Before the new primrec command’s introduction, users had to provide suitable arguments
to a new-style datatype’s recursor in order to perform recursion. Using the theorems asso-
ciated with the recursor, it is then possible to prove statements about the newly defined
function. The primrec command automates this process: Given high-level specifications
of a function’s desired behaviour, it assembles a recursor-based definition and introduces
the user specification as theorems.

4.1 Recursors

A datatype’s recursor performs the most general variant of primitive recursion over this
type. Its properties are perhaps best explained by looking at an example: Consider the
datatypes α list and α tree from section 2, which have

rec list :: β ⇒ (α⇒ α list ⇒ β ⇒ β)⇒ α list ⇒ β
rec tree :: β ⇒ (α⇒ (α tree × β) list ⇒ β)⇒ α tree ⇒ β

as their recursors. In the following, we shall refer to all but the last of the recursor’s argu-
ments as its behavioural functions. The recursors’ semantics are illustrated by the following
theorems:

list.rec:
rec list n c Nil = n
rec list n c (Cons x xs) = c x xs (rec list n c xs)

tree.rec:
rec tree e n TEmpty = e
rec tree e n (TNode v cs) = n x (map (λt. (t, rec tree e n t) cs))

The first equation for each recursor is simple: it states that the first behavioural function is
the constant function value for the base case, Nil or TEmpty. The second equation describes
the recursor’s behaviour for a composite input: In Cons’s case, the constructor arguments
x and xs are passed to the function c together with the result of passing the list’s tail, xs , to
the same instantiation of the recursor. To each child node of a TNode, the result of passing
this child to the recursive function is paired to the node, giving the type (α tree × β) list.

In general, a set of mutually recursive datatypes’ recursors take one function per con-
structor as their arguments. They serve as a description of how the constructor arguments
and, possibly, recursive calls’ results are combined to give the desired return values. The
behavioural function for a constructor is passed

• for a constructor argument through which recursion cannot be performed: the con-
structor argument’s unmodified value;

9



4 primrec’s implementation

• for a constructor argument through which mutual recursion can be performed: the
constructor argument’s value (“unmodified”) as well as the result of passing this
value to a recursive call (“modified”);

• for a constructor argument through which nested recursion through a map function
can be performed: a tuple containing the original constructor argument’s unmodi-
fied value and, just like for mutual recursion, the recursive call’s result.

Given all these arguments, the recursor returns a function with the desired semantics.
Each datatype partaking in mutual recursion has its own recursor, but they only differ

in their return type and last argument’s type, which is always the type that the recursor
corresponds to (and, equivalently, consumes). Each recursor serves thus as its associated
type’s entry point to mutual recursion.

Let us take a look at an example: The length function for lists can be defined as follows:

definition length :: α list ⇒ nat where
length ≡ rec list 0 (λ r. 1 + r)

Most likely, the user will wish to have more readable properties of length available than this
(technical) definition. Using the list.rec theorems, they can derive the usual characterization
presented in the introduction:

lemma length Nil : length Nil = 0
unfolding length def list.rec ..

lemma length Cons : length (Cons x xs) = 1 + length xs
unfolding length def list.rec ..

4.2 General procedure

The primrec implementation’s main goal is automating the process sketched in section 4.1.
The handling of specifications consists of the following steps, performed in order:

1. From each equation, extract

• the function that the equation talks about;

• the recursive type (deduced from the function’s argument types and the con-
structor pattern position);1

• the pattern-matched constructor and its arguments’ names;

• names and types of other (non-pattern) arguments left and right of the construc-
tor pattern;

• the defined function’s real result type after the constructor pattern has been
moved to the first argument position;

• the equation’s right-hand side term;

1 Note that there are generally more than one datatype arguments to a primitively recursive function, but
only one of them — that we can’t identify using only the function’s type information — is the recursive
type.

10



4.3 Eliminating recursive calls

• the unmodified user specification that is proved as a theorem later on.

2. Use the list of recursive types and corresponding result types to get the relevant
information (constructors, recursors, theorems) from the datatype database. In this
step, the nested-to-mutual reduction (if needed, as can be detected from the recursive
types and forms of recursive calls) is performed transparently to the following steps.

3. With the help of this information, traverse the right-hand side of each equation in
order to find recursive calls and replace them by a non-recursive term that will even-
tually use the additional arguments the recursor provides to describe the recursion.
This process is explained in more detail in section 4.3.

4. Apply λ-abstractions to each right-hand side to make it accept the additional argu-
ments the recursor provides to the behavioural function.

5. Use each of these modified right-hand sides as an argument to the recursors (filling
up missing specifications with undefined).

6. For each recursor, permute the resulting term’s arguments in order to reverse the
constructor pattern shifting using simple λ wrappers (section 4.4) and define the
desired function as equal to this term.

