CSIDH:
An Efficient Post-Quantum Commutative Group Action

Wouter Castryck1 Tanja Lange2 Chloe Martindale2 Lorenz Panny2 Joost Renes3

1KU Leuven 2TU Eindhoven 3Radboud Universiteit

Crypto Working Group, Utrecht, 14 September 2018
six, said
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/ reasonable speed)
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/ reasonable speed)
- Small keys: 64 bytes at conjectured AES-128 security level
Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (w/ reasonable speed)
- Small keys: 64 bytes at conjectured AES-128 security level
- Competitive speed: ~85 ms for a full key exchange
Why CSIDH?

- **Drop-in** post-quantum replacement for (EC)DH
- **Non-interactive key exchange** (full public-key validation); previously an open problem post-quantumly (w/ reasonable speed)
- **Small** keys: 64 bytes at conjectured AES-128 security level
- **Competitive** speed: ~ 85 ms for a full key exchange
- **Flexible**: compatible with 0-RTT protocols such as QUIC; recent preprint uses CSIDH for ‘SeaSign’ signatures
Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$\mathbb{Z} \times G \rightarrow G$$

$$(x, g) \mapsto g^x.$$
Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$\mathbb{Z} \times G \rightarrow G$$

$$(x, g) \mapsto g^x.$$

Shor’s algorithm quantumly computes x from g^x in any group in polynomial time.
Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

$$\mathbb{Z} \times G \rightarrow G \quad (x, g) \mapsto g^x.$$

Shor’s algorithm quantumly computes x from g^x in any group in polynomial time.

\Rightarrow Idea:

Replace exponentiation on the group G by a group action of a group H on a set S:

$$H \times S \rightarrow S.$$
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13}.
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13}.
Square-and-multiply

Suppose \(G \cong \mathbb{Z}/23 \) and that Alice computes \(g^{13} \).
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13}.
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13}.
Cycles are compatible: [right, then left] = [left, then right], etc.
Cycles are compatible: [right, then left] = [left, then right], etc.
Cycles are compatible: [right, then left] = [left, then right], etc.

\[
\begin{array}{c}
\text{Cycles!} \\
\end{array}
\]
Cycles are compatible: [right, then left] = [left, then right], etc.
Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.
Union of cycles: rapid mixing

CSIDH: Nodes are now \textit{elliptic curves} and edges are \textit{isogenies}.
Graphs of elliptic curves

Nodes: Supersingular curves

E_A: $y^2 = x^3 + Ax^2 + x$ over F_{419}.

Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).
Graphs of elliptic curves

Nodes: Supersingular curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419}.
Graphs of elliptic curves

Nodes: Supersingular curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419}.
Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).
Graphs of elliptic curves

A 3-isogeny

$E_{51}: y^2 = x^3 + 51x^2 + x$ \longrightarrow $E_9: y^2 = x^3 + 9x^2 + x$

$(x, y) \longmapsto \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right)
Diffie-Hellman on ‘nice’ graphs

Alice
[+, −, +, −]

Bob
[+, +, −, +]
Diffie-Hellman on ‘nice’ graphs

Alice
\[[+,-,+,-] \]

Bob
\[[+,-,-,+] \]
Diffie-Hellman on ‘nice’ graphs

Alice

$[+, -, +, -]$

Bob

$[+, -, +, +]$
Diffie-Hellman on ‘nice’ graphs

Alice

[+, −, +, −]

Bob

[+, +, −, +]
Diffie-Hellman on ‘nice’ graphs

Alice

[+, −, +, −]

Bob

[+, +, −, +]
Diffie-Hellman on ‘nice’ graphs

Alice: [+ , −, +, −]

Bob: [+ , +, −, +]
Diffie-Hellman on ‘nice’ graphs

Alice

Bob

\[
\begin{bmatrix}
+, -, +, - \\
\uparrow
\end{bmatrix}
\]

\[
\begin{bmatrix}
+, +, -, + \\
\uparrow
\end{bmatrix}
\]
Diffie-Hellman on ‘nice’ graphs

Alice

\[[+, -, +, -] \]

Bob

\[[+, +, -, +] \]
Diffie-Hellman on ‘nice’ graphs

Alice
\[[+,-,+,-] \]

Bob
\[[+,-,+] \]
Diffie-Hellman on ‘nice’ graphs

Alice

[+, −, +, −]

Bob

[+, +, −, +]
Diffie-Hellman on ‘nice’ graphs

Alice
[+, −, +, −]

Bob
[+, +, −, +]
A walkable graph

Important properties for such a walk:

IP1 ➤ The graph is a composition of compatible cycles.
IP2 ➤ We can compute neighbours in given directions.
The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ℓ-isogenies.
IP1: A composition of cycles

- The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ‘\(\ell\)-isogenies’.

