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What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:

▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!
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Cry-what?

▶ Public-key cryptography provides functionality such as
secure connections on the internet and digital signatures.

▶ Grim future: Quantum computers are expected to break
almost all of the systems we currently use.

▶ Solution: Post-quantum cryptography.
It is based on different types of computational problems,

including isogeny problems!
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Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.
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The main theorem

▶ Fix a supersingular elliptic curve E0/Fp2 .

▶ Let O0 := End(E0) and identify Bp,∞ = O0 ⊗Z Q.

Theorem. The (contravariant) functor

E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left O0-modules

with nonzero left O0-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set ClsL(O0).
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Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E0 correspond to left ideals of O0.

▶ Given ψ : E0 → E, the associated O0-ideal is Hom(E,E0)ψ.

Important consequence: The isogeny φI : E0 → E
defined by a left O0-ideal I has kernel

⋂
α∈I kerα ≤ E0.

▶ Moreover, then End(E) ↪→ Bp,∞ via α 7→ φ̂IαφI/deg(φI).
▶ Under this embedding, End(E) = {α ∈ Bp,∞ : Iα ⊆ I}.
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History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) )
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.
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Curve world

▶ Universe: Characteristic p. Assume p≥ 5 throughout.

▶ Supersingular elliptic curves: E[p] = {∞}.

▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.
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Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

▶ We construct isogenies from their kernel subgroups.

▶ We work with smooth-degree isogenies since classical
isogeny formulas require exponential time in log(degree).
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Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.
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Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.

▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.
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Computationally, ...

▶ We typically work with one fixed choice of q for each p.

▶ Quaternions are represented as vectors in Q4.
▶ Quaternion lattices are represented by a Z-basis.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.
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From curves to quaternions

E 7→ O
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Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .
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Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .
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Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .
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From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.
Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).
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From curves to quaternions

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.

▶ Gram–Schmidt-type procedure using the trace pairing

End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is polynomial-time.

▶ Multiple q define the same Bp,∞.
Need to convert from i2 = −q basis to i′2 = −q′ basis.
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From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.
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Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂
α∈I kerα.

Algorithms:
▶ Write I = (N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k ]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.
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Step 0.9: Connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:

1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.

2. That’s all, but typically the norm of OO′ is horrible.
(Also, it’s integral only in trivial cases⇝ scale by denominator in Z.)
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Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.

Typical cases: Norm ℓ•, powersmooth norm ℓ
e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.
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Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝we have to work in field extensions.

!! Lots of choice for prime powers ℓe.
Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]
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Heatmap

2 50 101 [ℓe]
1

50

[k]

Average extension k required to access ℓe-torsion.
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Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.
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Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.

23 / 36



Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
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Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
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Timings (SageMath, single core)
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Timings (SageMath, single core)

We’ve been informed of one run for a 521-bit characteristic that
took only about 7 hours.

⇝ Definitely practical for parameter setup etc.!
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SQIsign: What?

https://sqisign.org

▶ A new and very hot post-quantum signature scheme.
▶ Part of NIST’s post-quantum standardization process.
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SQIsign: Why?

+ It’s extremely small compared to the competition.

– It’s relatively slow compared to the competition.
+ ...but performance is getting better by the ≈week!
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SQIsign

⇝ Fiat–Shamir: signature scheme from identification scheme
by replacing the verifier by a hash function.

E0 EA
secret

▶ Easy response: EA → E0 → E1 → E2. Obviously broken.
▶ SQIsign’s solution: Construct new path EA → E2 (using secret).
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SQIsign: How?

Main idea:
▶ “Lift” the commitment and challenge to quaternion land.

▶ Construct the response in quaternion land, then
project it “down” to the curve world (ideal-to-isogeny).

▶ The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm .
▶ From End(E),End(E′), can randomize within Hom(E,E′).

⇝ SQIsign takes the “broken” signature EA → E0 → E1 → E2
and rewrites it into a random isogeny EA → E2.

“If you have KLPT implemented very nicely as a black box,
then anyone can implement SQIsign.” — Yan Bo Ti
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SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo
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Bonus slides
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Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between
products of elliptic curves

▶ The product E× E′ is an abelian surface.

▶ Similar to elliptic curves in many ways:
▶ Points form an abelian group.
▶ Similar group structure, but more components.
▶ Can define isogenies from kernel subgroups.

▶ Computing with surfaces explicitly is possible, but painful.
Everyone works with Jacobians of genus-2 curves instead.
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The embedding lemma

Consider a commutative diagram of isogenies

E E′

E′′ E′′′

φ

ψ ψ′

φ′

where a := degφ and b := degψ are coprime; let N := a + b.

Lemma. Then

F :=

(
φ ψ̂′

−ψ φ̂′

)
defines an N-isogeny E× E′′′ → E′ × E′′.

Its kernel is ker(F) =
{
(φ̂(P), ψ′(P)) | P ∈ E′[N]

}
.
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Representing φ|E[N]

Recall: For embedding lemma, need to evaluate φ on E[N].
⇝ Exponentially many points.

:(

Clever trick:
▶ Fix basis (P,Q) of E[N]; compute P′ = φ(P) and Q′ = φ(Q).
▶ Notice that φ is a group homomorphism.

P

Q

P′

Q′

φ

Evaluating φ at an arbitrary point T ∈ E[N]:
1. Decompose T = [u]P + [v]Q with u, v ∈ Z.

This is a discrete-logarithm computation, which is easy whenever N is smooth!

2. Output [u]P′ + [v]Q′.

=⇒ The data (P,Q,P′,Q′) encodes the restriction φ|E[N].
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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