Computing the Deuring correspondence
and applications to cryptography

Lorenz Panny
Technische Universitidt Miinchen

Oberseminar “Arithmetische und Algebraische Geometrie”,
Munich, 19 June 2024

What?

The Deuring correspondence:

a priori

Almost exact equivalence between two'very different worlds:

1/36

What?

The Deuring correspondence:

a priori
Almost exact equivalence between two'very different worlds:

> Supersingular elliptic curves defined over F ..

1/36

What?

The Deuring correspondence:

a priori

Almost exact equivalence between two'very different worlds:

> Supersingular elliptic curves defined over F ..

» Quaternions: Maximal orders in a certain algebra B .

1/36

What?

The Deuring correspondence:

a priori

Almost exact equivalence between two'very different worlds:

> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become connecting ideals in quaternion land.

1/36

What?

The Deuring correspondence:

a priori
Almost exact equivalence between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

1/36

What?

The Deuring correspondence:

a priori
Almost exact equivalence between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

< The “«” direction is easy, the “=" direction seems hard!

1/36

What?

The Deuring correspondence:

a priori
Almost exact equivalence between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

< The “«” direction is easy, the “=" direction seems hard!

~ Cryptography!

1/36

Cry-what?

» Public-key cryptography provides functionality such as
secure connections on the internet and digital signatures.

2/36

Cry-what?

» Public-key cryptography provides functionality such as
secure connections on the internet and digital signatures.

» Grim future: Quantum computers are expected to break
almost all of the systems we currently use.

2/36

Cry-what?

» Public-key cryptography provides functionality such as
secure connections on the internet and digital signatures.

» Grim future: Quantum computers are expected to break
almost all of the systems we currently use.

» Solution: Post-quantum cryptography.

It is based on different types of computational problems,
including isogeny problems!

2/36

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

3/36

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

» ~All isogeny security reduces to the “=" direction.

3/36

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

» ~All isogeny security reduces to the “=" direction.
» SQIsign builds on the “<" direction constructively.

3/36

Why?
We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.
» ~All isogeny security reduces to the “=" direction.

» SQIsign builds on the “<" direction constructively.
» Essential tool for both constructions and attacks.

3/36

Why?
We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.
» ~All isogeny security reduces to the “=" direction.

» SQIsign builds on the “<" direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~» Oriented curves and the isogeny class-group action.

3/36

The main theorem

» Fix a supersingular elliptic curve Eo/F ..

4/36

The main theorem

» Fix a supersingular elliptic curve Eo/F ..
» Let Op := End(Ep) and identify B, oo = Op ®z Q.

4/36

The main theorem

» Fix a supersingular elliptic curve Eo/F ..
» Let Op := End(Ep) and identify B, oo = Op ®z Q.

Theorem. The (contravariant) functor
E +—— Hom(E,Ey)

defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left Oy-modules
with nonzero left Op-module homomorphisms.

4/36

The main theorem

» Fix a supersingular elliptic curve Eo/F ..
» Let Op := End(Ep) and identify B, oo = Op ®z Q.

Theorem. The (contravariant) functor
E +—— Hom(E,Ey)

defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left Oy-modules
with nonzero left Op-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set Clsy(Op).

4/36

Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from E correspond to left ideals of Oy.

5/36

Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from E correspond to left ideals of Oy. ‘

» Given ¢): Eg — E, the associated Op-ideal is Hom(E, Eg).

5/36

Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from E correspond to left ideals of Oy. ‘

» Given ¢): Eg — E, the associated Op-ideal is Hom(E, Eg).

Important consequence: The isogeny ¢r: Eg — E
defined by a left Op-ideal I has kernel (), ker oo < Ej.

a€cl

5/36

Ideals & isogenies

One particular consequence of this equivalence is that

’ isogenies from E correspond to left ideals of Oy. ‘

» Given ¢): Eg — E, the associated Op-ideal is Hom(E, Eg).

