
Rational isogenies
from

endomorphisms

Wouter Castryck1 Lorenz Panny2 Frederik Vercauteren1

1imec-COSIC, ESAT, KU Leuven 2Academia Sinica, Taipei, Taiwan

SIAM-AG, online, 20 August 2021

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.

(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:

I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 ???????

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 Our work can find a connection to a certain x ∈ X.

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

1 / 15

The upshot

I CSIDH ["si:­saId] is a cryptographic
(abelian)�

group action

∗ : G× X −→ X

on a certain set X of supersingular elliptic curves.
(cf. how integer exponents can be applied to Diffie–Hellman public keys)

I Open problem: ‘Hash into X’: compute elements of X
with no known connection (element of G) between them.
(Situation with DLP: We can easily sample from (Z/p)∗, E(Fq), ...)

I Known methods to produce elements of X:
I Take known x ∈ X; pick random g ∈ G; compute y := g ∗ x.
 obviously leaks a connection from x to y: it’s g.

I Reduce a suitable CM curve E/Q̄ modulo q.
 Our work can find a connection to a certain x ∈ X.

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].
1 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Overview of CSIDH

I CSIDH is the CM action of an order O ⊆ Q(
√−p)

on the set X of �

(Fp-isomorphism classes of)

elliptic curves E/Fp with Endp(E) = O.

I This means: An invertible ideal a ⊆ O acts on E ∈ X
by quotienting out the kernel subgroup E[a].

 free and transitive action of cl(O) on X.

I Computing the action of a ⊆ O is generally hard.

:(

 Use a = le1
1 · · · len

n with small N(li) and |ei| efficient!

(Advantage of CSIDH: applying li is particularly cheap.)

=⇒ Bottom line: Relatively fast non-interactive key exchange.
Think Diffie–Hellman, but post-quantum! (and slower...)

2 / 15

Isogeny graphs

Visualizing the action of l1, ..., ln:

Each node is an elliptic curve over Fp, up to ∼=Fp .
Each edge is the action of l1, l2, or l3, or their inverses.

3 / 15

Notation for this talk

I The prime p is ‘large’, certainly > 3.
I Curves are elliptic, supersingular, and defined over Fp2 .

I Et: the quadratic twist of E.

I End(E): full endomorphism ring (over F̄p).
I Endp(E): rational endomorphism ring (over Fp).

I E0: a starting curve with known endomorphism ring.
For instance: p ≡ 3 mod 4 and E0 : y2 = x3 + x.
Endomorphism ring: End(E0) =

〈
1, ι, ι+π2 , 1+ιπ

2

〉
where ι : (x, y) 7→ (−x,

√
−1 · y) and π : (x, y) 7→ (xp, yp).

I O: the order Z[
√−p] or Z[(1+

√−p)/2] in Q(
√−p).

I l: a fixed prime ideal of O lying above `.

4 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

A starting point...
Suppose a curve E = [a]E0 has an irrational endomorphism
τ ∈ End(E)\Endp(E), say of prime degree `.
Q: Where in the isogeny graph is it?

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0

E

[a]

Et

[a]−1

[l]±1

=⇒ [a]2 = [l]±1!

Fact: If p ≡ 3 mod 4 and E0 : y2 = x3 + x, then “given [a]E0
we can compute [a]−1E0 by mere quadratic twisting”. [CSIDH paper]

Fact: If τπ = −πτ , then (E ∼→ Et) ◦ τ is an Fp-rational isogeny.
Therefore τ implies an edge E→ Et in the `-isogeny graph.

5 / 15

Coincidence?

Previous slide:
Knowing that E = [a]E0 has a ‘special’ endomorphism τ allows
us to recover [a] up to 2-torsion.

Q: Is this just a weird special case?

(A: No.)

Definition. Let E be defined over Fp.
Then α ∈ End(E) is a twisting endomorphism of E if απ = −πα.

6 / 15

Coincidence?

Previous slide:
Knowing that E = [a]E0 has a ‘special’ endomorphism τ allows
us to recover [a] up to 2-torsion.

Q: Is this just a weird special case? (A: No.)

Definition. Let E be defined over Fp.
Then α ∈ End(E) is a twisting endomorphism of E if απ = −πα.

6 / 15

Coincidence?

Previous slide:
Knowing that E = [a]E0 has a ‘special’ endomorphism τ allows
us to recover [a] up to 2-torsion.

Q: Is this just a weird special case? (A: No.)

Definition. Let E be defined over Fp.
Then α ∈ End(E) is a twisting endomorphism of E if απ = −πα.

6 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?
I How much ambiguity is in the 2-torsion?
I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?
I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?

