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What?

Deuring correspondence:

Almost exact equivalence between the worlds of maximal orders
in certain quaternion algebras and of supersingular elliptic curves.

The correspondence is polynomial-time in the = direction.

This talk: How?

(The <= direction is exponential-time as far as we know.)

— See for instance Annamaria lezzi’s talk in MS28 on Tuesday:.
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Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

(Wesolowski "21: “Orientations and the supersingular endomorphism ring problem”).

» ~Allisogeny assumptions reduce to the <= direction.
» SQIsign builds on the = direction constructively.
» Essential tool for both constructions and attacks.
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gehirt, ist gleich der Klassenzahl von Qw, .
2004: Cervifio gives a (necessarily exponential-time)

algorithm to compute all pairs (E, O) for a given p.

2013: Chevyrev—-Galbraith give an exponential-time
algorithm to compute O — E.

201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) /")
find a heuristically polynomial-time algorithm for O — E.
2017: They publish it.

2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

5/25



world of supersingular curves
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Curve world

» Universe: Characteristic p. Assumep > 5.

» Supersingular elliptic curves: E[p] = {oo}.
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Curve world

Universe: Characteristic p. Assumep >5.
Supersingular elliptic curves: E[p] = {oo}.

Isogenies, endomorphisms, and so on and so forth.

v vy VY

Famous examples:
» p=3 (mod 4) and E: > = x> + x with j-invariant 1728.
» p=2 (mod 3) and E: y* = x* + 1 with j-invariant 0.
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Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F;.)
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Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F;.)

» The group structure is known over all extensions:
E(Fx) = Z/n x Z/n where n = pPF— (1)K
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Quaternion universe

» Everything lives in a particular quaternion algebra B}, .

» The algebra B, . is a 4-dimensional Q-vector space.
Write B, . = Q @ Qi @ Qj @ Qijj.

» Multiplication defined by relations i’=—q, j>=—p, ji = —ij.
Here g is a positive integer satisfying some cond1t1ons with respect to p.
i All valid q define isomorphic algebras By .

» The algebra By, -, has a conjugation — which negates i, j, ij.
The norm and trace of an element « are a@ € Z> and a+a € Z.
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Quaternion world

» Maximal orders in the quaternion algebra B}, .

» Left- and right-ideals, principal ideals, and so on.

Definitions:
> A (fractional) ideal is a rank-4 lattice contained in B, .

» An order is a fractional ideal which is a subring of By, .
A maximal order is one that is not contained in any strictly larger order.

» A fractional ideal I is a left O-ideal if OI C I. @imilarly on the right)
We say I connects O and O’ if OI C Tand IO’ C .
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Computationally; ...

» We typically work with one fixed choice of g for each p.
» Quaternions are represented as vectors in Q.
» Quaternion lattices are represented by a Z-basis.

» All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.
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From curves to quaternions

E — End(E)
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Example #1
Assume p =3 (mod 4).
Then E: yz =x3+xis supersingular, and it has endomorphisms

v (vy) — (—x,V/—1-y),

T (xy) — (7).
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Example #2
Assume p =2 (mod 3).
Then E: yz =x3+1is supersingular, and it has endomorphisms

w: (x,y) — (G x,y),
T (xy) — (FyF).
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Example #2
Assume p =2 (mod 3).
Then E: y2 =x3+1is supersingular, and it has endomorphisms

w: ('xay) — (C3'X,y),
T (oY) — (7).

In decreasing order of obviousness, one can show that

W =1}, wr + 7w = —7, and 7% = [—p).

Hence, in the quaternion algebra where i = —3 and j?> = —p,
the pair (2w + 1, ) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{L. (+9/2, G+ij)/2, (i+1)/3}.
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E — End(E)

» Subtlety: Identifying explicit endomorphisms with

abstract elements of By, o, is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
End(E) x End(E) = Z, (a,8) — aB + af.

This is polynomial-time.
» Multiple q define the same B, .
Need to convert from i* = —g basis to i’> = —¢’ basis.
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From quaternions to curves

Ey—E Es * Oy— .0
El\‘g - 01\ |
5 Os
E; E; 0; 0,

» Step 0: Base curve.
Any curve over [F, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/.

Solve the “isogeny problem” in quaternion land.

» Step 2: Ideal-to-isogeny.

Map the solution “down” to curve land.

I will talk about these in reverse order.
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Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (., ker w.

Algorithms:
» Write [ = (N, a) with N € Z+(. Then H; = ker(a/|g|y)-

» Better: Factor N = (7' -- - (7", let H = ker(Oé|E[m)~
k
Then H; = (H}, ..., H}).
> If ¢y is cyclic, we have ker(a|gpn) = @(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

~ No choice in N: It’s the norm of I.
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Step 1: Convenient connecting ideals

Finding a connecting (O, O’)-ideal is straightforward:
1. Compute OO’ = span,({af:a € 0,8 € O'}) C By .
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Step 1: Convenient connecting ideals

Finding a connecting (O, O’)-ideal is straightforward:
1. Compute OO’ = span,({af:a € 0,8 € O'}) C By .
2. That's all, but typically the norm of OO’ is horrible.

