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What?

The Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction.
(The ⇐= direction is exponential-time as far as we know.)

...but also:

The CM action:
Action of the ideal-class group of an imaginary-quadratic order
on the set of curves oriented by that order.

The correspondence is polynomial-time in the =⇒ direction.
(The ⇐= direction is quantumly subexponential-time as far as we know.)
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Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny assumptions reduce to the⇐= direction.
▶ SQIsign builds on the =⇒ direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

▶ C/R–S/DF–K–S/CSIDH/SCALLOP(-HD)/Clapoti(s)
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Part 1: Deuring
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History (Deuring)

▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) )
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.
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Curve world

▶ Universe: Characteristic p. Assume p≥ 5.

▶ Supersingular elliptic curves: E[p] = {∞}.

▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.
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Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

8 / 42



Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

8 / 42



Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.
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Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.

▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.
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Computationally, ...

▶ We typically work with one fixed choice of q for each p.

▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.
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From curves to quaternions

E 7→ O

12 / 42



Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .
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Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .
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From curves to quaternions

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.

▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.
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From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.
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Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂
ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓer

r , let H′
k = ker(α|E[ℓek

k ]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:( No choice in N: It’s the norm of I.
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Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.

Typical cases: Norm ℓ•, powersmooth norm ℓ
e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.
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Advertisement: Deuring for the People!

So we now know a way to do it, but how do we actually do it?

19 / 42



Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝We have to work in field extensions.

!! Lots of choice for prime powers ℓe.
Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]
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Heatmap

2 50 101 [ℓe]
1

50

[k]

Average extension k required to access ℓe-torsion.
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Cool trick #2: Isogenies from minimal polynomials

▶ We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).
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Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, such a maximal order is almost unique.
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Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
!! Part of SageMath ≥ 10.3.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
!! Part of SageMath ≥ 10.2 (thanks to Rémy Oudompheng).

▶ Ingredient #3: Ibukiyama’s theorem.
?? Are we waiting for proper endomorphism-ring code?
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Connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.

2. That’s all, but typically the norm of OO′ is horrible.
(Also, it’s integral only in trivial cases⇝ scale by denominator in Z.)
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Open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2
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- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2
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Timings (SageMath, single core)
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Timings (SageMath, single core)

We’ve been informed of one run for a 521-bit characteristic that
took only about 7 hours.

⇝ Definitely practical for parameter setup etc.!
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Non-special starting curves (e.g., SQIsign)

▶ Previous discussion: Special starting curve E0.

▶ General starting curves: Easy to compute E→ E0 → E′.
▶ Doing this would break SQIsign.

Solution:

E1 E2 E3 · · · En−1 EnI1 I2 I3 In−1 In

E0

J1

J2
J3

Jn−1
Jn

:( Algorithms for one “step” are quite technical.
See [ePrint 2022/234] and the more recent [ePrint 2023/1251].
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Part 2: The CM action
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The CM action on oriented curves

Now let O be an imaginary-quadratic order, say O = Z[ϑ].

▶ We consider O-oriented elliptic curves: pairs (E, ι) with an
explicit embedding ι : O → End(E).

▶ Basic example: If E/Fq and π /∈ Z, then O = Z[π] works.
▶ Other examples: E/Fp2 supersingular; many possible O.

Ideals of O again define isogenies

φ : (E, ι) −→ (E′, ι′)

satisfying φ ◦ ι(α) = ι′(α) ◦ φ for all α ∈ O.

=⇒ Compatibility for repeated applications of ideals of O.
=⇒ Group action of cl(O) on such pairs!
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The basic strategy à la C/R–S

▶ Let l1, ..., ln be small prime ideals of O, and
suppose a is given to us in the form a = le1

1 · · · len
n .

▶ Then a can be evaluated as a sequence of li.

▶ Evaluating a single li: Write li = (ℓi, ϑ− λi).
Then the kernel is an order-ℓi point P with ϑ(P) = [λi]P.

▶ Optimizations: Batch multiple li together⇝ “strategies”.
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The basic problem with the basic strategy

▶ Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way group action).

▶ The CSIDH paper repeats this.

Issue:
▶ Representing cl(O) by the group (Zn,+) of exponents

makes the exponents grow larger with each operation.
⇝ Cost of evaluating after k operations is O(exp(k)).

▶ Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.
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Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:
▶ Compute the relation lattice Λ := {v ∈ Zn | v ∗ E0 = E0}.

▶ Work with exponent vectors anyway, but now in Zn/Λ.
▶ To evaluate the action, solve a close(st)-vector problem.
⇝ short equivalent exponent vector!
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“Effective” group actions à la CSI-FiSh/SCALLOP(-HD)

▶ To evaluate the action, solve a close(st)-vector problem.

▶ CSI-FiSh: This is practically fast for CSIDH-512.

▶ Still, it’s asymptotically the bottleneck!
https://yx7.cc/blah/2023-04-14.html

35 / 42

https://yx7.cc/blah/2023-04-14.html


“Effective” group actions à la CSI-FiSh/SCALLOP(-HD)

▶ To evaluate the action, solve a close(st)-vector problem.
▶ CSI-FiSh: This is practically fast for CSIDH-512.

▶ Still, it’s asymptotically the bottleneck!
https://yx7.cc/blah/2023-04-14.html

35 / 42

https://yx7.cc/blah/2023-04-14.html


“Effective” group actions à la CSI-FiSh/SCALLOP(-HD)

▶ To evaluate the action, solve a close(st)-vector problem.
▶ CSI-FiSh: This is practically fast for CSIDH-512.

▶ Still, it’s asymptotically the bottleneck!
https://yx7.cc/blah/2023-04-14.html

35 / 42

https://yx7.cc/blah/2023-04-14.html


SCALLO, PhD
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Even more maritime isogenies??
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Polynomial-time group action: Clapoti(s)

▶ Recently, Page–Robert announced a polynomial-time
algorithm for evaluating the action on arbitrary ideals.

Idea:
▶ Find two ideals b, c of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).

E Ea

Ea E

ϕb

ϕc ψc

ψb

▶ Kani: This gives an N-isogeny F : E× E→ Ea × Ea,
(P,Q) 7→ (ϕb(P) + ψ̂c(Q), −ϕc(P) + ψ̂b(Q)).

▶ The kernel is ker(F) = {(ϕ̂b(R), ψc(R)) : R ∈ Ea[N]}.
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Polynomial-time group action: Clapoti(s)

▶ The kernel is ker(F) = {(ϕ̂b(R), ψc(R)) : R ∈ Ea[N]}.

For some reason this is supposedly the same thing as

ker(F) =
{
([norm(b)]R, γ(R)) | R ∈ E[N]

}
where γ ∈ End(E) is a generator of the principal ideal bc.
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Polynomial-time group action: Clapoti(s)

▶ Minor detail: N has no reason at all to be “nice”.
⇝ {4, 8}-dimensional isogenies, per the usual...
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Interlude
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We could’ve had it all (5 years ago) [ePrint 2018/665]
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Questions?
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