7. Using the recursor theorems, prove that this definition does in fact fulfill the user
specification (the function’s characteristic theorems).

4.3 Eliminating recursive calls

The second step mentioned above depends on information about the structure of recursion
in the upcoming definition. This poses a chicken-and-egg problem, since it’s specifically
this step that supplies all the information about the involved types and their properties. In
order to overcome this difficulty, the process of eliminating recursion from the specification
is splitted into two parts. First, everything that looks like a recursive call is extracted and
passed to the underlying machinery. During this step, the structure of the calls is checked
against the information from the datatype database and invalid specifications are rejected.
After that, the exact datatype information is used to accurately substitute the recursive
terms by a recursor-based equivalent.

In more detail, for an equation

fm l1 . . . lp (C x1 . . . xn) r1 . . . rq = rhs ,

the following steps are performed:2

1. Starting with t set to rhs , do the following.

a) If t is a λ-abstraction, that is, of the form λv. t′, apply this procedure to t′ instead.

b) If t is not a function application, stop. Otherwise, write t as G a1 . . . ak with G
not an application.

2 We assume for simplicity that map takes only one argument. In general, its structure is more complicated.
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4 primrec’s implementation

c) If none of the aj is a constructor argument xi, this is not a recursive call. Since
there might be recursive calls in composite subterms, recursively apply this pro-
cedure to G and each of the aj .

d) Define g as the partial application of G to the first aj , excluding the constructor
argument xi. This means that

t = G a1 . . . xi . . . ak = g xi . . . .

If g does not contain any of the fj as a subterm, stop. Otherwise, g is recursively
applied to xi and t is a recursive call.

2. Query the datatype database.

3. Using the newly obtained information, traverse the right-hand side rhs again to con-
vert any legal recursive calls to equivalent terms which use the additional arguments
provided by the recursor. This involves applying the following transformations to a
subterm g xi (terms that are not of this form are left unmodified except for possible
recursive applications of this procedure to their subterms):

• If g does not contain any of the fj and either no recursion or mutual recursion
can be performed through xi, replace xi by the “unmodified xi” argument to
the behavioural function.

• If g does not contain any of the functions fj and nested recursion can be per-
formed through xi, substitute xi by

map fst yi,

where map is xi’s type’s map function and yi is the argument to the behavioural
function that pairs xi and its recursive call’s results.

• If g is one of the fj , replace xi by the “modified xi” argument to the behavioural
function.

• If g is of the form
map (h1 ◦ . . . ◦ hk ◦ fj),

where map is the map function of xi’s type, this is a nested recursive call. Sub-
stitute g xi by

map (h1 ◦ . . . ◦ hk ◦ snd) yi,

where yi is again the combination of xi and its recursive call’s results.

4.4 Arbitrary constructor pattern position

In its original form, a recursor instantiation only permits one single argument that is of the
type the recursor consumes. For a recursive type τ , this already gives us functions

f :: τ ⇒ α1 ⇒ . . .⇒ αn

free of charge by instantiating the recursor’s return type as α1 ⇒ . . . ⇒ αn. It is generally
desirable to be able to pass other arguments to a function before supplying the recur-
sive argument. This is made possible by converting all input to functions of the former
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shape — that is, by permuting the arguments and their types, a specification like

f :: α1 ⇒ . . .⇒ αk−1 ⇒ τ ⇒ αk+1 ⇒ . . .⇒ αn

is internally converted to

f’ :: τ ⇒ α1 ⇒ . . .⇒ αk−1 ⇒ αk+1 ⇒ . . .⇒ αn

and all further processing is performed with regard to this specification. Once a definition
for f’ is obtained, one for f is easily generated by adding a thin wrapper to f’ that reverses
the initial permutation of arguments:

f = (λa1 . . . ak−1 x. f’ x a1 . . . ak−1)

13
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5 Codatatypes

Codatatypes are in many ways similar to datatypes, with one major difference: They per-
mit infinite values, i.e. instances with an infinite number of constructors. The definition of
a codatatype is not any more complicated than for datatypes and most of the time looks
identical with datatype replaced by codatatype. The most notable difference is that core-
cursive codatatypes need not have a base case constructor that permits the type’s values
to be finite. Thus, for example, a type that holds infinite streams of data can be defined via

codatatype α stream (map : smap) = SCons (shd : α) (stl : α stream).

Note that every object of this type has an infinite number of constructors, which implies
that any function that returns a stream is forced to be non-terminating.

Although a non-corecursive codatatype isn’t any more expressive than a non-recursive
datatype, it can be beneficial to use one. An example is the complex codatatype from Isa-
belle’s standard library that makes extensive use of primcorec’s destructor view syntax
(section 6.2) to specify a complex-valued function’s result separated into its real and imag-
inary parts.

