Rational isogenies from

Wouter Castryck¹ <u>Lorenz Panny</u>² Frederik Vercauteren¹ ¹imec-COSIC, ESAT, KU Leuven ²Academia Sinica, Taipei, Taiwan

SIAM-AG, online, 20 August 2021

(abelian) • <u>CSIDH</u> ['sit,said] is a cryptographic Υ group action $*: G \times X \longrightarrow X$

(abelian) • <u>CSIDH</u> ['sit,said] is a cryptographic Υ group action $*: G \times X \longrightarrow X$

on a certain set *X* of supersingular elliptic curves. (cf. how integer exponents can be applied to Diffie–Hellman public keys)

 <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them.

(abelian) • <u>CSIDH</u> ['sit,said] is a cryptographic Υ group action $*: G \times X \longrightarrow X$

on a certain set *X* of supersingular elliptic curves. (cf. how integer exponents can be applied to Diffie–Hellman public keys)

► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)

(abelian) • <u>CSIDH</u> ['si:,said] is a cryptographic γ group action $*: G \times X \longrightarrow X$

- ► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)
- <u>Known methods</u> to produce elements of *X*:

(abelian) • <u>CSIDH</u> ['si:,said] is a cryptographic γ group action $*: G \times X \longrightarrow X$

- ► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)
- <u>Known methods</u> to produce elements of *X*:
 - ► Take known $x \in X$; pick random $g \in G$; compute y := g * x. \rightsquigarrow obviously leaks a connection from x to y: it's g.

(abelian) • <u>CSIDH</u> ['si:,said] is a cryptographic γ group action $*: G \times X \longrightarrow X$

- ► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)
- <u>Known methods</u> to produce elements of *X*:
 - ► Take known $x \in X$; pick random $g \in G$; compute y := g * x. \rightarrow obviously leaks a connection from x to y: it's g.
 - ► Reduce a suitable CM curve *E*/Q modulo *q*. ~ ???????

(abelian) • <u>CSIDH</u> ['si:,said] is a cryptographic γ group action $*: G \times X \longrightarrow X$

- ► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)
- <u>Known methods</u> to produce elements of *X*:
 - ► Take known $x \in X$; pick random $g \in G$; compute y := g * x. \rightsquigarrow obviously leaks a connection from x to y: it's g.
 - ▶ Reduce a suitable CM curve $\mathcal{E}/\overline{\mathbb{Q}}$ modulo *q*. \rightsquigarrow **Our work** can find a connection to a certain $x \in X$.

(abelian) • <u>CSIDH</u> ['si:,said] is a cryptographic γ group action $*: G \times X \longrightarrow X$

on a certain set *X* of supersingular elliptic curves. (cf. how integer exponents can be applied to Diffie–Hellman public keys)

- ► <u>Open problem</u>: 'Hash into X': compute elements of X with no known connection (element of G) between them. (Situation with DLP: We can easily sample from (Z/p)*, E(F_q), ...)
- <u>Known methods</u> to produce elements of *X*:
 - ► Take known $x \in X$; pick random $g \in G$; compute y := g * x. \rightsquigarrow obviously leaks a connection from x to y: it's g.
 - ▶ Reduce a suitable CM curve $\mathcal{E}/\overline{\mathbb{Q}}$ modulo *q*. \rightsquigarrow **Our work** can find a connection to a certain $x \in X$.

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

 CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)

- CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)
- This means: An invertible ideal a ⊆ O acts on E ∈ X by quotienting out the kernel subgroup E[a].

 \rightsquigarrow free and transitive action of $cl(\mathcal{O})$ on X.

- CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)
- This means: An invertible ideal a ⊆ O acts on E ∈ X by quotienting out the kernel subgroup E[a].
 → free and transitive action of cl(O) on X.
- Computing the action of $\mathfrak{a} \subseteq \mathcal{O}$ is generally hard. \rightleftharpoons

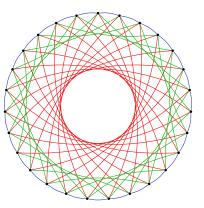
- CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)
- This means: An invertible ideal a ⊆ O acts on E ∈ X by quotienting out the kernel subgroup E[a].
 → free and transitive action of cl(O) on X.
- ► Computing the action of $\mathfrak{a} \subseteq \mathcal{O}$ is generally hard. \Rightarrow Use $\mathfrak{a} = \mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_n^{e_n}$ with small $N(\mathfrak{l}_i)$ and $|e_i| \Rightarrow$ efficient!

- CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)
- This means: An invertible ideal a ⊆ O acts on E ∈ X by quotienting out the kernel subgroup E[a].
 → free and transitive action of cl(O) on X.
- Computing the action of a ⊆ O is generally hard. → Use a = l₁^{e₁} · · · l_n^{e_n} with small N(l_i) and |e_i| → efficient! (Advantage of CSIDH: applying l_i is particularly cheap.)

- CSIDH is the CM action of an order O ⊆ Q(√-p) on the set X of elliptic curves E/F_p with End_p(E) = O.
 (F_p-isomorphism classes of)
- This means: An invertible ideal a ⊆ O acts on E ∈ X by quotienting out the kernel subgroup E[a].
 → free and transitive action of cl(O) on X.
- Computing the action of a ⊆ O is generally hard. → Use a = l₁^{e₁} · · · l_n^{e_n} with small N(l_i) and |e_i| → efficient! (Advantage of CSIDH: applying l_i is particularly cheap.)
- ⇒ <u>Bottom line</u>: Relatively fast non-interactive key exchange. Think Diffie–Hellman, but post-quantum! (and slower...)

Isogeny graphs

Visualizing the action of $l_1, ..., l_n$:



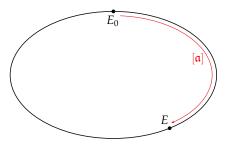
Each node is an elliptic curve over \mathbb{F}_p , up to $\cong_{\mathbb{F}_p}$. Each edge is the action of \mathfrak{l}_1 , \mathfrak{l}_2 , or \mathfrak{l}_3 , or their inverses.

Notation for this talk

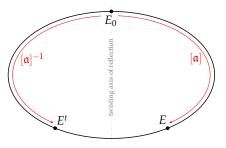
- ► The prime *p* is 'large', certainly > 3.
- Curves are elliptic, supersingular, and defined over \mathbb{F}_{p^2} .
- E^t : the quadratic twist of E.
- End(*E*): *full* endomorphism ring (over $\overline{\mathbb{F}}_p$).
- End_{*p*}(*E*): *rational* endomorphism ring (over \mathbb{F}_p).
- ► E_0 : a starting curve with known endomorphism ring. For instance: $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$. Endomorphism ring: End $(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle$ where $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ and $\pi: (x, y) \mapsto (x^p, y^p)$.
- \mathcal{O} : the order $\mathbb{Z}[\sqrt{-p}]$ or $\mathbb{Z}[(1+\sqrt{-p})/2]$ in $\mathbb{Q}(\sqrt{-p})$.
- I: a fixed prime ideal of \mathcal{O} lying above ℓ .

Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .

Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .

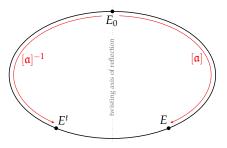


Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .



Fact: If $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$, then "given $[\mathfrak{a}]E_0$ we can compute $[\mathfrak{a}]^{-1}E_0$ by mere quadratic twisting". [CSIDH paper]

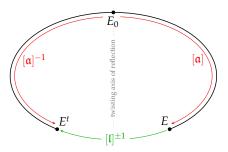
Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .



Fact: If $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$, then "given $[\mathfrak{a}]E_0$ we can compute $[\mathfrak{a}]^{-1}E_0$ by mere quadratic twisting". [CSIDH paper] **Fact**: If $\tau \pi = -\pi \tau$, then $(E \xrightarrow{\sim} E^t) \circ \tau$ is an \mathbb{F}_p -rational isogeny. Therefore τ implies an edge $E \to E^t$ in the ℓ -isogeny graph.

Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .

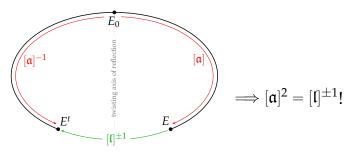
Q: Where in the isogeny graph is it?



Fact: If $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$, then "given $[\mathfrak{a}]E_0$ we can compute $[\mathfrak{a}]^{-1}E_0$ by mere quadratic twisting". [CSIDH paper] **Fact**: If $\tau \pi = -\pi \tau$, then $(E \xrightarrow{\sim} E^t) \circ \tau$ is an \mathbb{F}_p -rational isogeny. Therefore τ implies an edge $E \rightarrow E^t$ in the ℓ -isogeny graph.

