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Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible: compatible with 0-RTT protocols such as QUIC;

recent preprint uses CSIDH for ‘SeaSign’ signatures
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Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.
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Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.
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Cycles!
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).
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Graphs of elliptic curves
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A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]
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A walkable graph

Important properties for such a walk:

IP1 I The graph is a composition of compatible cycles.
IP2 I We can compute neighbours in given directions.
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IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.
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IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G3∪G5∪G7:

12 / 21



IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I Generally, the G` look something like

G3: G5:

I We want to make sure G` is just a cycle.
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IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...
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Point counting

Both ‘IP’s are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points
(and such that the graph is big). [De Feo–Kieffer–Smith]
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Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.

I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.
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Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!
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Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21



Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21



Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21



Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21



Security

Classical:
I Meet-in-the-middle variants: Time O( 4

√p).

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I Concrete estimates are to be done.
I (Recent preprint [BS] ignores much of the cost!)
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Parameters
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CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128 71
CSIDH-1024 3 128 b 64 b 256 88
CSIDH-1792 5 224 b 112 b 448 104
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Work in progress & future work

I Fast and constant-time implementation

I Reliable security analysis
I More applications

I [Your paper here!]
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Thank you!
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Where’s the group?

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I E9 = E51/a where a is the ideal (3, π − 1) of EndFp(E51).

I For our choices of A, EndFp(EA) ∼= Z[√−p].
I The group action is

cl(Z[
√
−p])× {EA} −→ {EA}

([a],E) 7−→ E/a

(modulo details).
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