Computing the Deuring correspondence and applications to cryptography

Lorenz Panny

Technische Universität München

Oberseminar "Arithmetische und Algebraische Geometrie", Munich, 19 June 2024

The Deuring correspondence:

a priori Almost exact equivalence between two^Yvery different worlds:

The Deuring correspondence:

a priori Almost exact equivalence between two^Yvery different worlds:

• Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

The Deuring correspondence:

Almost exact equivalence between two^Yvery different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

The Deuring correspondence:

Almost exact equivalence between two γ very different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The Deuring correspondence:

Almost exact equivalence between two γ very different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

The Deuring correspondence:

Almost exact equivalence between two^Yvery different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

 \because The " \Leftarrow " direction is easy, the " \Rightarrow " direction seems hard!

The Deuring correspondence:

Almost exact equivalence between two^Yvery different worlds:

a priori

- Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

∵ The "⇐" direction is easy, the "⇒" direction seems hard! ~> Cryptography!

Cry-what?

 <u>Public-key cryptography</u> provides functionality such as secure connections on the internet and digital signatures.

Cry-what?

- <u>Public-key cryptography</u> provides functionality such as secure connections on the internet and digital signatures.
- Grim <u>future</u>: Quantum computers are expected to break almost all of the systems we currently use.

Cry-what?

- <u>Public-key cryptography</u> provides functionality such as secure connections on the internet and digital signatures.
- ► Grim <u>future</u>: Quantum computers are expected to break almost all of the systems we currently use.
- <u>Solution</u>: Post-quantum cryptography. It is based on different types of computational problems, including isogeny problems!

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

• \approx All isogeny security reduces to the " \Rightarrow " direction.

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► SQIsign builds on the "⇐" direction constructively.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► **SQIsign** builds on the "⇐" direction constructively.
- Essential tool for both constructions and attacks.

We now know that **the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.**

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- ► **SQIsign** builds on the "⇐" direction constructively.
- Essential tool for both constructions and attacks.

Constructively, *partially* known endomorphism rings are useful. ~ Oriented curves and the isogeny class-group action.

• Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} .

- Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} .
- Let $\mathcal{O}_0 := \operatorname{End}(E_0)$ and identify $B_{p,\infty} = \mathcal{O}_0 \otimes_{\mathbb{Z}} \mathbb{Q}$.

- Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} .
- Let $\mathcal{O}_0 := \operatorname{End}(E_0)$ and identify $B_{p,\infty} = \mathcal{O}_0 \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem. The (contravariant) functor

 $E \mapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- ► supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_0 -modules

with nonzero left \mathcal{O}_0 -module homomorphisms.

- Fix a supersingular elliptic curve E_0/\mathbb{F}_{p^2} .
- Let $\mathcal{O}_0 := \operatorname{End}(E_0)$ and identify $B_{p,\infty} = \mathcal{O}_0 \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem. The (contravariant) functor

 $E \mapsto \operatorname{Hom}(E, E_0)$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- ► invertible left O₀-modules with nonzero left O₀-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular elliptic curves are in bijection with the (left) class set $Cls_L(\mathcal{O}_0)$.

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 .

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 .

• Given $\psi : E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 .

• Given $\psi \colon E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

<u>Important consequence</u>: The isogeny $\varphi_I \colon E_0 \to E$ defined by a left \mathcal{O}_0 -ideal *I* has kernel $\bigcap_{\alpha \in I} \ker \alpha \leq E_0$.

One particular consequence of this equivalence is that

isogenies from E_0 correspond to left ideals of \mathcal{O}_0 .

• Given $\psi \colon E_0 \to E$, the associated \mathcal{O}_0 -ideal is $\operatorname{Hom}(E, E_0)\psi$.

<u>Important consequence</u>: The isogeny $\varphi_I \colon E_0 \to E$ defined by a left \mathcal{O}_0 -ideal *I* has kernel $\bigcap_{\alpha \in I} \ker \alpha \leq E_0$.