Other popular examples are the codatatype analogues to list and nat, namely

codatatype α llist (map : lmap) = lnull : LNil | LCons (lhd : α) (ltl : α llist),

the type of lazy lists with an either finite or infinite number of elements, and

codatatype enat = EZero | nonzero : ESuc (epred : enat),

a codatatype that is capable of representing N ∪ {∞}, the extended natural numbers.1 As
shown in section 6, a lazy list’s length can be represented by enat.

Analogically to datatypes, it is possible for codatatypes to support mutual and nested
corecursion. Examples include infinitely branching trees of potentially infinite depth that can
be defined by simply substituting codatatype for datatype and llist for list in the examples
from section 2:

codatatype α ltreeM = ltemptyM : LTEmptyM
| LTNodeM (ltvalM : α) (lchildrenM : α lforest)

and α lforest = lfempty : LFNil
| LFCons (lfhd : α ltreeM) (l�l : α lforest)

is a possible mutually corecursive realization, and

codatatype α ltree = LTNode (ltval : α) (lchildren : α ltree llist)

is a nested corecursive variant.
1 Technically, the latter corresponds more closely to

codatatype enat′ = finite : Nat nat | In�y.

Because there is only one instance of enat with an infinite number of constructors (ESuc ESuc . . . ) that can
be understood as ∞ and each finite enat bijectively maps to a nat , it becomes clear that these types can
represent the same set of values.
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6 Primitively corecursive functions

As noted in section 1, termination of a (co)recursive function generally implies consistency.
For codatatypes, however, it is highly desirable to permit non-terminating functions (since
existence of infinite values is the main advantage to datatypes): For instance, a transforma-
tion of some infinite stream is inherently non-terminating as it never stops consuming and
producing pieces of data. Thus, we can’t use termination (and, consequently, primitive
recursion) as the constraint that ensures consistency of a function definition. The natural
alternative is productivity, which means that in each recursive call, at least one constructor
must be emitted by the corecursive function. Note that, just as for primitively recursive
functions, this property can be verified by purely syntactic means.

To support varying user preferences and allow for more flexibility, Isabelle supports
various ways of describing primitively corecursive functions. These so-called views are:

• The destructor view, which is the closest to the constants and theorems that prim-
corec internally uses. It has two different kinds of formulae, corresponding to a
codatatype’s discriminators and selectors, respectively.

• The constructor view, which combines related destructor view formulae into a single
equation. This view’s syntax is comparable to Haskell or Standard ML’s.

• The code view, which is primarily intended for Isabelle’s code generator, but has
many uses in its own right. It’s syntax consists of a single, unconditional equation
that has an arbitrary nesting of conditionals on its right-hand side.

Regardless of the input syntax the user chooses, the defined functions’ characteristic theo-
rems are always generated in all three views.

An interesting implementation detail is that each of the input syntaxes is reduced to the
same internal representation on which all transformations are performed. Afterwards, the
generated theorems are lifted to the various syntax styles. This process is elaborated in
sections 7.4 and 7.5. The following section describes the general appearance of primitive
corecursion and gives some typical examples.

6.1 Primitive corecursion

The forms and shapes in which primitive corecursion may come is in many ways dual
to primitive recursion for datatypes. The main difference is that whereas primitively re-
cursive calls must be applied to an unmodified constructor argument from the function’s
argument, primitive corecursion must be the outermost function call in one of the emitted
constructor’s arguments. For example,

primcorec sllist :: α stream ⇒ α llist where
sllist s = LCons (shd s) (sllist (stl s))
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6 Primitively corecursive functions

is a primitively corecursive function that converts an infinite stream to an infinite list that
contains the same elements. The corecursive call sllist (stl s) is the outermost function
application in LCons’s second argument.

A similar requirement applies to composition of (co)recursive functions in map argu-
ments for the “nested” case: a primitively corecursive call must be the last/leftmost func-
tion in a composition chain.

In section 5, it was remarked that enat is capable of holding a llist’s length:

primcorec llength :: α llist ⇒ enat where
lnull xs =⇒ llength xs = EZero
| =⇒ nonzero (llength xs)
| epred (llength xs) = llength (ltl xs)

introduces a function llength that is capable of computing this mapping. This specification
is an instance of destructor view (section 6.2). The first two (discriminator) formulae specify
conditions for each constructor to be emitted;1 the third (selector) formula specifies the
constructor’s argument in the ESuc case.

An example for nested primitive corecursion is the function

primcorec ltree map :: (α⇒ β)⇒ α ltree ⇒ β ltree where
ltree map f lt = (case lt of LTNode v cs ⇒ LTNode (f v) (lmap (ltree map f) cs))

that applies a function to the value associated with each node in a (potentially) infinitely
branching tree of (potentially) infinite depth.

