Ideal-to-isogeny algorithms: An overview

Lorenz Panny

Technische Universität München
KULB Seminar, 15 December 2023

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is exponential-time as far as we know.)

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is exponential-time as far as we know.)
...but also:

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is exponential-time as far as we know.)
...but also:

The CM action:

Action of the ideal-class group of an imaginary-quadratic order on the set of curves oriented by that order.

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is exponential-time as far as we know.)
...but also:

The CM action:

Action of the ideal-class group of an imaginary-quadratic order on the set of curves oriented by that order.
The correspondence is polynomial-time in the \Longrightarrow direction.

What?

The Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is exponential-time as far as we know.)
...but also:

The CM action:

Action of the ideal-class group of an imaginary-quadratic order on the set of curves oriented by that order.

The correspondence is polynomial-time in the \Longrightarrow direction.
(The \Longleftarrow direction is quantumly subexponential-time as far as we know.)

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Longleftarrow direction.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Longleftarrow direction.
- SQIsign builds on the \Longrightarrow direction constructively.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Longleftarrow direction.
- SQIsign builds on the \Longrightarrow direction constructively.
- Essential tool for both constructions and attacks.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Longleftarrow direction.
- SQIsign builds on the \Longrightarrow direction constructively.
- Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
\rightsquigarrow Oriented curves and the isogeny class-group action.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Longleftarrow direction.
- SQIsign builds on the \Longrightarrow direction constructively.
- Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
\rightsquigarrow Oriented curves and the isogeny class-group action.

- C/R-S/DF-K-S/CSIDH/SCALLOP(-HD)/Clapoti(s)

Part 1: Deuring

The Deuring Correspondence

Deuring correspondence

world of supersingular curves
world of maximal orders

curve-order dictionary

supersingular curves	quaternion orders		
curve E (up to Galois conjugacy)	maximal order \mathcal{O} (up to isomorphism)		
isogeny $\varphi: E_{1} \rightarrow E_{2}$	integral ideal I_{φ} that is		
left \mathcal{O}_{1}-ideal and right \mathcal{O}_{2}-ideal			
endomorphism $\psi: E \rightarrow E$	principal ideal $(\beta) \subset \mathcal{O}$		and this continues for the norm,
:---:			
and this continues for the degree,			

History (Deuring)

- 1941: Deuring proves the correspondence.

History (Deuring)

- 1941: Deuring proves the correspondence.

Weṇ! aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

History (Deuring)

- 1941: Deuring proves the correspondence.

Weṇ! aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.

History (Deuring)

- 1941: Deuring proves the correspondence.

Weṇ! aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

History (Deuring)

- 1941: Deuring proves the correspondence.

Weṇ! aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.

History (Deuring)

- 1941: Deuring proves the correspondence.

Wemu aber \mathbf{R} eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorrt, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.
- Famous examples:
- $p \equiv 3(\bmod 4)$ and $E: y^{2}=x^{3}+x$ with j-invariant 1728.
- $p \equiv 2(\bmod 3)$ and $E: y^{2}=x^{3}+1$ with j-invariant 0 .

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)
- The group structure is known over all extensions:
$E\left(\mathbb{F}_{p^{2 k}}\right) \cong \mathbb{Z} / n \times \mathbb{Z} / n$ where $n=p^{k}-(-1)^{k}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j} \mathbf{i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p.
\triangle All valid q define isomorphic algebras $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j} \mathbf{i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p. A All valid q define isomorphic algebras $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ has a conjugation ${ }^{-}$which negates $\mathbf{i}, \mathbf{j}, \mathbf{i j}$. The norm and trace of an element α are $\alpha \bar{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha+\bar{\alpha} \in \mathbb{Z}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
- A fractional ideal I is a left \mathcal{O}-ideal if $\mathcal{O} I \subseteq I$. (similarly on the right.)

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
 We say I connects \mathcal{O} and \mathcal{O}^{\prime} if $\mathcal{O} \subseteq \subseteq I$ and $I \mathcal{O}^{\prime} \subseteq I$.

