Computing the Deuring correspondence and applications to cryptography

Lorenz Panny

Technische Universität München

Oberseminar "Arithmetische und Algebraische Geometrie", Munich, 19 June 2024

What?

The Deuring correspondence:

a priori
Almost exact equivalence between two ${ }^{\curlyvee}$ very different worlds:

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two ${ }^{\gamma}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two ${ }^{\gamma}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$.

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two ${ }^{\gamma}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$. Isogenies become connecting ideals in quaternion land.

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two ${ }^{\gamma}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$. Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two ${ }^{\gamma}$ very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$. Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.
$\ddot{*}$ The " \Leftarrow " direction is easy, the " \Rightarrow " direction seems hard!

What?

The Deuring correspondence:

> a priori

Almost exact equivalence between two very different worlds:

- Supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$.
- Quaternions: Maximal orders in a certain algebra $B_{p, \infty}$. Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.
$\ddot{*}$ The " \Leftarrow " direction is easy, the " \Rightarrow " direction seems hard!
\rightsquigarrow Cryptography!

Cry-what?

- Public-key cryptography provides functionality such as secure connections on the internet and digital signatures.

Cry-what?

- Public-key cryptography provides functionality such as secure connections on the internet and digital signatures.
- Grim future: Quantum computers are expected to break almost all of the systems we currently use.

Cry-what?

- Public-key cryptography provides functionality such as secure connections on the internet and digital signatures.
- Grim future: Quantum computers are expected to break almost all of the systems we currently use.
- Solution: Post-quantum cryptography. It is based on different types of computational problems, including isogeny problems!

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

- \approx All isogeny security reduces to the " \Rightarrow " direction.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- SQIsign builds on the " \Leftarrow " direction constructively.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- SQIsign builds on the " \Leftarrow " direction constructively.
- Essential tool for both constructions and attacks.

Why?

We now know that the Deuring correspondence lies at the heart of contemporary isogeny-based cryptography.

- \approx All isogeny security reduces to the " \Rightarrow " direction.
- SQIsign builds on the " \Leftarrow " direction constructively.
- Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
\rightsquigarrow Oriented curves and the isogeny class-group action.

The main theorem

- Fix a supersingular elliptic curve $E_{0} / \mathbb{F}_{p^{2}}$.

The main theorem

- Fix a supersingular elliptic curve $E_{0} / \mathbb{F}_{p^{2}}$.
- Let $\mathcal{O}_{0}:=\operatorname{End}\left(E_{0}\right)$ and identify $B_{p, \infty}=\mathcal{O}_{0} \otimes_{\mathbb{Z}} \mathbb{Q}$.

The main theorem

- Fix a supersingular elliptic curve $E_{0} / \mathbb{F}_{p^{2}}$.
- Let $\mathcal{O}_{0}:=\operatorname{End}\left(E_{0}\right)$ and identify $B_{p, \infty}=\mathcal{O}_{0} \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem. The (contravariant) functor

$$
E \longmapsto \operatorname{Hom}\left(E, E_{0}\right)
$$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_{0}-modules with nonzero left \mathcal{O}_{0}-module homomorphisms.

The main theorem

- Fix a supersingular elliptic curve $E_{0} / \mathbb{F}_{p^{2}}$.
- Let $\mathcal{O}_{0}:=\operatorname{End}\left(E_{0}\right)$ and identify $B_{p, \infty}=\mathcal{O}_{0} \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem. The (contravariant) functor

$$
E \longmapsto \operatorname{Hom}\left(E, E_{0}\right)
$$

defines an equivalence of categories between

- supersingular elliptic curves with isogenies; and
- invertible left \mathcal{O}_{0}-modules with nonzero left \mathcal{O}_{0}-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular elliptic curves are in bijection with the (left) class set $\mathrm{Cls}_{L}\left(\mathcal{O}_{0}\right)$.

Ideals \& isogenies

One particular consequence of this equivalence is that isogenies from E_{0} correspond to left ideals of \mathcal{O}_{0}.

Ideals \& isogenies

One particular consequence of this equivalence is that isogenies from E_{0} correspond to left ideals of \mathcal{O}_{0}.

