Ideal-to-isogeny algorithms: An overview

Lorenz Panny

Technische Universität München

KULB Seminar, 15 December 2023

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction.

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. (The \Leftarrow direction is exponential-time as far as we know.)

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. (The \Leftarrow direction is exponential-time as far as we know.)

...but also:

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. (The \Leftarrow direction is exponential-time as far as we know.)

...but also:

The CM action:

Action of the <u>ideal-class group</u> of an <u>imaginary-quadratic order</u> on the set of <u>curves oriented</u> by that order.

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. (The \Leftarrow direction is exponential-time as far as we know.)

...but also:

The CM action:

Action of the <u>ideal-class group</u> of an <u>imaginary-quadratic order</u> on the set of <u>curves oriented</u> by that order.

The correspondence is polynomial-time in the \implies direction.

The Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. (The \Leftarrow direction is exponential-time as far as we know.)

...but also:

The CM action:

Action of the <u>ideal-class group</u> of an <u>imaginary-quadratic order</u> on the set of <u>curves oriented</u> by that order.

The correspondence is polynomial-time in the \implies direction.

(The \Leftarrow direction is quantumly subexponential-time as far as we know.)

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

• \approx All isogeny assumptions reduce to the \Leftarrow direction.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.
- Essential tool for both constructions and attacks.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.
- Essential tool for both constructions and attacks.

Constructively, *partially* known endomorphism rings are useful. ~ Oriented curves and the isogeny class-group action.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.
- Essential tool for both constructions and attacks.

Constructively, *partially* known endomorphism rings are useful. ~ Oriented curves and the isogeny class-group action.

► C/R-S/DF-K-S/CSIDH/SCALLOP(-HD)/Clapoti(s)

Part 1: Deuring

curve-order dictionary	
supersingular curves	quaternion orders
curve E (up to Galois conjugacy) $\mathrm{isogeny}\; \varphi: E_1 \to E_2$	maximal order \mathscr{O} (up to isomorphism) integral ideal I_{φ} that is left \mathscr{O}_1 -ideal and right \mathscr{O}_2 -ideal
endomorphism $\psi: E \to E$	principal ideal (β) $\subset \mathcal{O}$
and this continues for the <i>degree</i> , the <i>dual</i> , <i>equivalence</i> , <i>composition</i>	and this continues for the <i>norm</i> , the <i>dual, equivalence, multiplication</i>

▶ **1941**: Deuring proves the correspondence.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j, zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j, zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.
- ► Famous examples:
 - $p \equiv 3 \pmod{4}$ and $E: y^2 = x^3 + x$ with *j*-invariant 1728.
 - ▶ $p \equiv 2 \pmod{3}$ and $E: y^2 = x^3 + 1$ with *j*-invariant 0.

Computationally...

We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)

Computationally...

- We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)
- ► The group structure is known over all extensions: $E(\mathbb{F}_{p^{2k}}) \cong \mathbb{Z}/n \times \mathbb{Z}/n$ where $n = p^k - (-1)^k$.

• Everything lives in a particular quaternion algebra $B_{p,\infty}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.
- The algebra $B_{p,\infty}$ has a conjugation which negates $\mathbf{i}, \mathbf{j}, \mathbf{ij}$. The norm and trace of an element α are $\alpha \overline{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha + \overline{\alpha} \in \mathbb{Z}$.

• Maximal orders in the quaternion algebra $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

• A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- ► A fractional ideal *I* is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.)
Quaternion world

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- ► A fractional ideal *I* is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.) We say *I* connects \mathcal{O} and \mathcal{O}' if $\mathcal{O}I \subseteq I$ and $I\mathcal{O}' \subseteq I$.

• We typically work with one fixed choice of *q* for each *p*.

- We typically work with one fixed choice of *q* for each *p*.
- ► Quaternions are represented as vectors in Q⁴.

