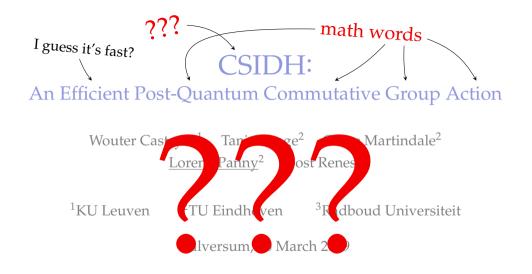
CSIDH:

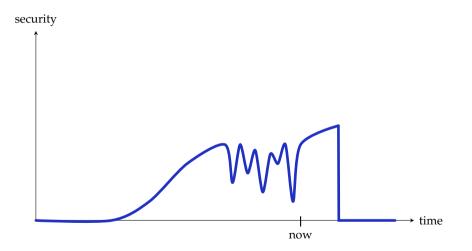
An Efficient Post-Quantum Commutative Group Action

Wouter Castryck¹ Tanja Lange² Chloe Martindale² Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³Radboud Universiteit


Hilversum, 20 March 2019

ICTOPPEN dcypher NW


Netherlands Organisation for Scientific Research

Timeline of internet security (not to scale)

Timeline of internet security (not to scale)

Figure 1: A brief introduction to privacy.

Quantum attacks

Figure 1: A brief introduction to privacy.

 Quantum computers will break all common public-key crypto.

Quantum attacks

Figure 1: A brief introduction to privacy.

- Quantum computers will break all common public-key crypto.
- The good news: Nobody has a big enough quantum computer yet.

Quantum attacks

Figure 1: A brief introduction to privacy.

- Quantum computers will break all common public-key crypto.
- The good news: Nobody has a big enough quantum computer yet.
- The bad news: Attackers run a massive collect-now-decrypt-later effort.
 - Havoc will break loose once they can decipher important secrets...

Shor's algorithm ('94)

Figure 2: Peter W. Shor attacking the crypto in TLS.

Shor's algorithm ('94)

Figure 2: Peter W. Shor attacking the crypto in TLS, and an actual picture of him.

Is all hope lost?

Crypto is probably going to be fine — if we act now(-ish).

Is all hope lost?

Crypto is probably going to be fine — if we act now(-ish).

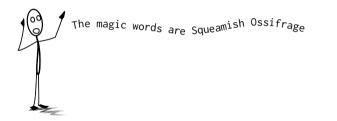
• Common misconception:

"Quantum computers can do everything super fast."

► Not true! Many computations have little or no known quantum speedups.

Is all hope lost?

Crypto is probably going to be fine — if we act now(-ish).

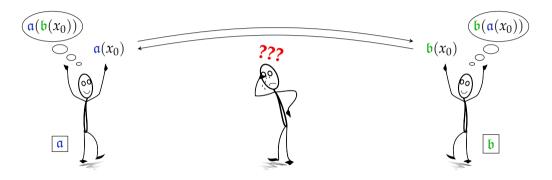

Common misconception:

"Quantum computers can do everything super fast."

▶ Not true! Many computations have little or no known quantum speedups.

Post-quantum cryptography

uses computational problems where no devastating quantum attacks are known.



- ► By magic math, $\mathfrak{a}(\mathfrak{b}(x_0)) = \mathfrak{b}(\mathfrak{a}(x_0))!$...but Eve doesn't know this secret.
- ► Now Alice and Bob can use their secret to encrypt messages back and forth.

Non-interactive key exchange

The method on the previous slide is an example of a <u>non-interactive</u> key exchange:

The method on the previous slide is an example of a <u>non-interactive</u> key exchange:

Everything sent by Alice and Bob is independent of who they are talking to! They can simply make $a(x_0)$ and $b(x_0)$ at *some* point in time and publish them. The method on the previous slide is an example of a <u>non-interactive</u> key exchange:

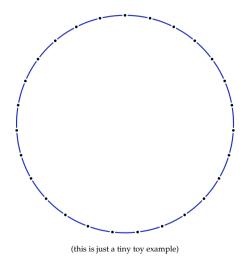
Everything sent by Alice and Bob is independent of who they are talking to! They can simply make $a(x_0)$ and $b(x_0)$ at *some* point in time and publish them.

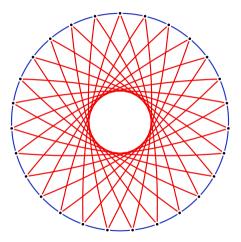
Alice can obtain a *shared secret* by applying her secret a to Bob's public key $b(x_0)$, and vice-versa. No interaction required after the initial key generation!

Our work: a post-quantum NIKE

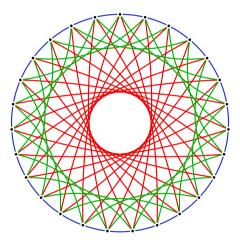
Short summary <u>before our work</u>:

All NIKEs either broken by quantum computers or extremely inefficient.