Important consequence: The isogeny ¢r: Eg — E
defined by a left Op-ideal I has kernel (), ker oo < Ej.

a€cl

» Moreover, then End(E) — By o via o — @rapr/deg(er).
» Under this embedding, End(E) = {a € By : la C I}.

5/36

History and algorithms

» 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.

6/36

History and algorithms

» 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.

» 2004: Cervifio gives a (necessarily exponential-time)
algorithm to compute all pairs (E, O) for a given p.

6/36

History and algorithms

» 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.

» 2004: Cervifio gives a (necessarily exponential-time)
algorithm to compute all pairs (E, O) for a given p.

» 2013: Chevyrev—-Galbraith give an exponential-time
algorithm to compute O — E.

6/36

History and algorithms

» 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.

» 2004: Cervifio gives a (necessarily exponential-time)
algorithm to compute all pairs (E, O) for a given p.

» 2013: Chevyrev—-Galbraith give an exponential-time
algorithm to compute O — E.

» 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) /)
find a heuristically polynomial-time algorithm for O — E.

6/36

History and algorithms

» 1941: Deuring proves the correspondence.
Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.
» 2004: Cervifio gives a (necessarily exponential-time)
algorithm to compute all pairs (E, O) for a given p.
» 2013: Chevyrev—-Galbraith give an exponential-time
algorithm to compute O — E.
» 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) /)
find a heuristically polynomial-time algorithm for O — E.
» 2021: Wesolowski assumes GRH and gives a provably

polynomial—time variant.

6/36

History and algorithms

>

1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.
2004: Cervifio gives a (necessarily exponential-time)

algorithm to compute all pairs (E, O) for a given p.

2013: Chevyrev-Galbraith give an exponential-time
algorithm to compute O — E.

201_: Petit-Lauter (using Kohel-Lauter—Petit-Tignol (2014) /")
find a heuristically polynomial-time algorithm for O — E.
2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

2023: Eriksen—-Panny-Sotdkovéa—Veroni develop practical
optimizations and publish a fully general implementation.
6/36

Curve world

» Universe: Characteristic p. Assumep > 5 throughout.

» Supersingular elliptic curves: E[p] = {oo}.

7/36

Curve world

» Universe: Characteristic p. Assumep > 5 throughout.
» Supersingular elliptic curves: E[p] = {oo}.

» Isogenies, endomorphisms, and so on and so forth.

7/36

Curve world

Universe: Characteristic p. Assume p > 5 throughout.
Supersingular elliptic curves: E[p] = {oo}.
Isogenies, endomorphisms, and so on and so forth.
Famous examples:

» p=3 (mod 4) and E: > = x> + x with j-invariant 1728.
» p=2 (mod 3) and E: > = x* + 1 with j-invariant 0.

7/36

Computationally...

» We work with curves defined over F > such that 7 = [—p|.

(This choice is natural: It includes the base-changes of curves defined over F,.)

8/36

Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F,.)

» The group structure is known over all extensions:
E(Fy) = Z/n x Z/n where n = PF— (1)K

8/36

Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F,.)

» The group structure is known over all extensions:
E(Fy) = Z/n x Z/n where n = PF— (1)K

» We construct isogenies from their kernel subgroups.

8/36

Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F,.)

» The group structure is known over all extensions:
E(Fy) = Z/n x Z/n where n = PF— (1)K

» We construct isogenies from their kernel subgroups.

» We work with smooth-degree isogenies since classical
isogeny formulas require exponential time in log(degree).

8/36

Quaternion universe

» Everything lives in a particular quaternion algebra B}, .

9/36

Quaternion universe

» Everything lives in a particular quaternion algebra B}, .

» The algebra B, , is a 4-dimensional Q-vector space.
Write B .o = Q ® Qi @ Qj @ Qijj.

9/36

Quaternion universe

» Everything lives in a particular quaternion algebra B}, .

» The algebra B, , is a 4-dimensional Q-vector space.
Write B .o = Q ® Qi @ Qj @ Qijj.
» Multiplication defined by relations i’=—q, j>=—p, ji = —ij.

