Deuring for the People:
 Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic

Jonathan K. Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni

Academia Sinica, Taipei, Taiwan
Eindhoven, 13 July 2023

What?

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

What?

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.

What?

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction. This talk: How?

What?

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the \Longrightarrow direction.
This talk: How?
(The \Longleftarrow direction is exponential-time as far as we know.)
\longrightarrow See for instance Annamaria Iezzi's talk in MS28 on Tuesday.

PSA

PSA
［＇dэүү⿱宀㠯ı］

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").
$-\approx$ All isogeny assumptions reduce to the \Longleftarrow direction.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").
$-\approx$ All isogeny assumptions reduce to the \Longleftarrow direction.

- SQIsign builds on the \Longrightarrow direction constructively.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.
(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").
$-\approx$ All isogeny assumptions reduce to the \Longleftarrow direction.

- SQIsign builds on the \Longrightarrow direction constructively.
- Essential tool for both constructions and attacks.

History lesson

- 1941: Deuring proves the correspondence.

History lesson

- 1941: Deuring proves the correspondence in German.

Wen!̣ aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zul denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

History lesson

- 1941: Deuring proves the correspondence in German.

Wen!̣ aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zn denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.

History lesson

- 1941: Deuring proves the correspondence in German.

Wenḷ aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zn denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

History lesson

- 1941: Deuring proves the correspondence in German.

Wenn aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zn denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring geherort, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2017: They publish it.

History lesson

- 1941: Deuring proves the correspondence in German.

Wenu aber \mathbf{R} eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorrt, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die AnzahI der j, zu denen eine Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2017: They publish it.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

The Deuring Correspondence

Deuring correspondence

world of supersingular curves
world of maximal orders

supersingular curves	quaternion orders		
curve E (up to Galois conjugacy)			
isogeny $\varphi: E_{1} \rightarrow E_{2}$		\quad	maximal order \mathcal{O} (up to isomorphism)
---:			
integral ideal I_{φ} that is			
end \mathcal{O}_{1}-ideal and right \mathcal{O}_{2}-ideal			
principal ideal $(\beta) \subset \mathcal{O}$			

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.
- Famous examples:
- $p \equiv 3(\bmod 4)$ and $E: y^{2}=x^{3}+x$ with j-invariant 1728.
- $p \equiv 2(\bmod 3)$ and $E: y^{2}=x^{3}+1$ with j-invariant 0 .

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)
- The group structure is known over all extensions:
$E\left(\mathbb{F}_{p^{2 k}}\right) \cong \mathbb{Z} / n \times \mathbb{Z} / n$ where $n=p^{k}-(-1)^{k}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j} \mathbf{i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p.
\triangle All valid q define isomorphic algebras $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j} \mathbf{i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p. A All valid q define isomorphic algebras $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ has a conjugation ${ }^{-}$which negates $\mathbf{i}, \mathbf{j}, \mathbf{i j}$. The norm and trace of an element α are $\alpha \bar{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha+\bar{\alpha} \in \mathbb{Z}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
- A fractional ideal I is a left \mathcal{O}-ideal if $\mathcal{O} I \subseteq I$. (similarly on the right.)

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
 We say I connects \mathcal{O} and \mathcal{O}^{\prime} if $\mathcal{O} \subseteq \subseteq I$ and $I \mathcal{O}^{\prime} \subseteq I$.

Computationally, ...

- We typically work with one fixed choice of q for each p.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

From curves to quaternions
$E \mapsto \operatorname{End}(E)$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi:(x, y) & \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
& \iota:(x, y) \\
& \pi: \longmapsto(x, y) \longmapsto(-x, \sqrt{-1} \cdot y), \\
&\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad \mathbf{i}, \quad(\mathbf{i}+\mathbf{j}) / 2, \quad(1+\mathbf{i} \mathbf{j}) / 2\}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{gathered}
\omega:(x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right), \\
\pi:(x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{gathered}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega:(x, y) & \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
& \omega:(x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
& \pi: \quad(x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega:(x, y) & \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad(1+\mathbf{i}) / 2, \quad(\mathbf{j}+\mathbf{i} \mathbf{j}) / 2, \quad(\mathbf{i}+\mathbf{i} \mathbf{j}) / 3\}
$$

From curves to quaternions

$$
E \mapsto \operatorname{End}(E)
$$

From curves to quaternions

$E \mapsto \operatorname{End}(E)$

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.