- Given $\psi: E_{0} \rightarrow E$, the associated \mathcal{O}_{0}-ideal is $\operatorname{Hom}\left(E, E_{0}\right) \psi$.

Ideals \& isogenies

One particular consequence of this equivalence is that isogenies from E_{0} correspond to left ideals of \mathcal{O}_{0}.

- Given $\psi: E_{0} \rightarrow E$, the associated \mathcal{O}_{0}-ideal is $\operatorname{Hom}\left(E, E_{0}\right) \psi$.

Important consequence: The isogeny $\varphi_{I}: E_{0} \rightarrow E$ defined by a left \mathcal{O}_{0}-ideal I has kernel $\bigcap_{\alpha \in I} \operatorname{ker} \alpha \leq E_{0}$.

Ideals \& isogenies

One particular consequence of this equivalence is that isogenies from E_{0} correspond to left ideals of \mathcal{O}_{0}.

- Given $\psi: E_{0} \rightarrow E$, the associated \mathcal{O}_{0}-ideal is $\operatorname{Hom}\left(E, E_{0}\right) \psi$.

Important consequence: The isogeny $\varphi_{I}: E_{0} \rightarrow E$ defined by a left \mathcal{O}_{0}-ideal I has kernel $\bigcap_{\alpha \in I} \operatorname{ker} \alpha \leq E_{0}$.

- Moreover, then $\operatorname{End}(E) \hookrightarrow B_{p, \infty}$ via $\alpha \mapsto \widehat{\varphi_{I}} \alpha \varphi_{I} / \operatorname{deg}\left(\varphi_{I}\right)$.
- Under this embedding, $\operatorname{End}(E)=\left\{\alpha \in B_{p, \infty}: I \alpha \subseteq I\right\}$.

History and algorithms

- 1941: Deuring proves the correspondence.

Weṇ! aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorrt, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zll denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

History and algorithms

- 1941: Deuring proves the correspondence.

Weṇ̆ aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorrt, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zll denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.

History and algorithms

- 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorrt, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zul denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.

History and algorithms

- 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorr, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zul denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) i) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.

History and algorithms

- 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorr, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zul denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.

History and algorithms

- 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in $Q_{\infty, p}$ ist, in der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante j; zu der dieser Multiplikatorenring gehorr, sie ist absolut rational. Ist der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl der j, zul denen eine. Maximalordnung von $Q_{\infty, p}$ als Multiplikatorenring gehört, ist gleich der Klassenzahl von $Q_{\infty, p}$.

- 2004: Cerviño gives a (necessarily exponential-time) algorithm to compute all pairs (E, \mathcal{O}) for a given p.
- 2013: Chevyrev-Galbraith give an exponential-time algorithm to compute $\mathcal{O} \mapsto E$.
- 201_: Petit-Lauter (using Kohel-Lauter-Petit-Tignol (2014) ノ) find a heuristically polynomial-time algorithm for $\mathcal{O} \mapsto E$.
- 2021: Wesolowski assumes GRH and gives a provably polynomial-time variant.
- 2023: Eriksen-Panny-Sotáková-Veroni develop practical optimizations and publish a fully general implementation.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$ throughout.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$ throughout.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.

Curve world

- Universe: Characteristic p. Assume $p \geq 5$ throughout.
- Supersingular elliptic curves: $E[p]=\{\infty\}$.
- Isogenies, endomorphisms, and so on and so forth.
- Famous examples:
- $p \equiv 3(\bmod 4)$ and $E: y^{2}=x^{3}+x$ with j-invariant 1728.
- $p \equiv 2(\bmod 3)$ and $E: y^{2}=x^{3}+1$ with j-invariant 0 .

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$.
(This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)
- The group structure is known over all extensions:
$E\left(\mathbb{F}_{p^{2 k}}\right) \cong \mathbb{Z} / n \times \mathbb{Z} / n$ where $n=p^{k}-(-1)^{k}$.

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$. (This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)
- The group structure is known over all extensions: $E\left(\mathbb{F}_{p^{2 k}}\right) \cong \mathbb{Z} / n \times \mathbb{Z} / n$ where $n=p^{k}-(-1)^{k}$.
- We construct isogenies from their kernel subgroups.

Computationally...