Here q is a positive integer satisfying some conditions with respect to p.
1. All valid q define isomorphic algebras By, .

9/36

Quaternion universe

» Everything lives in a particular quaternion algebra By, co-

» The algebra B, , is a 4-dimensional Q-vector space.
Write B .o = Q ® Qi @ Qj @ Qijj.
» Multiplication defined by relations i’=—q, j>=—p, ji = —ij.

Here q is a positive integer satisfying some conditions with respect to p.
1. All valid q define isomorphic algebras By, .

» The algebra B, o has a conjugation — which negates i,j, ij.
The norm and trace of an element « are a& € Z>o and a+a € Z.

9/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

10/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

10/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

Definitions:

» A (fractional) ideal is a rank-4 lattice contained in B, ..

10/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

Definitions:

» A (fractional) ideal is a rank-4 lattice contained in B, ..

» An order is a fractional ideal which is a subring of By .

A maximal order is one that is not contained in any strictly larger order.

10/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

Definitions:
» A (fractional) ideal is a rank-4 lattice contained in B, ..

» An order is a fractional ideal which is a subring of By .
A maximal order is one that is not contained in any strictly larger order.

> A fraCtional ideal Iisa left O'ideal if Ol g L (Similarly on the right.)

10/36

Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

Definitions:
» A (fractional) ideal is a rank-4 lattice contained in B, ..

» An order is a fractional ideal which is a subring of By .
A maximal order is one that is not contained in any strictly larger order.

» A fractional ideal I is a left O-ideal if OI C I (Similarly on the right.)
We say I connects O and O’ if O C Iand IO’ C I.

10/36

Computationally; ...

» We typically work with one fixed choice of g for each p.

11/36

Computationally; ...

» We typically work with one fixed choice of g for each p.

» Quaternions are represented as vectors in Q.

11/36

Computationally; ...

» We typically work with one fixed choice of g for each p.
» Quaternions are represented as vectors in Q.

» Quaternion lattices are represented by a Z-basis.

11/36

Computationally; ...

» We typically work with one fixed choice of g for each p.
» Quaternions are represented as vectors in Q.

» Quaternion lattices are represented by a Z-basis.

» All the basic algorithms are essentially linear algebra.

11/36

Computationally; ...

» We typically work with one fixed choice of g for each p.
» Quaternions are represented as vectors in Q.

» Quaternion lattices are represented by a Z-basis.

» All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

11/36

From curves to quaternions

E— O

12 /36

Example #1
Assume p = 3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).

13/36

Example #1
Assume p = 3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).

In decreasing order of obviousness, one can show that

> =[~1], 7t = —um, and 72 = [-p].

13/36

Example #1
Assume p = 3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).

In decreasing order of obviousness, one can show that

> =[~1], 7t = —um, and 72 = [-p].

Hence, in the quaternion algebra where i = —1 and j? = —p,
the pair (¢, 7) corresponds to (i, j).

13/36

Example #1
Assume p = 3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).

In decreasing order of obviousness, one can show that

> =[~1], 7t = —um, and 72 = [-p].

Hence, in the quaternion algebra where i = —1 and j? = —p,
the pair (¢, 7) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{1, i, (i+j)/2, (1+ij)/2}.

13/36

Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C3'xvy)/
T () — (Y.

14 /36

Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C?)'xvy)/
T () — (Y.

In decreasing order of obviousness, one can show that

W =[], wr + 7w = —7, and 7 = [—p].

14 /36

Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C?)'xvy)/
T () — (Y.

In decreasing order of obviousness, one can show that

W =[], wr + 7w = —7, and 7 = [—p].

Hence, in the quaternion algebra where i = —3 and j*> = —p,
the pair (2w + 1,) corresponds to (i, j).

14 /36

Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C?)'xvy)/
T () — (Y.

In decreasing order of obviousness, one can show that

W =[], wr + 7w = —7, and 7 = [—p].