Computationally, ...

- We typically work with one fixed choice of q for each p.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

From curves to quaternions
$E \mapsto \mathcal{O}$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi:(x, y) & \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
& \iota:(x, y) \\
& \pi: \longmapsto(x, y) \longmapsto(-x, \sqrt{-1} \cdot y), \\
&\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad \mathbf{i}, \quad(\mathbf{i}+\mathbf{j}) / 2, \quad(1+\mathbf{i} \mathbf{j}) / 2\}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{gathered}
\omega:(x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right), \\
\pi:(x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{gathered}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega:(x, y) & \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
& \omega:(x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
& \pi: \quad(x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega:(x, y) & \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad(1+\mathbf{i}) / 2, \quad(\mathbf{j}+\mathbf{i} \mathbf{j}) / 2, \quad(\mathbf{i}+\mathbf{i} \mathbf{j}) / 3\}
$$

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

- Multiple q define the same $B_{p, \infty}$.

Need to convert from $\mathbf{i}^{2}=-q$ basis to $\mathbf{i}^{\prime 2}=-q^{\prime}$ basis.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

- Multiple q define the same $B_{p, \infty}$.

Need to convert from $\mathbf{i}^{2}=-q$ basis to $\mathbf{i}^{\prime 2}=-q^{\prime}$ basis.
Lemma 10. Let p be a prime number and $q, q^{\prime} \in \mathbb{Z}_{>0}$ such that $B=(-q,-p \mid \mathbb{Q})$ and $B^{\prime}=\left(-q^{\prime},-p \mid \mathbb{Q}\right)$ are quaternion algebras ramified at p and ∞.

Then there exist $x, y \in \mathbb{Q}$ such that $x^{2}+p y^{2}=q^{\prime} / q$. Writing $1, \mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{k}^{\prime}$ for the generators of B^{\prime} and $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ for the generators of B, and setting $\gamma:=x+y \mathbf{j}$, the mapping

$$
\mathbf{i}^{\prime} \mapsto \mathbf{i} \gamma, \quad \mathbf{j}^{\prime} \mapsto \mathbf{j}, \quad \mathbf{k}^{\prime} \mapsto \mathbf{k} \gamma
$$

defines $a \mathbb{Q}$-algebra isomorphism $B^{\prime} \xrightarrow{\sim} B$.

From quaternions to curves

From quaternions to curves

From quaternions to curves

From quaternions to curves

$$
\begin{aligned}
& \begin{array}{llllll}
E_{0}, ~ \\
E_{2} \\
E_{1} & E_{4} & E_{6} & O_{0} & O_{2} & O_{4}
\end{array} \\
& \begin{array}{ccccc}
E_{3} & E_{5} & & & O_{5} \\
& E_{7} & O_{3} & O_{7}
\end{array}
\end{aligned}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{1} \\
E_{1} \\
E_{3} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve. Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.
- Step 1: Connecting ideal. Solve the "isogeny problem" in quaternion land.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{4} \\
E_{1} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPT $\boldsymbol{\text { P }}$.

Solve the "isogeny problem" in quaternion land.

From quaternions to curves

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPT $\boldsymbol{\jmath}$.

Solve the "isogeny problem" in quaternion land.

- Step 2: Ideal-to-isogeny.

Map the solution "down" to curve land.

From quaternions to curves

- Step 0: Base curve. Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT $\boldsymbol{\jmath}$. Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

I will talk about these in reverse order.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

Then $H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.
\because No choice in N : It's the norm of I.

Step 1: Convenient connecting ideals

KLPT

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.

Step 1: Convenient connecting ideals

KLPT ノ

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.

