Deuring for the People: Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic

Jonathan K. Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni

Academia Sinica, Taipei, Taiwan

Eindhoven, 13 July 2023

Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction.

Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. <u>This talk:</u> **How?**

Deuring correspondence:

Almost exact equivalence between the worlds of <u>maximal orders</u> in certain quaternion algebras and of <u>supersingular elliptic curves</u>.

The correspondence is polynomial-time in the \implies direction. <u>This talk:</u> **How?**

 $(The \Longleftarrow direction is exponential-time as far as we know.) \\ \longrightarrow See for instance Annamaria Iezzi's talk in MS28 on Tuesday.$

PSA

PSA

[ˌqɔйrıŋ]

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

• \approx All isogeny assumptions reduce to the \Leftarrow direction.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.

Why?

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

(Wesolowski '21: "Orientations and the supersingular endomorphism ring problem").

- \approx All isogeny assumptions reduce to the \Leftarrow direction.
- ► SQIsign builds on the ⇒ direction constructively.
- Essential tool for both constructions and attacks.

▶ **1941**: Deuring proves the correspondence.

▶ **1941**: Deuring proves the correspondence *in German*.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j, zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

▶ **1941**: Deuring proves the correspondence *in German*.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.

▶ **1941**: Deuring proves the correspondence *in German*.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j, zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

▶ **1941**: Deuring proves the correspondence *in German*.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, O) for a given p.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- ▶ 2017: They publish it.

▶ 1941: Deuring proves the correspondence *in German*.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j, zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, O) for a given p.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- ▶ 2017: They publish it.
- ► 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

curve-order dictionary	
supersingular curves	quaternion orders
curve E (up to Galois conjugacy) $\mathrm{isogeny}\; \varphi: E_1 \to E_2$	maximal order \mathscr{O} (up to isomorphism) integral ideal I_{φ} that is left \mathscr{O}_{1} -ideal and right \mathscr{O}_{2} -ideal
endomorphism $\psi: E \to E$	principal ideal $(\beta) \subset \mathcal{O}$
and this continues for the <i>degree,</i> the <i>dual, equivalence, composition</i>	and this continues for the <i>norm</i> , the <i>dual, equivalence, multiplication</i>

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.
- ► Famous examples:
 - $p \equiv 3 \pmod{4}$ and $E: y^2 = x^3 + x$ with *j*-invariant 1728.
 - ▶ $p \equiv 2 \pmod{3}$ and $E: y^2 = x^3 + 1$ with *j*-invariant 0.

Computationally...

We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)

Computationally...

- We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)
- ► The group structure is known over all extensions: $E(\mathbb{F}_{p^{2k}}) \cong \mathbb{Z}/n \times \mathbb{Z}/n$ where $n = p^k - (-1)^k$.

• Everything lives in a particular quaternion algebra $B_{p,\infty}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.
- ► The algebra $B_{p,\infty}$ has a conjugation which negates $\mathbf{i}, \mathbf{j}, \mathbf{ij}$. The norm and trace of an element α are $\alpha \overline{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha + \overline{\alpha} \in \mathbb{Z}$.

• Maximal orders in the quaternion algebra $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

• A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- ► A fractional ideal *I* is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.)

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- ► A fractional ideal *I* is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.) We say *I* connects \mathcal{O} and \mathcal{O}' if $\mathcal{O}I \subseteq I$ and $I\mathcal{O}' \subseteq I$.

Computationally, ...

• We typically work with one fixed choice of *q* for each *p*.

Computationally, ...

- We typically work with one fixed choice of *q* for each *p*.
- ▶ Quaternions are represented as vectors in Q⁴.

Computationally, ...

- We typically work with one fixed choice of *q* for each *p*.
- ▶ Quaternions are represented as vectors in Q⁴.
- ► Quaternion lattices are represented by **a** Z-basis.
Computationally, ...

- We typically work with one fixed choice of *q* for each *p*.
- Quaternions are represented as vectors in \mathbb{Q}^4 .
- Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

Computationally, ...

- We typically work with one fixed choice of *q* for each *p*.
- Quaternions are represented as vectors in \mathbb{Q}^4 .
- Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

<u>General theme</u>: Things are easy in quaternion land.