KLPT/
...finds an equivalent ideal of controlled norm.

Typical cases: Norm ¢*, powersmooth norm £7' - - - £;".
The determining factor of success is the size of the norm. Estimate ~ p3.

Fact: Equivalent ideals ~~ isomorphic codomains.
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SQIsign

...Is a signature scheme based on the Deuring correspondence.
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— See Antonin Leroux’s talk in MS118 on Friday, or https://sqisign.org!

I! SQIsign relies on very special choices of p.
— See Michael Meyer’s talk in MS105 on Friday.

» Cryptographic reductions and general computer algebra
want it to be fast for arbitrary fields. ~» Our work!
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» Norm is big ~» We have to work in field extensions.

I!' Lots of choice for prime powers ¢°.
Trick: Look for E[¢°] € E(F ) with k small.

~+ Tradeoff: number of operations «+— cost of arithmetic.

[k]
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=
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Heatmap
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Heatmap
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Average extension k required to access ¢°-torsion.
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Cool trick #2: Isogenies from minimal polynomials

» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.
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Cool trick #2: Isogenies from minimal polynomials

» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(£, f, ¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f# € F,[X] of the subgroup ¢(G) < E'.
1 Write the x-coordinate map of ¢ as a fraction g1/go of polynomials g1, go € Fy[X].
2 Let grer = ged(g, f) and f1 = f/gier-
3 Compute g1 - g; ' mod f; € Fy[X] and reinterpret it as a quotient-ring element o € Fy[X]/f1.
4 Find the minimal polynomial f¢ € F,[X] of o over Fy using Shoup’s algorithm.
5 Return f?.
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Cool trick #2: Isogenies from minimal polynomials

» We can replace (big) kernel polynomials by smaller
minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(£, f, ¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f# € F,[X] of the subgroup ¢(G) < E'.
1 Write the x-coordinate map of ¢ as a fraction g1/go of polynomials g1, go € Fy[X].
2 Let grer = ged(g, f) and f1 = f/gier-
3 Compute g1 - g; ' mod f; € Fy[X] and reinterpret it as a quotient-ring element o € Fy[X]/f1.
4 Find the minimal polynomial f¢ € F,[X] of o over Fy using Shoup’s algorithm.
5 Return f?.

Complexity: O(k?) + O(n). Naively O(nk(logk)°M).
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Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
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together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
Find g such that i*=—g, j>=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_;, construct a curve with this j-invariant.
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» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
Find g such that i*=—g, j>=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_;, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time (5(0;)
Composing the desired endomorphism ¥: E — E with the
isomorphism 7: (x,) — (—qx, /—§ y) makes it normalized.

23/25



Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.
Find g such that i*=—g, j>=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_;, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time (5(0;)
Composing the desired endomorphism ¥: E — E with the
isomorphism 7: (x,) — (—qx, /—§ y) makes it normalized.

» Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of B, -, with an endomorphism /—4.
In fact, such a maximal order is almost unique.
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Cool open-source code

https://github.com/friends-of-quaternions/deuring
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Cool open-source code

https://github.com/friends-of-quaternions/deuring
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\sage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring
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‘sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)
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https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage:
sage:
sage:
sage:
sage:
sage:
sage:
Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2+*j

from deuring.broker import starting_curve

from deuring.randomideal import random_ideal

from deuring.correspondence import constructive_deuring
F2.<i> = GF((2%31-1, 2), modulus=[1,0,1])

EQ, iota, 00 = starting_curve(F2)

I = random_ideal (00)

I

+ 7076xk, -1722016565/2 + 1401001825/2*1i + 551/2%]
+ 16579/2%k, -2147483647 - 9708%j + 12777*k, -2147483647
- 2147483647*1 - 22485%j + 3069xk)
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https://github.com/friends-of-quaternions/deuring

Cool open-source code

https://github.com/friends-of-quaternions/deuring

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,1])
sage: E@Q, iota, 00 = starting_curve(F2)
sage: I = random_ideal (00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2+*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
sage: E1, phi, _ = constructive_deuring(I, E@, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
= 2729#373x5%7%2%x11%13*x17%31%41%43%2%61%x79%151:
From: Elliptic Curve defined by y*2 = x*3 + x over
Finite Field in i of size 21474836472
To: Elliptic Curve defined by y*2 = x*3 + (1474953432*1
+1816867654)*x + (581679615+x1+260136654)
over Finite Field in i of size 2147483647"2
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