Step 1: Convenient connecting ideals

KLPT

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

Step 1: Convenient connecting ideals

KLPT

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{\ell_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$)
\rightsquigarrow We can evaluate ω without computing φ_{I} first.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$)
\rightsquigarrow We can evaluate ω without computing φ_{I} first.
- Hence, for T coprime to N^{\prime}, with $S:=N^{\prime-1} \bmod T$,

$$
\left.\varphi_{I}\right|_{E[T]}=\left.S \varphi_{J} \omega\right|_{E[T]} .
$$

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{I} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$)
\rightsquigarrow We can evaluate ω without computing φ_{I} first.
- Hence, for T coprime to N^{\prime}, with $S:=N^{\prime-1} \bmod T$,

$$
\left.\varphi_{I}\right|_{E[T]}=\left.S \varphi_{J} \omega\right|_{E[T]} .
$$

\rightsquigarrow Do it twice with coprime degrees to evaluate on any point.

Advertisement: Deuring for the People!

So we now know a way to do it, but how do we actually do it?

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Heatmap

Average extension k required to access ℓ^{e}-torsion.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

```
Algorithm 5: PushSubgroup \((E, f, \varphi)\)
    Input: Elliptic curve \(E / \mathbb{F}_{q}\), minimal polynomial \(f \in \mathbb{F}_{q}[X]\) of a subgroup \(G \leq E\),
        isogeny \(\varphi: E \rightarrow E^{\prime}\) defined over \(\mathbb{F}_{q}\).
    Output: Minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of the subgroup \(\varphi(G) \leq E^{\prime}\).
1 Write the x-coordinate map of \(\varphi\) as a fraction \(g_{1} / g_{2}\) of polynomials \(g_{1}, g_{2} \in \mathbb{F}_{q}[X]\).
2 Let \(g_{\text {ker }} \leftarrow \operatorname{gcd}\left(g_{2}, f\right)\) and \(f_{1} \leftarrow f / g_{\text {ker }}\).
3 Compute \(g_{1} \cdot g_{2}^{-1} \bmod f_{1} \in \mathbb{F}_{q}[X]\) and reinterpret it as a quotient-ring element \(\alpha \in \mathbb{F}_{q}[X] / f_{1}\).
4 Find the minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of \(\alpha\) over \(\mathbb{F}_{q}\) using Shoup's algorithm.
5 Return \(f^{\varphi}\).
```


Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

```
Algorithm 5: PushSubgroup \((E, f, \varphi)\)
    Input: Elliptic curve \(E / \mathbb{F}_{q}\), minimal polynomial \(f \in \mathbb{F}_{q}[X]\) of a subgroup \(G \leq E\),
        isogeny \(\varphi: E \rightarrow E^{\prime}\) defined over \(\mathbb{F}_{q}\).
    Output: Minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of the subgroup \(\varphi(G) \leq E^{\prime}\).
1 Write the x-coordinate map of \(\varphi\) as a fraction \(g_{1} / g_{2}\) of polynomials \(g_{1}, g_{2} \in \mathbb{F}_{q}[X]\).
2 Let \(g_{\text {ker }} \leftarrow \operatorname{gcd}\left(g_{2}, f\right)\) and \(f_{1} \leftarrow f / g_{\text {ker }}\).
3 Compute \(g_{1} \cdot g_{2}^{-1} \bmod f_{1} \in \mathbb{F}_{q}[X]\) and reinterpret it as a quotient-ring element \(\alpha \in \mathbb{F}_{q}[X] / f_{1}\).
4 Find the minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of \(\alpha\) over \(\mathbb{F}_{q}\) using Shoup's algorithm.
5 Return \(f^{\varphi}\).
```

Complexity: $O\left(k^{2}\right)+\widetilde{O}(n)$. Naïvely $O\left(n k(\log k)^{O(1)}\right)$.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto(-q x, \sqrt{-q} 3 y)$ makes it normalized.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto\left(-q x, \sqrt{-q}^{3} y\right)$ makes it normalized.
- Ingredient \#3: Ibukiyama's theorem.

Explicit basis for a maximal order of $B_{p, \infty}$ with an endomorphism $\sqrt{-q}$. In fact, such a maximal order is almost unique.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.
!! Part of SageMath ≥ 10.3.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.
!! Part of SageMath ≥ 10.3.
- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm.
!! Part of SageMath ≥ 10.2 (thanks to Rémy Oudompheng).

