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The Deuring correspondence:

a priori
Almost exact equivalence between two'very different worlds:
> Supersingular elliptic curves defined over F ..
» Quaternions: Maximal orders in a certain algebra B .

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

< The “«” direction is easy, the “=" direction seems hard!

~ Cryptography!
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Why?
We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.
» ~All isogeny security reduces to the “=" direction.

» SQIsign builds on the “<«" direction constructively.
» Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
~+ Oriented curves and the isogeny class-group action. :
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Curve world

Universe: Characteristic p. Assume p > 5 throughout.
Supersingular elliptic curves: E[p] = {oo}.
Isogenies, endomorphisms, and so on and so forth.
Famous examples:

» p=3 (mod 4) and E: > = x> + x with j-invariant 1728.
» p=2 (mod 3) and E: > = x* + 1 with j-invariant 0.
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Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F,.)
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Computationally...

» We work with curves defined over F,» such that 7 = [—p].

(This choice is natural: It includes the base-changes of curves defined over F,.)

» The group structure is known over all extensions:
E(Fyx) = Z/n x Z/n where n = PF— (1)K
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Quaternion universe

» Everything lives in a particular quaternion algebra By, co-

» The algebra B, , is a 4-dimensional Q-vector space.
Write B .o = Q ® Qi @ Qj @ Qijj.
» Multiplication defined by relations i’=—q, j>=—p, ji = —ij.

Here q is a positive integer satisfying some conditions with respect to p.
1. All valid q define isomorphic algebras By, .

» The algebra B, o has a conjugation — which negates i,j, ij.
The norm and trace of an element « are a& € Z>o and a+a € Z.
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Quaternion world
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Quaternion world

» Maximal orders in the quaternion algebra B} .

» Left- and right-ideals, principal ideals, and so on.

Definitions:
» A (fractional) ideal is a rank-4 lattice contained in By .

» An order is a fractional ideal which is a subring of By, .

A maximal order is one that is not contained in any strictly larger order.

» A fractional ideal I is a left O-ideal if OI C I. (imilarly on the right)
We say I connects O and O’ if O C Iand IO’ C I.
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Computationally; ...

» We typically work with one fixed choice of q for each p.
» Quaternions are represented as vectors in Q*.

» All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.
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From curves to quaternions

E— QO

(The presumably hard direction.)
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Example #1
Assume p = 3 (mod 4).
Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).
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Then E: y? = x> + x is supersingular, and it has endomorphisms

v (xy) — (—x,ﬁ-y),

T (xy) — (&, Y0).

In decreasing order of obviousness, one can show that

> =[~1], 7t = —um, and 72 = [-p].

Hence, in the quaternion algebra where i = —1 and j? = —p,
the pair (¢, 7) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{1, i, (i+j)/2, (1+ij)/2}.
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Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C3'xvy)/
T () — (Y.
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Example #2
Assume p =2 (mod 3).
Then E: y? = x> + 1 is supersingular, and it has endomorphisms

w: (X,y) — (C?)'xvy)/
T () — (Y.

In decreasing order of obviousness, one can show that

W =[], wr + 7w = —7, and 7 = [—p].

Hence, in the quaternion algebra where i = —3 and j*> = —p,
the pair (2w + 1, ) corresponds to (i, j).

In fact, the image in B, , of a Z-basis of End(E) is given by

{1, +9/2, (+i)/2, ({+1j)/3}.
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From curves to quaternions

The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.
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The supersingular endomorphism-ring problem.

Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.

Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).
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Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

Vs

» Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

» To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time (NJ(\/;?), but requires the same amount of memory!
! Parallel collision finding (vow) yields a time-memory tradeoff.

~+ Approach #1: Find “enough” isogeny cycles.

(Then find relations between them and construct an embedding into B, .)
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This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1,,8,7), all orthogonal [standard Gram-Schmidt];
1,¢,8',7') such that additionally .* = —q [a ternary quadratic form];

=~ W N
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From concrete to abstract endomorphisms

» Subtlety: Identifying explicit endomorphisms with
abstract elements of By, , is generally not totally trivial.

» Distinction between MaxOrder and EndRing problems.
» Gram-Schmidt-type procedure using the trace pairing
(-,"): End(E) x End(E) = Z, (a, 8) — a8 + af.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1,,8,7), all orthogonal [standard Gram-Schmidt];

2. (1,1, 8,7') such that additionally «* = —q [a ternary quadratic forml;
3. (1,t,m,~") such that additionally 7> = —p [a binary quadratic form];
4. (1,¢,m,ur) [simple rescaling].

This defines an isometry End(E) ®z Q — Bp o W.L.t. (-, ).
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Endomorphism rings via isogeny finding

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

::Bp,oo
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End(E) — End(EO) ®7 Q ;
a = pap/deg(p) .
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Endomorphism rings via isogeny finding

From any isogeny ¢: Ey — E, we obtain (abstractly)
an embedding of the endomorphism ring

=:Bp,00
——
End(E) — End(Ey) ®z Q ;
a = pop/deg(yp).