Suppose a curve $E = [\mathfrak{a}]E_0$ has an irrational endomorphism $\tau \in \operatorname{End}(E) \setminus \operatorname{End}_p(E)$, say of prime degree ℓ .

Q: Where in the isogeny graph is it?



Fact: If $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$, then "given $[\mathfrak{a}]E_0$ we can compute $[\mathfrak{a}]^{-1}E_0$ by mere quadratic twisting". [CSIDH paper] **Fact**: If $\tau \pi = -\pi \tau$, then $(E \xrightarrow{\sim} E^t) \circ \tau$ is an \mathbb{F}_p -rational isogeny. Therefore τ implies an edge $E \to E^t$ in the ℓ -isogeny graph.

Coincidence?

Previous slide:

Knowing that $E = [\mathfrak{a}]E_0$ has a 'special' endomorphism τ allows us to recover $[\mathfrak{a}]$ up to 2-torsion.

Q: Is this just a weird special case?

Coincidence?

Previous slide:

Knowing that $E = [\mathfrak{a}]E_0$ has a 'special' endomorphism τ allows us to recover $[\mathfrak{a}]$ up to 2-torsion.

Q: Is this just a weird special case? (**A**: No.)

Coincidence?

Previous slide:

Knowing that $E = [\mathfrak{a}]E_0$ has a 'special' endomorphism τ allows us to recover $[\mathfrak{a}]$ up to 2-torsion.

Q: Is this just a weird special case? (**A**: No.)

Definition. Let *E* be defined over \mathbb{F}_p . Then $\alpha \in \text{End}(E)$ is a *twisting endomorphism* of *E* if $\alpha \pi = -\pi \alpha$.

Let $E = [\mathfrak{a}]E_0$. We've seen:

Let $E = [\mathfrak{a}]E_0$. We've seen:

If $p \equiv 3 \mod 4$ and $E_0: y^2 = x^3 + x$ and $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ with $\deg \tau = \ell$ prime and $\tau \pi = -\pi \tau$, then $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$.

► How to compute square roots in cl(*O*)?

Let $E = [\mathfrak{a}]E_0$. We've seen:

- ► How to compute square roots in cl(*O*)?
- How much ambiguity is in the 2-torsion?

Let $E = [\mathfrak{a}]E_0$. We've seen:

- ► How to compute square roots in cl(*O*)?
- How much ambiguity is in the 2-torsion?
- When are endomorphisms *twisting*?

Let $E = [\mathfrak{a}]E_0$. We've seen:

- ► How to compute square roots in cl(*O*)?
- How much ambiguity is in the 2-torsion?
- When are endomorphisms *twisting*?
- Can we deal with starting curves $E_0 \neq E_0^t$?

Let $E = [\mathfrak{a}]E_0$. We've seen:

- ► How to compute square roots in cl(*O*)?
- How much ambiguity is in the 2-torsion?
- When are endomorphisms *twisting*?
- Can we deal with starting curves $E_0 \neq E_0^t$?
- Can we generalize to primes $p \not\equiv 3 \mod 4$?

Square roots in $\operatorname{cl}(\mathcal{O})$

From ℓ we learn that $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$. But how to recover (an) $[\mathfrak{a}]$?

Square roots in $\operatorname{cl}(\mathcal{O})$

From ℓ we learn that $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$. But how to recover (an) $[\mathfrak{a}]$? Perhaps unsurprisingly, Gauß knew how to do this. [DA § 286] His method is polynomial-time.

Square roots in $cl(\mathcal{O})$

From ℓ we learn that $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$. But how to recover (an) $[\mathfrak{a}]$? Perhaps unsurprisingly, Gauß knew how to do this. [DA § 286] His method is polynomial-time.

<u>Note</u>: *If* the class number $h(\mathcal{O}) = |cl(\mathcal{O})|$ is known and odd, then

 $\sqrt{[\mathfrak{s}]} = [\mathfrak{s}]^{(h(\mathcal{O})+1)/2}.$

Gauß' algorithm does not require computing h(O).

Square roots in $\operatorname{cl}(\mathcal{O})$

How many square roots exist?

Square roots in $\operatorname{cl}(\mathcal{O})$

How many square roots exist?

Fact: If $\mathfrak{r} \subseteq \mathcal{O}$ is a non-principal prime ideal such that \mathfrak{r}^2 is principal, then $N(\mathfrak{r})$ divides $\Delta := \operatorname{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$.

