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The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction.
(The <= direction is exponential-time as far as we know.)

...but also:

The CM action:

Action of the ideal-class group of an imaginary-quadratic order
on the set of curves oriented by that order.

The correspondence is polynomial-time in the = direction. ﬂg‘w
(The <= direction is quantumly subexponential-time as far as we know.)
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We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski "21: “Orientations and the supersingular endomorphism ring problem”).

» ~All isogeny assumptions reduce to the <= direction.
» SQIsign builds on the = direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~+ Oriented curves and the isogeny class-group action.
» C/R-S/DF-K-S/CSIDH/SCALLOP(-HD)/Clapoti(s)
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» 2004: Cervifio gives a (necessarily exponential-time)

algorithm to compute all pairs (E, O) for a given p.

» 2013: Chevyrev—Galbraith give an exponential-time
algorithm to compute O — E.

» 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) /)
find a heuristically polynomial-time algorithm for O +— E.

» 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.
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Curve world

Universe: Characteristic p. Assumep >5.
Supersingular elliptic curves: E[p] = {oo}.

Isogenies, endomorphisms, and so on and so forth.

v vy VY

Famous examples:
» p=3 (mod 4) and E: > = x> + x with j-invariant 1728.
» p=2 (mod 3) and E: y* = x* + 1 with j-invariant 0.
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Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F;.)

» The group structure is known over all extensions:
E(Fx) = Z/n x Z/n where n = pPF— (1)K
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Quaternion universe

» Everything lives in a particular quaternion algebra B}, .

» The algebra B, . is a 4-dimensional Q-vector space.
Write B, . = Q @ Qi @ Qj @ Qijj.

» Multiplication defined by relations i’=—q, j>=—p, ji = —ij.
Here g is a positive integer satisfying some cond1t1ons with respect to p.
i All valid q define isomorphic algebras By .

» The algebra By, -, has a conjugation — which negates i, j, ij.
The norm and trace of an element « are a@ € Z> and a+a € Z.
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» Maximal orders in the quaternion algebra B}, .

» Left- and right-ideals, principal ideals, and so on.

Definitions:
> A (fractional) ideal is a rank-4 lattice contained in B, .

» An order is a fractional ideal which is a subring of By, .
A maximal order is one that is not contained in any strictly larger order.

» A fractional ideal I is a left O-ideal if OI C I. @imilarly on the right)
We say I connects O and O’ if OI C Tand IO’ C .
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Computationally; ...

» We typically work with one fixed choice of g for each p.
» Quaternions are represented as vectors in Q.
» Quaternion lattices are represented by a Z-basis.

» All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.
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From curves to quaternions

E— O
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Example #1
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v (vy) — (—x,V/—1-y),

T (xy) — (7).
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Example #2
Assume p =2 (mod 3).
Then E: yz =x3+1is supersingular, and it has endomorphisms

w: (x,y) — (G x,y),
T (xy) — (FyF).
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Example #2
Assume p =2 (mod 3).
Then E: y2 =x3+1is supersingular, and it has endomorphisms

w: ('xay) — (C3'X,y),
T (oY) — (7).

In decreasing order of obviousness, one can show that

W =1}, wr + 7w = —7, and 7% = [—p).

Hence, in the quaternion algebra where i = —3 and j?> = —p,
the pair (2w + 1, ) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{L. (+9/2, G+ij)/2, (i+1)/3}.
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» Subtlety: Identifying explicit endomorphisms with
abstract elements of By, o, is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
End(E) x End(E) = Z, (o, 8) — a8 + of.

This is polynomial-time.