Hence, in the quaternion algebra where i = —3 and j*> = —p,
the pair (2w + 1,) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{1, +9/2, (+i)/2, ({+1j)/3}.

14 /36

From curves to quaternions

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.

15/36

From curves to quaternions

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves,
find any isogeny between them.

15/36

From curves to quaternions

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

15/36

From curves to quaternions

» Subtlety: Identifying explicit endomorphisms with
abstract elements of By is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.

16 /36

From curves to quaternions

» Subtlety: Identifying explicit endomorphisms with

abstract elements of By is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
End(E) x End(E) = Z, (o, 8) — a8 + of.

This is polynomial-time.

16 /36

From curves to quaternions

» Subtlety: Identifying explicit endomorphisms with
abstract elements of By is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
End(E) x End(E) = Z, (o, 8) — a8 + of.

This is polynomial-time.

» Multiple q define the same B, .

2

Need to convert from i? = —g basis to i’> = —¢ basis.

16 /36

From curves to quaternions

» Subtlety: Identifying explicit endomorphisms with
abstract elements of By is generally not totally trivial.
» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
End(E) x End(E) = Z, (o, 8) — a8 + of.
This is polynomial-time.

» Multiple q define the same B, .

2 _

Need to convert from i? = —g basis to i’> = —¢ basis.

Lemma 10. Let p be a prime number and q,q' € Z~q such that B = (—q,—p | Q) and B' = (—¢',—p | Q)
are quaternion algebras ramified at p and oo.

Then there exist v,y € Q such that 2® + py® = ¢'/q. Writing 1,i',j',X’ for the generators of B' and
1,1, j,k for the generators of B, and setting v := x + yj, the mapping

i iy, =i, k' — kv
defines a Q-algebra isomorphism B' = B.

16 /36

From quaternions to curves

17 /36

From quaternions to curves

17 /36

From quaternions to curves

» Step 0: Base curve.

Any curve over I, with a known small-degree endomorphism.

17 /36

From quaternions to curves

EO E2 E6 ‘ _ -~ 00 02 06
h ~ E4 - . W
E, T 0,
Es Os
E3 E7 03 07

» Step 0: Base curve.
Any curve over I, with a known small-degree endomorphism.

» Step 1: Connecting ideal.
Solve the “isogeny problem” in quaternion land.

17 /36

From quaternions to curves

EO EZ E6 _ 00 B 02 / 06
h ~ E4 _ - -7 / 04
Es Os
E3 E7 03 07

» Step 0: Base curve.
Any curve over [, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/'.

Solve the “isogeny problem” in quaternion land.

17 /36

From quaternions to curves

» Step 0: Base curve.
Any curve over [, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/'.

Solve the “isogeny problem” in quaternion land.

» Step 2: Ideal-to-isogeny.

Map the solution “down” to curve land.

17 /36

From quaternions to curves

» Step 0: Base curve.
Any curve over [, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/'.

Solve the “isogeny problem” in quaternion land.

» Step 2: Ideal-to-isogeny.

Map the solution “down” to curve land.

I will talk about these in reverse order.

17 /36

Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (. ker a.

a€cl

18/36

Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel H; = ()

a€cl

ker a.

Algorithms:
> Write I = (N, «) with N € Z~o. Then H; = ker(a|gy))-

18/36

Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (s ker a.

Algorithms:
> Write I = (N, «) with N € Z~o. Then H; = ker(a|gy))-

» Better: Factor N = (7' - - - {7, let H}, = ker(atl e)-
k
Then H; = (H}, ..., H}).

18/36

Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (s ker a.

Algorithms:
> Write I = (N, «) with N € Z~o. Then H; = ker(a|gy))-

» Better: Factor N = (7' - - - {7, let H}, = ker(atl e)-
k
Then H; = (H}, ..., H}).

» If oy is cyclic, we have ker(a!E[N}) = @(E[N]). No logarithms!

18/36

Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (s ker a.