Under this embedding, End(E) = Or(I) = {a € By o : [ C I},
where [ := Hom(E, Ey)¢ is the ideal of E( associated to ¢.

~+ Approach #2: Choose “special” Ey, find an isogeny Ey — E.

(Then recover the associated ideal and the codomain endomorphism ring.)
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The Delfs—Galbraith algorithm

...Is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given Eg, Eq1/ ]sz supersingular, find an isogeny Ey — Ej.

1. Find any isogeny ¢q: Eg — E where Ej/F,.
2. Find any isogeny ¢1: E; — E| where E{ /I,
3. Find any isogeny +: Ej; — E} defined over I,
4. Return ¢ o 1) o .

All three steps can be done in time (5(\/;7)
» ..in a trivially parallelizable manner;

» ...with negligible memory requirements.

15/33



Dividing endomorphisms

!! The representation of o € End(E) we obtain is fractional:

a = pagp/deg(p),
where ag € End(Ey).
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Dividing endomorphisms

!! The representation of o € End(E) we obtain is fractional:

a = pagp/deg(p),
where ag € End(Ey).

Evaluation at some point P € E:
» Compute any Q € E such that [deg(y)]Q = P.

» Return p(ap(@(Q))).

!!' In general Q lies in a huge field extension.

» Theoretical polynomial-time solution: Compute an
8-dimensional isogeny which embeds papp/deg(p)...

— This is a (practically) very inconvenient representation.
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From curves to quaternions

Plenty of algorithms to compute E — End(E) in time (N)(\/;?)

It is not immediately obvious which one works best in practice.
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From quaternions to curves

O — E

(The “easy” direction.)
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The main theorem

» Fix a supersingular elliptic curve Eo/F ..
Let Op := End(Ey).

Theorem. The (contravariant) functor
E — Hom(E, Ey)

defines an equivalence of categories between
» supersingular elliptic curves with isogenies; and

» invertible left Op-modules
with nonzero left Op-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set Clsy,(Op).
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One particular consequence of this equivalence is that
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Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E, correspond to left ideals of Oj. ‘

» Given ¢: Ey — E, the associated Op-ideal is Hom(E, Eg).

Important consequence: The isogeny ¢;: Eg — E
defined by a left Op-ideal I has kernel (1 ,; ker o < Ej.
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History and algorithms

» 1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.
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1941: Deuring proves the correspondence.

Wenn aber R eine vorgegebene Maximalordnung in Qw,p ist, in
der der Primteiler von p Hauptideal ist, so gibt es genau eine Invariante s,
zu der dieser Multiplikatorenring gehort, sie ist absolut rational. Ist
der Primteiler von p kein Hauptideal, so gibt es zwei konjugierte
Invarianten vom Absolutgrad 2 zu diesem Multiplikatorenring. Die Anzahl
der j, zu denen eine Maximalordnung von Qu,, als Multiplikatorenring
gehort, ist gleich der Klassenzahl von Qew,p.
2004: Cervifio gives a (necessarily exponential-time)

algorithm to compute all pairs (E, O) for a given p.

2013: Chevyrev-Galbraith give an exponential-time
algorithm to compute O — E.

201_: Petit-Lauter (using Kohel-Lauter—Petit-Tignol (2014) /")
find a heuristically polynomial-time algorithm for O — E.
2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

2023: Eriksen—-Panny-Sotdkovéa—Veroni develop practical
optimizations and publish a fully general implementation.
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From quaternions to curves

» Step 0: Base curve.
Any curve over [, with a known small-degree endomorphism.

» Step 1: Connecting ideal + KLPT/'.

Solve the “isogeny problem” in quaternion land.

» Step 2: Ideal-to-isogeny.

Map the solution “down” to curve land.

I will talk about these in reverse order.
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Step 2: Ideal-to-isogeny

The isogeny ¢; defined by an ideal I has kernel Hy = (s ker a.

Algorithms:
» Write] = Oo(N, a) with N € Z~yp. Then H; = ker(a|E[N]).

» Better: Factor N = (7' - - - {7, let H}, = ker(atl gy )-
k
Then H; = (H}, ..., H}).

» If oy is cyclic, we have ker(a!E[N}) = a(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.
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Step 0.9: Connecting ideals

Finding a connecting (O, O')-ideal is straightforward:

1. Compute OO" = span,({af:a € 0,8 € O'}) C By .
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Step 0.9: Connecting ideals

Finding a connecting (O, O')-ideal is straightforward:
1. Compute OO" = span,({af:a € 0,8 € O'}) C By .
2. That’s all, but typically the norm of OO’ is horrible.

(Also, it’s integral only in trivial cases ~- scale by denominator in Z.)
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Step 1: Convenient connecting ideals

KLPT/

...finds an equivalent ideal ] = I§/N of controlled norm N'.
Typical cases: Norm £*, powersmooth norm ¢! - - - £;".

The determining factor of success is the size of the norm. Estimate ~ p.

