
To the End and back

Lorenz Panny

Technische Universität München

Mathematics for post-quantum cryptanalysis
Budapest, 8 August 2024

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:

▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .

▶ Quaternions: Maximal orders in a certain algebra Bp,∞.
Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

What?

The Deuring correspondence:

Almost exact equivalence between two
a priori

≺very different worlds:
▶ Supersingular elliptic curves defined over Fp2 .
▶ Quaternions: Maximal orders in a certain algebra Bp,∞.

Isogenies become connecting ideals in quaternion land.

The correspondence is through the endomorphism ring.

:) The “⇐” direction is easy, the “⇒” direction seems hard!

⇝ Cryptography!

1 / 33

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

2 / 33

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.

▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

2 / 33

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.

▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

2 / 33

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

2 / 33

Why?

We now know that the Deuring correspondence lies at the
heart of contemporary isogeny-based cryptography.

▶ ≈All isogeny security reduces to the “⇒” direction.
▶ SQIsign builds on the “⇐” direction constructively.
▶ Essential tool for both constructions and attacks.

Constructively, partially known endomorphism rings are useful.
⇝ Oriented curves and the isogeny class-group action.

2 / 33

Curve world

▶ Universe: Characteristic p. Assume p≥ 5 throughout.

▶ Supersingular elliptic curves: E[p] = {∞}.

▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

3 / 33

Curve world

▶ Universe: Characteristic p. Assume p≥ 5 throughout.

▶ Supersingular elliptic curves: E[p] = {∞}.
▶ Isogenies, endomorphisms, and so on and so forth.

▶ Famous examples:
▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

3 / 33

Curve world

▶ Universe: Characteristic p. Assume p≥ 5 throughout.

▶ Supersingular elliptic curves: E[p] = {∞}.
▶ Isogenies, endomorphisms, and so on and so forth.
▶ Famous examples:

▶ p ≡ 3 (mod 4) and E : y2 = x3 + x with j-invariant 1728.
▶ p ≡ 2 (mod 3) and E : y2 = x3 + 1 with j-invariant 0.

3 / 33

Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

4 / 33

Computationally...

▶ We work with curves defined over Fp2 such that π = [−p].
(This choice is natural: It includes the base-changes of curves defined over Fp.)

▶ The group structure is known over all extensions:
E(Fp2k) ∼= Z/n× Z/n where n = pk − (−1)k.

4 / 33

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

5 / 33

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

5 / 33

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

5 / 33

Quaternion universe

▶ Everything lives in a particular quaternion algebra Bp,∞.

▶ The algebra Bp,∞ is a 4-dimensional Q-vector space.
Write Bp,∞ = Q⊕Qi⊕Qj⊕Qij.

▶ Multiplication defined by relations i2=−q, j2=−p, ji = −ij.
Here q is a positive integer satisfying some conditions with respect to p.

All valid q define isomorphic algebras Bp,∞.

▶ The algebra Bp,∞ has a conjugation which negates i, j, ij.
The norm and trace of an element α are αα ∈ Z≥0 and α+α ∈ Z.

5 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.

▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.

▶ An order is a fractional ideal which is a subring of Bp,∞.
A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Quaternion world

▶ Maximal orders in the quaternion algebra Bp,∞.
▶ Left- and right-ideals, principal ideals, and so on.

Definitions:
▶ A (fractional) ideal is a rank-4 lattice contained in Bp,∞.
▶ An order is a fractional ideal which is a subring of Bp,∞.

A maximal order is one that is not contained in any strictly larger order.

▶ A fractional ideal I is a left O-ideal if OI ⊆ I. (Similarly on the right.)

We say I connects O and O′ if OI ⊆ I and IO′ ⊆ I.

6 / 33

Computationally, ...

▶ We typically work with one fixed choice of q for each p.

▶ Quaternions are represented as vectors in Q4.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

7 / 33

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.

▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

7 / 33

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

7 / 33

Computationally, ...

▶ We typically work with one fixed choice of q for each p.
▶ Quaternions are represented as vectors in Q4.
▶ All the basic algorithms are essentially linear algebra.

General theme: Things are easy in quaternion land.

7 / 33

From curves to quaternions

E 7→ O
(The presumably hard direction.)