Just like in the case of datatypes, primcorec supports nested-as-mutual corecursion, that
is, using nested corecursive codatatypes as if they were mutually corecursive. The function
defined above could alternatively be specified using nested-as-mutual corecursion:

primcorec
ltree mapM :: (α⇒ β)⇒ α ltree ⇒ β ltree and
ltrees map :: (α⇒ β)⇒ α ltree llist ⇒ β ltree llist

where
ltree mapM f lt = (case lt of LTNode v cs ⇒ LTNode (f v) (ltrees map f cs))
| lnull lts =⇒ ltrees map f lts = LNil
| =⇒ ltrees map f lts = LCons (ltree mapM f (lhd lts)) (ltrees map f (ltl lts))

6.2 Destructor view

Specifications for the function f :: . . . ⇒ α t in destructor view consist of formulae of the
general form

P x1 . . . xn =⇒ is Ci (f x1 . . . xn),

where P :: . . . ⇒ bool is some property of x1, . . . , xn and is Ci is a discriminator for the
codatatype α t, or

un Cij (f x1 . . . xn) = F x1 . . . xn,

where un Cij is the jth selector for Ci.2

1 The ‘ ’ serves as a wildcard that will match the negation of all predicates specified before; in this case, it is
therefore equivalent to ¬ lnull xs .

2 This is similar to the syntax used by Abel et al. in their work on copatterns [1].
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The semantics of this specification is as follows: A formula of the first kind, called a
discriminator formula, indicates premises for the function image to be constructed by Ci, and
formulae of the second kind, called selector formulae, specify values F x1 . . . xn for each
of the constructor arguments given the premises for the associated discriminator formula
have been met.

For the function to be well-defined, the discriminator formulae’s preconditions need
to be mutually exclusive, giving rise to proof obligations. primcorec tries to solve these
automatically, but in case it fails, the user must resort to the more general primcorecursive
command that passes the burden of proof to the user. Essentially, the following “equation”
holds:

primcorec . . . = primcorecursive . . . by auto?

An example for destructor view is the lapp function that concatenates two (potentially
infinite) lists over the same type. One of its possible representations is

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lnull xs ∧ lnull ys =⇒ lnull (lapp xs ys)
| lhd (lapp xs ys) = (if lnull xs then lhd ys else lhd xs)
| ltl (lapp xs ys) = (if lnull xs then ys else lapp (ltl xs) ys).

Note that the discriminator formulae lead to the function’s result being either construc-
ted by one of the result type’s constructors or, in exceptional cases, unspecified. Thus,
when describing functions in this form, it is trivially guaranteed that a constructor is emit-
ted.

Nevertheless, there is a potential problem: Corecursive calls’ results must not be fed into
another function in a selector formula right-hand side. Otherwise,

primcorec wrong :: nat ⇒ nat llist where
¬ lnull (wrong n)
| lhd (wrong n) = n
| ltl (wrong n) = ltl (wrong (n+ 1)),

listed in destructor view, would never produce a fully applied constructor. The issue is
that even though the corecursive call is forced to output one, the following call to ltl strips
it off again and an invocation like ltl (wrong 0) would loop forever. An exception to this
requirement are corecursive calls inside if − then − else, case − of and let − in, which
otherwise need to fulfill the same requirement, that is, corecursive calls must not serve as
a function argument.

It is also notable that this style is the only one that allows partial specification of con-
structor arguments; missing selector formulae are simply ignored and no associated theo-
rems are generated.

There is another speciality of this style: Due to a selector being applicable to more than
one different constructors, an ambiguity in selector formulae can occur. To resolve this
issue, primcorec accepts selector formulae of the form

sel (f . . . ) = . . . of C,

where C is the constructor belonging to which the selector sel should be interpreted.

19



6 Primitively corecursive functions

In the case of two constructors C1 and C2, another special syntax is supported: The dis-
criminator formula for C2 may use ¬ is C1 instead of is C2. This exception is due to some
two-constructor codatatypes missing an explicit discriminator for the second constructor.

In order to avoid the need of tedious manual specification of an “else” predicate for
the discriminator formulae, an underscore ‘ ’ is accepted as a “catch-all” wildcard. It is
understood as the implicit negation of all conditions for the relevant function in previous
equations. Thus, in

P x =⇒ is Ci (f x)
Q x =⇒ is Cj (f x)

=⇒ is C (f x),

the last formula is interpreted as ¬ P x ∧ ¬ Q x =⇒ is C (f x).
A related functionality is the sequential option to primcorec: it causes the discriminator

formula conditions for a function to be interpreted not literally, but in an “if−else if” fash-
ion. This means that each subsequent formula’s premise implicitly includes the negation
of all previously specified conditions. As a result, the exclusiveness proof obligations be-
come trivially solvable, relieving the user from the burden of discharging them. In return,
the generated theorems become more complicated and as a consequence, more unhandy
to use.