I How much ambiguity is in the 2-torsion?
I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?
I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?
I How much ambiguity is in the 2-torsion?

I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?
I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?
I How much ambiguity is in the 2-torsion?
I When are endomorphisms twisting?

I Can we deal with starting curves E0 6= Et
0?

I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?
I How much ambiguity is in the 2-torsion?
I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?

I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

To-do list

Let E = [a]E0. We’ve seen:

If p ≡ 3 mod 4 and E0 : y2 = x3 + x and τ ∈ End(E)\Endp(E)
with deg τ = ` prime and τπ = −πτ , then [a]2 = [l]±1.

I How to compute square roots in cl(O)?
I How much ambiguity is in the 2-torsion?
I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?
I Can we generalize to primes p 6≡ 3 mod 4?

7 / 15

Square roots in cl(O)

From ` we learn that [a]2 = [l]±1. But how to recover (an) [a]?

Perhaps unsurprisingly, Gauß knew how to do this. [DA § 286]

His method is polynomial-time.

Note: If the class number h(O) = |cl(O)| is known and odd, then√
[s] = [s](h(O)+1)/2.

Gauß’ algorithm does not require computing h(O).

8 / 15

Square roots in cl(O)

From ` we learn that [a]2 = [l]±1. But how to recover (an) [a]?

Perhaps unsurprisingly, Gauß knew how to do this. [DA § 286]

His method is polynomial-time.

Note: If the class number h(O) = |cl(O)| is known and odd, then√
[s] = [s](h(O)+1)/2.

Gauß’ algorithm does not require computing h(O).

8 / 15

Square roots in cl(O)

From ` we learn that [a]2 = [l]±1. But how to recover (an) [a]?

Perhaps unsurprisingly, Gauß knew how to do this. [DA § 286]

His method is polynomial-time.

Note: If the class number h(O) = |cl(O)| is known and odd, then√
[s] = [s](h(O)+1)/2.

Gauß’ algorithm does not require computing h(O).

8 / 15

Square roots in cl(O)

How many square roots exist?

Fact: If r ⊆ O is a non-principal prime ideal such that r2 is
principal, then N(r) divides ∆ := disc(Q(

√−p)) ∈ {−p,−4p}.

For the potential divisors of ∆, we get:
I p | ∆: yields (π) ⊆ O (principal).
I 2 | ∆: yields (2, π+1) ⊆ O (non-principal).

=⇒ cl(O)[2] ∼=
{
{id} when p ≡ 3 (mod 4);
Z/2 when p ≡ 1 (mod 4).

Bottom line: Elements [s] ∈ cl(O)2 have either one or two
square roots, depending on p mod 4.

9 / 15

Square roots in cl(O)

How many square roots exist?

Fact: If r ⊆ O is a non-principal prime ideal such that r2 is
principal, then N(r) divides ∆ := disc(Q(

√−p)) ∈ {−p,−4p}.

For the potential divisors of ∆, we get:
I p | ∆: yields (π) ⊆ O (principal).
I 2 | ∆: yields (2, π+1) ⊆ O (non-principal).

=⇒ cl(O)[2] ∼=
{
{id} when p ≡ 3 (mod 4);
Z/2 when p ≡ 1 (mod 4).

Bottom line: Elements [s] ∈ cl(O)2 have either one or two
square roots, depending on p mod 4.

9 / 15

Square roots in cl(O)

How many square roots exist?

Fact: If r ⊆ O is a non-principal prime ideal such that r2 is
principal, then N(r) divides ∆ := disc(Q(

√−p)) ∈ {−p,−4p}.

For the potential divisors of ∆, we get:
I p | ∆: yields (π) ⊆ O (principal).
I 2 | ∆: yields (2, π+1) ⊆ O (non-principal).

=⇒ cl(O)[2] ∼=
{
{id} when p ≡ 3 (mod 4);
Z/2 when p ≡ 1 (mod 4).

Bottom line: Elements [s] ∈ cl(O)2 have either one or two
square roots, depending on p mod 4.

9 / 15

Square roots in cl(O)

How many square roots exist?

Fact: If r ⊆ O is a non-principal prime ideal such that r2 is
principal, then N(r) divides ∆ := disc(Q(

√−p)) ∈ {−p,−4p}.

For the potential divisors of ∆, we get:
I p | ∆: yields (π) ⊆ O (principal).
I 2 | ∆: yields (2, π+1) ⊆ O (non-principal).

=⇒ cl(O)[2] ∼=
{
{id} when p ≡ 3 (mod 4);
Z/2 when p ≡ 1 (mod 4).

Bottom line: Elements [s] ∈ cl(O)2 have either one or two
square roots, depending on p mod 4.