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.
!! Part of SageMath ≥ 10.3.
- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm.
!! Part of SageMath ≥ 10.2 (thanks to Rémy Oudompheng).
- Ingredient \#3: Ibukiyama's theorem.
?? Are we waiting for proper endomorphism-ring code?

Connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.

Connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible.
(Also, it's integral only in trivial cases \rightsquigarrow scale by denominator in \mathbb{Z}.)

Open-source code

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
```


Open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF ((2^31-1, 2), modulus=[1,0,1])
```


Open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF ((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
```


Open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
```


Open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, O0 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647-9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
sage: E1, phi, _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
                        = 2^ 29* *^ 3*5* 生 2* 11* 13* 17* 31* 41*43^2* 61*79* 151:
    From: Elliptic Curve defined by y^2 = x^3 + x over
                Finite Field in i of size 2147483647^2
    To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i
        +1816867654)*x + (581679615*i+260136654)
        over Finite Field in i of size 2147483647^2
```


Timings (SageMath, single core)

[seconds]

Timings (SageMath, single core)

We've been informed of one run for a 521-bit characteristic that took only about 7 hours.
\rightsquigarrow Definitely practical for parameter setup etc.!

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.
- General starting curves: Easy to compute $E \rightarrow E_{0} \rightarrow E^{\prime}$.

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.
- General starting curves: Easy to compute $E \rightarrow E_{0} \rightarrow E^{\prime}$.
- Doing this would break SQIsign.

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.
- General starting curves: Easy to compute $E \rightarrow E_{0} \rightarrow E^{\prime}$.
- Doing this would break SQIsign.

Solution:
$E_{1}-I_{1} \longrightarrow E_{2}-I_{2} \longrightarrow E_{3}-I_{3} \longrightarrow \cdots-I_{n-1} \rightarrow E_{n-1}-I_{n} \rightarrow E_{n}$

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.
- General starting curves: Easy to compute $E \rightarrow E_{0} \rightarrow E^{\prime}$.
- Doing this would break SQIsign.

Solution:

Non-special starting curves (e.g., SQIsign)

- Previous discussion: Special starting curve E_{0}.
- General starting curves: Easy to compute $E \rightarrow E_{0} \rightarrow E^{\prime}$.
- Doing this would break SQIsign.

Solution:

\because Algorithms for one "step" are quite technical. See [ePrint 2022/234] and the more recent [ePrint 2023/1251].

Part 2: The CM action

The CM action on oriented curves

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O}=\mathbb{Z}[\vartheta]$.

- We consider \mathcal{O}-oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota: \mathcal{O} \rightarrow \operatorname{End}(E)$.

The CM action on oriented curves

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O}=\mathbb{Z}[\vartheta]$.

- We consider \mathcal{O}-oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota: \mathcal{O} \rightarrow \operatorname{End}(E)$.
- Basic example: If E / \mathbb{F}_{q} and $\pi \notin \mathbb{Z}$, then $\mathcal{O}=\mathbb{Z}[\pi]$ works.

The CM action on oriented curves