The second option that primcorec(ursive) accepts is exhaustive. It signals that the dis-
criminator formula premises are not only mutually exclusive (at most one of them is ful-
filled), but in fact a partition of truth (exactly one of them is fulfilled). Specifying this option
adds another proof obligation that is suppressed by primcorec if possible, and passed on
to the user by primcorecursive. In return, somewhat stronger discriminator theorems (cf.
section 6.5) are generated, with ←→ in place of =⇒. Another consequence is that auto-
generated code view (section 7.5.2) specifications are already complete and do not need an
“else abort” branch.

In some cases when exhaustiveness is syntactically guaranteed (for example, when the
catch-all premise ‘ ’ is used), primcorec automatically acts as if this option had been spec-
ified.

6.3 Constructor view

Constructor view is arguably the most intuitive for users with a background in functional
programming due to its similarity to widespread syntax. In constructor view, there is only
one kind of formula that combines discriminator and selector formulae into one single
equation per constructor. Its general form is

P x1 . . . xn =⇒ f x1 . . . xn = Ci (F1 x1 . . . xn) . . . (Fk x1 . . . xn),

where P is a property just like before, Ci is one of f’s return type’s constructors and F1 to
Fk are some functions in x1, . . . , xn that describe the structure of Ci’s arguments.
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Figure 6.1: Example conditional tree

An example should be helpful: A definition of the lapp function in constructor view can
be performed via

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lnull xs ∧ lnull ys =⇒ lapp xs ys = LNil
| =⇒ lapp xs ys = LCons (if lnull xs then lhd ys else lhd xs)

(if lnull xs then ys else lapp (ltl xs) ys).

The constraints on constructor arguments are the same as the requirements to a selector
formula right-hand side. Additionally, just like each discriminator must occur in exactly
zero or one discriminator formulae, there must be at most one constructor-style equation
for each of the codatatype’s constructors.

6.4 Code view

The code view’s main purpose is to interface with Isabelle’s code generator, which sup-
ports no pattern matching (at function level) and requires that there is only one uncondi-
tional equation for the function’s value. Since this interferes with the constructor view’s
policy that each right-hand side must consist of a fully applied constructor, this require-
ment was loosened to additionally allow the conditionals if−then−else and case−of as
well as let − in-bindings outside of constructors3 and merely require that each conditional
leaf (in figure 6.1, these are the nodes labeled y...) starts with a constructor. Again, since the
function is forced to emit at least one constructor per corecursive descent, productivity is
guaranteed.

Specifications in this style consist of one single equation of the form

f x1 . . . xn = . . . ,

where the right-hand side may involve an arbitrary nesting of case distinctions and let −
in-bindings, as long as each of their body terms has a constructor at the beginning. In

3 This is the main difference to the other views, where these constructs are permitted in constructor argu-
ments or selector formulae, but they must be guarded by a constructor.
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other words: all of the conditional tree’s leaves have to fulfill the demands required from
constructor-style right-hand sides. It is notable that this style allows the same constructor
at the beginning different conditional leaves, contrary to the constructor view’s require-
ments.

Let the lapp function serve, again, as an example:

primcorec lapp :: α llist ⇒ α llist ⇒ α llist ⇒ α llist where
lapp xs ys = (case xs of LNil⇒ ys | LCons x xs ′ ⇒ LCons x (lapp xs ′ ys))

This variant can be considered the simplest among the definitions presented above, which
makes it the most suitable choice of input syntax to describe this function.

6.5 Generated theorems

Regardless of the user’s choice of input syntax, the primcorec command generates charac-
teristic theorems in all of the syntax styles (section 7.5). For example, the constructor-style
definition

primcorec (exhaustive) iterate while :: (α⇒ α option)⇒ α⇒ α llist where
is none (f x) =⇒ iterate while f x = LNil
| =⇒ iterate while f x = LCons x (iterate while f (the (f x)))

gives rise to the following theorems:

iterate while.disc:
is none (f x) =⇒ lnull (iterate while f x)
¬ is none (f x) =⇒ ¬ lnull (iterate while f x)

iterate while.disc iff :
lnull (iterate while f x) ←→ is none (f x)
¬ lnull (iterate while f x) ←→ ¬ is none (f x)

iterate while.sel:
¬ is none (f x) =⇒ lhd (iterate while f x) = x
¬ is none (f x) =⇒ ltl (iterate while f x) = iterate while f (the (f x)).

iterate while.ctr:
is none (f x) =⇒ iterate while f x = LNil
¬ is none (f x) =⇒

iterate while f x = LCons x (iterate while f (the (f x)))

iterate while.code:
iterate while f x =

(if is none (f x) then LNil else LCons x (iterate while f (the (f x))))

The iterate while.disc i� theorems being produced is caused by the ‘ ’ implicitly enabling
the exhaustive option for the relevant function.