9 / 15

To-do list

I How to compute square roots in cl(O)? X
Gauß found a polynomial-time algorithm.

I How much ambiguity is in the 2-torsion? X
At most two square roots; cl(O)[2] ≤ Z/2.

I When are endomorphisms twisting?
I Can we deal with starting curves E0 6= Et

0?
I Can we generalize to primes p 6≡ 3 mod 4?

9 / 15

Twisting endomorphisms

We wanted to locate reduced CM curves in the isogeny graph.
Q: How common is it for an endomorphism to be twisting?

Suppose E/Fp is the supersingular reduction of a curve E/Q̄
with CM by Z[Ψ] where Ψ has prime degree ` ≤ (p+1)/4.

Then the reduction ψ of Ψ is a twisting endomorphism.

=⇒ For large p, reduced CM endomorphisms are practically
always twisting.

Moreover, given any irrational endomorphism, it is typically
easy to find a twisting endomorphism.

10 / 15

Twisting endomorphisms

We wanted to locate reduced CM curves in the isogeny graph.
Q: How common is it for an endomorphism to be twisting?

Suppose E/Fp is the supersingular reduction of a curve E/Q̄
with CM by Z[Ψ] where Ψ has prime degree ` ≤ (p+1)/4.

Then the reduction ψ of Ψ is a twisting endomorphism.

=⇒ For large p, reduced CM endomorphisms are practically
always twisting.

Moreover, given any irrational endomorphism, it is typically
easy to find a twisting endomorphism.

10 / 15

Twisting endomorphisms

We wanted to locate reduced CM curves in the isogeny graph.
Q: How common is it for an endomorphism to be twisting?

Suppose E/Fp is the supersingular reduction of a curve E/Q̄
with CM by Z[Ψ] where Ψ has prime degree ` ≤ (p+1)/4.

Then the reduction ψ of Ψ is a twisting endomorphism.

=⇒ For large p, reduced CM endomorphisms are practically
always twisting.

Moreover, given any irrational endomorphism, it is typically
easy to find a twisting endomorphism.

10 / 15

Twisting endomorphisms

We wanted to locate reduced CM curves in the isogeny graph.
Q: How common is it for an endomorphism to be twisting?

Suppose E/Fp is the supersingular reduction of a curve E/Q̄
with CM by Z[Ψ] where Ψ has prime degree ` ≤ (p+1)/4.

Then the reduction ψ of Ψ is a twisting endomorphism.

=⇒ For large p, reduced CM endomorphisms are practically
always twisting.

Moreover, given any irrational endomorphism, it is typically
easy to find a twisting endomorphism.

10 / 15

To-do list

I How to compute square roots in cl(O)? X
Gauß found a polynomial-time algorithm.

I How much ambiguity is in the 2-torsion? X
At most two square roots; cl(O)[2] ≤ Z/2.

I When are endomorphisms twisting? X
Sufficient: reduced CM endomorphisms with deg ≤ (p+1)/4.

I Can we deal with starting curves E0 6= Et
0?

I Can we generalize to primes p 6≡ 3 mod 4?

10 / 15

Starting curves which are not their own twist

tw
is

ti
ng

E0 Et
0

[b]

E Et

[l]±1[a] [a]

[l]±1 = [b][a]−2 =⇒ [a]2 = [b][l]∓1

11 / 15

Starting curves which are not their own twist

tw
is

ti
ng

E0 Et
0

[b]

E Et

[l]±1

[a] [a]

[l]±1 = [b][a]−2 =⇒ [a]2 = [b][l]∓1

11 / 15

Starting curves which are not their own twist

tw
is

ti
ng

E0 Et
0

[b]

E Et

[l]±1[a] [a]

[l]±1 = [b][a]−2 =⇒ [a]2 = [b][l]∓1

11 / 15

Starting curves which are not their own twist

tw
is

ti
ng

E0 Et
0

[b]

E Et

[l]±1[a] [a]

[l]±1 = [b][a]−2 =⇒ [a]2 = [b][l]∓1

11 / 15

To-do list

I How to compute square roots in cl(O)? X
Gauß found a polynomial-time algorithm.

I How much ambiguity is in the 2-torsion? X
At most two square roots; cl(O)[2] ≤ Z/2.

I When are endomorphisms twisting? X
Sufficient: reduced CM endomorphisms with deg ≤ (p+1)/4.

I Can we deal with starting curves E0 6= Et
0? X

Yes; the same idea works modulo technicalities.

I Can we generalize to primes p 6≡ 3 mod 4?