8 / 33

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

9 / 33

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

9 / 33

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

9 / 33

Example #1

Assume p ≡ 3 (mod 4).

Then E : y2 = x3 + x is supersingular, and it has endomorphisms

ι : (x, y) 7−→ (−x,
√
−1 · y) ,

π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ι2 = [−1], πι = −ιπ, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −1 and j2 = −p,
the pair (ι, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, i, (i + j)/2, (1 + ij)/2} .

9 / 33

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

10 / 33

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

10 / 33

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

10 / 33

Example #2

Assume p ≡ 2 (mod 3).

Then E : y2 = x3 + 1 is supersingular, and it has endomorphisms

ω : (x, y) 7−→ (ζ3 · x, y) ,
π : (x, y) 7−→ (xp, yp) .

In decreasing order of obviousness, one can show that
ω3 = [1], ωπ + πω = −π, and π2 = [−p].

Hence, in the quaternion algebra where i2 = −3 and j2 = −p,
the pair (2ω+ 1, π) corresponds to (i, j).

In fact, the image in Bp,∞ of a Z-basis of End(E) is given by

{1, (1 + i)/2, (j + ij)/2, (i + ij)/3} .

10 / 33

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.
Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

11 / 33

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.
Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

11 / 33

From curves to quaternions

The supersingular endomorphism-ring problem.
Given a supersingular elliptic curve,
find its endomorphism ring.

Equivalently (Wesolowski 2021, assuming GRH):

The isogeny problem.
Given two supersingular elliptic curves,
find any isogeny between them.

As far as we know, these are hard problems (even quantumly).

11 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

Endomorphism rings via cycle finding

Recall: Cycles in isogeny graphs are endomorphisms.

▶ Heuristically, “a few” “random-ish” endomorphisms
probably form a generating set for End(E).

▶ To find cycles, use generic graph algorithms.
Meet-in-the-middle: Build breadth-first tree, wait for a collision.

!! Time Õ(
√p), but requires the same amount of memory!

!! Parallel collision finding (vOW) yields a time-memory tradeoff.

⇝ Approach #1: Find “enough” isogeny cycles.
(Then find relations between them and construct an embedding into Bp,∞.)

12 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.

▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

From concrete to abstract endomorphisms

▶ Subtlety: Identifying explicit endomorphisms with
abstract elements of Bp,∞ is generally not totally trivial.

▶ Distinction between MaxOrder and EndRing problems.
▶ Gram–Schmidt-type procedure using the trace pairing

⟨·, ·⟩ : End(E)× End(E)→ Z, (α, β) 7→ α̂β + αβ̂.
This is (heuristically) polynomial-time.

Main steps:
Find Q-linear combinations of the input endomorphisms of the form...

1. (1, α, β, γ), all orthogonal [standard Gram–Schmidt];

2. (1, ι, β′, γ′) such that additionally ι2 = −q [a ternary quadratic form];

3. (1, ι, π, γ′′) such that additionally π2 = −p [a binary quadratic form];

4. (1, ι, π, ιπ) [simple rescaling].

This defines an isometry End(E)⊗Z Q ∼−→ Bp,∞ w.r.t. ⟨·, ·⟩.

13 / 33

Endomorphism rings via isogeny finding

From any isogeny φ : E0 → E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) ↪→

=:Bp,∞︷ ︸︸ ︷
End(E0)⊗Z Q ;

α 7→ φ̂αφ/deg(φ) .

Under this embedding, End(E) = OR(I) = {α ∈ Bp,∞ : Iα ⊆ I},
where I := Hom(E,E0)φ is the ideal of E0 associated to φ.

⇝ Approach #2: Choose “special” E0, find an isogeny E0 → E.
(Then recover the associated ideal and the codomain endomorphism ring.)

14 / 33

Endomorphism rings via isogeny finding

From any isogeny φ : E0 → E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) ↪→

=:Bp,∞︷ ︸︸ ︷
End(E0)⊗Z Q ;

α 7→ φ̂αφ/deg(φ) .

Under this embedding, End(E) = OR(I) = {α ∈ Bp,∞ : Iα ⊆ I},
where I := Hom(E,E0)φ is the ideal of E0 associated to φ.

⇝ Approach #2: Choose “special” E0, find an isogeny E0 → E.
(Then recover the associated ideal and the codomain endomorphism ring.)