- We work with curves defined over $\mathbb{F}_{p^{2}}$ such that $\pi=[-p]$. (This choice is natural: It includes the base-changes of curves defined over \mathbb{F}_{p}.)
- The group structure is known over all extensions: $E\left(\mathbb{F}_{p^{2 k}}\right) \cong \mathbb{Z} / n \times \mathbb{Z} / n$ where $n=p^{k}-(-1)^{k}$.
- We construct isogenies from their kernel subgroups.
- We work with smooth-degree isogenies since classical isogeny formulas require exponential time in \log (degree).

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4-dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j} \mathbf{i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p. \triangle All valid q define isomorphic algebras $B_{p, \infty}$.

Quaternion universe

- Everything lives in a particular quaternion algebra $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ is a 4 -dimensional \mathbb{Q}-vector space. Write $B_{p, \infty}=\mathbb{Q} \oplus \mathbb{Q} \mathbf{i} \oplus \mathbb{Q} \mathbf{j} \oplus \mathbb{Q} \mathbf{i j}$.
- Multiplication defined by relations $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p, \mathbf{j i}=-\mathbf{i j}$. Here q is a positive integer satisfying some conditions with respect to p. \triangle All valid q define isomorphic algebras $B_{p, \infty}$.
- The algebra $B_{p, \infty}$ has a conjugation ${ }^{-}$which negates $\mathbf{i}, \mathbf{j}, \mathbf{i j}$. The norm and trace of an element α are $\alpha \bar{\alpha} \in \mathbb{Z}_{\geq 0}$ and $\alpha+\bar{\alpha} \in \mathbb{Z}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$.

A maximal order is one that is not contained in any strictly larger order.

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
- A fractional ideal I is a left \mathcal{O}-ideal if $\mathcal{O} I \subseteq I$. (Similarly on the right.)

Quaternion world

- Maximal orders in the quaternion algebra $B_{p, \infty}$.
- Left- and right-ideals, principal ideals, and so on.

Definitions:

- A (fractional) ideal is a rank-4 lattice contained in $B_{p, \infty}$.
- An order is a fractional ideal which is a subring of $B_{p, \infty}$. A maximal order is one that is not contained in any strictly larger order.
 We say I connects \mathcal{O} and \mathcal{O}^{\prime} if $\mathcal{O} \subseteq I$ and $I \mathcal{O}^{\prime} \subseteq I$.

Computationally, ...

- We typically work with one fixed choice of q for each p.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

Computationally, ...

- We typically work with one fixed choice of q for each p.
- Quaternions are represented as vectors in \mathbb{Q}^{4}.
- Quaternion lattices are represented by a \mathbb{Z}-basis.
- All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

From curves to quaternions
$E \mapsto \mathcal{O}$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota: & (x, y) \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota:(x, y) & \longmapsto(-x, \sqrt{-1} \cdot y), \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

Example \#1

Assume $p \equiv 3(\bmod 4)$.
Then $E: y^{2}=x^{3}+x$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\iota: & (x, y) \\
\pi: & \longmapsto(-x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\iota^{2}=[-1], \pi \iota=-\iota \pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-1$ and $\mathbf{j}^{2}=-p$, the pair (ι, π) corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad \mathbf{i}, \quad(\mathbf{i}+\mathbf{j}) / 2, \quad(1+\mathbf{i} \mathbf{j}) / 2\}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{gathered}
\omega:(x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right), \\
\pi:(x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{gathered}
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega: & (x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega:(x, y) & \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

Example \#2

Assume $p \equiv 2(\bmod 3)$.
Then $E: y^{2}=x^{3}+1$ is supersingular, and it has endomorphisms

$$
\begin{aligned}
\omega: & (x, y) \longmapsto\left(\zeta_{3} \cdot x, y\right) \\
\pi: & (x, y) \longmapsto\left(x^{p}, y^{p}\right) .
\end{aligned}
$$

In decreasing order of obviousness, one can show that

$$
\omega^{3}=[1], \omega \pi+\pi \omega=-\pi, \text { and } \pi^{2}=[-p] .
$$

Hence, in the quaternion algebra where $\mathbf{i}^{2}=-3$ and $\mathbf{j}^{2}=-p$, the pair $(2 \omega+1, \pi)$ corresponds to (\mathbf{i}, \mathbf{j}).