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y),$$

$$\pi: (x, y) \longmapsto (x^p, y^p).$$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi, \ \text{and} \ \pi^2 = [-p].$

Hence, in the quaternion algebra where $i^2 = -1$ and $j^2 = -p$, the pair (ι, π) corresponds to (i, j).

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota\colon & (x,y) \longmapsto (-x,\sqrt{-1}\cdot y), \\ \pi\colon & (x,y) \longmapsto (x^p,y^p). \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $i^2 = -1$ and $j^2 = -p$, the pair (ι, π) corresponds to (i, j).

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by

$$\{1, \quad i, \quad (i+j)/2, \quad (1+ij)/2\}\,.$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{aligned} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x,y) , \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) . \end{aligned}$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) \, . \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{aligned} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x,y) , \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) . \end{aligned}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $i^2 = -3$ and $j^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (i, j).

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x, y) , \\ \pi \colon & (x,y) \longmapsto (x^p, y^p) \, . \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $i^2 = -3$ and $j^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (i, j).

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by

$$\{1, \quad (1+i)/2, \quad (j+ij)/2, \quad (i+ij)/3\}\,.$$

- <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - Distinction between *MaxOrder* and *EndRing* problems.

- ► <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.

- ► <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.
 - Multiple *q* define the same B_{p,∞}.
 Need to convert from i² = -q basis to i'² = -q' basis.

► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.

- Step 0: Base curve. Any curve over \mathbb{F}_p with a known small-degree endomorphism.
- Step 1: Connecting ideal.
 Solve the "isogeny problem" in quaternion land.

- Step 0: Base curve. Any curve over \mathbb{F}_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT. Solve the "isogeny problem" in quaternion land.

- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

I will talk about these *in reverse order*.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

<u>Algorithms:</u>

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.
- If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

Algorithms:

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

► Better: Factor
$$N = \ell_1^{e_1} \cdots \ell_r^{e_r}$$
, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$.
Then $H_I = \langle H'_1, ..., H'_r \rangle$.

• If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of *N*.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\omega \in I} \ker \omega$.

Algorithms:

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

► Better: Factor
$$N = \ell_1^{e_1} \cdots \ell_r^{e_r}$$
, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$.
Then $H_I = \langle H'_1, ..., H'_r \rangle$.

• If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N. \therefore No choice in N: It's the norm of I.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

1. Compute $\mathcal{OO}' = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O}'\}) \subseteq B_{p,\infty}$.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO'} = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O'}\}) \subseteq B_{p,\infty}$.
- 2. That's all, but typically the norm of OO' is horrible.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO'} = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O'}\}) \subseteq B_{p,\infty}.$
- 2. That's all, but typically the norm of OO' is horrible.

<u>KLPT/</u>

...finds an equivalent ideal of controlled norm.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO'} = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O'}\}) \subseteq B_{p,\infty}.$
- 2. That's all, but typically the norm of OO' is horrible.

<u>KLPT/</u>

...finds an equivalent ideal of controlled norm. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO'} = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O'}\}) \subseteq B_{p,\infty}.$
- 2. That's all, but typically the norm of OO' is horrible.

<u>KLPT/</u>

...finds an equivalent ideal of controlled norm.

Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{\ell_1} \cdots \ell_r^{\ell_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO'} = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O'}\}) \subseteq B_{p,\infty}.$
- 2. That's all, but typically the norm of OO' is horrible.

<u>KLPT/</u>

...finds an equivalent ideal of controlled norm. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic codomains.

SQIsign

... is a signature scheme based on the Deuring correspondence.

→ See Antonin Leroux's talk in MS118 on Friday, or https://sqisign.org!
SQIsign

... is a signature scheme based on the Deuring correspondence.

→ See Antonin Leroux's talk in MS118 on Friday, or https://sqisign.org!

!! SQIsign relies on very special choices of *p*.

 \longrightarrow See Michael Meyer's talk in MS105 on Friday.

SQIsign

... is a signature scheme based on the Deuring correspondence.

 \longrightarrow See Antonin Leroux's talk in MS118 on Friday, or https://sqisign.org!

!! SQIsign relies on very special choices of *p*.

 \longrightarrow See Michael Meyer's talk in MS105 on Friday.

 Cryptographic reductions and general computer algebra want it to be fast for arbitrary fields. ~> Our work!

► Norm is big ~→ We have to work in field extensions.