- We typically work with one fixed choice of *q* for each *p*.
- ► Quaternions are represented as vectors in Q⁴.
- Quaternion lattices are represented by **a Z**-basis.

- We typically work with one fixed choice of *q* for each *p*.
- Quaternions are represented as vectors in \mathbb{Q}^4 .
- Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

- We typically work with one fixed choice of *q* for each *p*.
- Quaternions are represented as vectors in \mathbb{Q}^4 .
- Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

<u>General theme</u>: Things are easy in quaternion land.

$E\mapsto \mathcal{O}$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi, \ \text{and} \ \pi^2 = [-p].$

Hence, in the quaternion algebra where $i^2 = -1$ and $j^2 = -p$, the pair (ι, π) corresponds to (i, j).

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota \colon & (x,y) \longmapsto (-x,\sqrt{-1} \cdot y) \,, \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) \,. \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $i^2 = -1$ and $j^2 = -p$, the pair (ι, π) corresponds to (i, j).

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by

$$\{1, \quad i, \quad (i+j)/2, \quad (1+ij)/2\}\,.$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) \, . \end{split}$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) \, . \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{aligned} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x,y) , \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) . \end{aligned}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $\mathbf{i}^2 = -3$ and $\mathbf{j}^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}) .

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) \, . \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $i^2 = -3$ and $j^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (i, j).

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by

$$\{1, \quad (1+i)/2, \quad (j+ij)/2, \quad (i+ij)/3\}\,.$$

- <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.

- <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.

- ► <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.
 - Multiple *q* define the same B_{p,∞}.
 Need to convert from i² = -q basis to i^{'2} = -q' basis.

- <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.
 - Multiple *q* define the same B_{p,∞}.
 Need to convert from i² = -q basis to i'² = -q' basis.

Lemma 10. Let p be a prime number and $q, q' \in \mathbb{Z}_{>0}$ such that $B = (-q, -p \mid \mathbb{Q})$ and $B' = (-q', -p \mid \mathbb{Q})$ are quaternion algebras ramified at p and ∞ .

Then there exist $x, y \in \mathbb{Q}$ such that $x^2 + py^2 = q'/q$. Writing $1, \mathbf{i}', \mathbf{j}', \mathbf{k}'$ for the generators of B' and $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ for the generators of B, and setting $\gamma := x + y\mathbf{j}$, the mapping

 $\mathbf{i}'\mapsto \mathbf{i}\gamma, \qquad \mathbf{j}'\mapsto \mathbf{j}, \qquad \mathbf{k}'\mapsto \mathbf{k}\gamma$

defines a \mathbb{Q} -algebra isomorphism $B' \xrightarrow{\sim} B$.

► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.

- Step 0: Base curve. Any curve over \mathbb{F}_p with a known small-degree endomorphism.
- Step 1: Connecting ideal.
 Solve the "isogeny problem" in quaternion land.

- Step 0: Base curve. Any curve over \mathbb{F}_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT. Solve the "isogeny problem" in quaternion land.

- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

- Step 0: Base curve. Any curve over \mathbb{F}_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

I will talk about these *in reverse order*.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.
- If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

Algorithms:

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

► Better: Factor
$$N = \ell_1^{e_1} \cdots \ell_r^{e_r}$$
, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$.
Then $H_I = \langle H'_1, ..., H'_r \rangle$.

• If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of *N*.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

Algorithms:

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

► Better: Factor
$$N = \ell_1^{e_1} \cdots \ell_r^{e_r}$$
, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$.
Then $H_I = \langle H'_1, ..., H'_r \rangle$.

• If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N. \therefore No choice in N: It's the norm of I.

Step 1: Convenient connecting ideals

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'.

Step 1: Convenient connecting ideals

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$.

Step 1: Convenient connecting ideals

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$.

The determining factor of success is the size of the norm. Estimate $\approx p^3$.
<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

• The resulting *isogeny* φ_I will be different from φ_I .