- Moreover, then $\operatorname{End}(E) \hookrightarrow B_{p,\infty}$ via $\alpha \mapsto \widehat{\varphi}_I \alpha \varphi_I / \operatorname{deg}(\varphi_I)$.
- Under this embedding, $\operatorname{End}(E) = \{ \alpha \in B_{p,\infty} : I\alpha \subseteq I \}.$

▶ 1941: Deuring proves the correspondence.

▶ 1941: Deuring proves the correspondence.

Wenn aber **R** eine vorgegebene Maximalordnung in $Q_{\infty,p}$ ist, in der der Primteiler von *p* Hauptideal ist, so gibt es genau eine Invariante *j*; zu der dieser Multiplikatorenring gehört, sie ist absolut rational. Ist der Primteiler von *p* kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der *j*, zu denen eine Maximalordnung von $Q_{\infty,p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty,p}$.

► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.

▶ 1941: Deuring proves the correspondence.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

▶ 1941: Deuring proves the correspondence.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.

▶ 1941: Deuring proves the correspondence.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- ► 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

▶ 1941: Deuring proves the correspondence.

- ► 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (*E*, *O*) for a given *p*.
- ▶ **2013**: Chevyrev–Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- ▶ **201_**: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014) \checkmark) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.
- 2023: Eriksen–Panny–Sotáková–Veroni develop practical optimizations and publish a fully general implementation.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$ throughout.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$ throughout.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic *p*. Assume $p \ge 5$ throughout.
- Supersingular elliptic curves: $E[p] = \{\infty\}$.
- ► Isogenies, endomorphisms, and so on and so forth.
- ► Famous examples:
 - ▶ $p \equiv 3 \pmod{4}$ and $E: y^2 = x^3 + x$ with *j*-invariant 1728.
 - ▶ $p \equiv 2 \pmod{3}$ and $E: y^2 = x^3 + 1$ with *j*-invariant 0.

Computationally...

We work with curves defined over F_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over F_p.)

Computationally...

- We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)
- ► The group structure is known over all extensions: $E(\mathbb{F}_{p^{2k}}) \cong \mathbb{Z}/n \times \mathbb{Z}/n$ where $n = p^k - (-1)^k$.

Computationally...

- We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)
- ► The group structure is known over all extensions: $E(\mathbb{F}_{p^{2k}}) \cong \mathbb{Z}/n \times \mathbb{Z}/n$ where $n = p^k - (-1)^k$.
- We construct isogenies from their kernel subgroups.

- We work with curves defined over 𝔽_{p²} such that π = [−p]. (This choice is natural: It includes the base-changes of curves defined over 𝔽_p.)
- ► The group structure is known over all extensions: $E(\mathbb{F}_{p^{2k}}) \cong \mathbb{Z}/n \times \mathbb{Z}/n$ where $n = p^k - (-1)^k$.
- We construct isogenies from their kernel subgroups.
- We work with smooth-degree isogenies since classical isogeny formulas require exponential time in log(*degree*).

• Everything lives in a particular quaternion algebra $B_{p,\infty}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.

- Everything lives in a particular quaternion algebra $B_{p,\infty}$.
- ► The algebra $B_{p,\infty}$ is a 4-dimensional Q-vector space. Write $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}\mathbf{i} \oplus \mathbb{Q}\mathbf{j} \oplus \mathbb{Q}\mathbf{i}\mathbf{j}$.
- Multiplication defined by relations i²=−q, j²=−p, ji = −ij. Here q is a positive integer satisfying some conditions with respect to p.
 All valid q define isomorphic algebras B_{p,∞}.
- The algebra $B_{p,\infty}$ has a conjugation which negates $\mathbf{i}, \mathbf{j}, \mathbf{ij}$. The norm and trace of an element α are $\alpha \overline{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha + \overline{\alpha} \in \mathbb{Z}$.

• Maximal orders in the quaternion algebra $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- Left- and right-ideals, principal ideals, and so on.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

• A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- A fractional ideal I is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.)