- In our example, these are

```
G_3:
```

![Graph diagram with labeled points and connections]
The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ‘ℓ-isogenies’.

In our example, these are

G_5:

![Diagram showing the graph G_5 with labeled points $E_0, E_{158}, E_{410}, \ldots$]
IP1: A composition of cycles

- The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ℓ-isogenies.

- In our example, these are $E_{0}E_{158}E_{410}E_{368}E_{404}E_{75}E_{144}E_{191}E_{174}E_{413}E_{379}E_{124}E_{199}E_{390}E_{29}E_{220}E_{295}E_{40}E_{6}E_{245}E_{228}E_{275}E_{344}E_{15}E_{51}E_{9}E_{261}$.

G_7:

![Graph diagram](image_url)
IP1: A composition of cycles

- The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ℓ-isogenies.

- In our example, these are

$$G_3 \cup G_5 \cup G_7:$$
The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ℓ-isogenies.

Generally, the G_ℓ look something like G_3 and G_5:

- G_3:
- G_5:
IP1: A composition of cycles

- The graph used in CSIDH is constructed as a composition of graphs G_ℓ of ℓ-isogenies.

- Generally, the G_ℓ look something like

- G_3:

- G_5:

- We want to make sure G_ℓ is just a cycle.
IP2: Compute neighbours in given directions

The edges of G_ℓ are ℓ-isogenies.

$$E_{51}: y^2 = x^3 + 51x^2 + x \quad \longrightarrow \quad E_9: y^2 = x^3 + 9x^2 + x$$

$$(x, y) \quad \longrightarrow \quad \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, y \cdot \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right)$$
IP2: Compute neighbours in given directions

The edges of G_ℓ are ℓ-isogenies.

\[E_{51} : y^2 = x^3 + 51x^2 + x \quad \longrightarrow \quad E_9 : y^2 = x^3 + 9x^2 + x \]

\[(x, y) \quad \longrightarrow \quad \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97} , y \cdot \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right) \]

- The orientation of G_ℓ is mathematically well-defined (canonical way to compute the ‘left’ or ‘right’ isogeny).
The edges of G_ℓ are ℓ-isogenies.

$E_{51}: y^2 = x^3 + 51x^2 + x \quad \longrightarrow \quad E_9: y^2 = x^3 + 9x^2 + x$

$(x, y) \quad \longmapsto \quad \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, y \cdot \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right)$

- **The orientation** of G_ℓ is mathematically well-defined (canonical way to compute the ‘left’ or ‘right’ isogeny).
- **The cost grows** with $\ell \rightsquigarrow$ want small ℓ.
IP2: Compute neighbours in given directions

The edges of G_ℓ are ℓ-isogenies.

$$E_{51} : y^2 = x^3 + 51x^2 + x \quad \longrightarrow \quad E_9 : y^2 = x^3 + 9x^2 + x$$

$$(x, y) \longmapsto \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, y \cdot \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right)$$

- The orientation of G_ℓ is mathematically well-defined (canonical way to compute the ‘left’ or ‘right’ isogeny).
- The cost grows with $\ell \sim \text{want small } \ell$.
- Generally needs big extension fields...
Point counting

Both ‘IP’s are connected to the number of points on the curves.
Point counting

Both ‘IP’s are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points (and such that the graph is big). [De Feo–Kieffer–Smith]
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.

magic math happens!

3. ▶ E_0 has $p + 1$ points.
▶ Let the nodes of G_ℓ be those E_A with $p + 1$ points.
▶ Then every G_ℓ is a disjoint union of cycles.
▶ All G_ℓ are compatible.
▶ Computations need only F_p-arithmetic.
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. Choose some small odd primes \(\ell_1, \ldots, \ell_n \).
 Make sure \(p = 4 \cdot \ell_1 \cdots \ell_n - 1 \) is prime.
1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0 : y^2 = x^3 + x$ over \mathbb{F}_p.