Square roots in $\operatorname{cl}(\mathcal{O})$

How many square roots exist?

Fact: If $\mathfrak{r} \subseteq \mathcal{O}$ is a non-principal prime ideal such that \mathfrak{r}^2 is principal, then $N(\mathfrak{r})$ divides $\Delta := \operatorname{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$.

For the potential divisors of Δ , we get:

- $p \mid \Delta$: yields $(\pi) \subseteq \mathcal{O}$ (principal).
- ▶ 2 | Δ : yields $(2, \pi+1) \subseteq \mathcal{O}$ (non-principal).

Square roots in $cl(\mathcal{O})$

How many square roots exist?

Fact: If $\mathfrak{r} \subseteq \mathcal{O}$ is a non-principal prime ideal such that \mathfrak{r}^2 is principal, then $N(\mathfrak{r})$ divides $\Delta := \operatorname{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$.

For the potential divisors of Δ , we get:

- $p \mid \Delta$: yields $(\pi) \subseteq \mathcal{O}$ (principal).
- ▶ 2 | Δ : yields $(2, \pi+1) \subseteq \mathcal{O}$ (non-principal).

$$\implies \operatorname{cl}(\mathcal{O})[2] \cong \begin{cases} \{\operatorname{id}\} & \operatorname{when} p \equiv 3 \pmod{4}; \\ \mathbb{Z}/2 & \operatorname{when} p \equiv 1 \pmod{4}. \end{cases}$$

Bottom line: Elements $[\mathfrak{s}] \in \mathrm{cl}(\mathcal{O})^2$ have either one or two square roots, depending on $p \mod 4$.

To-do list

- ► How to compute square roots in cl(O)? Gauß found a polynomial-time algorithm.
- ► How much ambiguity is in the 2-torsion? At most two square roots; cl(O)[2] ≤ Z/2.
- ► When are endomorphisms *twisting*?
- Can we deal with starting curves $E_0 \neq E_0^t$?
- Can we generalize to primes $p \not\equiv 3 \mod 4$?

We wanted to locate reduced CM curves in the isogeny graph. **Q**: How common is it for an endomorphism to be twisting?

We wanted to locate reduced CM curves in the isogeny graph. **Q**: How common is it for an endomorphism to be twisting?

Suppose E/\mathbb{F}_p is the supersingular reduction of a curve $\mathcal{E}/\overline{\mathbb{Q}}$ with CM by $\mathbb{Z}[\Psi]$ where Ψ has prime degree $\ell \leq (p+1)/4$. Then the reduction ψ of Ψ is a twisting endomorphism.

We wanted to locate reduced CM curves in the isogeny graph. **Q**: How common is it for an endomorphism to be twisting?

Suppose E/\mathbb{F}_p is the supersingular reduction of a curve $\mathcal{E}/\overline{\mathbb{Q}}$ with CM by $\mathbb{Z}[\Psi]$ where Ψ has prime degree $\ell \leq (p+1)/4$. Then the reduction ψ of Ψ is a twisting endomorphism.

 \implies For large *p*, reduced CM endomorphisms are <u>practically</u> always twisting.

We wanted to locate reduced CM curves in the isogeny graph. **Q**: How common is it for an endomorphism to be twisting?

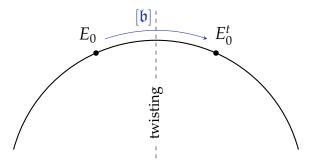
Suppose E/\mathbb{F}_p is the supersingular reduction of a curve $\mathcal{E}/\overline{\mathbb{Q}}$ with CM by $\mathbb{Z}[\Psi]$ where Ψ has prime degree $\ell \leq (p+1)/4$. Then the reduction ψ of Ψ is a twisting endomorphism.

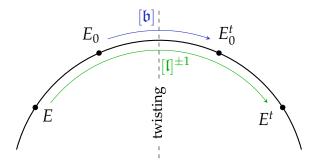
 \implies For large *p*, reduced CM endomorphisms are <u>practically</u> always twisting.

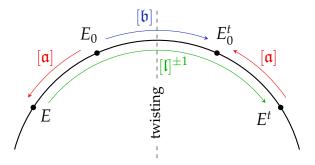
Moreover, given any irrational endomorphism, it is typically easy to find a twisting endomorphism.