- Maximal orders in the quaternion algebra $B_{p,\infty}$.
- ► Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p,\infty}$.
- ► An order is a fractional ideal which is a subring of B_{p,∞}. A maximal order is one that is not contained in any strictly larger order.
- ► A fractional ideal *I* is a left \mathcal{O} -ideal if $\mathcal{O}I \subseteq I$. (Similarly on the right.) We say *I* connects \mathcal{O} and \mathcal{O}' if $\mathcal{O}I \subseteq I$ and $I\mathcal{O}' \subseteq I$.

• We typically work with one fixed choice of *q* for each *p*.

- We typically work with one fixed choice of *q* for each *p*.
- ▶ Quaternions are represented as vectors in Q⁴.

- We typically work with one fixed choice of *q* for each *p*.
- ► Quaternions are represented as vectors in Q⁴.
- ► Quaternion lattices are represented by a Z-basis.

- We typically work with one fixed choice of *q* for each *p*.
- ► Quaternions are represented as vectors in Q⁴.
- ► Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

- We typically work with one fixed choice of *q* for each *p*.
- ► Quaternions are represented as vectors in Q⁴.
- ► Quaternion lattices are represented by **a** Z-basis.
- All the basic algorithms are essentially linear algebra.

<u>General theme</u>: Things are easy in quaternion land.

$E\mapsto \mathcal{O}$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\iota: (x, y) \longmapsto (-x, \sqrt{-1} \cdot y), \pi: (x, y) \longmapsto (x^p, y^p).$$

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota \colon & (x,y) \longmapsto (-x,\sqrt{-1} \cdot y) \,, \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) \,. \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota\colon & (x,y) \longmapsto (-x,\sqrt{-1}\cdot y), \\ \pi\colon & (x,y) \longmapsto (x^p,y^p). \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi, \ \text{and} \ \pi^2 = [-p].$

Hence, in the quaternion algebra where $i^2 = -1$ and $j^2 = -p$, the pair (ι, π) corresponds to (i, j).

Assume $p \equiv 3 \pmod{4}$.

Then $E: y^2 = x^3 + x$ is supersingular, and it has endomorphisms

$$\begin{split} \iota\colon & (x,y) \longmapsto (-x,\sqrt{-1}\cdot y), \\ \pi\colon & (x,y) \longmapsto (x^p,y^p). \end{split}$$

In decreasing order of obviousness, one can show that $\iota^2 = [-1], \ \pi \iota = -\iota \pi, \ \text{and} \ \pi^2 = [-p].$

Hence, in the quaternion algebra where $\mathbf{i}^2 = -1$ and $\mathbf{j}^2 = -p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}) .

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of $\operatorname{End}(E)$ is given by

$$\{1, \quad i, \quad (i+j)/2, \quad (1+ij)/2\}\,.$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} &\omega\colon \ (x,y)\ \longmapsto\ (\zeta_3\cdot x,y)\,,\\ &\pi\colon \ (x,y)\ \longmapsto\ (x^p,y^p)\,. \end{split}$$

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} \omega \colon & (x,y) \longmapsto (\zeta_3 \cdot x,y) \,, \\ \pi \colon & (x,y) \longmapsto (x^p,y^p) \,. \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} &\omega\colon \ (x,y)\ \longmapsto\ (\zeta_3\cdot x,y)\,,\\ &\pi\colon \ (x,y)\ \longmapsto\ (x^p,y^p)\,. \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $\mathbf{i}^2 = -3$ and $\mathbf{j}^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}) .

Assume $p \equiv 2 \pmod{3}$.

Then $E: y^2 = x^3 + 1$ is supersingular, and it has endomorphisms

$$\begin{split} &\omega\colon \ (x,y)\ \longmapsto\ (\zeta_3\cdot x,y)\,,\\ &\pi\colon \ (x,y)\ \longmapsto\ (x^p,y^p)\,. \end{split}$$

In decreasing order of obviousness, one can show that $\omega^3 = [1]$, $\omega \pi + \pi \omega = -\pi$, and $\pi^2 = [-p]$.

Hence, in the quaternion algebra where $\mathbf{i}^2 = -3$ and $\mathbf{j}^2 = -p$, the pair $(2\omega + 1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}) .