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p.

2. ✨ magie math happens!
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0 : y^2 = x^3 + x$ over \mathbb{F}_p.

2. ✨ magic math happens!

3. ▶ E_0 has $p + 1$ points.
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0 : y^2 = x^3 + x$ over \mathbb{F}_p.

2. ✩ magic math happens!

3. ▶ E_0 has $p + 1$ points.
 ▶ Let the nodes of G_{ℓ_i} be those E_A with $p + 1$ points.
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes \(\ell_1, \ldots, \ell_n \).
 ▶ Make sure \(p = 4 \cdot \ell_1 \cdots \ell_n - 1 \) is prime.
 ▶ Fix the curve \(E_0 : y^2 = x^3 + x \) over \(\mathbb{F}_p \).

2. ⚡️ magic math happens!

3. ▶ \(E_0 \) has \(p + 1 \) points.
 ▶ Let the nodes of \(G_{\ell_i} \) be those \(E_A \) with \(p + 1 \) points.
 ▶ Then every \(G_{\ell_i} \) is a disjoint union of cycles.
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0 : y^2 = x^3 + x$ over \mathbb{F}_p.

2. ✶ magic math happens!

3. ▶ E_0 has $p + 1$ points.
 ▶ Let the nodes of G_{ℓ_i} be those E_A with $p + 1$ points.
 ▶ Then every G_{ℓ_i} is a disjoint union of cycles.
 ▶ All G_{ℓ_i} are compatible.
Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. ▶ Choose some small odd primes ℓ_1, \ldots, ℓ_n.
 ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ is prime.
 ▶ Fix the curve $E_0: y^2 = x^3 + x$ over \mathbb{F}_p.

2. ➡️ magic math happens!

3. ▶ E_0 has $p + 1$ points.
 ▶ Let the nodes of G_{ℓ_i} be those E_A with $p + 1$ points.
 ▶ Then every G_{ℓ_i} is a disjoint union of cycles.
 ▶ All G_{ℓ_i} are compatible.
 ▶ Computations need only \mathbb{F}_p-arithmetic.
Representing nodes of the graph

Side effect of magic:

- Every node of G_{ℓ_i} can be written as

$$E_A : y^2 = x^3 + Ax^2 + x.$$
Representing nodes of the graph

Side effect of magic:

- Every node of G_{ℓ_i} can be written as

$$E_A : y^2 = x^3 + Ax^2 + x.$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
Representing nodes of the graph

Side effect of magic:

- Every node of G_{ℓ_i} can be written as

 $$E_A : y^2 = x^3 + Ax^2 + x.$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
\Rightarrow Tiny keys!
Does any A work?

1. This algorithm has a small chance of false positives, but we actually use a variant that proves that E_A has $p + 1$ points.
Does any A work?

No.

\[^1\text{This algorithm has a small chance of false positives, but we actually use a variant that } \text{proves} \text{ that } E_A \text{ has } p + 1 \text{ points.}\]
Does any A work?

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

1This algorithm has a small chance of false positives, but we actually use a variant that proves that E_A has $p + 1$ points.
Does any A work?

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- **Public-key validation**: Check that E_A has $p + 1$ points.

 Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p + 1]P = \infty$.\(^1\)

\(^1\)This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has $p + 1$ points.
Security

Classical:
- Meet-in-the-middle variants: Time $O\left(\sqrt[4]{p}\right)$.

Quantum:
- Hidden-shift algorithms: Subexponential complexity.
- Literature contains mostly asymptotics.
- Time-space trade-off: Fastest variants need huge memory.
- Concrete estimates are to be done.
- (Recent preprint [BS] ignores much of the cost!)
Security

Classical:

- **Meet-in-the-middle** variants: Time $O(\sqrt[p]{p})$.