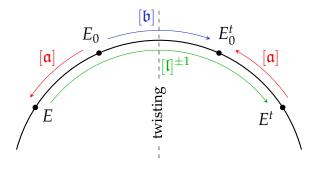
To-do list

- ► How to compute square roots in cl(O)? Gauß found a polynomial-time algorithm.
- ► How much ambiguity is in the 2-torsion? At most two square roots; cl(O)[2] ≤ Z/2.
- ► When are endomorphisms *twisting*? Sufficient: reduced CM endomorphisms with deg ≤ (*p*+1)/4.
- Can we deal with starting curves $E_0 \neq E_0^t$?
- Can we generalize to primes $p \not\equiv 3 \mod 4$?





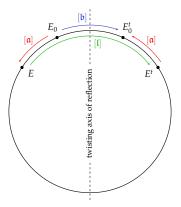


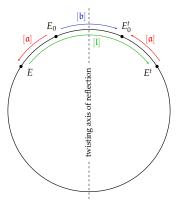


$$[\mathfrak{l}]^{\pm 1} = [\mathfrak{b}][\mathfrak{a}]^{-2} \implies [\mathfrak{a}]^2 = [\mathfrak{b}][\mathfrak{l}]^{\mp 1}$$

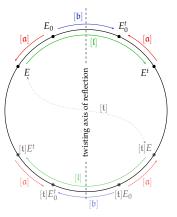
To-do list

- ► How to compute square roots in cl(O)? Gauß found a polynomial-time algorithm.
- ► How much ambiguity is in the 2-torsion? At most two square roots; cl(O)[2] ≤ Z/2.
- ► When are endomorphisms *twisting*? Sufficient: reduced CM endomorphisms with deg ≤ (*p*+1)/4.
- Can we deal with starting curves $E_0 \neq E_0^t$? Yes; the same idea works modulo technicalities.
- Can we generalize to primes $p \not\equiv 3 \mod 4$?

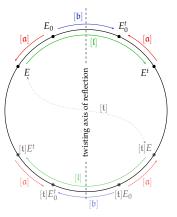




Long story short: Everything works the same, but the element $\mathfrak{t} := [(2, \pi+1)]$ of order 2 introduces an additional symmetry.



Long story short: Everything works the same, but the element $\mathfrak{t} := [(2, \pi+1)]$ of order 2 introduces an additional symmetry.



<u>Long story short</u>: Everything works the same, but the element $\mathfrak{t} := [(2, \pi+1)]$ of order 2 introduces an additional symmetry.

→ Two candidates for [a]. Find [a] by brute-force testing <u>or</u> use ePrint 2020/151, which breaks DDH for the case $p \equiv 1 \mod 4$.

To-do list

- ► How to compute square roots in cl(O)? Gauß found a polynomial-time algorithm.
- ► How much ambiguity is in the 2-torsion? At most two square roots; cl(O)[2] ≤ Z/2.
- ► When are endomorphisms *twisting*? Sufficient: reduced CM endomorphisms with deg ≤ (p+1)/4.
- ► Can we deal with starting curves E₀ ≠ E^t₀? Yes; the same idea works modulo technicalities.
- ► Can we generalize to primes p ≠ 3 mod 4? Yes.

Our 'locating CM curves' theorem

Let $p \equiv 3 \mod 4$ and $\ell < (p+1)/4$ be primes with $\left(\frac{-p}{\ell}\right) = 1$.

We show:

- ► How many curves $/\mathbb{F}_p$ are reductions of curves $/\overline{\mathbb{Q}}$ with CM by orders $\mathcal{R} \subseteq \mathbb{Q}(\sqrt{-\ell})$ containing $\mathbb{Z}[\sqrt{-\ell}]$.
- ► Which combinations of (End_p, *R*) are possible.
- ► Where in the isogeny graph all these curves are located: We give connecting ideals to the curve E₀: y² = x³ ± x.

Our 'locating CM curves' theorem

Let $p \equiv 3 \mod 4$ and $\ell < (p+1)/4$ be primes with $\left(\frac{-p}{\ell}\right) = 1$.

We show:

- ► How many curves $/\mathbb{F}_p$ are reductions of curves $/\overline{\mathbb{Q}}$ with CM by orders $\mathcal{R} \subseteq \mathbb{Q}(\sqrt{-\ell})$ containing $\mathbb{Z}[\sqrt{-\ell}]$.
- ► Which combinations of (End_p, *R*) are possible.
- ► Where in the isogeny graph all these curves are located: We give connecting ideals to the curve E₀: y² = x³ ± x.