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi_I} \varphi_I$ is an endomorphism.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - ► As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - ► As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.
 - Hence, for *T* coprime to N', with $S := N'^{-1} \mod T$,

 $\varphi_I|_{E[T]} = S\varphi_J \omega|_{E[T]} \,.$

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - ► As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.
 - Hence, for *T* coprime to *N'*, with $S := N'^{-1} \mod T$,

$$\varphi_I|_{E[T]} = S\varphi_J \omega|_{E[T]} \,.$$

 \rightsquigarrow <u>Do it twice</u> with coprime degrees to evaluate on any point.

Advertisement: Deuring for the People!

So we now know a way to do it, but how do we actually do it?

► Norm is big ~→ We have to work in field extensions.

- ► Norm is big ~→ We have to work in field extensions.
- **!!** Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.

- ► Norm is big ~→ We have to work in field extensions.
- " Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.

- ► Norm is big ~> We have to work in field extensions.
- **!!** Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.

Heatmap

Average extension *k* required to access ℓ^e -torsion.

 We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
 They are irreducible divisors of the kernel polynomial.

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. ~> Evaluating isogeny chains.

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. ~> Evaluating isogeny chains.

Algorithm 5: PushSubgroup(E, f, φ)

Output: Minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of the subgroup $\varphi(G) \leq E'$.

- 1 Write the x-coordinate map of φ as a fraction g_1/g_2 of polynomials $g_1, g_2 \in \mathbb{F}_q[X]$.
- **2** Let $g_{\text{ker}} \leftarrow \gcd(g_2, f)$ and $f_1 \leftarrow f/g_{\text{ker}}$.
- **3** Compute $g_1 \cdot g_2^{-1} \mod f_1 \in \mathbb{F}_q[X]$ and reinterpret it as a quotient-ring element $\alpha \in \mathbb{F}_q[X]/f_1$.
- 4 Find the minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of α over \mathbb{F}_q using Shoup's algorithm.
- 5 Return f^{φ} .

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. ~> Evaluating isogeny chains.

Algorithm 5: $PushSubgroup(E, f, \varphi)$

Output: Minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of the subgroup $\varphi(G) \leq E'$.

- 1 Write the x-coordinate map of φ as a fraction g_1/g_2 of polynomials $g_1, g_2 \in \mathbb{F}_q[X]$.
- **2** Let $g_{\text{ker}} \leftarrow \gcd(g_2, f)$ and $f_1 \leftarrow f/g_{\text{ker}}$.
- **3** Compute $g_1 \cdot g_2^{-1} \mod f_1 \in \mathbb{F}_q[X]$ and reinterpret it as a quotient-ring element $\alpha \in \mathbb{F}_q[X]/f_1$.

4 Find the minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of α over \mathbb{F}_q using Shoup's algorithm.

5 Return f^{φ} .

Complexity: $O(k^2) + \widetilde{O}(n)$. Naïvely $O(nk(\log k)^{O(1)})$.

 Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm. Find *q* such that $\mathbf{i}^2 = -q$, $\mathbf{j}^2 = -p$ defines $B_{p,\infty}$, find a root $j \in \mathbb{F}_p$ of the Hilbert class polynomial H_{-q} , construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \to E$ with the isomorphism $\tau: (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \to E$ with the isomorphism $\tau: (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.
- ► Ingredient #3: Ibukiyama's theorem. Explicit basis for a maximal order of B_{p,∞} with an endomorphism √-q. In fact, such a maximal order is almost unique.

 Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 !! Part of SageMath ≥ 10.3.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 !! Part of SageMath ≥ 10.3.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
 !! Part of SageMath ≥ 10.2 (thanks to Rémy Oudompheng).

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 !! Part of SageMath ≥ 10.3.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
 !! Part of SageMath ≥ 10.2 (thanks to Rémy Oudompheng).
- Ingredient #3: Ibukiyama's theorem.
 ?? Are we waiting for proper endomorphism-ring code?