Note that of the three syntaxes, only destructor-style theorems (that is, . . . .disc, . . . .sel
and . . . .disc i� ) are registered for simplification. The other forms potentially loop and can
therefore lead to non-termination and memory exhaustion in the simplifier.
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Considering that codatatypes are in many ways analogue to datatypes, it is not surprising
that the high-level view of primcorec’s operation is not too dissimilar from primrec’s.

Just like before, we parse the user input to synthesize a low-level definition based on
the corecursor (which is obviously an analogue to a datatype’s recursor) and use the co-
datatype’s and corecursor’s associated theorems to prove that our definition fulfills the
user-specified properties.

7.1 Corecursors

Analogically to a datatype’s recursor, a set of mutually corecursive codatatypes provides
corecursors that serve essentially the same purpose. Again, it is probably best to have a
look at an example: The α llist codatatype introduced in section 5 has the corecursor

corec llist ::
(α⇒ bool)⇒
(α⇒ β)⇒
(α⇒ bool)⇒ (α⇒ β llist)⇒ (α⇒ α)⇒
α⇒ β llist.

The corecursor’s behavioural functions may seem a bit obscure at first, but they actually
have a well-considered, quite intuitive meaning described by the llist.corec theorems:

llist.corec:
p a =⇒ corec llist p g2,1 q2,2 g2,2 h2,2 a = LNil
¬ p a =⇒ corec llist p g2,1 q2,2 g2,2 h2,2 a =

LCons (g2,1 a) (if q2,2 a then g2,2 a else corec llist p g2,1 q2,2 g2,2 h2,2 (h2,2 a))

The following is perhaps best read with the destructor view in mind, since this view cor-
responds the most closely to the corecursor:

• The predicate p decides which of the codatatype’s constructors is emitted. In this
case, the result is LNil if and only if p is fulfilled.

• Next follow the corecursor arguments corresponding to a selector: g2,1 describes
the second constructor’s first argument, the list’s head. Due to its type being non-
composite, no corecursion is possible in this constructor argument and the corre-
sponding corecursor argument is just its value.

• The next three arguments, q2,2 to h2,2, specify the properties of the list’s tail. The
predicate q2,2 determines whether the corecursion ends with a non-corecursive term
or continues descending any further; g2,2 is the constructor argument’s value in the
former case. If q2,2 is not satisfied, h2,2 returns a tuple of arguments that is corecur-
sively passed to the corecursor’s instantiation.
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As an example for nested corecursion, consider the type of (possibly) infinitely branch-
ing trees of (potentially) infinite depth ltree, defined in section 5, which is equipped with

corec ltree :: (α⇒ β)⇒ (α⇒ (β ltree + α) llist)⇒ α⇒ β ltree

as its corecursor. Again, the first argument returns just the constant value of Node’s first
argument. The second argument’s purpose is explained by the theorem

ltree.corec:
corec ltree g1 g2 a =

LTNode (g1 a) (lmap (λx. case x of Inl `⇒ ` | Inr r ⇒ corec ltree g1 g2 r) (g2 a)):

If the behavioural function returns an object of the sum type’s left branch, it is interpreted
as a literal non-corecursive result. Otherwise, the return value is fed back to the same
corecursor instantiation as its input. The behavioural function can thus, given some input,
decide for nested corecursion to terminate (by returning an Inl-constructed object) or to
continue descending by returning the corecursive invocation’s argument wrapped inside
an Inr.

In general, if a codatatype σ has n constructors, its corecursor corec σ :: . . . ⇒ α ⇒ σ
expects n− 1 predicates p :: α⇒ bool that determine which constructor is emitted. These
predicates are tested in sequence; the implicit precondition for the last constructor is the
negation of all of the other predicates.

Additionally, to each constructor argument of type τ (or equivalently: each right-hand
side of a selector formula), one of the following cases applies:

• If τ is not corecursive with σ, then no corecursion is possible and the behavioural
function g :: α⇒ τ simply returns the constructor argument’s unconditional value.

• If τ is mutually corecursive with σ, the corecursor expects three behavioural func-
tions: A predicate q :: α⇒ bool(“stop?”) that returns True if and only if the construc-
tor argument’s value is a non-corecursive term; a function g :: α ⇒ σ (“end”) that
specifies the value for cases when the predicate is fulfilled; and a function h :: α⇒ β
(“continue”), where β is the mutually corecursive function’s input type, that maps to
the input for the corecursive invocation.

• If σ occurs in τ nested under one or more type constructors ν, the corecursor takes
one behavioural function that returns a value of type (σ + α) ν. Just as described
above, the sum type represents either a non-corecursive constant result or a corecur-
sive call’s argument.