<u>Remark</u>: Similar results are possible for $p \equiv 1 \mod 4$.

An example

In the CSIDH-512 parameter set, $p \equiv 11 \mod 12$. Q: Where is $E: y^2 = x^3 + 1$?

An example

In the CSIDH-512 parameter set, $p \equiv 11 \mod 12$. Q: Where is $E: y^2 = x^3 + 1$?

Our very explicit **a**nswer:

$$E = [(3, \pi - 1)^{127326221114742137588515093005319601080810257152743211796285430487798805863095}]E_0$$

An example

In the CSIDH-512 parameter set, $p \equiv 11 \mod 12$. Q: Where is $E: y^2 = x^3 + 1$?

Our very explicit answer: $E = [(3, \pi - 1)^{1273262211147421375885150930053196010808102571527432117962854304877988058630}$

This ideal class corresponds to (e.g.) the private key:

[relies on data from ePrint 2019/498]

 $]E_0$

Let *E* be a supersingular elliptic curve.

• <u>Known</u> [KLPT'14]: When E/\mathbb{F}_{p^2} and given $\operatorname{End}(E)$, one can compute an isogeny $E_0 \longrightarrow E$ in polynomial time.

Let *E* be a supersingular elliptic curve.

• <u>Known</u> [KLPT'14]: When E/\mathbb{F}_{p^2} and given $\operatorname{End}(E)$, one can compute an isogeny $E_0 \longrightarrow E$ in polynomial time.

This isogeny is usually not defined over \mathbb{F}_p ! $\rightsquigarrow \mathbb{Q}$: Can we safely reveal endomorphisms in CSIDH?

Let *E* be a supersingular elliptic curve.

• <u>Known</u> [KLPT'14]: When E/\mathbb{F}_{p^2} and given $\operatorname{End}(E)$, one can compute an isogeny $E_0 \longrightarrow E$ in polynomial time.

This isogeny is usually not defined over \mathbb{F}_p ! $\rightsquigarrow \mathbb{Q}$: Can we safely reveal endomorphisms in CSIDH?

▶ <u>We show</u>: When E/\mathbb{F}_p and given $\operatorname{End}(E)$, one can compute an ideal $\mathfrak{a} \subseteq \operatorname{End}_p(E_0)$ with $E_0/\mathfrak{a} \cong E$ in polynomial time.

Let *E* be a supersingular elliptic curve.

• <u>Known</u> [KLPT'14]: When E/\mathbb{F}_{p^2} and given $\operatorname{End}(E)$, one can compute an isogeny $E_0 \longrightarrow E$ in polynomial time.

This isogeny is usually not defined over \mathbb{F}_p ! $\rightsquigarrow \mathbb{Q}$: Can we safely reveal endomorphisms in CSIDH?

- ▶ <u>We show</u>: When E/\mathbb{F}_p and given $\operatorname{End}(E)$, one can compute an ideal $\mathfrak{a} \subseteq \operatorname{End}_p(E_0)$ with $E_0/\mathfrak{a} \cong E$ in polynomial time.
 - Caveat: Turning a into an isogeny $E_0 \longrightarrow E$ takes superpolynomial time $L_p[1/2, \sqrt{2}]$.

Let *E* be a supersingular elliptic curve.

• <u>Known</u> [KLPT'14]: When E/\mathbb{F}_{p^2} and given $\operatorname{End}(E)$, one can compute an isogeny $E_0 \longrightarrow E$ in polynomial time.

This isogeny is usually not defined over \mathbb{F}_p ! $\rightsquigarrow \mathbb{Q}$: Can we safely reveal endomorphisms in CSIDH?

- ▶ <u>We show</u>: When E/\mathbb{F}_p and given $\operatorname{End}(E)$, one can compute an ideal $\mathfrak{a} \subseteq \operatorname{End}_p(E_0)$ with $E_0/\mathfrak{a} \cong E$ in polynomial time.
 - ► Caveat: Turning a into an isogeny $E_0 \longrightarrow E$ takes superpolynomial time $L_p[1/2, \sqrt{2}]$.
 - ► But this might be optimal: we show that doing better implies faster discrete logarithms in cl(Q(√-p)).

Thanks!

Further reading for any newcomers who may have now acquired an interest in the actual isogeny session (later today):

- https://arxiv.org/abs/1711.04062
- https://yx7.cc/docs/phd/thesis.pdf (§2)