14 / 33

Endomorphism rings via isogeny finding

From any isogeny φ : E0 → E, we obtain (abstractly)
an embedding of the endomorphism ring

End(E) ↪→

=:Bp,∞︷ ︸︸ ︷
End(E0)⊗Z Q ;

α 7→ φ̂αφ/deg(φ) .

Under this embedding, End(E) = OR(I) = {α ∈ Bp,∞ : Iα ⊆ I},
where I := Hom(E,E0)φ is the ideal of E0 associated to φ.

⇝ Approach #2: Choose “special” E0, find an isogeny E0 → E.
(Then recover the associated ideal and the codomain endomorphism ring.)

14 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.

4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;

▶ ...with negligible memory requirements.

15 / 33

The Delfs–Galbraith algorithm

...is probably(?) the best known algorithm for solving the
supersingular isogeny problem:

Given E0,E1/Fp2 supersingular, find an isogeny E0 → E1.

1. Find any isogeny φ0 : E0 → E′
0 where E′

0/Fp.
2. Find any isogeny φ1 : E1 → E′

1 where E′
1/Fp.

3. Find any isogeny ψ : E′
0 → E′

1 defined over Fp.
4. Return φ̂1 ◦ ψ ◦ φ0.

All three steps can be done in time Õ(
√p)...

▶ ...in a trivially parallelizable manner;
▶ ...with negligible memory requirements.

15 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:

▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.

▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.

▶ Theoretical polynomial-time solution: Compute an
8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

Dividing endomorphisms

!! The representation of α ∈ End(E) we obtain is fractional:

α = φα0φ̂/deg(φ) ,
where α0 ∈ End(E0).

Evaluation at some point P ∈ E:
▶ Compute any Q ∈ E such that [deg(φ)]Q = P.
▶ Return φ(α0(φ̂(Q))).

!! In general Q lies in a huge field extension.
▶ Theoretical polynomial-time solution: Compute an

8-dimensional isogeny which embeds φα0φ̂/deg(φ)...

=⇒ This is a (practically) very inconvenient representation.

16 / 33

From curves to quaternions

Plenty of algorithms to compute E 7→ End(E) in time Õ(
√p).

It is not immediately obvious which one works best in practice.

17 / 33

From quaternions to curves

O 7→ E
(The “easy” direction.)

18 / 33

The main theorem

▶ Fix a supersingular elliptic curve E0/Fp2 .
Let O0 := End(E0).

Theorem. The (contravariant) functor

E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left O0-modules

with nonzero left O0-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set ClsL(O0).

19 / 33

The main theorem

▶ Fix a supersingular elliptic curve E0/Fp2 .
Let O0 := End(E0).

Theorem. The (contravariant) functor

E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left O0-modules

with nonzero left O0-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set ClsL(O0).

19 / 33

The main theorem

▶ Fix a supersingular elliptic curve E0/Fp2 .
Let O0 := End(E0).

Theorem. The (contravariant) functor

E 7−→ Hom(E,E0)

defines an equivalence of categories between
▶ supersingular elliptic curves with isogenies; and
▶ invertible left O0-modules

with nonzero left O0-module homomorphisms.

Corollary (Deuring). Isomorphism classes of supersingular
elliptic curves are in bijection with the (left) class set ClsL(O0).

19 / 33

Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E0 correspond to left ideals of O0.

▶ Given ψ : E0 → E, the associated O0-ideal is Hom(E,E0)ψ.

Important consequence: The isogeny φI : E0 → E
defined by a left O0-ideal I has kernel

⋂
α∈I kerα ≤ E0.

20 / 33

Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E0 correspond to left ideals of O0.

▶ Given ψ : E0 → E, the associated O0-ideal is Hom(E,E0)ψ.

Important consequence: The isogeny φI : E0 → E
defined by a left O0-ideal I has kernel

⋂
α∈I kerα ≤ E0.

20 / 33

Ideals & isogenies

One particular consequence of this equivalence is that

isogenies from E0 correspond to left ideals of O0.

▶ Given ψ : E0 → E, the associated O0-ideal is Hom(E,E0)ψ.

Important consequence: The isogeny φI : E0 → E
defined by a left O0-ideal I has kernel

⋂
α∈I kerα ≤ E0.