Algorithms:
> Write I = (N, «) with N € Z~o. Then H; = ker(a|gy))-

» Better: Factor N = (7' - - - {7, let H}, = ker(atl e)-
k
Then H; = (H}, ..., H}).

» If oy is cyclic, we have ker(a!E[N}) = @(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

18/36

Step 0.9: Connecting ideals

Finding a connecting (O, O')-ideal is straightforward:

1. Compute OO" = span,({af:a € 0,8 € O'}) C By .

19/36

Step 0.9: Connecting ideals

Finding a connecting (O, O')-ideal is straightforward:
1. Compute OO" = span,({af:a € 0,8 € O'}) C By .
2. That’s all, but typically the norm of OO’ is horrible.

(Also, it’s integral only in trivial cases ~- scale by denominator in Z.)

19/36

Step 1: Convenient connecting ideals

KLPT/
...finds an equivalent ideal] = I§/N of controlled norm N'.

20 /36

Step 1: Convenient connecting ideals
KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~+ isomorphic codomains.

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~» isomorphic codomains.

» The resulting isogeny oy will be different from .

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~» isomorphic codomains.

» The resulting isogeny oy will be different from .
» We can “fix” the evaluation a posteriori:
» The composition w := @y is an endomorphism.

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~~» isomorphic codomains.
» The resulting isogeny oy will be different from .
» We can “fix” the evaluation a posteriori:
» The composition w := @y is an endomorphism.
» As a quaternion, it is simply given by 4! (Proof: Iy~1]v)
~» We can evaluate w without computing ¢y first.

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~» isomorphic codomains.

» The resulting isogeny oy will be different from .
» We can “fix” the evaluation a posteriori:
» The composition w := @jpr is an endomorphism.
» As a quaternion, it is simply given by 4! (Proof: Iy~1]v)
~» We can evaluate w without computing ¢y first.

» Hence, for T coprime to N/, with S := N'~! mod T,
w1lgm = Seywle -

20 /36

Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~~» isomorphic codomains.
» The resulting isogeny oy will be different from .
» We can “fix” the evaluation a posteriori:
» The composition w := @y is an endomorphism.
» As a quaternion, it is simply given by 4! (Proof: Iy~1]v)
~» We can evaluate w without computing ¢y first.

» Hence, for T coprime to N/, with S := N'~! mod T,
w1lgm = Seywle -

~+ Do it twice with coprime degrees to evaluate on any point.

20 /36

Cool trick #1: Convenient torsion is convenient

» Norm is big ~» we have to work in field extensions.

21/36

Cool trick #1: Convenient torsion is convenient

» Norm is big ~» we have to work in field extensions.

I!' Lots of choice for prime powers /.
Trick: Look for E[¢¢] C E(F,) with k small.

21/36

Cool trick #1: Convenient torsion is convenient

» Norm is big ~» we have to work in field extensions.

I!' Lots of choice for prime powers /.
Trick: Look for E[¢¢] C E(F,) with k small.

~~ Tradeoff: number of operations <— cost of arithmetic.

21/36

Cool trick #1: Convenient torsion is convenient

» Norm is big ~» we have to work in field extensions.

I!' Lots of choice for prime powers /.
Trick: Look for E[¢¢] C E(F,) with k small.

~~ Tradeoff: number of operations <— cost of arithmetic.

[K]

41 -
16 -

ﬁ 56 160 150 1é9 [66]

21/36

Heatmap

50 - .

L] L]
L]
L] B
L] B
L] L]
L]
L] B
Ll o
L] B B
L] B B o
L] L] L] B Ll
L] L] B o
L] B B o
L] Ll g o o
L] L] B B 8 o
=] 8 o g o g
s m Ll o_o g o o g o g oo g
w"" B omo gt B oo g 8 g g g g
— sl oBe o8 B0 o8oBod 8 Bo oo 8 og B o od ooo 8 g

2 50 w0 (]

Average extension k required to access ¢°-torsion.

22/36

Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve Eg
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

23/36

Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve Eg
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.

Find g such that i*=—g, j?=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_,, construct a curve with this j-invariant.

