
Deuring for the People:
Supersingular Elliptic Curves with Prescribed
Endomorphism Ring in General Characteristic

Jonathan K. Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni

Academia Sinica, Taipei, Taiwan

Eindhoven, 13 July 2023

1 / 25

What?

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction.

This talk: How?

(The⇐= direction is exponential-time as far as we know.)
−→ See for instance Annamaria Iezzi’s talk in MS28 on Tuesday.

2 / 25

What?

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction.

This talk: How?

(The⇐= direction is exponential-time as far as we know.)
−→ See for instance Annamaria Iezzi’s talk in MS28 on Tuesday.

2 / 25

What?

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction.

This talk: How?

(The⇐= direction is exponential-time as far as we know.)
−→ See for instance Annamaria Iezzi’s talk in MS28 on Tuesday.

2 / 25

What?

Deuring correspondence:
Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the =⇒ direction.

This talk: How?

(The⇐= direction is exponential-time as far as we know.)
−→ See for instance Annamaria Iezzi’s talk in MS28 on Tuesday.

2 / 25

PSA

["dOY
“
KIN]

3 / 25

PSA

["dOY
“
KIN]

3 / 25

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny assumptions reduce to the⇐= direction.
▶ SQIsign builds on the =⇒ direction constructively.
▶ Essential tool for both constructions and attacks.

4 / 25

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny assumptions reduce to the⇐= direction.

▶ SQIsign builds on the =⇒ direction constructively.
▶ Essential tool for both constructions and attacks.

4 / 25

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny assumptions reduce to the⇐= direction.
▶ SQIsign builds on the =⇒ direction constructively.

▶ Essential tool for both constructions and attacks.

4 / 25

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski ’21: “Orientations and the supersingular endomorphism ring problem”).

▶ ≈All isogeny assumptions reduce to the⇐= direction.
▶ SQIsign builds on the =⇒ direction constructively.
▶ Essential tool for both constructions and attacks.

4 / 25

History lesson
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.
▶ 2021: Wesolowski assumes GRH and gives a provably

polynomial-time variant.

5 / 25

History lesson
▶ 1941: Deuring proves the correspondence in German.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.
▶ 2021: Wesolowski assumes GRH and gives a provably

polynomial-time variant.

5 / 25

History lesson
▶ 1941: Deuring proves the correspondence in German.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.
▶ 2021: Wesolowski assumes GRH and gives a provably

polynomial-time variant.

5 / 25

History lesson
▶ 1941: Deuring proves the correspondence in German.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.
▶ 2021: Wesolowski assumes GRH and gives a provably

polynomial-time variant.

5 / 25

History lesson
▶ 1941: Deuring proves the correspondence in German.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

5 / 25

History lesson
▶ 1941: Deuring proves the correspondence in German.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2017: They publish it.
▶ 2021: Wesolowski assumes GRH and gives a provably

polynomial-time variant.
5 / 25

6 / 25

Curve world

▶ Universe: Characteristic p. Assume p≥ 5.

▶ Supersingular elliptic curves: E[p] = {∞}.

▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

7 / 25

Curve world

▶ Universe: Characteristic p. Assume p≥ 5.

▶ Supersingular elliptic curves: E[p] = {∞}.
▶ Isogenies, endomorphisms, and so on and so forth.

▶ Famous examples:
▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

7 / 25

Curve world

▶ Universe: Characteristic p. Assume p≥ 5.

▶ Supersingular elliptic curves: E[p] = {∞}.
▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

7 / 25

Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

8 / 25

Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

8 / 25

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

9 / 25

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

9 / 25

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

9 / 25

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

9 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.

▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.

▶ An order is a fractional ideal which is a subring of Bp,∞.
A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

10 / 25

Computationally, ...

▶ We typically work with one fixed choice of q for each p.

▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11 / 25

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.

▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11 / 25

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.

▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11 / 25

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11 / 25

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11 / 25

From curves to quaternions

E 7→ End(E)

12 / 25

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

13 / 25

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

13 / 25

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

13 / 25

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

13 / 25

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

14 / 25

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

14 / 25

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

14 / 25

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

14 / 25

From curves to quaternions

E 7→ End(E)

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.