Connecting ideals

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

1. Compute $\mathcal{OO}' = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O}'\}) \subseteq B_{p,\infty}$.

Connecting ideals

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO}' = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O}'\}) \subseteq B_{p,\infty}$.
- That's all, but typically the norm of OO' is horrible. (Also, it's integral only in trivial cases → scale by denominator in Z.)

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2. <i> = GF((2^{31}-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*i
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
    -2147483647*i - 22485*i + 3069*k
sage: E1, phi, _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
             = 2^{29} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 31 \times 41 \times 43^{2} \times 61 \times 79 \times 151
  From: Elliptic Curve defined by v^2 = x^3 + x over
             Finite Field in i of size 2147483647^2
  To: Elliptic Curve defined by y^2 = x^3 + (1474953432 \times i)
                  +1816867654) *x + (581679615 * i + 260136654)
             over Finite Field in i of size 2147483647^2
```

Timings (SageMath, single core)

We've been informed of one run for a 521-bit characteristic that took only about 7 hours.

→ Definitely practical for parameter setup etc.!

Non-special starting curves (e.g., SQIsign)

▶ Previous discussion: Special starting curve *E*₀.

Non-special starting curves (e.g., SQIsign)

- ▶ Previous discussion: Special starting curve *E*₀.
- General starting curves: Easy to compute $E \rightarrow E_0 \rightarrow E'$.
- ▶ Previous discussion: Special starting curve *E*₀.
- General starting curves: Easy to compute $E \rightarrow E_0 \rightarrow E'$.
- Doing this would break SQIsign.

- ▶ Previous discussion: Special starting curve *E*₀.
- General starting curves: Easy to compute $E \rightarrow E_0 \rightarrow E'$.
- Doing this would break SQIsign.

Solution:

 $E_1 \longrightarrow E_2 \longrightarrow E_3 \longrightarrow I_3 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow E_{n-1} \longrightarrow E_n$

- ▶ Previous discussion: Special starting curve *E*₀.
- General starting curves: Easy to compute $E \rightarrow E_0 \rightarrow E'$.
- Doing this would break SQIsign.

Solution:

- ▶ Previous discussion: Special starting curve *E*₀.
- General starting curves: Easy to compute $E \rightarrow E_0 \rightarrow E'$.
- Doing this would break SQIsign.

Solution:

Algorithms for one "step" are quite technical. See [ePrint 2022/234] and the more recent [ePrint 2023/1251].

Part 2: The CM action

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O} = \mathbb{Z}[\vartheta]$.

• We consider \mathcal{O} -oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota : \mathcal{O} \to \operatorname{End}(E)$.

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O} = \mathbb{Z}[\vartheta]$.

- We consider \mathcal{O} -oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota : \mathcal{O} \to \operatorname{End}(E)$.
- ▶ Basic example: If E/\mathbb{F}_q and $\pi \notin \mathbb{Z}$, then $\mathcal{O} = \mathbb{Z}[\pi]$ works.

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O} = \mathbb{Z}[\vartheta]$.

- We consider \mathcal{O} -oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota : \mathcal{O} \to \operatorname{End}(E)$.
- ▶ Basic example: If E/\mathbb{F}_q and $\pi \notin \mathbb{Z}$, then $\mathcal{O} = \mathbb{Z}[\pi]$ works.
- Other examples: E/\mathbb{F}_{p^2} supersingular; many possible \mathcal{O} .

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O} = \mathbb{Z}[\vartheta]$.