20 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

History and algorithms
▶ 1941: Deuring proves the correspondence.

▶ 2004: Cerviño gives a (necessarily exponential-time)
algorithm to compute all pairs (E,O) for a given p.

▶ 2013: Chevyrev–Galbraith give an exponential-time
algorithm to compute O 7→ E.

▶ 201_: Petit–Lauter (using Kohel–Lauter–Petit–Tignol (2014))
find a heuristically polynomial-time algorithm for O 7→ E.

▶ 2021: Wesolowski assumes GRH and gives a provably
polynomial-time variant.

▶ 2023: Eriksen–Panny–Sotáková–Veroni develop practical
optimizations and publish a fully general implementation.

21 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal.
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

From quaternions to curves

▶ Step 0: Base curve.
Any curve over Fp with a known small-degree endomorphism.

▶ Step 1: Connecting ideal + KLPT .
Solve the “isogeny problem” in quaternion land.

▶ Step 2: Ideal-to-isogeny.
Map the solution “down” to curve land.

I will talk about these in reverse order.

22 / 33

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

α∈I kerα.

Algorithms:
▶ Write I = O0(N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α̂(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

23 / 33

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

α∈I kerα.

Algorithms:
▶ Write I = O0(N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α̂(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

23 / 33

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

α∈I kerα.

Algorithms:
▶ Write I = O0(N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α̂(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

23 / 33

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

α∈I kerα.

Algorithms:
▶ Write I = O0(N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α̂(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

23 / 33

Step 2: Ideal-to-isogeny

The isogeny φI defined by an ideal I has kernel HI =
⋂

α∈I kerα.

Algorithms:
▶ Write I = O0(N, α) with N ∈ Z>0. Then HI = ker(α|E[N]).

▶ Better: Factor N = ℓe1
1 · · · ℓ

er
r , let H′

k = ker(α|E[ℓek
k]
).

Then HI = ⟨H′
1, ...,H

′
r⟩.

▶ If φI is cyclic, we have ker(α|E[N]) = α̂(E[N]). No logarithms!

Crucial observation: Complexity depends on factorization of N.

23 / 33

Step 0.9: Connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:

1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.

2. That’s all, but typically the norm of OO′ is horrible.
(Also, it’s integral only in trivial cases⇝ scale by denominator in Z.)

24 / 33

Step 0.9: Connecting ideals

Finding a connecting (O,O′)-ideal is straightforward:

1. Compute OO′ = spanZ({αβ : α ∈ O, β ∈ O′}) ⊆ Bp,∞.

2. That’s all, but typically the norm of OO′ is horrible.
(Also, it’s integral only in trivial cases⇝ scale by denominator in Z.)

24 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.

Typical cases: Norm ℓ•, powersmooth norm ℓ
e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .

The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.

▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.

▶ We can “fix” the evaluation a posteriori:
▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.

▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.

▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Step 1: Convenient connecting ideals

KLPT
...finds an equivalent ideal J = Iγ/N of controlled norm N′.
Typical cases: Norm ℓ•, powersmooth norm ℓ

e1
1 · · · ℓer

r .
The determining factor of success is the size of the norm. Estimate ≈ p3.

Fact: Equivalent ideals ⇝ isomorphic codomains.
▶ The resulting isogeny φJ will be different from φI.
▶ We can “fix” the evaluation a posteriori:

▶ The composition ω := φ̂JφI is an endomorphism.
▶ As a quaternion, it is simply given by γ! (Proof: Iγ−1Jγ)

⇝We can evaluate ω without computing φI first.
▶ Hence, for T coprime to N′, with S := N′−1 mod T,

φI|E[T] = SφJω|E[T] .

⇝ Do it twice with coprime degrees to evaluate on any point.

25 / 33

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝we have to work in field extensions.

!! Lots of choice for prime powers ℓe.
Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

26 / 33

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝we have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.

⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

26 / 33

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝we have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.
⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

26 / 33

Cool trick #1: Convenient torsion is convenient

▶ Norm is big⇝we have to work in field extensions.
!! Lots of choice for prime powers ℓe.

Trick: Look for E[ℓe] ⊆ E(Fp2k) with k small.
⇝ Tradeoff: number of operations←→ cost of arithmetic.