15 / 25

From curves to quaternions

E 7→ End(E)
▶ Subtlety: Identifying explicit endomorphisms with

abstract elements of Bp,∞ is generally not totally trivial.
▶ Distinction between MaxOrder and EndRing problems.

▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.

15 / 25

From curves to quaternions

E 7→ End(E)
▶ Subtlety: Identifying explicit endomorphisms with

abstract elements of Bp,∞ is generally not totally trivial.
▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.

15 / 25

From curves to quaternions

E 7→ End(E)
▶ Subtlety: Identifying explicit endomorphisms with

abstract elements of Bp,∞ is generally not totally trivial.
▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.

15 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal.
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

16 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.
▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:(No choice in N: It’s the norm of I.

17 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.
▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:(No choice in N: It’s the norm of I.

17 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:(No choice in N: It’s the norm of I.

17 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.
▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:(No choice in N: It’s the norm of I.

17 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.
▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

:(No choice in N: It’s the norm of I.

17 / 25

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

ω∈I kerω.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H′

r⟩.
▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.:(No choice in N: It’s the norm of I.

17 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.

2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.
2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.
2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.

Typical cases: Norm ℓ•, powersmooth norm ℓ
e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.
2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .

The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.
2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

Step 1: Convenient connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:
1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.
2. That’s all, but typically the norm of OO′ is horrible.

KLPT
...finds an equivalent ideal of controlled norm.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

18 / 25

SQIsign

...is a signature scheme based on the Deuring correspondence.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

−→ See Antonin Leroux’s talk in MS118 on Friday, or https://sqisign.org!

!! SQIsign relies on very special choices of p.
−→ See Michael Meyer’s talk in MS105 on Friday.

▶ Cryptographic reductions and general computer algebra
want it to be fast for arbitrary fields. ⇝ Our work!

19 / 25

https://sqisign.org

SQIsign

...is a signature scheme based on the Deuring correspondence.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

−→ See Antonin Leroux’s talk in MS118 on Friday, or https://sqisign.org!

!! SQIsign relies on very special choices of p.
−→ See Michael Meyer’s talk in MS105 on Friday.

▶ Cryptographic reductions and general computer algebra
want it to be fast for arbitrary fields. ⇝ Our work!

19 / 25

https://sqisign.org

SQIsign

...is a signature scheme based on the Deuring correspondence.

E0 EA

E1 E2

secret

co
m

m
itm

en
t

si
gn

at
ur

e

challenge

−→ See Antonin Leroux’s talk in MS118 on Friday, or https://sqisign.org!

!! SQIsign relies on very special choices of p.
−→ See Michael Meyer’s talk in MS105 on Friday.

▶ Cryptographic reductions and general computer algebra
want it to be fast for arbitrary fields. ⇝ Our work!

19 / 25

https://sqisign.org

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝We have to work in field extensions.

!! Lots of choice for prime powers ℓe.
Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

20 / 25

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝We have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

20 / 25

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝We have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.
⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

20 / 25

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝We have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.
⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

20 / 25

Heatmap

21 / 25

Heatmap

2 50 101 [ℓe]
1

50

[k]

Average extension k required to access ℓe-torsion.

21 / 25

Cool trick #2: Isogenies from minimal polynomials

▶ We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

22 / 25

Cool trick #2: Isogenies from minimal polynomials

▶ We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

22 / 25

Cool trick #2: Isogenies from minimal polynomials

▶ We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

22 / 25

Cool trick #2: Isogenies from minimal polynomials

▶ We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

22 / 25

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, such a maximal order is almost unique.

23 / 25

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, such a maximal order is almost unique.

23 / 25

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, such a maximal order is almost unique.

23 / 25

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, such a maximal order is almost unique.

23 / 25

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring

sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])

sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)

sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

24 / 25

https://github.com/friends-of-quaternions/deuring

Timings (SageMath, single core)

25 / 25