- ▶ We consider \mathcal{O} -oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota : \mathcal{O} \to \operatorname{End}(E)$.
- ▶ Basic example: If E/\mathbb{F}_q and $\pi \notin \mathbb{Z}$, then $\mathcal{O} = \mathbb{Z}[\pi]$ works.
- Other examples: E/\mathbb{F}_{p^2} supersingular; many possible \mathcal{O} .

Ideals of \mathcal{O} again define isogenies

$$\varphi\colon (E,\iota) \longrightarrow (E',\iota')$$

satisfying $\varphi \circ \iota(\alpha) = \iota'(\alpha) \circ \varphi$ for all $\alpha \in \mathcal{O}$.

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O} = \mathbb{Z}[\vartheta]$.

- ▶ We consider \mathcal{O} -oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota : \mathcal{O} \to \operatorname{End}(E)$.
- ▶ Basic example: If E/\mathbb{F}_q and $\pi \notin \mathbb{Z}$, then $\mathcal{O} = \mathbb{Z}[\pi]$ works.
- Other examples: E/\mathbb{F}_{p^2} supersingular; many possible \mathcal{O} .

Ideals of \mathcal{O} again define isogenies

 $\varphi\colon (E,\iota) \longrightarrow (E',\iota')$

satisfying $\varphi \circ \iota(\alpha) = \iota'(\alpha) \circ \varphi$ for all $\alpha \in \mathcal{O}$.

 $\implies \text{Compatibility for repeated applications of ideals of } \mathcal{O}.$ $\implies \text{Group action of } cl(\mathcal{O}) \text{ on such pairs!}$

The basic strategy à la C/R–S

- Let l₁, ..., l_n be small prime ideals of O, and suppose a is given to us in the form a = l^e₁ ··· · l^e_n.
- ► Then a can be evaluated as a sequence of l_i.

The basic strategy à la C/R–S

- Let l₁, ..., l_n be small prime ideals of O, and suppose a is given to us in the form a = l₁^{e₁} ···· l_n^{e_n}.
- ► Then a can be evaluated as a sequence of l_i.
- Evaluating a single l_i : Write $l_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point *P* with $\vartheta(P) = [\lambda_i]P$.

The basic strategy à la C/R–S

- Let l₁, ..., l_n be small prime ideals of O, and suppose a is given to us in the form a = l₁^{e₁} ···· l_n^{e_n}.
- ► Then a can be evaluated as a sequence of l_i.
- Evaluating a single l_i : Write $l_i = (\ell_i, \vartheta \lambda_i)$. Then the kernel is an order- ℓ_i point *P* with $\vartheta(P) = [\lambda_i]P$.
- Optimizations: Batch multiple l_i together \rightsquigarrow "strategies".

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- ► The CSIDH paper repeats this.

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- The CSIDH paper repeats this.

<u>Issue:</u>

▶ Representing cl(O) by the group (Zⁿ, +) of exponents makes the exponents grow larger with each operation.

 \rightsquigarrow Cost of evaluating after *k* operations is $O(\exp(k))$.

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- ► The CSIDH paper repeats this.

Issue:

- ▶ Representing cl(O) by the group (Zⁿ, +) of exponents makes the exponents grow larger with each operation.
 → Cost of evaluating after k operations is O(exp(k)).
- ► Representing cl(O) as reduced ideals allows computing in cl(O) efficiently, but evaluation becomes superpolynomial.

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

• Compute the relation lattice $\Lambda := \{ v \in \mathbb{Z}^n \mid v * E_0 = E_0 \}.$

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

- Compute the relation lattice $\Lambda := \{ v \in \mathbb{Z}^n \mid v * E_0 = E_0 \}.$
- Work with exponent vectors anyway, but now in \mathbb{Z}^n/Λ .

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

- Compute the relation lattice $\Lambda := \{ v \in \mathbb{Z}^n \mid v * E_0 = E_0 \}.$
- Work with exponent vectors anyway, but now in \mathbb{Z}^n/Λ .
- To evaluate the action, solve a close(st)-vector problem.
 ~> short equivalent exponent vector!

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