- ► Norm is big ~→ We have to work in field extensions.
- **!!** Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.

- ► Norm is big ~→ We have to work in field extensions.
- " Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.

- ► Norm is big ~> We have to work in field extensions.
- " Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.

Heatmap

Heatmap

Average extension *k* required to access ℓ^e -torsion.

 We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies. ~> Evaluating isogeny chains.

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies.
 --> Evaluating isogeny chains.

 $\textbf{Algorithm 5: PushSubgroup}(E, f, \varphi)$

 $\label{eq:input: Elliptic curve E/\mathbb{F}_q, minimal polynomial $f\in\mathbb{F}_q[X]$ of a subgroup $G\leq E$, isogeny $\varphi\colon E\to E'$ defined over \mathbb{F}_q.}$

Output: Minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of the subgroup $\varphi(G) \leq E'$.

- 1 Write the x-coordinate map of φ as a fraction g_1/g_2 of polynomials $g_1, g_2 \in \mathbb{F}_q[X]$.
- **2** Let $g_{\text{ker}} \leftarrow \text{gcd}(g_2, f)$ and $f_1 \leftarrow f/g_{\text{ker}}$.
- **3** Compute $g_1 \cdot g_2^{-1} \mod f_1 \in \mathbb{F}_q[X]$ and reinterpret it as a quotient-ring element $\alpha \in \mathbb{F}_q[X]/f_1$.
- 4 Find the minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of α over \mathbb{F}_q using Shoup's algorithm.
- 5 Return f^{φ} .

- We can replace (big) kernel polynomials by smaller minimal polynomials of isogenies. They are irreducible divisors of the kernel polynomial.
- Shoup's algorithm gives a fast method to push minimal polynomials through isogenies.
 --> Evaluating isogeny chains.

 $\textbf{Algorithm 5: PushSubgroup}(E, f, \varphi)$

 $\label{eq:input: Elliptic curve E/\mathbb{F}_q, minimal polynomial $f\in\mathbb{F}_q[X]$ of a subgroup $G\leq E$, isogeny $\varphi\colon E\to E'$ defined over \mathbb{F}_q.}$

Output: Minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of the subgroup $\varphi(G) \leq E'$.

- 1 Write the x-coordinate map of φ as a fraction g_1/g_2 of polynomials $g_1, g_2 \in \mathbb{F}_q[X]$.
- **2** Let $g_{\text{ker}} \leftarrow \gcd(g_2, f)$ and $f_1 \leftarrow f/g_{\text{ker}}$.
- **3** Compute $g_1 \cdot g_2^{-1} \mod f_1 \in \mathbb{F}_q[X]$ and reinterpret it as a quotient-ring element $\alpha \in \mathbb{F}_q[X]/f_1$.

4 Find the minimal polynomial $f^{\varphi} \in \mathbb{F}_q[X]$ of α over \mathbb{F}_q using Shoup's algorithm.

5 Return f^{φ} .

Complexity: $O(k^2) + \widetilde{O}(n)$. Naïvely $O(nk(\log k)^{O(1)})$.

 Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm. Find *q* such that $\mathbf{i}^2 = -q$, $\mathbf{j}^2 = -p$ defines $B_{p,\infty}$, find a root $j \in \mathbb{F}_p$ of the Hilbert class polynomial H_{-q} , construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \to E$ with the isomorphism $\tau: (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.

- Step 0 is to construct a supersingular elliptic curve together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \to E$ with the isomorphism $\tau: (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.
- ► Ingredient #3: Ibukiyama's theorem. Explicit basis for a maximal order of B_{p,∞} with an endomorphism √-q. In fact, such a maximal order is almost unique.

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2. <i> = GF((2^{31}-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*i
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
    -2147483647*i - 22485*i + 3069*k
sage: E1, phi, _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
             = 2^{29} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 31 \times 41 \times 43^{2} \times 61 \times 79 \times 151
  From: Elliptic Curve defined by v^2 = x^3 + x over
             Finite Field in i of size 2147483647^2
  To: Elliptic Curve defined by y^2 = x^3 + (1474953432 \times i)
                  +1816867654) *x + (581679615 * i + 260136654)
             over Finite Field in i of size 2147483647^2
```

$Timings \ ({\it SageMath, single \ core})$