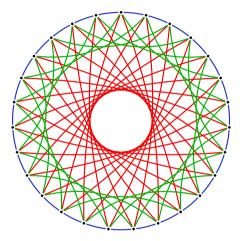

Our work: a post-quantum NIKE


Short summary <u>before our work</u>:

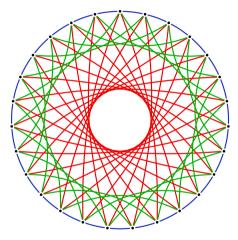
All NIKEs either broken by quantum computers or extremely inefficient.


Short summary <u>now</u>:

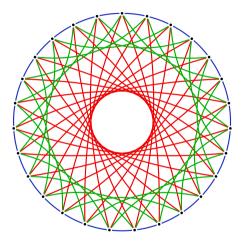
CSIDH seems post-quantum secure and is reasonably fast!



(this is just a tiny toy example)



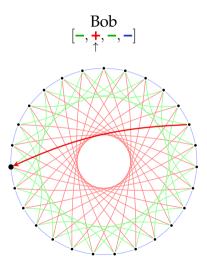
(this is just a tiny toy example)


 You can 'walk' on this graph: right, left, left, left, right, left, right.

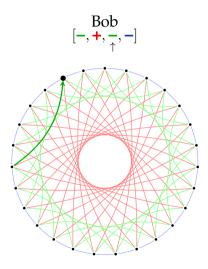
(this is just a tiny toy example)

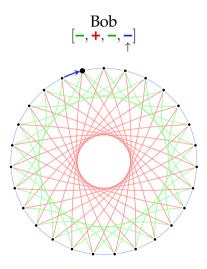
- You can 'walk' on this graph: right, left, left, left, right, left, right.
- The cyclic subgraphs are <u>compatible</u>: Only the number (not the order) of steps on each color matters for where you land.

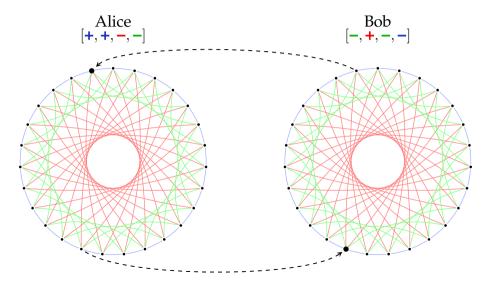
(this is just a tiny toy example)


⁽this is just a tiny toy example)

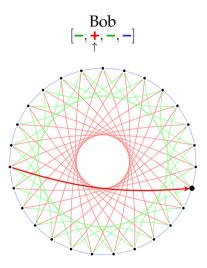
- You can 'walk' on this graph: right, left, left, left, right, left, right.
- The cyclic subgraphs are <u>compatible</u>: Only the number (not the order) of steps on each color matters for where you land.
- Alice and Bob can make a key exchange by choosing directions as their secrets a and b and publishing the end points of walking from a common starting node x₀.

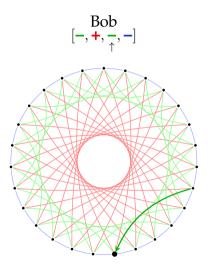

Alice [+, +, -, -] $\underset{[-,+,-,-]}{Bob}$

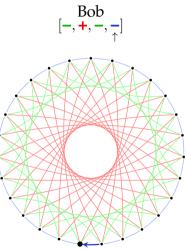

Alice [+, +, -, -] $\begin{bmatrix} Bob \\ \hline +, -, - \end{bmatrix}$


Alice [+, +, -, -]

Alice [+, +, -]






Alice [+, +, -, -] $\begin{bmatrix} Bob \\ \hline +, -, - \end{bmatrix}$

Alice [+, +, -, -]

Alice [+, +, -]

Alice [+, +, -, -] $\underset{[-,+,-,-]}{Bob}$

We have constructed an exponentially-sized¹ graph such that:

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

• It is efficient to walk on the graph.

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...
- ...but not regular enough to be broken by any known method.

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...
- ...but not regular enough to be broken by any known method.

Implications:

An efficient post-quantum non-interactive key exchange.
 ⇒ more flexible security mechanisms for a cyber future!

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...
- ...but not regular enough to be broken by any known method.

- An efficient post-quantum non-interactive key exchange.

 ⇒ more flexible security mechanisms for a cyber future!
- I forgot to say that it also has really small keys.

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...
- ...but not regular enough to be broken by any known method.

- An efficient post-quantum non-interactive key exchange.
 ⇒ more flexible security mechanisms for a cyber future!
- I forgot to say that it also has really small keys.
- ► Lots of nice math (elliptic curves & isogenies & class groups)!

¹(Nobody can enumerate or even store the whole thing.)

We have constructed an exponentially-sized¹ graph such that:

- ▶ It is efficient to walk on the graph.
- It seems hard to find paths between two given nodes.
- The graph is structured enough to support $\mathfrak{a} \circ \mathfrak{b} = \mathfrak{b} \circ \mathfrak{a}$...
- ...but not regular enough to be broken by any known method.

- wank you! • An efficient post-quantum non-interactive key exchange. \implies more flexible security mechanisms for a cyber future!
- ▶ I forgot to say that it also has really small keys.
- Lots of nice math (elliptic curves & isogenies & class groups)!

¹(Nobody can enumerate or even store the whole thing.)