CSIDH: An Efficient Post-Quantum Commutative Group Action

Wouter Castryck¹ Tanja Lange² <u>Chloe Martindale</u>² <u>Lorenz Panny</u>² Joost Renes³

¹KU Leuven ²TU Eindhoven ³Radboud Universiteit

Crypto Working Group, Utrecht, 14 September 2018

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/reasonable speed)

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/reasonable speed)
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/reasonable speed)
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/reasonable speed)
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange
- Flexible: compatible with 0-RTT protocols such as QUIC; recent preprint uses CSIDH for 'SeaSign' signatures

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

 \rightsquigarrow Idea:

Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S.$$

Cycles are compatible: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).

A walkable graph

Important properties for such a walk:

- IP1 ► The graph is a composition of compatible cycles.
- IP2 ► We can compute neighbours in given directions.

► The graph used in CSIDH is constructed as a composition of graphs G_ℓ of 'ℓ-isogenies'.

• We want to make sure G_{ℓ} is just a cycle.

The edges of G_{ℓ} are ℓ -isogenies.

The edges of G_{ℓ} are ℓ -isogenies.

► The orientation of G_ℓ is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).

The edges of G_{ℓ} are ℓ -isogenies.

- ► The orientation of G_ℓ is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).
- The cost grows with $\ell \rightsquigarrow$ want small ℓ .

The edges of G_{ℓ} are ℓ -isogenies.

- ► The orientation of G_ℓ is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).
- The cost grows with $\ell \rightsquigarrow$ want small ℓ .
- Generally needs big extension fields...

Point counting

Both 'IP's are connected to the number of points on the curves.

Point counting

Both 'IP's are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points (and such that the graph is big). [De Feo-Kieffer-Smith]

1. • Choose some small odd primes ℓ_1, \ldots, ℓ_n .

- 1. Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- **1.** \blacktriangleright Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

3. • E_0 has p + 1 points.

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- 3. E_0 has p + 1 points.
 - Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- 3. E_0 has p + 1 points.
 - Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - Then every G_{ℓ_i} is a disjoint union of cycles.

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- 3. E_0 has p + 1 points.
 - Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - Then every G_{ℓ_i} is a disjoint union of cycles.
 - All G_{ℓ_i} are compatible.

- **1.** Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p .

- 3. E_0 has p + 1 points.
 - Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - Then every G_{ℓ_i} is a disjoint union of cycles.
 - All G_{ℓ_i} are compatible.
 - Computations need only \mathbb{F}_p -arithmetic.

Representing nodes of the graph

Side effect of magic:

• Every node of G_{ℓ_i} can be written as

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

Representing nodes of the graph

Side effect of magic:

• Every node of G_{ℓ_i} can be written as

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

Side effect of magic:

• Every node of G_{ℓ_i} can be written as

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

⇒ Can compress every node to a single value $A \in \mathbb{F}_p$. ⇒ Tiny keys!

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

• About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p + 1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p + 1]P = \infty$.¹

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

Classical:

• Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$.

Classical:

• Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$.

Quantum:

► Hidden-shift algorithms: Subexponential complexity.

Classical:

• Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$.

Quantum:

- ► Hidden-shift algorithms: Subexponential complexity.
 - Literature contains mostly asymptotics.
 - ► Time-space trade-off: Fastest variants need huge memory.
 - Concrete estimates are to be done.

Classical:

• Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$.

Quantum:

- ► Hidden-shift algorithms: Subexponential complexity.
 - Literature contains mostly asymptotics.
 - ► Time-space trade-off: Fastest variants need huge memory.
 - Concrete estimates are to be done.
 - ► (Recent preprint [BS] ignores much of the cost!)

Parameters

CSIDH-log p	target NIST level	public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security	quantum security claimed by [BS] (take cum grano salis)
CSIDH-512	1	64 b	32 b	85 ms	212e6	4368 b	128	71
CSIDH-1024	3	128 b	64 b				256	88
CSIDH-1792	5	224 b	112b				448	104

Work in progress & future work

Fast and constant-time implementation
Work in progress & future work

- ► Fast and constant-time implementation
- ► Reliable security analysis

Work in progress & future work

- ► Fast and constant-time implementation
- ► Reliable security analysis
- More applications

Work in progress & future work

- ► Fast and constant-time implementation
- ► Reliable security analysis
- More applications
- ► [Your paper here!]

Thank you!

References

Mentioned in this talk:

- Castryck, Lange, Martindale, Panny, Renes: *CSIDH: An Efficient Post-Quantum Commutative Group Action* https://ia.cr/2018/383 (to appear at ASIACRYPT 2018)
- De Feo, Kieffer, Smith: Towards practical key exchange from ordinary isogeny graphs https://ia.cr/2018/485 (to appear at ASIACRYPT 2018)
- De Feo, Galbraith: SeaSign: Compact isogeny signatures from class group actions https://ia.cr/2018/824
- [BS] Bonnetain, Schrottenloher: Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes https://ia.cr/2018/537

Other related work:

- Delfs, Galbraith: Computing isogenies between supersingular elliptic curves over Fp https://arxiv.org/abs/1310.7789
- Childs, Jao, Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
- Meyer, Reith: *A faster way to the CSIDH* https://ia.cr/2018/782 (to appear at Indocrypt 2018)

- Jao, LeGrow, Leonardi, Ruiz-Lopez: A polynomial quantum space attack on CRS and CSIDH (MathCrypt 2018)
- Biasse, Iezzi, Jacobson: A note on the security of CSIDH https://arxiv.org/abs/1806.03656 (to appear at Indocrypt 2018)

Where's the group?

• $E_9 = E_{51}/\mathfrak{a}$ where \mathfrak{a} is the ideal $(3, \pi - 1)$ of $\operatorname{End}_{\mathbb{F}_p}(E_{51})$.

Where's the group?

• $E_9 = E_{51}/\mathfrak{a}$ where \mathfrak{a} is the ideal $(3, \pi - 1)$ of $\operatorname{End}_{\mathbb{F}_p}(E_{51})$.

- For our choices of *A*, $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}].$
- The group action is

$$cl(\mathbb{Z}[\sqrt{-p}]) \times \{E_A\} \longrightarrow \{E_A\}$$
$$([\mathfrak{a}], E) \longmapsto E/\mathfrak{a}$$

(modulo details).