In fact, the image in $B_{p,\infty}$ of a \mathbb{Z} -basis of End(E) is given by

$$\{1, \quad (1+i)/2, \quad (j+ij)/2, \quad (i+ij)/3\}\,.$$

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve, find its endomorphism ring.

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem. Given two supersingular elliptic curves, find any isogeny between them.

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem. Given two supersingular elliptic curves, find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

- ▶ <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{\nu,\infty}$ is generally not totally trivial.
 - Distinction between *MaxOrder* and *EndRing* problems.

- ▶ <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.

- ▶ <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.
 - Multiple *q* define the same B_{p,∞}.
 Need to convert from i² = -q basis to i'² = -q' basis.

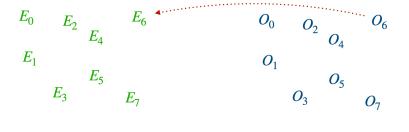
- ► <u>Subtlety</u>: Identifying explicit endomorphisms with abstract elements of $B_{p,\infty}$ is generally not totally trivial.
 - ► Distinction between *MaxOrder* and *EndRing* problems.
 - Gram–Schmidt-type procedure using the trace pairing End(E) × End(E) → Z, (α, β) ↦ αβ + αβ̂.
 This is polynomial-time.
 - Multiple *q* define the same B_{p,∞}.
 Need to convert from i² = -q basis to i'² = -q' basis.

Lemma 10. Let p be a prime number and $q, q' \in \mathbb{Z}_{>0}$ such that $B = (-q, -p \mid \mathbb{Q})$ and $B' = (-q', -p \mid \mathbb{Q})$ are quaternion algebras ramified at p and ∞ .

Then there exist $x, y \in \mathbb{Q}$ such that $x^2 + py^2 = q'/q$. Writing $1, \mathbf{i}', \mathbf{j}', \mathbf{k}'$ for the generators of B' and $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ for the generators of B, and setting $\gamma := x + y\mathbf{j}$, the mapping

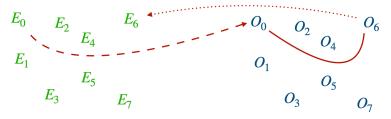
 $\mathbf{i}'\mapsto \mathbf{i}\gamma, \qquad \mathbf{j}'\mapsto \mathbf{j}, \qquad \mathbf{k}'\mapsto \mathbf{k}\gamma$

defines a \mathbb{Q} -algebra isomorphism $B' \xrightarrow{\sim} B$.



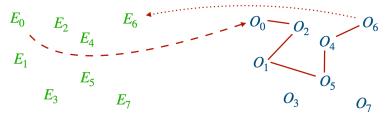


► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.



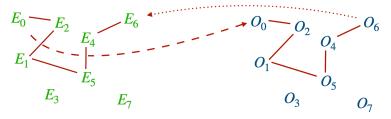
- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal.
 Solve the "isogeny problem" in quaternion land.

From quaternions to curves



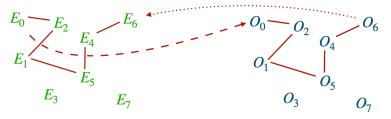
- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.

From quaternions to curves



- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT.
 Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

From quaternions to curves



- ► Step 0: Base curve. Any curve over F_p with a known small-degree endomorphism.
- Step 1: Connecting ideal + KLPT. Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny. Map the solution "down" to curve land.

I will talk about these *in reverse order*.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\alpha \in I} \ker \alpha$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\alpha \in I} \ker \alpha$.

<u>Algorithms:</u>

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\alpha \in I} \ker \alpha$.

Algorithms:

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\alpha \in I} \ker \alpha$.

Algorithms:

- Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.
- ► Better: Factor $N = \ell_1^{e_1} \cdots \ell_r^{e_r}$, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$. Then $H_I = \langle H'_1, ..., H'_r \rangle$.
- If φ_I is cyclic, we have $\ker(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

The isogeny φ_I defined by an ideal *I* has kernel $H_I = \bigcap_{\alpha \in I} \ker \alpha$.

Algorithms:

• Write $I = (N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_I = \ker(\alpha|_{E[N]})$.