11 / 15

The case p ≡ 1 mod 4

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0 Et
0

[b]

E Et

[l][a] [a]

[t]E0[t]Et
0

[b]

[t]E[t]Et

[l] [a][a]

[t]

Long story short: Everything works the same, but the element
t := [(2, π+1)] of order 2 introduces an additional symmetry.

 Two candidates for [a]. Find [a] by brute-force testing or use
ePrint 2020/151, which breaks DDH for the case p ≡ 1 mod 4.

12 / 15

The case p ≡ 1 mod 4

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0 Et
0

[b]

E Et

[l][a] [a]

[t]E0[t]Et
0

[b]

[t]E[t]Et

[l] [a][a]

[t]

Long story short: Everything works the same, but the element
t := [(2, π+1)] of order 2 introduces an additional symmetry.

 Two candidates for [a]. Find [a] by brute-force testing or use
ePrint 2020/151, which breaks DDH for the case p ≡ 1 mod 4.

12 / 15

The case p ≡ 1 mod 4

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0 Et
0

[b]

E Et

[l][a] [a]

[t]E0[t]Et
0

[b]

[t]E[t]Et

[l] [a][a]

[t]

Long story short: Everything works the same, but the element
t := [(2, π+1)] of order 2 introduces an additional symmetry.

 Two candidates for [a]. Find [a] by brute-force testing or use
ePrint 2020/151, which breaks DDH for the case p ≡ 1 mod 4.

12 / 15

The case p ≡ 1 mod 4

tw
is

ti
ng

ax
is

of
re

fle
ct

io
n

E0 Et
0

[b]

E Et

[l][a] [a]

[t]E0[t]Et
0

[b]

[t]E[t]Et

[l] [a][a]

[t]

Long story short: Everything works the same, but the element
t := [(2, π+1)] of order 2 introduces an additional symmetry.

 Two candidates for [a]. Find [a] by brute-force testing or use
ePrint 2020/151, which breaks DDH for the case p ≡ 1 mod 4.

12 / 15

To-do list

I How to compute square roots in cl(O)? X
Gauß found a polynomial-time algorithm.

I How much ambiguity is in the 2-torsion? X
At most two square roots; cl(O)[2] ≤ Z/2.

I When are endomorphisms twisting? X
Sufficient: reduced CM endomorphisms with deg ≤ (p+1)/4.

I Can we deal with starting curves E0 6= Et
0? X

Yes; the same idea works modulo technicalities.

I Can we generalize to primes p 6≡ 3 mod 4? X
Yes.

12 / 15

Our ‘locating CM curves’ theorem

Let p ≡ 3 mod 4 and ` < (p + 1)/4 be primes with
(−p

`

)
= 1.

We show:
I How many curves /Fp are reductions of curves /Q̄ with

CM by ordersR ⊆ Q(
√
−`) containing Z[

√
−`].

I Which combinations of (Endp,R) are possible.
I Where in the isogeny graph all these curves are located:

We give connecting ideals to the curve E0 : y2 = x3 ± x.

Remark: Similar results are possible for p ≡ 1 mod 4.

13 / 15

Our ‘locating CM curves’ theorem

Let p ≡ 3 mod 4 and ` < (p + 1)/4 be primes with
(−p

`

)
= 1.

We show:
I How many curves /Fp are reductions of curves /Q̄ with

CM by ordersR ⊆ Q(
√
−`) containing Z[

√
−`].

I Which combinations of (Endp,R) are possible.
I Where in the isogeny graph all these curves are located:

We give connecting ideals to the curve E0 : y2 = x3 ± x.

Remark: Similar results are possible for p ≡ 1 mod 4.

13 / 15

An example

In the CSIDH-512 parameter set, p ≡ 11 mod 12.
Q: Where is E : y2 = x3 + 1?

Our very explicit answer:

E = [(3, π−1)127326221114742137588515093005319601080810257152743211796285430487798805863095]E0

This ideal class corresponds to (e.g.) the private key:
(5,−7,−1, 1,−4,−5,−8, 4,−1, 5, 1, 0,−2,−4,−2, 2,−9, 4, 2,
5, 1, 1, 1, 5,−4, 2, 6, 5,−1, 0, 0,−4,−1,−3,−1,−4, 1, 7,
1, 4, 1, 4,−7, 0,−3,−1, 0, 1, 2, 3, 1, 2,−4,−5, 9,−1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2,−1, 2, 1,−1, 11, 3).

[relies on data from ePrint 2019/498]

14 / 15

An example

In the CSIDH-512 parameter set, p ≡ 11 mod 12.
Q: Where is E : y2 = x3 + 1?