» Multiple q define the same B, .
Need to convert from i? = —g basis to i’> = —¢’ basis.
Lemma 10. Let p be a prime number and q,q' € Z~o such that B = (—q,—p | Q) and B’ = (—¢', —p | Q)
are quaternion algebras ramified at p and oo.
Then there exist z,y € Q such that x* + py? = ¢'/q. Writing 1,1, X’ for the generators of B’ and
1,1,j, k for the generators of B, and setting vy := x + yj, the mapping
i iy, i =i, k' — ky

defines a Q-algebra isomorphism B' = B.
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From quaternions to curves

Ey—E Es * Oy— .0
El\‘g - 01\ |
5 Os
E; E; 0; 0,

» Step 0: Base curve.
Any curve over [F, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/.

Solve the “isogeny problem” in quaternion land.

» Step 2: Ideal-to-isogeny.

Map the solution “down” to curve land.

I will talk about these in reverse order.
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Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (., ker w.

Algorithms:
» Write [ = (N, a) with N € Z+(. Then H; = ker(a/|g|y)-

» Better: Factor N = (7' -- - (7", let H = ker(Oé|E[m)~
k
Then H; = (H}, ..., H}).
> If ¢y is cyclic, we have ker(a|gpn) = @(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

~ No choice in N: It’s the norm of I.
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Step 1: Convenient connecting ideals

KLPT/
...finds an equivalent ideal ] = I5/N of controlled norm N'.
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KLPT/

...finds an equivalent ideal ] = I5/N of controlled norm N'.
Typical cases: Norm £°, powersmooth norm £ - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~~ isomorphic codomains.
» The resulting isogeny ¢; will be different from ¢.
» We can “fix” the evaluation a posteriori:
» The composition w := ¢j¢; is an endomorphism.
» Asa quaternion, it is simply given by «!  (Proof: Iy~ '])
~+ We can evaluate w without computing ¢y first.

» Hence, for T coprime to N/, with S := N'~"! mod T,

w1lgm = Seywle -

~+ Do it twice with coprime degrees to evaluate on any point.
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Advertisement: Deuring for the People!

So we now know a way to do it, but how do we actually do it?
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Cool trick #1: Convenient torsion is convenient

» Norm is big ~» We have to work in field extensions.
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Cool trick #1: Convenient torsion is convenient

» Norm is big ~» We have to work in field extensions.

I!' Lots of choice for prime powers ¢°.
Trick: Look for E[¢°] € E(F ) with k small.

~+ Tradeoff: number of operations «+— cost of arithmetic.

[k]

41 -

16 -

2 50 1(50 150 199 [ge]

=
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Heatmap
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Average extension k required to access ¢°-torsion.
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Cool trick #2: Isogenies from minimal polynomials

» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
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» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(E, f,¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f¢ € F,[X] of the subgroup ¢(G) < E’.
1 Write the x-coordinate map of ¢ as a fraction g /g2 of polynomials g, gs € F,[X].
2 Let gker ¢ ged(g2, f) and fi < f/gyer-
3 Compute g1 - g5 ' mod f1 € F,[X] and reinterpret it as a quotient-ring element o € Fy[X]/f1.
4 Find the minimal polynomial f¢ € Fy[X] of o over F, using Shoup’s algorithm.
5 Return f?.
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Cool trick #2: Isogenies from minimal polynomials

» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(E, f,¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f¢ € F,[X] of the subgroup ¢(G) < E’.
1 Write the x-coordinate map of ¢ as a fraction g /g2 of polynomials g, gs € F,[X].
2 Let gker ¢ ged(g2, f) and fi < f/gyer-
3 Compute g1 - g5 ' mod f1 € F,[X] and reinterpret it as a quotient-ring element o € Fy[X]/f1.
4 Find the minimal polynomial f¢ € Fy[X] of o over F, using Shoup’s algorithm.
5 Return f?.

Complexity: O(k?) + O(n). Naively O(nk(logk)°M).
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Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
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Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
Find g such that i*=—g, j>=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_;, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time (5(0;)
Composing the desired endomorphism ¥: E — E with the
isomorphism 7: (x,) — (—qx, /—§ y) makes it normalized.

» Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of B, -, with an endomorphism /—4.
In fact, such a maximal order is almost unique.
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together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
! Part of SageMath >10.3.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
I! Part of SageMath > 10.2 (thanks to Rémy Oudompheng).
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Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
! Part of SageMath >10.3.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
I! Part of SageMath > 10.2 (thanks to Rémy Oudompheng).

» Ingredient #3: Ibukiyama’s theorem.
?? Are we waiting for proper endomorphism-ring code?
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Connecting ideals

Finding a connecting (O, O’)-ideal is straightforward:
1. Compute OO' = span,({af:a € 0,8 € O'}) C By«
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Connecting ideals

Finding a connecting (O, O’)-ideal is straightforward:
1. Compute OO' = span,({af:a € 0,8 € O'}) C By«
2. That’s all, but typically the norm of OO’ is horrible.

(Also, it’s integral only in trivial cases ~+ scale by denominator in Z.)
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Open-source code

https://github.com/friends-of-quaternions/deuring

26 /42


https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

[

\sage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring

26 /42


https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

isage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring
‘sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)

26 /42


https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

isage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring
‘sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)

\sage: EQ, iota, 00 = starting_curve(F2)

26 /42


https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve

sage: from deuring.randomideal import random_ideal

sage: from deuring.correspondence import constructive_deuring

sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,1])

sage: E@Q, iota, 00 = starting_curve(F2)

sage: I = random_ideal (00)

sage: I

Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2+*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
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https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,1])
sage: E@Q, iota, 00 = starting_curve(F2)
sage: I = random_ideal (00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2+*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
sage: E1, phi, _ = constructive_deuring(I, E@, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
= 2729#373x5%7%2%x11%13*x17%31%41%43%2%61%x79%151:
From: Elliptic Curve defined by y*2 = x*3 + x over
Finite Field in i of size 21474836472
To: Elliptic Curve defined by y*2 = x*3 + (1474953432*1
+1816867654)*x + (581679615+x1+260136654)
over Finite Field in i of size 2147483647"2
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https://github.com/friends-of-quaternions/deuring

Tlmlngs (SageMath, single core)

[seconds|

i
8 it
g
i g
o TR

180 - : .
120 - St

5 25 50 75 100 125 150 175 200 295 250  [bit length]

27 /42



Tlmlngs (SageMath, single core)

We’ve been informed of one run for a 521-bit characteristic that
took only about 7 hours.

~+ Definitely practical for parameter setup etc.!
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Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.

29 /42



Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.

» General starting curves: Easy to compute E — Ey — E'.

29 /42



Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.
» General starting curves: Easy to compute E — Ey — E'.
» Doing this would break SQIsign.

29 /42



Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.
» General starting curves: Easy to compute E — Ey — E'.
» Doing this would break SQIsign.

Solution:

E1 7114>E2 7124>E3 — L 7In—1*En—1 *Ing’En
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Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.

» General starting curves: Easy to compute E — Ey — E'.

» Doing this would break SQIsign.

Solution:

Ei—hLh—E)—b—E3—L—--- —L_1>E,_1—

N
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Non-special starting curves (e.g., SQIsign)

» Previous discussion: Special starting curve Ey.

» General starting curves: Easy to compute E — Ey — E'.

» Doing this would break SQIsign.

Solution:

Ei—hLh—E)—b—E3—L—--- —L_1>E,_1—
\ | f //
2
\EOJ

~ Algorithms for one “step” are quite technical.
See [ePrint 2022 /234] and the more recent [ePrint 2023 /1251].
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Part 2: The CM action



The CM action on oriented curves

Now let O be an imaginary-quadratic order, say O = Z[J].

» We consider O-oriented elliptic curves: pairs (E, ) with an
explicit embedding :: O — End(E).
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The CM action on oriented curves

Now let O be an imaginary-quadratic order, say O = Z[J].

» We consider O-oriented elliptic curves: pairs (E, ) with an
explicit embedding :: O — End(E).
» Basic example: If E/F; and 7 ¢ Z, then O = Z[r]| works.

> Other examples: E/F > supersingular; many possible O.