► Better: Factor
$$N = \ell_1^{e_1} \cdots \ell_r^{e_r}$$
, let $H'_k = \ker(\alpha|_{E[\ell_k^{e_k}]})$.
Then $H_I = \langle H'_1, ..., H'_r \rangle$.

▶ If φ_I is cyclic, we have ker $(\alpha|_{E[N]}) = \overline{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.

Step $0.\overline{9}$: Connecting ideals

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

1. Compute $\mathcal{OO}' = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O}'\}) \subseteq B_{p,\infty}$.

Step $0.\overline{9}$: Connecting ideals

Finding **a** connecting $(\mathcal{O}, \mathcal{O}')$ -ideal is straightforward:

- 1. Compute $\mathcal{OO}' = \operatorname{span}_{\mathbb{Z}}(\{\alpha\beta : \alpha \in \mathcal{O}, \beta \in \mathcal{O}'\}) \subseteq B_{p,\infty}$.
- That's all, but typically the norm of OO' is horrible.
 (Also, it's integral only in trivial cases → scale by denominator in Z.)

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

• The resulting *isogeny* φ_I will be different from φ_I .

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.
 - Hence, for *T* coprime to *N'*, with $S := N'^{-1} \mod T$,

 $\varphi_I|_{E[T]} = S\varphi_J \omega|_{E[T]} \,.$

<u>KLPT/</u>

...finds an equivalent ideal $J = I\overline{\gamma}/N$ of controlled norm N'. Typical cases: Norm ℓ^{\bullet} , powersmooth norm $\ell_1^{e_1} \cdots \ell_r^{e_r}$. The determining factor of success is the size of the norm. Estimate $\approx p^3$.

<u>Fact:</u> Equivalent ideals \rightsquigarrow isomorphic *codomains*.

- The resulting *isogeny* φ_I will be different from φ_I .
- We can "fix" the evaluation a posteriori:
 - The composition $\omega := \widehat{\varphi}_I \varphi_I$ is an endomorphism.
 - As a quaternion, it is simply given by γ ! (Proof: $I\gamma^{-1}\overline{J}\gamma$) \rightsquigarrow We can evaluate ω without computing φ_I first.
 - Hence, for *T* coprime to *N'*, with $S := N'^{-1} \mod T$,

$$\varphi_I|_{E[T]} = S\varphi_J \omega|_{E[T]} \,.$$

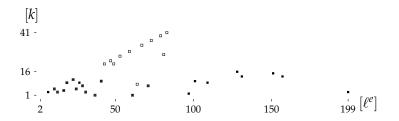
 \rightsquigarrow <u>Do it twice</u> with coprime degrees to evaluate on any point.

▶ Norm is big ~> we have to work in field extensions.

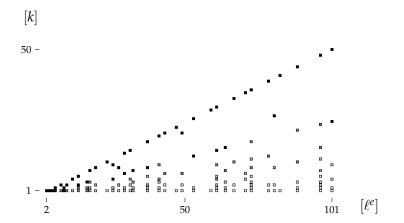
- ► Norm is big ~> we have to work in field extensions.
- **!!** Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.

- ► Norm is big ~> we have to work in field extensions.
- " Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.

- ► Norm is big ~> we have to work in field extensions.
- " Lots of choice for prime powers ℓ^e . Trick: Look for $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$ with *k* small.
- \rightsquigarrow <u>Tradeoff</u>: *number* of operations \longleftrightarrow *cost* of arithmetic.



Heatmap



Average extension *k* required to access ℓ^e -torsion.

Step 0 is to construct a supersingular elliptic curve *E*₀ together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.

- Step 0 is to construct a supersingular elliptic curve *E*₀ together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.

- Step 0 is to construct a supersingular elliptic curve E₀ together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \to E$ with the isomorphism $\tau: (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.