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O}=\mathbb{Z}[\vartheta]$.

- We consider \mathcal{O}-oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota: \mathcal{O} \rightarrow \operatorname{End}(E)$.
- Basic example: If E / \mathbb{F}_{q} and $\pi \notin \mathbb{Z}$, then $\mathcal{O}=\mathbb{Z}[\pi]$ works.
- Other examples: $E / \mathbb{F}_{p^{2}}$ supersingular; many possible \mathcal{O}.

The CM action on oriented curves

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O}=\mathbb{Z}[\vartheta]$.

- We consider \mathcal{O}-oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota: \mathcal{O} \rightarrow \operatorname{End}(E)$.
- Basic example: If E / \mathbb{F}_{q} and $\pi \notin \mathbb{Z}$, then $\mathcal{O}=\mathbb{Z}[\pi]$ works.
- Other examples: $E / \mathbb{F}_{p^{2}}$ supersingular; many possible \mathcal{O}.

Ideals of \mathcal{O} again define isogenies

$$
\varphi:(E, \iota) \longrightarrow\left(E^{\prime}, \iota^{\prime}\right)
$$

satisfying $\varphi \circ \iota(\alpha)=\iota^{\prime}(\alpha) \circ \varphi$ for all $\alpha \in \mathcal{O}$.

The CM action on oriented curves

Now let \mathcal{O} be an imaginary-quadratic order, say $\mathcal{O}=\mathbb{Z}[\vartheta]$.

- We consider \mathcal{O}-oriented elliptic curves: pairs (E, ι) with an explicit embedding $\iota: \mathcal{O} \rightarrow \operatorname{End}(E)$.
- Basic example: If E / \mathbb{F}_{q} and $\pi \notin \mathbb{Z}$, then $\mathcal{O}=\mathbb{Z}[\pi]$ works.
- Other examples: $E / \mathbb{F}_{p^{2}}$ supersingular; many possible \mathcal{O}.

Ideals of \mathcal{O} again define isogenies

$$
\varphi:(E, \iota) \longrightarrow\left(E^{\prime}, \iota^{\prime}\right)
$$

satisfying $\varphi \circ \iota(\alpha)=\iota^{\prime}(\alpha) \circ \varphi$ for all $\alpha \in \mathcal{O}$.
\Longrightarrow Compatibility for repeated applications of ideals of \mathcal{O}.
\Longrightarrow Group action of $\operatorname{cl}(\mathcal{O})$ on such pairs!

The basic strategy à la $C / R-S$

- Let $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n}$ be small prime ideals of \mathcal{O}, and suppose \mathfrak{a} is given to us in the form $\mathfrak{a}=\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}$.
- Then \mathfrak{a} can be evaluated as a sequence of $\mathfrak{l}_{\mathfrak{i}}$.

The basic strategy à la $C / R-S$

- Let $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n}$ be small prime ideals of \mathcal{O}, and suppose \mathfrak{a} is given to us in the form $\mathfrak{a}=l_{1}^{e_{1}} \ldots \mathfrak{l}_{n}^{e_{n}}$.
- Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_{i}.
- Evaluating a single \mathfrak{l}_{i} : Write $\mathfrak{l}_{i}=\left(\ell_{i}, \vartheta-\lambda_{i}\right)$. Then the kernel is an order $-\ell_{i}$ point P with $\vartheta(P)=\left[\lambda_{i}\right] P$.

The basic strategy à la $C / R-S$

- Let $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n}$ be small prime ideals of \mathcal{O}, and suppose \mathfrak{a} is given to us in the form $\mathfrak{a}=\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}$.
- Then \mathfrak{a} can be evaluated as a sequence of \mathfrak{l}_{i}.
- Evaluating a single \mathfrak{l}_{i} : Write $\mathfrak{l}_{i}=\left(\ell_{i}, \vartheta-\lambda_{i}\right)$. Then the kernel is an order $-\ell_{i}$ point P with $\vartheta(P)=\left[\lambda_{i}\right] P$.
- Optimizations: Batch multiple \mathfrak{l}_{i} together \rightsquigarrow "strategies".

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- The CSIDH paper repeats this.