7.2 General procedure

The high-level view of primcorec’s operation consists of the following steps:

1. Use the functions’ type information to get the involved codatatypes’ constructors,
discriminators and selectors from the codatatype database.

2. From each supplied formula’s structure, determine what kind of formula it is. For
constructor- or code-style formulae, call the respective reduction functions to extract

24



7.3 Eliminating corecursive calls

the same internal representation from all three input syntaxes. The syntax reductions
are described in section 7.4.

After this step, for each formula (which has perhaps been auto-generated during the
reduction), we have:

• The function’s name, type, and its arguments’ names and types as they occured
in this particular term

• The constructor that this formula is relevant to

• The original user input, and possibly — if this formula was obtained by reduc-
ing from a different view — the reduction’s preimage.

The specific fields for discriminator and selector formulae are a list of premises and
the right-hand side, respectively.

During this step, the interpretation of ‘ ’ wildcards and the sequential option are
performed and any implicit discriminator formulae are generated.

3. Scan the selector formula right-hand sides for corecursive calls and record their struc-
ture.

4. Using this new information, get the rest of the codatatypes’ information (corecur-
sors, theorems, types of corecursion, . . . ) from the codatatype database. Just like for
datatypes, a pending nested-to-mutual reduction is performed in this step (transpar-
ently to the following).

5. Obtain definitions for the specified functions. Note that this involves conversion of
corecursive calls to a corecursor-based counterpart (see section 7.3).

6. Assemble the exclusiveness (and perhaps exhaustiveness) properties and, for prim-
corec’s case, prove them automatically.

7. From the definitions, exclusiveness and exhaustiveness theorems, and codatatype-
and corecursor-related theorems, prove the functions’ characteristic theorems in all
of the syntax styles. Since the reductions are performed (and thus, yield specifi-
cations) only in one direction (section 7.4), we may need to assemble theorems in
constructor view or code view at this point.

7.3 Eliminating corecursive calls

Contrary to what was the case for primitive recursion, the possible structure of primitive
corecursion is fairly limited and, consequently, a bit easier to convert to a corecursor-based
replacement. Since each constructor argument allows either mutual or nested corecursion,
but not both, and a corecursive call must be the outermost function call in a selector for-
mula right-hand side (except for if − then − else, case − of and let − in), it suffices to
traverse the conditional tree induced by these structures (figure 6.1) to determine for each
leaf whether it contains a corecursive call or not and substitute it by a suitable argument
to the behavioural function:
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7 primcorec’s implementation

• If the constructor argument does not allow any corecursion, its selector formula
right-hand side is converted to a behavioural function by simply λ-abstracting with
respect to the function arguments.

• In the case of mutual corecursion, we need to generate three corecursor arguments:
the predicate q (“stop?”) is created by substituting either True for a non-corecursive
leaf or False for a corecursive leaf; g (“end”) is formed by replacing corecursive leaves
by undefined; and h (“continue”) is similarly obtained by substituting undefineds for
non-corecursive leaves and a tuple of the corecursive call’s function arguments for
corecursive leaves.1

• For nested corecursion, the corecursor combines the “stop?-end-continue” construc-
tion into a single argument that returns a nested sum type whose branches corre-
spond to a non-corecursive result or a corecursive call. Therefore, similarly to mutual
corecursion, the behavioural function can be obtained by replacing a non-corecursive
leaf y by

map Inl y,

where map is the nesting type’s map function,2 and a nested corecursive call
map (f ◦ h1 ◦ . . . ◦ hk) a

by
map (Inr ◦ h1 ◦ . . . ◦ hk) a.

7.4 Input syntax reductions

Despite the variety of input styles the primcorec command supports, the differences are
mostly superficial. The internal constructions are common to the syntaxes, and in any case,
the resulting theorems are generated in each of them.

This makes it possible to reduce the views one to another, using only structural (syntactic)
transformations. Namely, the chain of reductions is

destructor ←− constructor ←− code.

Each reduction works by disassembling the input as far as necessary and creating equiva-
lent specifications in the more primitive input style. These specifications are then passed
down to the parsing functions for the given input style and processed as if the user had en-
tered them. At the end of this procedure, the input syntaxes share common data structures
holding the function specification’s relevant details. In order to be able to recover the exact
original term for the higher-style theorems, the user input is also stored in these structures.
When it comes to generating the function’s characteristic theorems, the path of reductions
is traversed backwards: The code view theorems are derived from the constructor view
theorems, which are in turn derived from the destructor-style theorems. If the user has

1 Substituting undefined is necessary to remove occurrences of the corecursive function on the future defi-
nition’s right-hand side for “end”; and to replace non-corecursive leaves by a term of the correct type for
“continue”.