- Step 0 is to construct a supersingular elliptic curve *E*₀ together with a small-degree endomorphism.
 Often easy to explicitly write down; tricky in general.
- ► Ingredient #1: Bröker's algorithm.
 Find *q* such that i²=-q, j²=-p defines B_{p,∞}, find a root j ∈ F_p of the Hilbert class polynomial H_{-q}, construct a curve with this *j*-invariant.
- ► Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a *normalized* degree-*q* isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta : E \to E$ with the isomorphism $\tau : (x, y) \mapsto (-qx, \sqrt{-q^3}y)$ makes it normalized.
- ► Ingredient #3: Ibukiyama's theorem.
 Explicit basis for a maximal order of B_{p,∞} with an endomorphism √-q.
 In fact, there are only very few maximal orders containing √-q.

https://github.com/friends-of-quaternions/deuring (Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring

https://github.com/friends-of-quaternions/deuring (Eriksen, Panny, Sotáková, Veroni; 2023)

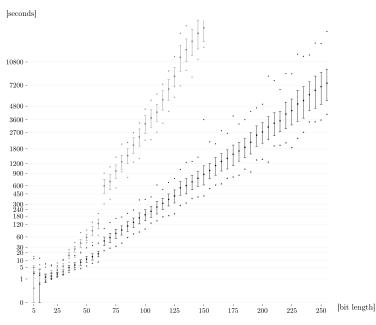
sage: from deuring.broker import starting_curve sage: from deuring.randomideal import random_ideal sage: from deuring.correspondence import constructive_deuring sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)
```

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2. <i> = GF((2^{31}-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k. -1722016565/2 + 1401001825/2*i + 551/2*i
    + 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
    -2147483647*i - 22485*i + 3069*k
sage: E1. phi. = constructive deuring(I. E0. iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
             = 2^{29} \cdot 3^{3} \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 41 \cdot 43^{2} \cdot 61 \cdot 79 \cdot 151
  From: Elliptic Curve defined by y^2 = x^3 + x over
             Finite Field in i of size 2147483647^2
  To: Elliptic Curve defined by y^2 = x^3 + (1474953432 \times i)
                  +1816867654) *x + (581679615*i+260136654)
             over Finite Field in i of size 2147483647^2
```

Timings (SageMath, single core)



We've been informed of one run for a 521-bit characteristic that took only about 7 hours.

→ Definitely practical for parameter setup etc.!

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- A new and very hot post-quantum signature scheme.
- ► Part of NIST's post-quantum standardization process.

+ It's extremely <u>small</u> compared to the competition.

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

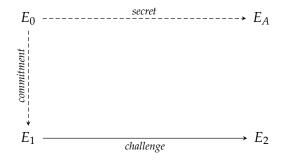
→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

 $E_0 \xrightarrow{secret} E_A$

→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.



→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.



→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

• Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.

→ <u>Fiat–Shamir</u>: signature scheme from identification scheme by replacing the verifier by a hash function.

- Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- **<u>SQIsign's solution</u>**: Construct new path $E_A \rightarrow E_2$ (using secret).

Main idea:

• "Lift" the commitment and challenge to quaternion land.

<u>Main idea:</u>

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).

<u>Main idea:</u>

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

<u>Main idea:</u>

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm /.

▶ From End(E), End(E'), can randomize within Hom(E, E').

<u>Main idea:</u>

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm .

- ▶ From End(E), End(E'), can randomize within Hom(E, E').
- → SQIsign takes the "broken" signature $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ and rewrites it into a random isogeny $E_A \rightarrow E_2$.

<u>Main idea:</u>

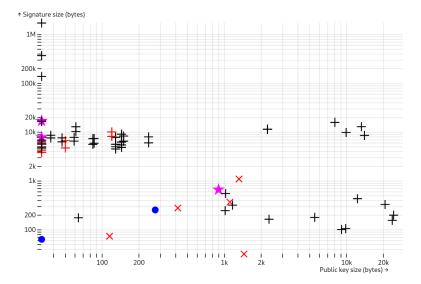
- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm .

- ▶ From End(E), End(E'), can randomize within Hom(E, E').
- → SQIsign takes the "broken" signature $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ and rewrites it into a random isogeny $E_A \rightarrow E_2$.