2 50 100 150 199 [ℓ
e]

1

16

41

[k]

26 / 33

Heatmap

2 50 101 [ℓe]
1

50

[k]

Average extension k required to access ℓe-torsion.

27 / 33

Cool trick #2: Isogenies from minimal polynomials

Another algorithmic trick for kernel points lying in extensions:

▶ Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

28 / 33

Cool trick #2: Isogenies from minimal polynomials

Another algorithmic trick for kernel points lying in extensions:

▶ Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

28 / 33

Cool trick #2: Isogenies from minimal polynomials

Another algorithmic trick for kernel points lying in extensions:

▶ Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

28 / 33

Cool trick #2: Isogenies from minimal polynomials

Another algorithmic trick for kernel points lying in extensions:

▶ Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

28 / 33

Cool trick #2: Isogenies from minimal polynomials

Another algorithmic trick for kernel points lying in extensions:

▶ Replace (big) kernel polynomials by possibly much
smaller minimal polynomials of isogenies.
They are irreducible divisors of the kernel polynomial.

▶ Shoup’s algorithm gives a fast method to push minimal
polynomials through isogenies. ⇝ Evaluating isogeny chains.

Complexity: O(k2) + Õ(n). Naïvely O(nk(log k)O(1)).

28 / 33

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general

(
p ≡ 1 (mod 12)

)
.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.

29 / 33

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general

(
p ≡ 1 (mod 12)

)
.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.

29 / 33

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general

(
p ≡ 1 (mod 12)

)
.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.

29 / 33

Step 0 (cool trick #3): Base curves

▶ Step 0 is to construct a supersingular elliptic curve E0
together with a small-degree endomorphism.
Often easy to explicitly write down; tricky in general

(
p ≡ 1 (mod 12)

)
.

▶ Ingredient #1: Bröker’s algorithm.
Find q such that i2=−q, j2=−p defines Bp,∞, find a root j ∈ Fp of the
Hilbert class polynomial H−q, construct a curve with this j-invariant.

▶ Ingredient #2: The Bostan-Morain-Salvy-Schost algorithm.
Algorithm to compute a normalized degree-q isogeny in time Õ(q).
Composing the desired endomorphism ϑ : E → E with the
isomorphism τ : (x, y) 7→ (−qx,

√−q3y) makes it normalized.

▶ Ingredient #3: Ibukiyama’s theorem.
Explicit basis for a maximal order of Bp,∞ with an endomorphism

√−q.
In fact, there are only very few maximal orders containing

√−q.

29 / 33

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring

sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])

sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)

sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Open-source code
https://github.com/friends-of-quaternions/deuring

(Eriksen, Panny, Sotáková, Veroni; 2023)

sage: from deuring.broker import starting_curve
sage: from deuring.randomideal import random_ideal
sage: from deuring.correspondence import constructive_deuring
sage: F2.<i> = GF((2^31-1, 2), modulus=[1,0,1])
sage: E0, iota , O0 = starting_curve(F2)
sage: I = random_ideal(O0)
sage: I
Fractional ideal (-2227737332 - 2733458099/2*i - 36405/2*j

+ 7076*k, -1722016565/2 + 1401001825/2*i + 551/2*j
+ 16579/2*k, -2147483647 - 9708*j + 12777*k, -2147483647
- 2147483647*i - 22485*j + 3069*k)

sage: E1, phi , _ = constructive_deuring(I, E0, iota)
sage: phi
Composite morphism of degree 14763897348161206530374369280

= 2^29*3^3*5*7^2*11*13*17*31*41*43^2*61*79*151:
From: Elliptic Curve defined by y^2 = x^3 + x over

Finite Field in i of size 2147483647^2
To: Elliptic Curve defined by y^2 = x^3 + (1474953432*i

+1816867654)*x + (581679615*i+260136654)
over Finite Field in i of size 2147483647^2

30 / 33

https://github.com/friends-of-quaternions/deuring

Timings (SageMath, single core)

31 / 33

Timings (SageMath, single core)

We’ve been informed of one run for a ≈ 500-bit characteristic
that took only about 7 hours.

⇝ Definitely practical for parameter setup, cryptanalysis, etc.!

32 / 33

Questions?

(Also feel free to email me: lorenz@yx7.cc)

33 / 33