In fact, the image in $B_{p, \infty}$ of a \mathbb{Z}-basis of $\operatorname{End}(E)$ is given by

$$
\{1, \quad(1+\mathbf{i}) / 2, \quad(\mathbf{j}+\mathbf{i} \mathbf{j}) / 2, \quad(\mathbf{i}+\mathbf{i} \mathbf{j}) / 3\}
$$

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve, find its endomorphism ring.

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):
The isogeny problem.
Given two supersingular elliptic curves, find any isogeny between them.

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve, find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves, find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

- Multiple q define the same $B_{p, \infty}$. Need to convert from $\mathbf{i}^{2}=-q$ basis to $\mathbf{i}^{\prime 2}=-q^{\prime}$ basis.

From curves to quaternions

- Subtlety: Identifying explicit endomorphisms with abstract elements of $B_{p, \infty}$ is generally not totally trivial.
- Distinction between MaxOrder and EndRing problems.
- Gram-Schmidt-type procedure using the trace pairing

$$
\operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Z}, \quad(\alpha, \beta) \mapsto \widehat{\alpha} \beta+\alpha \widehat{\beta}
$$

This is polynomial-time.

- Multiple q define the same $B_{p, \infty}$. Need to convert from $\mathbf{i}^{2}=-q$ basis to $\mathbf{i}^{\prime 2}=-q^{\prime}$ basis.

Lemma 10. Let p be a prime number and $q, q^{\prime} \in \mathbb{Z}_{>0}$ such that $B=(-q,-p \mid \mathbb{Q})$ and $B^{\prime}=\left(-q^{\prime},-p \mid \mathbb{Q}\right)$ are quaternion algebras ramified at p and ∞.

Then there exist $x, y \in \mathbb{Q}$ such that $x^{2}+p y^{2}=q^{\prime} / q$. Writing $1, \mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{k}^{\prime}$ for the generators of B^{\prime} and $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ for the generators of B, and setting $\gamma:=x+y \mathbf{j}$, the mapping

$$
\mathbf{i}^{\prime} \mapsto \mathbf{i} \gamma, \quad \mathbf{j}^{\prime} \mapsto \mathbf{j}, \quad \mathbf{k}^{\prime} \mapsto \mathbf{k} \gamma
$$

defines $a \mathbb{Q}$-algebra isomorphism $B^{\prime} \xrightarrow{\sim} B$.

From quaternions to curves

From quaternions to curves

$$
\begin{array}{ccccccccc}
E_{0} & E_{2} & & E_{6} & & O_{0} & O_{2} & & O_{6} \\
E_{1} & & E_{4} & & & & O_{4} & \\
& & E_{5} & & & & \\
& E_{3} & & E_{7} & & & O_{5} & \\
& & & O_{3} & & O_{7}
\end{array}
$$

From quaternions to curves

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{1} \\
E_{1} \\
E_{3} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal.

Solve the "isogeny problem" in quaternion land.

From quaternions to curves

$$
\begin{gathered}
E_{0}, ~ E_{2} E_{4} \\
E_{1} \\
E_{5} \\
E_{7}
\end{gathered}
$$

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPTノ

Solve the "isogeny problem" in quaternion land.

From quaternions to curves

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPT . Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny.

Map the solution "down" to curve land.

From quaternions to curves

- Step 0: Base curve.

Any curve over \mathbb{F}_{p} with a known small-degree endomorphism.

- Step 1: Connecting ideal + KLPTノ Solve the "isogeny problem" in quaternion land.
- Step 2: Ideal-to-isogeny.

Map the solution "down" to curve land.
I will talk about these in reverse order.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\alpha \in I} \operatorname{ker} \alpha$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\alpha \in I} \operatorname{ker} \alpha$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\alpha \in I} \operatorname{ker} \alpha$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

Then $H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle$.

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\alpha \in I} \operatorname{ker} \alpha$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

Then $H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle$.

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Step 2: Ideal-to-isogeny

The isogeny φ_{I} defined by an ideal I has kernel $H_{I}=\bigcap_{\alpha \in I} \operatorname{ker} \alpha$.