Quantum:

- **Hidden-shift** algorithms: *Subexponential* complexity.
Security

Classical:

Quantum:
- Hidden-shift algorithms: Subexponential complexity.
 - Literature contains mostly asymptotics.
 - Time-space trade-off: Fastest variants need huge memory.
 - Concrete estimates are to be done.
Security

Classical:

Quantum:
- Hidden-shift algorithms: Subexponential complexity.
 - Literature contains mostly asymptotics.
 - Time-space trade-off: Fastest variants need huge memory.
 - Concrete estimates are to be done.
 - (Recent preprint [BS] ignores much of the cost!)
Parameters

<table>
<thead>
<tr>
<th>CSIDH-(\log p)</th>
<th>target NIST level</th>
<th>public key size</th>
<th>private key size</th>
<th>time (full exchange)</th>
<th>cycles (full exchange)</th>
<th>stack memory</th>
<th>classical security</th>
<th>quantum security claimed by [BS] (take cum grano salis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIDH-512</td>
<td>1</td>
<td>64 b</td>
<td>32 b</td>
<td>85 ms</td>
<td>212e6</td>
<td>4368 b</td>
<td>128</td>
<td>71</td>
</tr>
<tr>
<td>CSIDH-1024</td>
<td>3</td>
<td>128 b</td>
<td>64 b</td>
<td></td>
<td></td>
<td></td>
<td>256</td>
<td>88</td>
</tr>
<tr>
<td>CSIDH-1792</td>
<td>5</td>
<td>224 b</td>
<td>112 b</td>
<td></td>
<td></td>
<td></td>
<td>448</td>
<td>104</td>
</tr>
</tbody>
</table>
Work in progress & future work

- Fast and constant-time implementation
Work in progress & future work

- Fast and constant-time implementation
- Reliable security analysis
Work in progress & future work

- Fast and constant-time implementation
- Reliable security analysis
- More applications
Work in progress & future work

- Fast and constant-time implementation
- Reliable security analysis
- More applications

- [Your paper here!]
Thank you!
References

Mentioned in this talk:

- Castryck, Lange, Martindale, Panny, Renes:
 CSIDH: An Efficient Post-Quantum Commutative Group Action

- De Feo, Kieffer, Smith:
 Towards practical key exchange from ordinary isogeny graphs

- De Feo, Galbraith:
 SeaSign: Compact isogeny signatures from class group actions
 https://ia.cr/2018/824

- [BS] Bonnetain, Schrottenloher:
 Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
 https://ia.cr/2018/537

Other related work:

- Delfs, Galbraith:
 Computing isogenies between supersingular elliptic curves over \mathbb{F}_p

- Childs, Jao, Soukharev:
 Constructing elliptic curve isogenies in quantum subexponential time
 https://arxiv.org/abs/1012.4019

- Meyer, Reith:
 A faster way to the CSIDH

- Jao, LeGrow, Leonardi, Ruiz-Lopez:
 A polynomial quantum space attack on CRS and CSIDH
 (MathCrypt 2018)

- Biasse, Iezzi, Jacobson:
 A note on the security of CSIDH
Where’s the group?

\[E_{51} : y^2 = x^3 + 51x^2 + x \quad \longrightarrow \quad E_9 : y^2 = x^3 + 9x^2 + x \]

\[(x, y) \quad \mapsto \quad \left(\frac{97x^3 - 183x^2 + x}{x^2 - 183x + 97}, y \cdot \frac{133x^3 + 154x^2 - 5x + 97}{-x^3 + 65x^2 + 128x - 133} \right) \]

\[E_9 = E_{51}/\alpha \text{ where } \alpha \text{ is the ideal } (3, \pi - 1) \text{ of } \text{End}_{\mathbb{F}_p}(E_{51}). \]
Where’s the group?

$E_{51}: y^2 = x^3 + 51x^2 + x \quad \rightarrow \quad E_9: y^2 = x^3 + 9x^2 + x$

$(x, y) \quad \mapsto \quad \left(\frac{97x^3-183x^2+x}{x^2-183x+97}, y \cdot \frac{133x^3+154x^2-5x+97}{-x^3+65x^2+128x-133}\right)$

$\blacktriangleright \quad E_9 = E_{51}/\mathfrak{a}$ where \mathfrak{a} is the ideal $(3, \pi - 1)$ of $\text{End}_{\mathbb{F}_p}(E_{51})$.

$\blacktriangleright \quad$ For our choices of A, $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

$\blacktriangleright \quad$ The group action is

$$\text{cl}(\mathbb{Z}[\sqrt{-p}]) \times \{E_A\} \quad \rightarrow \quad \{E_A\}$$

$$([\mathfrak{a}], E) \quad \mapsto \quad E/\mathfrak{a}$$

(modulo details).