23/36

Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve Eg
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.

Find g such that i*=—g, j?=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_,, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time O(q).
Composing the desired endomorphism ¥: E — E with the
isomorphism 7: (x,y) — (—qx, /—¢ y) makes it normalized.

23/36

Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve Eg
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

» Ingredient #1: Broker’s algorithm.

Find g such that i*=—g, j?=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_,, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time O(q).
Composing the desired endomorphism ¥: E — E with the
isomorphism 7: (x,y) — (—qx, /—¢ y) makes it normalized.

» Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of B, .. with an endomorphism /3.
In fact, there are only very few maximal orders containing /—4.

23/36

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

24/36

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

[|
\sage: from deuring.broker import starting_curve \
\sage: from deuring.randomideal import random_ideal \
\sage: from deuring.correspondence import constructive_deuring \

24/36

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

isage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring
\sage: F2.<i> = GF((2%31-1, 2), modulus=[1,0,1])

24/36

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

isage: from deuring.broker import starting_curve

\sage: from deuring.randomideal import random_ideal

\sage: from deuring.correspondence import constructive_deuring
\sage: F2.<i> = GF((2%31-1, 2), modulus=[1,0,1])

|sage: E@, iota, 00 = starting_curve(F2)

24/36

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

sage: from deuring.broker import starting_curve

sage: from deuring.randomideal import random_ideal

sage: from deuring.correspondence import constructive_deuring

sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)

sage: E@, iota, 00 = starting_curve(F2)

sage: I = random_ideal (00)

sage: I

Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2xk, -2147483647 - 9708*j + 12777k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)

24/36

https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)
sage: E@, iota, 00 = starting_curve(F2)
sage: I = random_ideal (00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2xk, -2147483647 - 9708*j + 12777k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
sage: E1, phi, _ = constructive_deuring(I, E@, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
= 2729%373x5%772%x11%x13*x17%31%41%43%2%61%x79%151:
From: Elliptic Curve defined by y*2 = x*3 + x over
Finite Field in i of size 21474836472
To: Elliptic Curve defined by y*2 = x*3 + (1474953432%*1
+1816867654)*x + (581679615+1+260136654)
over Finite Field in i of size 2147483647"2

24/36

https://github.com/friends-of-quaternions/deuring

Tlmlngs (SageMath, single core)

[seconds|

i
8 it
g
i g
o TR

180 - : .
120 - St

5 25 50 75 100 125 150 175 200 295 250 [bit length]

25/36

Tlmlngs (SageMath, single core)

We’ve been informed of one run for a 521-bit characteristic that
took only about 7 hours.

~+ Definitely practical for parameter setup etc.!

26 /36

SQIsign: What?

Qs

https://sqisign.org

27/36

https://sqisign.org

SQIsign: What?

Qs

https://sqisign.org

» A new and very hot post-quantum signature scheme.

» Part of NIST’s post-quantum standardization process.

27/36

https://sqisign.org

SQIsign: Why?

+ It’s extremely small compared to the competition.

28 /36

SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.

28 /36

SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.
+ ...but performance is getting better by the ~ week!

28 /36

SQIsign: Why?

+ It’s extremely small compared to the competition.
— It’s relatively slow compared to the competition.
+ ...but performance is getting better by the ~ week!

28 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey4

commitment

PSS S

g

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey4

commitment

PR S,

g

challenge

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey4
!
l
£l
Y 3
g k!
£ 3
3!]
l
v
E E
1 challenge 2

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey4
!
l
£l
Y 3
g k!
£ 3
3!]
l
v
E E
1 challenge 2

» Easy response: E4 — Eg — E1 — Ey. Obuviously broken.

29 /36

SQIsign

~+ Fiat-Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

L — > Ey4
!
l
£l
Y 3
g k!
£ 3
3!]
l
v
E E
1 challenge 2

» Easy response: E4 — Eg — E1 — Ey. Obuviously broken.
» SQIsign’s solution: Construct new path Eq — Ej (using secret).