Algorithms:

- Write $I=(N, \alpha)$ with $N \in \mathbb{Z}_{>0}$. Then $H_{I}=\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)$.
- Better: Factor $N=\ell_{1}^{e_{1}} \cdots \ell_{r}^{e_{r}}$, let $H_{k}^{\prime}=\operatorname{ker}\left(\left.\alpha\right|_{E\left[\ell_{k}^{e_{k}}\right]}\right)$.

Then $H_{I}=\left\langle H_{1}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle$.

- If φ_{I} is cyclic, we have $\operatorname{ker}\left(\left.\alpha\right|_{E[N]}\right)=\bar{\alpha}(E[N])$. No logarithms!

Crucial observation: Complexity depends on factorization of N.

Step 0.9. Connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.

Step 0.9. Connecting ideals

Finding a connecting $\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$-ideal is straightforward:

1. Compute $\mathcal{O} \mathcal{O}^{\prime}=\operatorname{span}_{\mathbb{Z}}\left(\left\{\alpha \beta: \alpha \in \mathcal{O}, \beta \in \mathcal{O}^{\prime}\right\}\right) \subseteq B_{p, \infty}$.
2. That's all, but typically the norm of $\mathcal{O O}^{\prime}$ is horrible. (Also, it's integral only in trivial cases \rightsquigarrow scale by denominator in \mathbb{Z}.)

Step 1: Convenient connecting ideals

KLPT ノ

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.

Step 1: Convenient connecting ideals

KLPT 1

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.

Step 1: Convenient connecting ideals

KLPT ノ

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

Step 1: Convenient connecting ideals

KLPT /

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.

Step 1: Convenient connecting ideals

KLPT 1

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.

Step 1: Convenient connecting ideals

KLPT 1

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{e_{1}} \cdots \ell_{r}^{\ell_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$) \rightsquigarrow We can evaluate ω without computing φ_{I} first.

Step 1: Convenient connecting ideals

KLPT 1

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$) \rightsquigarrow We can evaluate ω without computing φ_{I} first.
- Hence, for T coprime to N^{\prime}, with $S:=N^{\prime-1} \bmod T$,

$$
\left.\varphi_{I}\right|_{E[T]}=\left.S \varphi_{J} \omega\right|_{E[T]} .
$$

Step 1: Convenient connecting ideals

KLPT 1

...finds an equivalent ideal $J=I \bar{\gamma} / N$ of controlled norm N^{\prime}.
Typical cases: Norm ℓ^{\bullet}, powersmooth norm $\ell_{1}^{\ell_{1}} \cdots \ell_{r}^{e_{r}}$.
The determining factor of success is the size of the norm. Estimate $\approx p^{3}$.
Fact: Equivalent ideals \rightsquigarrow isomorphic codomains.

- The resulting isogeny φ_{J} will be different from φ_{I}.
- We can "fix" the evaluation a posteriori:
- The composition $\omega:=\widehat{\varphi}_{J} \varphi_{I}$ is an endomorphism.
- As a quaternion, it is simply given by γ ! (Proof: $I \gamma^{-1} \bar{J} \gamma$) \rightsquigarrow We can evaluate ω without computing φ_{I} first.
- Hence, for T coprime to N^{\prime}, with $S:=N^{\prime-1} \bmod T$,

$$
\left.\varphi_{I}\right|_{E[T]}=\left.S \varphi_{J} \omega\right|_{E[T]} .
$$

\rightsquigarrow Do it twice with coprime degrees to evaluate on any point.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow we have to work in field extensions.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow we have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}.
Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow we have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}.
Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Cool trick \#1: Convenient torsion is convenient

- Norm is big \rightsquigarrow we have to work in field extensions.
!! Lots of choice for prime powers ℓ^{e}.
Trick: Look for $E\left[\ell^{e}\right] \subseteq E\left(\mathbb{F}_{p^{2 k}}\right)$ with k small.
\rightsquigarrow Tradeoff: number of operations \longleftrightarrow cost of arithmetic.

Heatmap

Average extension k required to access ℓ^{e}-torsion.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve E_{0} together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve E_{0} together with a small-degree endomorphism. Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve E_{0} together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto\left(-q x, \sqrt{-q^{3}} y\right)$ makes it normalized.