From curves to quaternions

$E \mapsto \operatorname{End}(E)$

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

From curves to quaternions

$E \mapsto \operatorname{End}(E)$

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

- Multiple q define the same $B_{p, \infty}$.

Need to convert from $\mathbf{i}^{2}=-q$ basis to $\mathbf{i}^{\prime 2}=-q^{\prime}$ basis.

From quaternions to curves

From quaternions to curves

From quaternions to curves

From quaternions to curves

$$
\begin{aligned}
& \begin{array}{ccccc}
E_{3} & E_{5} & & & O_{5} \\
& E_{7} & O_{3} & O_{7}
\end{array}
\end{aligned}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{1} \\
E_{1} \\
E_{3} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve. Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.
- Step 1: Connecting ideal. Solve the "isogeny problem" in quaternion land.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{4} \\
E_{1} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPT $\boldsymbol{\text { P }}$.

Solve the "isogeny problem" in quaternion land.

From quaternions to curves

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPT $\boldsymbol{\jmath}$.

Solve the "isogeny problem" in quaternion land.

- Step 2: Ideal-to-isogeny.

Map the solution "down" to curve land.

From quaternions to curves

- Step 0: Base curve. Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT $\boldsymbol{\jmath}$. Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

I will talk about these in reverse order.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

Then $H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\omega \in I} \operatorname{ker} \omega$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

$$
\text { Then } H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle
$$

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.
\because No choice in N : It's the norm of I.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O} \mathcal{O}^{\prime}$ is horrible.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible.

KLPT $\boldsymbol{\jmath}$

...finds an equivalent ideal of controlled norm.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible.

KLPT /

...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{\ell_{r}}$.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible.

KLPT /

...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.

Step 1: Convenient connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible.

KLPT /

...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{\ell_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

SQIsign

...is a signature scheme based on the Deuring correspondence.

\longrightarrow See Antonin Leroux's talk in MS118 on Friday, or https://sqisign. org!

SQIsign

...is a signature scheme based on the Deuring correspondence.

\longrightarrow See Antonin Leroux's talk in MS118 on Friday, or https://sqisign.org!
!! SQIsign relies on very special choices of p.
\longrightarrow See Michael Meyer's talk in MS105 on Friday.

SQIsign

...is a signature scheme based on the Deuring correspondence.

\longrightarrow See Antonin Leroux's talk in MS118 on Friday, or https://sqisign.org!
!! SQIsign relies on very special choices of p.
\longrightarrow See Michael Meyer's talk in MS105 on Friday.

- Cryptographic reductions and general computer algebra want it to be fast for arbitrary fields. \rightsquigarrow Our work!

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow We have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}. Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Heatmap