• To evaluate the action, solve a close(st)-vector problem.

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

- To evaluate the action, solve a close(st)-vector problem.
- CSI-FiSh: This is practically fast for CSIDH-512.

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

- ► To evaluate the action, solve a close(st)-vector problem.
- CSI-FiSh: This is practically fast for CSIDH-512.
- Still, it's asymptotically the bottleneck! https://yx7.cc/blah/2023-04-14.html

SCALLO, PhD

Even more maritime isogenies??

Noun [edit]

clapotis <u>m</u> (plural clapotis)

1. lapping of water against a surface [synonyms ▲]

 Recently, Page–Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

 Recently, Page–Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

 Find two ideals b, c of coprime norms, both equivalent to a. Let N := norm(b) + norm(c).

 Recently, Page–Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

 Find two ideals b, c of coprime norms, both equivalent to a. Let N := norm(b) + norm(c).

 Recently, Page–Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

 ▶ Find two ideals b, c of coprime norms, both equivalent to a. Let N := norm(b) + norm(c).

► Kani: This gives an *N*-isogeny $F: E \times E \to E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}},$ $(P,Q) \mapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi_{\overline{\mathfrak{c}}}}(Q), -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi_{\mathfrak{b}}}(Q)).$

 Recently, Page–Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

 ▶ Find two ideals b, c of coprime norms, both equivalent to a. Let N := norm(b) + norm(c).

- ► Kani: This gives an *N*-isogeny $F: E \times E \to E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}},$ $(P,Q) \mapsto (\phi_{\mathfrak{b}}(P) + \widehat{\psi_{\overline{\mathfrak{c}}}}(Q), -\phi_{\overline{\mathfrak{c}}}(P) + \widehat{\psi_{\mathfrak{b}}}(Q)).$
- The kernel is $\ker(F) = \{(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \mathbb{E}_{\mathfrak{a}}[N]\}.$

• The kernel is $\ker(F) = \{(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \mathbb{E}_{\mathfrak{a}}[N]\}.$

- The kernel is $\ker(F) = \{(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \mathbb{E}_{\mathfrak{a}}[N]\}.$
- For some reason this is supposedly the same thing as

 $\ker(F) = \left\{ ([\operatorname{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N] \right\}$

where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $\mathfrak{b}\overline{\mathfrak{c}}$.

• The kernel is $\ker(F) = \{(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\overline{\mathfrak{c}}}(R)) : R \in \mathbb{E}_{\mathfrak{a}}[N]\}.$

For some reason this is supposedly the same thing as

 $\ker(F) = \left\{ ([\operatorname{norm}(\mathfrak{b})]R, \gamma(R)) \mid R \in E[N] \right\}$

where $\gamma \in \text{End}(E)$ is a generator of the principal ideal $\mathfrak{b}\overline{\mathfrak{c}}$.

Let us explain the case of the specific isogeny *F* to illustrate the usefulness of the module representation. We have $\mathfrak{b} = \frac{\overline{\gamma_b}}{N(\mathfrak{a})}\mathfrak{a}$, so the multiplication map $\overline{\gamma_b} / \mathcal{N}(\mathfrak{a}) : (\mathfrak{a}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \to (\mathfrak{b}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{b}))$ is an isomorphism α_b of unimodular Hermitian modules. The isogeny $\phi_{\mathfrak{b}} : E \to E_{\mathfrak{a}}$ corresponds from the module point of view to the post-composition of α_b with the natural $\mathcal{N}(\mathfrak{b})$ -similitude given by the inclusion $(\mathfrak{b}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{b})) \to (R, \mathcal{N}(\cdot))$.