Step 0 (cool trick \#3): Base curves

- Step 0 is to construct a supersingular elliptic curve E_{0} together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general.
- Ingredient \#1: Bröker's algorithm.

Find q such that $\mathbf{i}^{2}=-q, \mathbf{j}^{2}=-p$ defines $B_{p, \infty}$, find a root $j \in \mathbb{F}_{p}$ of the Hilbert class polynomial H_{-q}, construct a curve with this j-invariant.

- Ingredient \#2: The Bostan-Morain-Salvy-Schost algorithm. Algorithm to compute a normalized degree- q isogeny in time $\widetilde{O}(q)$. Composing the desired endomorphism $\vartheta: E \rightarrow E$ with the isomorphism $\tau:(x, y) \mapsto\left(-q x, \sqrt{-q}^{3} y\right)$ makes it normalized.
- Ingredient \#3: Ibukiyama's theorem.

Explicit basis for a maximal order of $B_{p, \infty}$ with an endomorphism $\sqrt{-q}$. In fact, there are only very few maximal orders containing $\sqrt{-q}$.

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
```


Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^ 31-1, 2), modulus=[1,0,1])
```


Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
```


Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, 00 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647-9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
```


Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotáková, Veroni; 2023)

```
sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota, O0 = starting_curve(F2)
sage: I = random_ideal(00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j
    + 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
    + 16579/2*k, -2147483647-9708*j + 12777*k, -2147483647
    - 2147483647*i - 22485*j + 3069*k)
sage: E1, phi, _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
```



```
    From: Elliptic Curve defined by y^2 = x^3 + x over
        Finite Field in i of size 2147483647^2
    To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i
        +1816867654)*x + (581679615*i+260136654)
        over Finite Field in i of size 2147483647^2
```


Timings (SageMath, single core)

[seconds]

Timings (SageMath, single core)

We've been informed of one run for a 521-bit characteristic that took only about 7 hours.
\rightsquigarrow Definitely practical for parameter setup etc.!

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- A new and very hot post-quantum signature scheme.
- Part of NIST's post-quantum standardization process.

SQIsign: Why?

+ It's extremely small compared to the competition.

SQIsign: Why?

+ It's extremely small compared to the competition.
- It's relatively slow compared to the competition.

SQIsign: Why?

+ It's extremely small compared to the competition.
- It's relatively slow compared to the competition.
+ ...but performance is getting better by the \approx week!

SQIsign: Why?

+ It's extremely small compared to the competition.
- It's relatively slow compared to the competition.
+ ...but performance is getting better by the \approx week!

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

- Easy response: $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$. Obviously broken.

SQIsign

\rightsquigarrow Fiat-Shamir: signature scheme from identification scheme by replacing the verifier by a hash function.

- Easy response: $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$. Obviously broken.
- SQIsign's solution: Construct new path $E_{A} \rightarrow E_{2}$ (using secret).

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm $\boldsymbol{\jmath}$.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm $\boldsymbol{\jmath}$.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.
\rightsquigarrow SQIsign takes the "broken" signature $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$ and rewrites it into a random isogeny $E_{A} \rightarrow E_{2}$.

SQIsign: How?

Main idea:

- "Lift" the commitment and challenge to quaternion land.
- Construct the response in quaternion land, then project it "down" to the curve world (ideal-to-isogeny).
- The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm $\boldsymbol{\ell}$.

- From $\operatorname{End}(E), \operatorname{End}\left(E^{\prime}\right)$, can randomize within $\operatorname{Hom}\left(E, E^{\prime}\right)$.
\rightsquigarrow SQIsign takes the "broken" signature $E_{A} \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2}$ and rewrites it into a random isogeny $E_{A} \rightarrow E_{2}$.

[^0]
SQIsign: Comparison

Source: https://pqshield.github.io/nist-sigs-zoo

Bonus slides

Gluing elliptic curves

Awesome new technique (established 2022):
Computing isogenies between products of elliptic curves

Gluing elliptic curves

Awesome new technique (established 2022):
Computing isogenies between products of elliptic curves

- The product $E \times E^{\prime}$ is an abelian surface.