Heatmap

Average extension k required to access ℓ^{e}-torsion.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

```
Algorithm 5: PushSubgroup(E, }f,\varphi
    Input: Elliptic curve E/\mathbb{F}
        isogeny }\varphi:E->\mp@subsup{E}{}{\prime}\mathrm{ defined over }\mp@subsup{\mathbb{F}}{q}{}
    Output: Minimal polynomial f}\mp@subsup{f}{}{\varphi}\in\mp@subsup{\mathbb{F}}{q}{}[X]\mathrm{ of the subgroup }\varphi(G)\leq\mp@subsup{E}{}{\prime}\mathrm{ .
1 Write the x-coordinate map of }\varphi\mathrm{ as a fraction }\mp@subsup{g}{1}{}/\mp@subsup{g}{2}{}\mathrm{ of polynomials }\mp@subsup{g}{1}{},\mp@subsup{g}{2}{}\in\mp@subsup{\mathbb{F}}{q}{}[X]\mathrm{ .
2 Let }\mp@subsup{g}{\mathrm{ ker }}{}\leftarrow\operatorname{gcd}(\mp@subsup{g}{2}{},f)\mathrm{ and }\mp@subsup{f}{1}{}\leftarrowf/\mp@subsup{g}{\mathrm{ ker }}{}\mathrm{ .
3 Compute g}\mp@subsup{g}{1}{}\cdot\mp@subsup{g}{2}{-1}\operatorname{mod}\mp@subsup{f}{1}{}\in\mp@subsup{\mathbb{F}}{q}{}[X]\mathrm{ and reinterpret it as a quotient-ring element }\alpha\in\mp@subsup{\mathbb{F}}{q}{}[X]/\mp@subsup{f}{1}{}\mathrm{ .
4 Find the minimal polynomial }\mp@subsup{f}{}{\varphi}\in\mp@subsup{\mathbb{F}}{q}{}[X]\mathrm{ of }\alpha\mathrm{ over }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ using Shoup's algorithm.
5 Return f }\mp@subsup{f}{}{\varphi}\mathrm{ .
```


Cool trick \#2: Isogenies from minimal polynomials

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. \rightsquigarrow Evaluating isogeny chains.

```
Algorithm 5: PushSubgroup \((E, f, \varphi)\)
    Input: Elliptic curve \(E / \mathbb{F}_{q}\), minimal polynomial \(f \in \mathbb{F}_{q}[X]\) of a subgroup \(G \leq E\),
        isogeny \(\varphi: E \rightarrow E^{\prime}\) defined over \(\mathbb{F}_{q}\).
    Output: Minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of the subgroup \(\varphi(G) \leq E^{\prime}\).
1 Write the x-coordinate map of \(\varphi\) as a fraction \(g_{1} / g_{2}\) of polynomials \(g_{1}, g_{2} \in \mathbb{F}_{q}[X]\).
2 Let \(g_{\text {ker }} \leftarrow \operatorname{gcd}\left(g_{2}, f\right)\) and \(f_{1} \leftarrow f / g_{\text {ker }}\).
3 Compute \(g_{1} \cdot g_{2}^{-1} \bmod f_{1} \in \mathbb{F}_{q}[X]\) and reinterpret it as a quotient-ring element \(\alpha \in \mathbb{F}_{q}[X] / f_{1}\).
4 Find the minimal polynomial \(f^{\varphi} \in \mathbb{F}_{q}[X]\) of \(\alpha\) over \(\mathbb{F}_{q}\) using Shoup's algorithm.
5 Return \(f^{\varphi}\).
```

Complexity: $O\left(k^{2}\right)+\widetilde{O}(n)$. Naïvely $O\left(n k(\log k)^{O(1)}\right)$.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto(-q x, \sqrt{-q} 3 y)$ makes it normalized.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto\left(-q x, \sqrt{-q}^{3} y\right)$ makes it normalized.
- Ingredient \#3: Ibukiyama's theorem.

Explicit basis for a maximal order of $B_{p, \infty}$ with an endomorphism $\sqrt{-q}$. In fact, such a maximal order is almost unique.

Cool open-source code

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
```


Cool open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF ((2^31-1, 2), modulus=[1,0,1])
```


Cool open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, O0 = starting_curve(F2)
```


Cool open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647-9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
```


Cool open-source code

https://github.com/friends-of-quaternions/deuring

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, O0 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647-9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
sage: E1, phi, _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
                        = 2^ 29* *^ 3*5* 生 2* 11* 13* 17* 31* 41*43^2* 61*79* 151:
    From: Elliptic Curve defined by y^2 = x^3 + x over
                Finite Field in i of size 2147483647^2
    To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i
        +1816867654)*x + (581679615*i+260136654)
        over Finite Field in i of size 2147483647^2
```


Timings (SageMath, single core)

[seconds]