29 /36

SQIsign: How?

Main idea:

» “Lift” the commitment and challenge to quaternion land.

30/36

SQIsign: How?

Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

30/36

SQIsign: How?

Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

» The verifier can check on curves that everything is correct.

30/36

SQIsign: How?

Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

» The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm /.
» From End(E), End(E’), can randomize within Hom(E, E').

30/36

SQIsign: How?

Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

» The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm /.
» From End(E), End(E’), can randomize within Hom(E, E').

~+ SQIsign takes the “broken” signature E4 — Ey — E; — E»
and rewrites it into a random isogeny E4 — Ej.

30/36

SQIsign: How?

Main idea:
» “Lift” the commitment and challenge to quaternion land.

» Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

» The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm /.
» From End(E), End(E’), can randomize within Hom(E, E').

~+ SQIsign takes the “broken” signature E4 — Ey — E; — E»
and rewrites it into a random isogeny E4 — Ej.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — YanBoTi

30/36

SQIsign: Comparison

+ Signature size (bytes)

1k

»*
i

+
+

o,

g
i
X

[N | I I 1 [| X | | I N R A |
100 200 1k 2k 10k 20k
Public key size (bytes) »

Source: https://pgshield.github.io/nist-sigs-zoo
31/36

https://pqshield.github.io/nist-sigs-zoo

Bonus slides

32/36

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between
products of elliptic curves

33/36

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between
products of elliptic curves

» The product E x E’ is an abelian surface.

33/36

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between
products of elliptic curves

» The product E x E’ is an abelian surface.

» Similar to elliptic curves in many ways:
» Points form an abelian group.
» Similar group structure, but more components.
» Can define isogenies from kernel subgroups.

33/36

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between
products of elliptic curves

» The product E x E’ is an abelian surface.

» Similar to elliptic curves in many ways:

» Points form an abelian group.
» Similar group structure, but more components.
» Can define isogenies from kernel subgroups.

» Computing with surfaces explicitly is possible, but painful.
Everyone works with Jacobians of genus-2 curves instead.

33/36

The embedding lemma

34 /36

The embedding lemma

Consider a commutative diagram of isogenies

E—2 L F
wl lw'
E/I - E//I

@

where a := deg ¢ and b := deg v are coprime; let N :=a + b.

34 /36

The embedding lemma

Consider a commutative diagram of isogenies

E—2 L F
wl lw'
E// - E//I

@

where a := deg ¢ and b := deg v are coprime; let N :=a + b.

Lemma. Then N
F = < v dj/)

~

- ¢
defines an N-isogeny E x E” — E’ x E".
Its kernel is ker(F) = {(@(P),¢'(P)) | P € E'[N]}.

34 /36

Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~

35/36

Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = ¢(Q).
» Notice that ¢ is a group homomorphism.

35/36

Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = ¢(Q).
» Notice that ¢ is a group homomorphism.

P P

35/36

Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = ¢(Q).
» Notice that ¢ is a group homomorphism.

Evaluating ¢ at an arbitrary point T € E[N]:
1. Decompose T = [u]P + [v|Q with u,v € Z.

This is a discrete-logarithm computation, which is easy whenever N is smooth!

2. Output [u]P’' + [v]Q'.

35/36

Representing ¢|gy

Recall: For embedding lemma, need to evaluate ¢ on E[N].
~+ Exponentially many points. ;~
Clever trick:

» Fix basis (P, Q) of E[N]; compute P’ = ¢(P) and Q" = ¢(Q).
» Notice that ¢ is a group homomorphism.

Evaluating ¢ at an arbitrary point T € E[N]:
1. Decompose T = [u]P + [v|Q with u,v € Z.

This is a discrete-logarithm computation, which is easy whenever N is smooth!

2. Output [u]P’' + [v]Q'.

= The data (P, Q, P’, Q') encodes the restriction o|g-

35/36

Questions?

(Also feel free to email me: lorenz@yx7.cc)

36 /36