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between products of elliptic curves

- The product $E \times E^{\prime}$ is an abelian surface.
- Similar to elliptic curves in many ways:
- Points form an abelian group.
- Similar group structure, but more components.
- Can define isogenies from kernel subgroups.

Gluing elliptic curves

Awesome new technique (established 2022):

Computing isogenies between products of elliptic curves

- The product $E \times E^{\prime}$ is an abelian surface.
- Similar to elliptic curves in many ways:
- Points form an abelian group.
- Similar group structure, but more components.
- Can define isogenies from kernel subgroups.
- Computing with surfaces explicitly is possible, but painful. Everyone works with Jacobians of genus-2 curves instead.

The embedding lemma

The embedding lemma

Consider a commutative diagram of isogenies

where $a:=\operatorname{deg} \varphi$ and $b:=\operatorname{deg} \psi$ are coprime; let $N:=a+b$.

The embedding lemma

Consider a commutative diagram of isogenies

where $a:=\operatorname{deg} \varphi$ and $b:=\operatorname{deg} \psi$ are coprime; let $N:=a+b$.
Lemma. Then

$$
F:=\left(\begin{array}{cc}
\varphi & \widehat{\psi^{\prime}} \\
-\psi & \widehat{\varphi^{\prime}}
\end{array}\right)
$$

defines an N-isogeny $E \times E^{\prime \prime \prime} \rightarrow E^{\prime} \times E^{\prime \prime}$.
Its kernel is $\operatorname{ker}(F)=\left\{\left(\widehat{\varphi}(P), \psi^{\prime}(P)\right) \mid P \in E^{\prime}[N]\right\}$.

Representing $\left.\varphi\right|_{E[N]}$

Recall: For embedding lemma, need to evaluate φ on $E[N]$.
\rightsquigarrow Exponentially many points. \because

Representing $\left.\varphi\right|_{E[N]}$

Recall: For embedding lemma, need to evaluate φ on $E[N]$.
\rightsquigarrow Exponentially many points. \because
Clever trick:

- Fix basis (P, Q) of $E[N]$; compute $P^{\prime}=\varphi(P)$ and $Q^{\prime}=\varphi(Q)$.
- Notice that φ is a group homomorphism.

Representing $\left.\varphi\right|_{E[N]}$

Recall: For embedding lemma, need to evaluate φ on $E[N]$.
\rightsquigarrow Exponentially many points. \because
Clever trick:

- Fix basis (P, Q) of $E[N]$; compute $P^{\prime}=\varphi(P)$ and $Q^{\prime}=\varphi(Q)$.
- Notice that φ is a group homomorphism.

Representing $\left.\varphi\right|_{E[N]}$

Recall: For embedding lemma, need to evaluate φ on $E[N]$.
\rightsquigarrow Exponentially many points. \because
Clever trick:

- Fix basis (P, Q) of $E[N]$; compute $P^{\prime}=\varphi(P)$ and $Q^{\prime}=\varphi(Q)$.
- Notice that φ is a group homomorphism.

Evaluating φ at an arbitrary point $T \in E[N]$:

1. Decompose $T=[u] P+[v] Q$ with $u, v \in \mathbb{Z}$. This is a discrete-logarithm computation, which is easy whenever N is smooth!
2. Output $[u] P^{\prime}+[v] Q^{\prime}$.

Representing $\left.\varphi\right|_{E[N]}$

Recall: For embedding lemma, need to evaluate φ on $E[N]$.
\rightsquigarrow Exponentially many points. \because
Clever trick:

- Fix basis (P, Q) of $E[N]$; compute $P^{\prime}=\varphi(P)$ and $Q^{\prime}=\varphi(Q)$.
- Notice that φ is a group homomorphism.

Evaluating φ at an arbitrary point $T \in E[N]$:

1. Decompose $T=[u] P+[v] Q$ with $u, v \in \mathbb{Z}$. This is a discrete-logarithm computation, which is easy whenever N is smooth!
2. Output $[u] P^{\prime}+[v] Q^{\prime}$.
\Longrightarrow The data $\left(P, Q, P^{\prime}, Q^{\prime}\right)$ encodes the restriction $\left.\varphi\right|_{E[N]}$.

Questions?

(Also feel free to email me: lorenz@yx7.cc)

[^0]: "If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign."