Our very explicit answer:

E = [(3, π−1)127326221114742137588515093005319601080810257152743211796285430487798805863095]E0

This ideal class corresponds to (e.g.) the private key:
(5,−7,−1, 1,−4,−5,−8, 4,−1, 5, 1, 0,−2,−4,−2, 2,−9, 4, 2,
5, 1, 1, 1, 5,−4, 2, 6, 5,−1, 0, 0,−4,−1,−3,−1,−4, 1, 7,
1, 4, 1, 4,−7, 0,−3,−1, 0, 1, 2, 3, 1, 2,−4,−5, 9,−1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2,−1, 2, 1,−1, 11, 3).

[relies on data from ePrint 2019/498]

14 / 15

An example

In the CSIDH-512 parameter set, p ≡ 11 mod 12.
Q: Where is E : y2 = x3 + 1?

Our very explicit answer:

E = [(3, π−1)127326221114742137588515093005319601080810257152743211796285430487798805863095]E0

This ideal class corresponds to (e.g.) the private key:
(5,−7,−1, 1,−4,−5,−8, 4,−1, 5, 1, 0,−2,−4,−2, 2,−9, 4, 2,
5, 1, 1, 1, 5,−4, 2, 6, 5,−1, 0, 0,−4,−1,−3,−1,−4, 1, 7,
1, 4, 1, 4,−7, 0,−3,−1, 0, 1, 2, 3, 1, 2,−4,−5, 9,−1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2,−1, 2, 1,−1, 11, 3).

[relies on data from ePrint 2019/498]

14 / 15

One last thing: Fp-ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

I Known [KLPT’14]: When E/Fp2 and given End(E), one can
compute an isogeny E0 −→ E in polynomial time.

This isogeny is usually not defined over Fp!
 Q: Can we safely reveal endomorphisms in CSIDH?

I We show: When E/Fp and given End(E), one can compute
an ideal a ⊆ Endp(E0) with E0/a ∼= E in polynomial time.

I Caveat: Turning a into an isogeny E0 −→ E takes
superpolynomial time Lp[1/2,

√
2].

I But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(

√−p)).

15 / 15

One last thing: Fp-ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

I Known [KLPT’14]: When E/Fp2 and given End(E), one can
compute an isogeny E0 −→ E in polynomial time.

This isogeny is usually not defined over Fp!
 Q: Can we safely reveal endomorphisms in CSIDH?

I We show: When E/Fp and given End(E), one can compute
an ideal a ⊆ Endp(E0) with E0/a ∼= E in polynomial time.

I Caveat: Turning a into an isogeny E0 −→ E takes
superpolynomial time Lp[1/2,

√
2].

I But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(

√−p)).

15 / 15

One last thing: Fp-ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

I Known [KLPT’14]: When E/Fp2 and given End(E), one can
compute an isogeny E0 −→ E in polynomial time.

This isogeny is usually not defined over Fp!
 Q: Can we safely reveal endomorphisms in CSIDH?

I We show: When E/Fp and given End(E), one can compute
an ideal a ⊆ Endp(E0) with E0/a ∼= E in polynomial time.

I Caveat: Turning a into an isogeny E0 −→ E takes
superpolynomial time Lp[1/2,

√
2].

I But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(

√−p)).

15 / 15

One last thing: Fp-ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

I Known [KLPT’14]: When E/Fp2 and given End(E), one can
compute an isogeny E0 −→ E in polynomial time.

This isogeny is usually not defined over Fp!
 Q: Can we safely reveal endomorphisms in CSIDH?

I We show: When E/Fp and given End(E), one can compute
an ideal a ⊆ Endp(E0) with E0/a ∼= E in polynomial time.

I Caveat: Turning a into an isogeny E0 −→ E takes
superpolynomial time Lp[1/2,

√
2].

I But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(

√−p)).

15 / 15

One last thing: Fp-ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

I Known [KLPT’14]: When E/Fp2 and given End(E), one can
compute an isogeny E0 −→ E in polynomial time.

This isogeny is usually not defined over Fp!
 Q: Can we safely reveal endomorphisms in CSIDH?

I We show: When E/Fp and given End(E), one can compute
an ideal a ⊆ Endp(E0) with E0/a ∼= E in polynomial time.

I Caveat: Turning a into an isogeny E0 −→ E takes
superpolynomial time Lp[1/2,

√
2].

I But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(

√−p)).

15 / 15

Thanks!

Further reading for any newcomers who may have now acquired an interest
in the actual isogeny session (later today):

I https://arxiv.org/abs/1711.04062

I https://yx7.cc/docs/phd/thesis.pdf (§2)

https://arxiv.org/abs/1711.04062
https://yx7.cc/docs/phd/thesis.pdf