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- The CSIDH paper repeats this.

Issue:

- Representing $\operatorname{cl}(\mathcal{O})$ by the group $\left(\mathbb{Z}^{n},+\right)$ of exponents makes the exponents grow larger with each operation.
\rightsquigarrow Cost of evaluating after k operations is $O(\exp (k))$.

The basic problem with the basic strategy

- Couveignes: This gives a "hard homogeneous space" (weirder name for a one-way group action).
- The CSIDH paper repeats this.

Issue:

- Representing $\operatorname{cl}(\mathcal{O})$ by the group $\left(\mathbb{Z}^{n},+\right)$ of exponents makes the exponents grow larger with each operation.
\rightsquigarrow Cost of evaluating after k operations is $O(\exp (k))$.
- Representing $\operatorname{cl}(\mathcal{O})$ as reduced ideals allows computing in $\mathrm{cl}(\mathcal{O})$ efficiently, but evaluation becomes superpolynomial.

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

- Compute the relation lattice $\Lambda:=\left\{v \in \mathbb{Z}^{n} \mid v * E_{0}=E_{0}\right\}$.

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

- Compute the relation lattice $\Lambda:=\left\{v \in \mathbb{Z}^{n} \mid v * E_{0}=E_{0}\right\}$.
- Work with exponent vectors anyway, but now in \mathbb{Z}^{n} / Λ.

Effective group actions à la CSI-FiSh/SCALLOP(-HD)

Partial solution:

- Compute the relation lattice $\Lambda:=\left\{v \in \mathbb{Z}^{n} \mid v * E_{0}=E_{0}\right\}$.
- Work with exponent vectors anyway, but now in \mathbb{Z}^{n} / Λ.
- To evaluate the action, solve a close(st)-vector problem. \rightsquigarrow short equivalent exponent vector!

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

- To evaluate the action, solve a close(st)-vector problem.

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

- To evaluate the action, solve a close(st)-vector problem.
- CSI-FiSh: This is practically fast for CSIDH-512.

"Effective" group actions à la CSI-FiSh/SCALLOP(-HD)

- To evaluate the action, solve a close(st)-vector problem.
- CSI-FiSh: This is practically fast for CSIDH-512.
- Still, it's asymptotically the bottleneck!
https://yx7.cc/blah/2023-04-14.html

SCALLO, PhD

Even more maritime isogenies??

Noun [edit]
clapotis m (plural clapotis)

1. lapping of water against a surface [synonyms $\boldsymbol{\Delta}$]

Polynomial-time group action: Clapoti(s)

- Recently, Page-Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Polynomial-time group action: Clapoti(s)

- Recently, Page-Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

- Find two ideals $\mathfrak{b}, \mathfrak{c}$ of coprime norms, both equivalent to \mathfrak{a}. Let $N:=\operatorname{norm}(\mathfrak{b})+\operatorname{norm}(\mathfrak{c})$.

Polynomial-time group action: Clapoti(s)

- Recently, Page-Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

- Find two ideals $\mathfrak{b}, \mathfrak{c}$ of coprime norms, both equivalent to \mathfrak{a}. Let $N:=\operatorname{norm}(\mathfrak{b})+\operatorname{norm}(\mathfrak{c})$.

$$
\begin{aligned}
& E \xrightarrow{\phi_{\mathfrak{b}}} E_{\mathfrak{a}} \\
& \phi_{\bar{c}} \downarrow \quad \downarrow_{\overline{\bar{c}}} \\
& E_{\overline{\mathfrak{a}}} \xrightarrow[\psi_{\mathfrak{b}}]{ } E
\end{aligned}
$$

Polynomial-time group action: Clapoti(s)

- Recently, Page-Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

- Find two ideals $\mathfrak{b}, \mathfrak{c}$ of coprime norms, both equivalent to \mathfrak{a}. Let $N:=\operatorname{norm}(\mathfrak{b})+\operatorname{norm}(\mathfrak{c})$.

- Kani: This gives an N-isogeny $F: E \times E \rightarrow E_{\mathfrak{a}} \times E_{\bar{a}}$,