Fact: Equivalent ideals ~~» isomorphic codomains.
» The resulting isogeny oy will be different from .
» We can “fix” the evaluation a posteriori:
» The composition w := @y is an endomorphism.
» As a quaternion, it is simply given by 4! (Proof: Iy~1]v)
~» We can evaluate w without computing ¢y first.

» Hence, for T coprime to N/, with S := N'~! mod T,
w1lgm = Seywle -

~+ Do it twice with coprime degrees to evaluate on any point.
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Cool trick #1: Convenient torsion is convenient

» Norm is big ~» we have to work in field extensions.

I!' Lots of choice for prime powers /.
Trick: Look for E[¢¢] C E(F,) with k small.

~~ Tradeoff: number of operations <— cost of arithmetic.

[K]

41 -
16 -

ﬁ 56 160 150 1é9 [66]
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Heatmap
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Average extension k required to access ¢°-torsion.
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Cool trick #2: Isogenies from minimal polynomials
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Another algorithmic trick for kernel points lying in extensions:

» Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(E, f,¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f¥ € Fy[X] of the subgroup ¢(G) < E’.
1 Write the x-coordinate map of ¢ as a fraction g1 /g of polynomials g1, g2 € Fg[X].
2 Let grer < ged(ga, f) and fi < f/Ger-
3 Compute g; - g5 ' mod f; € F [X] and reinterpret it as a quotient-ring element a € F[X]/f.
4 Find the minimal polynomial f¢ € F,[X] of o over F, using Shoup’s algorithm.
5 Return f¥.
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» Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

» Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ~- Evaluating isogeny chains.

Algorithm 5: PushSubgroup(E, f,¢)

Input: Elliptic curve E/F,, minimal polynomial f € F,[X] of a subgroup G < E,
isogeny ¢: E — E' defined over F,.

Output: Minimal polynomial f¥ € Fy[X] of the subgroup ¢(G) < E’.
1 Write the x-coordinate map of ¢ as a fraction g1 /g of polynomials g1, g2 € Fg[X].
2 Let grer < ged(ga, f) and fi < f/Ger-
3 Compute g; - g5 ' mod f; € F [X] and reinterpret it as a quotient-ring element a € F[X]/f.
4 Find the minimal polynomial f¢ € F,[X] of o over F, using Shoup’s algorithm.
5 Return f¥.

Complexity: O(k?) + O(n). Naively O(nk(log k)°M).
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Step 0 (cool trick #3): Base curves

» Step 0 is to construct a supersingular elliptic curve Ey
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general (p =1 (mod 12)).
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» Step 0 is to construct a supersingular elliptic curve Ey
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general (p =1 (mod 12)).

» Ingredient #1: Broker’s algorithm.
Find g such that i’=—g, j>=—p defines B, , find a root j € F, of the
Hilbert class polynomial H_,, construct a curve with this j-invariant.

» Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.

Algorithm to compute a normalized degree-q isogeny in time O(q).
Composing the desired endomorphism #: E — E with the
isomorphism 7: (x,y) — (—qx, /—q y) makes it normalized.

» Ingredient #3: Ibukiyama’s theorem.

Explicit basis for a maximal order of B, o, with an endomorphism /—g.
In fact, there are only very few maximal orders containing /—q.
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Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)
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Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

sage: from deuring.broker import starting_curve

sage: from deuring.randomideal import random_ideal

sage: from deuring.correspondence import constructive_deuring

sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)

sage: E@, iota, 00 = starting_curve(F2)

sage: I = random_ideal (00)

sage: I

Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2xk, -2147483647 - 9708*j + 12777k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
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https://github.com/friends-of-quaternions/deuring

Open-source code

https://github.com/friends-of-quaternions/deuring
(Eriksen, Panny, Sotakova, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2*31-1, 2), modulus=[1,0,11)
sage: E@, iota, 00 = starting_curve(F2)
sage: I = random_ideal (00)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*1i - 36405/2*j
+ 7076*k, -1722016565/2 + 1401001825/2*1 + 551/2%j
+ 16579/2xk, -2147483647 - 9708*j + 12777k, -2147483647
- 2147483647+1 - 22485%j + 3069xk)
sage: E1, phi, _ = constructive_deuring(I, E@, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280
= 2729%373x5%772%x11%x13*x17%31%41%43%2%61%x79%151:
From: Elliptic Curve defined by y*2 = x*3 + x over
Finite Field in i of size 21474836472
To: Elliptic Curve defined by y*2 = x*3 + (1474953432%*1
+1816867654)*x + (581679615+1+260136654)
over Finite Field in i of size 2147483647"2
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https://github.com/friends-of-quaternions/deuring

Tlmlngs (SageMath, single core)
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Tlmlngs (SageMath, single core)

We’ve been informed of one run for a ~ 500-bit characteristic
that took only about 7 hours.

~+ Definitely practical for parameter setup, cryptanalysis, etc.!
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Questions?

(Also feel free to email me: lorenz@yx7.cc)
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