Likewise, the isogeny *F* from Proposition 2.1 corresponds to a *N*-similitude ψ : $(\mathfrak{a}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \oplus (\overline{\mathfrak{a}}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \rightarrow (R, \mathcal{N}(\cdot)) \oplus (R, \mathcal{N}(\cdot)).$

The anti-equivalence of categories is exact, so the kernel of *F* corresponds to the cokernel of ψ . Fix two generators of \mathfrak{a} , these generators induce surjective maps $R^2 \rightarrow \mathfrak{a}$, $R^2 \rightarrow \overline{\mathfrak{a}}$. Pre-composing ψ with these epimorphisms, we get a module map $\bar{\psi}: R^4 \rightarrow R^2$, whose cokernel is exactly the cokernel of ψ . The map $\bar{\psi}$ is given by a 4 × 2 matrix of elements of *R*, hence of endomorphisms on *E*, and corresponds on the abelian variety side to a morphism $\bar{\Phi}: E^2 \rightarrow E^4$. By exactness, the cokernel coker $\bar{\psi} = \operatorname{coker} \psi$, which as we have seen corresponds to Ker *F*, is given by Ker $\bar{\Phi}$ which we can explicitly compute since the orientation by *R* is effective on *E*.

Minor detail: *N* has no reason at all to be "nice".
 ~~ {4,8}-dimensional isogenies, per the usual...

Interlude

We could've had it all (5 years ago) [ePrint 2018/665]

(4)
$$(\mathfrak{a}_1 * E) \times \cdots \times (\mathfrak{a}_n * E) \cong (\mathfrak{a}_1 \cdots \mathfrak{a}_n) * E \times E^{n-1}.$$

and more generally, we have

(5)
$$\begin{aligned} (\mathfrak{a}_1 * E) \times \cdots \times (\mathfrak{a}_n * E) &\cong (\mathfrak{a}'_1 * E) \times \cdots \times (\mathfrak{a}'_n * E) & \text{if and only if} \\ \mathfrak{a}_1 \cdots \mathfrak{a}_n &= \mathfrak{a}'_1 \cdots \mathfrak{a}'_n & \text{as ideal classes in } \mathrm{Cl}(\mathscr{O}). \end{aligned}$$

As a side note, we now mention that those properties can *in part* be established using elementary techniques. More precisely, (4) is a consequence of the following elementary result.

Theorem A.1. Let E be an elliptic curve over a finite field \mathbb{F}_q , and K a finite étale subgroup of E (i.e., the map $E \to E/K$ is separable) defined over \mathbb{F}_q . Suppose that K contains subgroups K_i defined over \mathbb{F}_q , for $1 \le i \le n$, whose orders are pairwise coprime, and suppose $K = K_1 + \cdots + K_n$. Then:

 $(E/K_1) \times \cdots \times (E/K_n) \cong (E/K) \times E^{n-1}.$

We could've had it all (5 years ago) [ePrint 2018/665]

Theorem A.1. Let E be an elliptic curve over a finite field \mathbb{F}_q , and K a finite étale subgroup of E (i.e., the map $E \to E/K$ is separable) defined over \mathbb{F}_q . Suppose that K contains subgroups K_i defined over \mathbb{F}_q , for $1 \leq i \leq n$, whose orders are pairwise coprime, and suppose $K = K_1 + \cdots + K_n$. Then:

$$(E/K_1) \times \cdots \times (E/K_n) \cong (E/K) \times E^{n-1}$$

Proof. The result is immediate for n = 1. We next prove the result for n = 2 by constructing an explicit isomorphism. Consider the commutative diagram:

where all maps are the natural quotient isogenies. If we denote by m_1 and m_2 the orders of K_1 and K_2 , we have deg $\varphi_1 = \deg \psi_2 = m_1$ and deg $\varphi_2 = \deg \psi_1 = m_2$. Now choose integers $a, b \in \mathbb{Z}$ such that $am_1 + bm_2 = 1$. We define morphisms

 $f: E \times (E/K) \to (E/K_1) \times (E/K_2)$ and $g: (E/K_1) \times (E/K_2) \to E \times (E/K)$

by the following matrices:

$$\operatorname{Mat}(f) = \begin{pmatrix} \varphi_1 & \widehat{\psi_1} \\ -b\varphi_2 & a\widehat{\psi_2} \end{pmatrix} \quad \text{and} \quad \operatorname{Mat}(g) = \begin{pmatrix} a\widehat{\varphi_1} & -\widehat{\varphi_2} \\ b\psi_1 & \psi_2 \end{pmatrix}.$$
Questions?