$$
(P, Q) \mapsto\left(\phi_{\mathfrak{b}}(P)+\widehat{\psi_{\bar{c}}}(Q),-\phi_{\bar{c}}(P)+\widehat{\psi_{\mathfrak{b}}}(Q)\right) .
$$

Polynomial-time group action: Clapoti(s)

- Recently, Page-Robert announced a polynomial-time algorithm for evaluating the action on arbitrary ideals.

Idea:

- Find two ideals $\mathfrak{b}, \mathfrak{c}$ of coprime norms, both equivalent to \mathfrak{a}. Let $N:=\operatorname{norm}(\mathfrak{b})+\operatorname{norm}(\mathfrak{c})$.

- Kani: This gives an N-isogeny $F: E \times E \rightarrow E_{\mathfrak{a}} \times E_{\bar{a}}$,

$$
(P, Q) \mapsto\left(\phi_{\mathfrak{b}}(P)+\widehat{\psi_{\bar{c}}}(Q),-\phi_{\bar{c}}(P)+\widehat{\psi_{\mathfrak{b}}}(Q)\right) .
$$

- The kernel is $\operatorname{ker}(F)=\left\{\left(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\overline{\mathfrak{c}}}(R)\right): R \in E_{\mathfrak{a}}[N]\right\}$.

Polynomial-time group action: Clapoti(s)

- The kernel is $\operatorname{ker}(F)=\left\{\left(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\bar{c}}(R)\right): R \in E_{\mathfrak{a}}[N]\right\}$.

Polynomial-time group action: Clapoti(s)

- The kernel is $\operatorname{ker}(F)=\left\{\left(\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\bar{\tau}}(R)\right): R \in E_{\mathfrak{a}}[N]\right\}$.
γ For some reason this is supposedly the same thing as

$$
\operatorname{ker}(F)=\{([\operatorname{norm}(\mathfrak{b})] R, \gamma(R)) \mid R \in E[N]\}
$$

where $\gamma \in \operatorname{End}(E)$ is a generator of the principal ideal $\mathfrak{b} \overline{\mathfrak{c}}$.

Polynomial-time group action: Clapoti(s)

- The kernel is $\left.\operatorname{ker}(F)=\left\{\widehat{\phi_{\mathfrak{b}}}(R), \psi_{\bar{\tau}}(R)\right): R \in E_{a}[N]\right\}$.
for some reason this is supposedly the same thing as

$$
\operatorname{ker}(F)=\{([\operatorname{norm}(\mathfrak{b})] R, \gamma(R)) \mid R \in E[N]\}
$$

where $\gamma \in \operatorname{End}(E)$ is a generator of the principal ideal $\mathfrak{b} \bar{c}$.

Let us explain the case of the specific isogeny F to illustrate the usefulness of the module representation. We have $\mathfrak{b}=\frac{\overline{\gamma_{b}}}{\mathcal{N}(\mathfrak{a})} \mathfrak{a}$, so the multiplication map $\overline{\gamma_{b}} / \mathcal{N}(\mathfrak{a}):(\mathfrak{a}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \rightarrow(\mathfrak{b}, \mathcal{N}(\cdot) / N(\mathfrak{b}))$ is an isomorphism α_{b} of unimodular Hermitian modules. The isogeny $\phi_{\mathfrak{b}}: E \rightarrow E_{\mathfrak{a}}$ corresponds from the module point of view to the post-composition of α_{b} with the natural $\mathcal{N}(\mathfrak{b})$-similitude given by the inclusion $(\mathfrak{b}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{b})) \rightarrow(R, \mathcal{N}(\cdot))$.

Likewise, the isogeny F from Proposition 2.1 corresponds to a N-similitude $\psi:(\mathfrak{a}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \oplus(\overline{\mathfrak{a}}, \mathcal{N}(\cdot) / \mathcal{N}(\mathfrak{a})) \rightarrow$ $(R, \mathcal{N}(\cdot)) \oplus(R, \mathcal{N}(\cdot))$.