Ideals of O again define isogenies
o: (E,t) — (E',0)
satisfying p o t(a) = /() o p forall & € O.

= Compatibility for repeated applications of ideals of O.
= Group action of cl(O) on such pairs!
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The basic strategy a la C/R-S

» Letl,..., [, be small prime ideals of O, and
suppose a is given to us in the form a = ' -+ - [}/

» Then a can be evaluated as a sequence of ;.
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The basic strategy a la C/R-S

v

Let [, ..., [, be small prime ideals of O, and
suppose a is given to us in the form a = ' -+ - [}/

v

Then a can be evaluated as a sequence of [;.

v

Evaluating a single [;: Write [; = (¢;,9 — \;).
Then the kernel is an order-/; point P with ¥(P) = [\;|P.

» Optimizations: Batch multiple [; together ~ “strategies”.
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The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way group action).

» The CSIDH paper repeats this.
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makes the exponents grow larger with each operation.
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The basic problem with the basic strategy

» Couveignes: This gives a “hard homogeneous space”
(weirder name for a one-way group action).

» The CSIDH paper repeats this.

Issue:

» Representing cl(O) by the group (Z", +) of exponents
makes the exponents grow larger with each operation.
~» Cost of evaluating after k operations is O(exp(k)).

» Representing cl(O) as reduced ideals allows computing in
cl(O) efficiently, but evaluation becomes superpolynomial.

33 /42



Effective group actions ala CSI-FiSh/SCALLOP(-HD)

Partial solution:

» Compute the relation lattice A := {v € Z" | v« Ey = Ep}.
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Effective group actions ala CSI-FiSh/SCALLOP(-HD)

Partial solution:

» Compute the relation lattice A := {v € Z" | v« Ey = Ep}.
» Work with exponent vectors anyway, but now in Z" /A.

» To evaluate the action, solve a close(st)-vector problem.
~+ short equivalent exponent vector!
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“Effective” group actions a la CSI-FiSh/SCALLOP(-HD)

» To evaluate the action, solve a close(st)-vector problem.
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» To evaluate the action, solve a close(st)-vector problem.
» CSI-FiSh: This is practically fast for CSIDH-512.
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https://yx7.cc/blah/2023-04-14.html

“Effective” group actions a la CSI-FiSh/SCALLOP(-HD)

» To evaluate the action, solve a close(st)-vector problem.
» CSI-FiSh: This is practically fast for CSIDH-512.

» Still, it’s asymptotically the bottleneck!
https://yx7.cc/blah/2023-04-14.html
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SCALLO, PhD
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Even more maritime isogenies??

Noun [ edit]

1. lapping of water against a surface [synonyms Al
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Polynomial-time group action: Clapoti(s)

» Recently, Page-Robert announced a polynomial-time
algorithm for evaluating the action on arbitrary ideals.
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Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.
Let N := norm(b) + norm(c).
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Idea:
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» Recently, Page-Robert announced a polynomial-time
algorithm for evaluating the action on arbitrary ideals.

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
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o [
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» Kani: This gives an N-isogeny F: E x E — £, x Eg,
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» Recently, Page-Robert announced a polynomial-time
algorithm for evaluating the action on arbitrary ideals.

Idea:

» Find two ideals b, ¢ of coprime norms, both equivalent to a.

Let N := norm(b) + norm(c).
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o [
EET E

» Kani: This gives an N-isogeny F: E x E — £, x Eg,

(P, Q) v (¢6(P) + Pe(Q), —¢e(P) + 16(Q))-

» The kernel is ker(F) = {(¢s(R), ¥¢(R)) : R € Eq[N]}.

38 /42



Polynomial-time group action: Clapoti(s)

» The kernel is ker(F) = {(¢s(R), ¥¢(R)) : R € Eq[N]}.