"If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign." — Yan Bo Ti

SQIsign: Comparison



Source: https://pqshield.github.io/nist-sigs-zoo

Bonus slides

Awesome new technique (established 2022):

Computing isogenies between *products* of elliptic curves

Awesome new technique (established 2022):

Computing isogenies between *products* of elliptic curves

• The product $E \times E'$ is an abelian *surface*.

Awesome new technique (established 2022):

Computing isogenies between *products* of elliptic curves

- The product $E \times E'$ is an abelian *surface*.
- Similar to elliptic curves in many ways:
 - Points form an abelian group.
 - ► Similar group structure, but more components.
 - Can define isogenies from kernel subgroups.

Awesome new technique (established 2022):

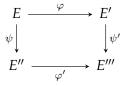
Computing isogenies between *products* of elliptic curves

- The product $E \times E'$ is an abelian *surface*.
- Similar to elliptic curves in many ways:
 - Points form an abelian group.
 - ► Similar group structure, but more components.
 - Can define isogenies from kernel subgroups.
- Computing with surfaces explicitly is possible, but painful.
 Everyone works with Jacobians of genus-2 curves instead.

The embedding lemma

The embedding lemma

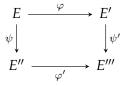
Consider a commutative diagram of isogenies



where $a := \deg \varphi$ and $b := \deg \psi$ are coprime; let N := a + b.

The embedding lemma

Consider a commutative diagram of isogenies



where $a := \deg \varphi$ and $b := \deg \psi$ are coprime; let N := a + b.

Lemma. Then $F := \begin{pmatrix} \varphi & \widehat{\psi}' \\ -\psi & \widehat{\varphi}' \end{pmatrix}$ defines an *N*-isogeny $E \times E''' \to E' \times E''$. Its kernel is ker $(F) = \{(\widehat{\varphi}(P), \psi'(P)) \mid P \in E'[N]\}$.

<u>Recall</u>: For embedding lemma, need to evaluate φ on E[N]. \rightsquigarrow Exponentially many points.

<u>Recall</u>: For embedding lemma, need to evaluate φ on E[N]. \rightarrow Exponentially many points.

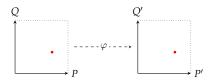
<u>Clever trick</u>:

- Fix basis (P, Q) of E[N]; compute $P' = \varphi(P)$ and $Q' = \varphi(Q)$.
- Notice that φ is a group homomorphism.

<u>Recall</u>: For embedding lemma, need to evaluate φ on E[N]. \rightarrow Exponentially many points.

<u>Clever trick</u>:

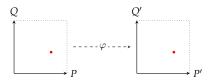
- Fix basis (P, Q) of E[N]; compute $P' = \varphi(P)$ and $Q' = \varphi(Q)$.
- Notice that φ is a group homomorphism.



<u>Recall</u>: For embedding lemma, need to evaluate φ on E[N]. \longrightarrow Exponentially many points.

<u>Clever trick</u>:

- Fix basis (P, Q) of E[N]; compute $P' = \varphi(P)$ and $Q' = \varphi(Q)$.
- Notice that φ is a group homomorphism.



Evaluating φ at an arbitrary point $T \in E[N]$:

1. Decompose T = [u]P + [v]Q with $u, v \in \mathbb{Z}$.

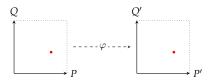
This is a discrete-logarithm computation, which is easy whenever N is smooth!

2. Output [u]P' + [v]Q'.

<u>Recall</u>: For embedding lemma, need to evaluate φ on E[N]. \rightarrow Exponentially many points.

<u>Clever trick</u>:

- Fix basis (P, Q) of E[N]; compute $P' = \varphi(P)$ and $Q' = \varphi(Q)$.
- Notice that φ is a group homomorphism.



Evaluating φ at an arbitrary point $T \in E[N]$:

1. Decompose T = [u]P + [v]Q with $u, v \in \mathbb{Z}$.

This is a discrete-logarithm computation, which is easy whenever N is smooth!

- 2. Output [u]P' + [v]Q'.
- \implies The data (P, Q, P', Q') encodes the *restriction* $\varphi|_{E[N]}$.

Questions?

(Also feel free to email me: lorenz@yx7.cc)