The anti-equivalence of categories is exact, so the kernel of F corresponds to the cokernel of ψ. Fix two generators of \mathfrak{a}, these generators induce surjective maps $R^{2} \rightarrow \mathfrak{a}, R^{2} \rightarrow \overline{\mathfrak{a}}$. Pre-composing ψ with these epimorphisms, we get a module map $\tilde{\psi}: R^{4} \rightarrow R^{2}$, whose cokernel is exactly the cokernel of ψ. The map $\tilde{\psi}$ is given by a 4×2 matrix of elements of R, hence of endomorphisms on E, and corresponds on the abelian variety side to a morphism $\tilde{\Phi}: E^{2} \rightarrow E^{4}$. By exactness, the cokernel coker $\tilde{\psi}=\operatorname{coker} \psi$, which as we have seen corresponds to $\operatorname{Ker} F$, is given by $\operatorname{Ker} \tilde{\Phi}$ which we can explicitly compute since the orientation by R is effective on E.

Polynomial-time group action: Clapoti(s)

- Minor detail: N has no reason at all to be "nice".
$\rightsquigarrow\{4,8\}$-dimensional isogenies, per the usual...

Interlude

We could've had it all (5 years ago)

$$
\begin{equation*}
\left(\mathfrak{a}_{1} * E\right) \times \cdots \times\left(\mathfrak{a}_{n} * E\right) \cong\left(\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}\right) * E \times E^{n-1} \tag{4}
\end{equation*}
$$

and more generally, we have

$$
\begin{align*}
\left(\mathfrak{a}_{1} * E\right) \times \cdots \times\left(\mathfrak{a}_{n} * E\right) \cong\left(\mathfrak{a}_{1}^{\prime} * E\right) \times \cdots \times\left(\mathfrak{a}_{n}^{\prime} * E\right) & \text { if and only if } \tag{5}\\
\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}=\mathfrak{a}_{1}^{\prime} \cdots \mathfrak{a}_{n}^{\prime} & \text { as ideal classes in } \mathrm{Cl}(\mathscr{O}) .
\end{align*}
$$

As a side note, we now mention that those properties can in part be established using elementary techniques. More precisely, (4) is a consequence of the following elementary result.
Theorem A.1. Let E be an elliptic curve over a finite field \mathbb{F}_{q}, and K a finite étale subgroup of E (i.e., the map $E \rightarrow E / K$ is separable) defined over \mathbb{F}_{q}. Suppose that K contains subgroups K_{i} defined over \mathbb{F}_{q}, for $1 \leq i \leq n$, whose orders are pairwise coprime, and suppose $K=K_{1}+\cdots+K_{n}$. Then:

$$
\left(E / K_{1}\right) \times \cdots \times\left(E / K_{n}\right) \cong(E / K) \times E^{n-1} .
$$

We could've had it all (5 years ago) [ePrint 2018/665]

Theorem A.1. Let E be an elliptic curve over a finite field \mathbb{F}_{q}, and K a finite étale subgroup of E (i.e., the map $E \rightarrow E / K$ is separable) defined over \mathbb{F}_{q}. Suppose that K contains subgroups K_{i} defined over \mathbb{F}_{q}, for $1 \leq i \leq n$, whose orders are pairwise coprime, and suppose $K=K_{1}+\cdots+K_{n}$. Then:

$$
\left(E / K_{1}\right) \times \cdots \times\left(E / K_{n}\right) \cong(E / K) \times E^{n-1}
$$

Proof. The result is immediate for $n=1$. We next prove the result for $n=2$ by constructing an explicit isomorphism. Consider the commutative diagram:

where all maps are the natural quotient isogenies. If we denote by m_{1} and m_{2} the orders of K_{1} and K_{2}, we have $\operatorname{deg} \varphi_{1}=\operatorname{deg} \psi_{2}=m_{1}$ and $\operatorname{deg} \varphi_{2}=\operatorname{deg} \psi_{1}=m_{2}$. Now choose integers $a, b \in \mathbb{Z}$ such that $a m_{1}+b m_{2}=1$. We define morphisms

$$
f: E \times(E / K) \rightarrow\left(E / K_{1}\right) \times\left(E / K_{2}\right) \quad \text { and } \quad g:\left(E / K_{1}\right) \times\left(E / K_{2}\right) \rightarrow E \times(E / K)
$$

by the following matrices:

$$
\operatorname{Mat}(f)=\left(\begin{array}{cc}
\varphi_{1} & \widehat{\psi_{1}} \\
-b \varphi_{2} & a \widehat{\psi_{2}}
\end{array}\right) \quad \text { and } \quad \operatorname{Mat}(g)=\left(\begin{array}{cc}
a \widehat{\varphi_{1}} & -\widehat{\varphi_{2}} \\
b \psi_{1} & \psi_{2}
\end{array}\right) .
$$

Questions?