39 /42
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7/ For some reason this is supposedly the same thing as
ker(F) = {([norm(b)|R, 7(R)) | R € E[N]}

where v € End(E) is a generator of the principal ideal be.
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Polynomial-time group action: Clapoti(s)

» The kernel is ker(F) = {(¢s(R), ¥¢(R)) : R € Eq[N]}.

7/ For some reason this is supposedly the same thing as
ker(F) = {([norm(6)|R, 7(R)) | R € E[N]}
where v € End(E) is a generator of the principal ideal be.

Let us explain the case of the specific isogeny F to illustrate the usefulness of the module representation. We
have b = %u, so the multiplication map 75,/ N(a) : (a, N(-)/ N(a)) — (b, N(-)/ N(b)) is an isomorphism a;,
of unimodular Hermitian modules. The isogeny ¢, : E — E, corresponds from the module point of view to the
post-composition of &, with the natural N/(b)-similitude given by the inclusion (b, N(-)/ N(b)) — (R, N(-)).
Likewise, the isogeny F from Proposition 2.1 corresponds to a N-similitude ¢: (a, N(-)/ N(a))@® (@, N(-)/ N(a)) —
R, N()) @ (R, N()).
The anti-equivalence of categories is exact, so the kernel of F corresponds to the cokernel of 1. Fix two generators
of a, these generators induce surjective maps R2 - a, R?> — . Pre-composing § with these epimorphisms, we get
amodule map ¢: R* - R?, whose cokernel is exactly the cokernel of . The map ¢ is given by a 4 x 2 matrix
of elements of R, hence of endomorphisms on E, and corresponds on the abelian variety side to a morphism
®: E? - E*. By exactness, the cokernel coker § = coker i, which as we have seen corresponds to Ker F, is given
by Ker & which we can explicitly compute since the orientation by R is effective on E.
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Polynomial-time group action: Clapoti(s)

» Minor detail: N has no reason at all to be “nice”.

~+ {4,8}-dimensional isogenies, per the usual...
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Interlude

WE C oD HAVE HAaD ITALL

41/42



We could’ve had it all (5 years ago) [ePrint 2018/665]

(4) (a % B) x oo % (0 * B) 2 (aq+--a,) % E x E"7
and more generally, we have
®) (a1 % E)x - x (ap* E) 2 (a) %« E) x --+ x (af, x E) if and only if

ap--a, =aj--a), as ideal classes in CL().
As a side note, we now mention that those properties can in part be established using ele-
mentary techniques. More precisely, (4) is a consequence of the following elementary result.
Theorem A.1. Let E be an elliptic curve over a finite field Fy, and K a finite étale subgroup
of E (i.e., the map E — E/K is separable) defined over Fq. Suppose that K contains
subgroups K; defined over Fy, for 1 <i < n, whose orders are pairwise coprime, and suppose

K=K +---+K,. Then:
(E/Ky) % - x (B/K,) = (E/K) x E"\.
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We could’ve had it all (5 years ago) [ePrint 2018/665]

Theorem A.1. Let E be an elliptic curve over a finite field Fy, and K a finite étale subgroup
of E (i.e., the map E — E/K is separable) defined over ;. Suppose that K contains

subgroups K; defined over Fy, for 1 <i < n, whose orders are pairwise coprime, and suppose
K=K+ --+K,. Then:

(E/Ky) % - x (B/K,) = (E/K) x E" L.
Proof. The result is immediate for n = 1. We next prove the result for n = 2 by constructing

an explicit isomorphism. Consider the commutative diagram:

E—% B/K,

any

E/K,— > E/K

where all maps are the natural quotient isogenies. If we denote by m; and ms the orders of
K and Ky, we have deg ¢ = degpa = my and deg s = deg1h; = ma. Now choose integers
a,b € Z such that ami + bina = 1. We define morphisms

f: Ex(E/K)— (E/K)1) X (E/K3) and g: (E/K)) x (E/K3) = E x (E/K)
by the following matrices:

Mat(f)=(j;2 a%) and Mat(g)=(;*:z: *J;z).
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Questions?
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