2 Like for primrec, we assumed for simplicity that the map function takes only one argument.
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7.5 Producing theorems in other views

entered a destructor- or constructor-style specification, primcorec also synthesizes equiv-
alent theorems in the missing input styles.

7.4.1 Constructor view to destructor view

Equations in constructor view correspond to an equivalent destructor view specification
in a rather obvious way: A formula

P x1 . . . xn =⇒ f x1 . . . xn = C y1 . . . ym

is transformed into the equivalent set of destructor formulae

P x1 . . . xn =⇒ is C (f x1 . . . xn)
un C1 (f x1 . . . xn) = y1
. . .
un Cm (f x1 . . . xn) = ym,

where is C is the m-ary constructor C’s discriminator and un Ci are its selectors.

7.4.2 Code view to constructor view

Recall that a specification in code view consists of a single equation, potentially having
many case distinctions via if and case, and let-bindings. Since the constructor view re-
quires that there is at most one equation for each constructor, we first need to group the
leaves of these case distinctions by the constructor that is applied to the result. During
this stage, non-corecursive branches (that do not start with a constructor) are expanded
using case: For example, an expression expr of type α llist becomes (case expr of LNil ⇒
LNil | LCons x xs ⇒ LCons x xs) to later fulfill the constructor view’s syntax requirements.
Along each of the paths, the set of conditions that need to be fulfilled to reach the current
node is carried along. After the formulae have been collected, they are ready to be com-
bined into one single equation per constructor. For example, the lapp specification shown
in section 6.4 is internally processed as if

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lnull xs ∧ lnull ys =⇒ lapp xs ys = LNil
| =⇒ lapp xs ys = LCons (case xs of LNil⇒ lhd ys | LCons x xs ′ ⇒ x)

(case xs of LNil⇒ ltl ys | LCons x xs ′ ⇒ lapp xs ′ ys)

had been entered by the user. This specification is then passed down to the constructor-
style machinery.

7.5 Producing theorems in other views

The syntax reductions described in section 7.4 induce the need to traverse the reduction’s
path backwards: that is, to deduce theorems in the less primitive styles from the more
primitive specification that they were reduced to. If a representation in the higher style
is available (because the lower-style specification was derived from it), this one is sim-
ply proved as is. Otherwise, primcorec automatically assembles one, using the following
procedures:
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7 primcorec’s implementation

7.5.1 Destructor view to constructor view

Essentially, the lifting of destructor view theorems to constructor view just uses the reduc-
tion described in section 7.4.1 in reverse. Each constructor and its associated discriminator
formula premises and selector formulae right-hand sides are collected and combined to
form a constructor-style specification. Note that this is not possible if some selector formu-
lae are missing, which leads to no constructor-style theorem (and as a result, no code view
theorem) being generated.

7.5.2 Constructor view to code view

Analogically, lifting from constructor view to code view reverses the reduction from sec-
tion 7.4.2. It takes the constructor-style right-hand sides along with their preconditions
and builds an if − then− else if tree from them.

If the “exhaustive” option is not specified, the generated theorem will have an “else”
branch containing Code.abort, signaling the code generator that the function’s result is un-
specified.

In both cases, the newly assembled terms are then proved as theorems, exploiting the
already generated lower-style theorems to make an easier (as opposed to directly using
the corecursor-based definition and corecursor theorems) proof tactic possible.

7.6 Arbitrary number of arguments

As described in section 7.1, the corecursor internally only handles unary functions (just like
a datatype’s recursor). In order to be able to define n-ary primitively corecursive functions,
an n-tuple of arguments is passed to the corecursor corec and, consequently, its arguments,
and surrounded by a currying wrapper. Thus, the resulting definition has the form

λa′1 . . . a
′
n. corec (λ(a1, . . . , an). . . . ) . . . (λ(a1, . . . , an). . . . ) (a′1, . . . , a

′
n).
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8 Conclusion

We presented new definitional Isabelle/HOL commands that enable specification of prim-
itively (co)recursive functions over Isabelle’s new BNF-based (co)datatypes, including mu-
tual and nested (co)recursion, in intuitive syntaxes.

primrec is intended as, but not limited to, a replacement for Isabelle’s old datatype pack-
age’s command of the same name. In particular, it maintains full backward compatibility
while providing additional, new functionality.

primcorec and its more general variant primcorecursive are an analogue to primrec for
codatatypes. They permit a variety of intuitive input syntaxes, suitable to different needs
and preferences.

The functionality presented in this thesis will be part of the forthcoming Isabelle2014
release and is currently available in the repository version of Isabelle. The list and option
datatypes in the Isabelle standard library are already implemented using the new datatype
package and thus make copious use of primrec. Lochbihler’s Coinductive library [7], no-
tably used in his work on the Java programming language, has been ported to use prim-
corec [3]. Traytel’s implementation of formal languages using codatatypes [12] is another
extensive user of primcorec.
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