
CSIDH:
An Efficient Post-Quantum
Commutative Group Action

Wouter Castryck1 Tanja Lange2 Chloe Martindale2

Lorenz Panny2 Joost Renes3

1KU Leuven 2TU Eindhoven 3Radboud Universiteit

Crypto Working Group, Utrecht, 14 September 2018

1 / 21

["si:­saId]

2 / 21

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible: compatible with 0-RTT protocols such as QUIC;

recent preprint uses CSIDH for ‘SeaSign’ signatures

3 / 21

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible: compatible with 0-RTT protocols such as QUIC;

recent preprint uses CSIDH for ‘SeaSign’ signatures

3 / 21

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level

I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible: compatible with 0-RTT protocols such as QUIC;

recent preprint uses CSIDH for ‘SeaSign’ signatures

3 / 21

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange

I Flexible: compatible with 0-RTT protocols such as QUIC;
recent preprint uses CSIDH for ‘SeaSign’ signatures

3 / 21

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly (w/ reasonable speed)

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible: compatible with 0-RTT protocols such as QUIC;

recent preprint uses CSIDH for ‘SeaSign’ signatures

3 / 21

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

4 / 21

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

4 / 21

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

4 / 21

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 21

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 21

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 21

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 21

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

5 / 21

Cycles!

·g·g
·g

·g
·g
·g
·g
·g

·g ·g ·g ·g ·g
·g
·g
·g
·g
·g

·g
·g·g·g·g

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

·g2
·g2

·g2

·g2

·g2

·g2

·g2

·g2

·g2
·g2·g2·g2·g2·g

2
·g2
·g2
·g2
·g2

·g2
·g2·g2·g2·g2

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

·g4
·g4

·g4

·g4

·g4

·g4

·g4

·g4

·g4
·g4·g4·g4·g4·g

4
·g4
·g4
·g4
·g4

·g4
·g4·g4·g4·g4

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

·g8
·g8

·g8

·g8

·g8

·g8

·g8

·g8

·g8
·g8·g8·g8·g8·g

8
·g8
·g8
·g8
·g8

·g8
·g8·g8·g8·g8

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

6 / 21

Cycles!
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

6 / 21

Cycles!
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

6 / 21

Cycles!
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

6 / 21

Union of cycles: rapid mixing
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

7 / 21

Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

7 / 21

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).

8 / 21

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.

Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).

8 / 21

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).

8 / 21

Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

9 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

10 / 21

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

10 / 21

A walkable graph

Important properties for such a walk:

IP1 I The graph is a composition of compatible cycles.
IP2 I We can compute neighbours in given directions.

11 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G3:

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G5:

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G7:

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G3∪G5∪G7:

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I Generally, the G` look something like

G3: G5:

I We want to make sure G` is just a cycle.

12 / 21

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of ‘`-isogenies’.

I Generally, the G` look something like

G3: G5:

I We want to make sure G` is just a cycle.

12 / 21

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...

13 / 21

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...

13 / 21

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.

I Generally needs big extension fields...

13 / 21

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...

13 / 21

Point counting

Both ‘IP’s are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points
(and such that the graph is big). [De Feo–Kieffer–Smith]

14 / 21

Point counting

Both ‘IP’s are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points
(and such that the graph is big). [De Feo–Kieffer–Smith]

14 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.

I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.

I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.

I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.

I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.

I Computations need only Fp-arithmetic.

15 / 21

Salt water (CSIDH, get it?) is a solution (do bad chemistry jokes belong in crypto talks?)

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. magic math happens!

3. I E0 has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic.

15 / 21

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

16 / 21

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

⇒ Tiny keys!

16 / 21

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

16 / 21

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 21

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p).

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I Concrete estimates are to be done.
I (Recent preprint [BS] ignores much of the cost!)

18 / 21

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p).

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I Concrete estimates are to be done.
I (Recent preprint [BS] ignores much of the cost!)

18 / 21

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p).

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I Concrete estimates are to be done.

I (Recent preprint [BS] ignores much of the cost!)

18 / 21

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p).

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I Concrete estimates are to be done.
I (Recent preprint [BS] ignores much of the cost!)

18 / 21

Parameters

CSIDH-log p ta
rg

et
N

IS
T

le
ve

l

pu
bl

ic
ke

y
si

ze

pr
iv

at
e

ke
y

si
ze

ti
m

e
(f

ul
le

xc
ha

ng
e)

cy
cl

es
(f

ul
le

xc
ha

ng
e)

st
ac

k
m

em
or

y

cl
as

si
ca

ls
ec

ur
it

y

qu
an

tu
m

se
cu

ri
ty

cl
ai

m
ed

by
[B

S]
(t

ak
e

cu
m

gr
an

o
sa

lis
)

CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128 71
CSIDH-1024 3 128 b 64 b 256 88
CSIDH-1792 5 224 b 112 b 448 104

19 / 21

Work in progress & future work

I Fast and constant-time implementation

I Reliable security analysis
I More applications

I [Your paper here!]

20 / 21

Work in progress & future work

I Fast and constant-time implementation
I Reliable security analysis

I More applications

I [Your paper here!]

20 / 21

Work in progress & future work

I Fast and constant-time implementation
I Reliable security analysis
I More applications

I [Your paper here!]

20 / 21

Work in progress & future work

I Fast and constant-time implementation
I Reliable security analysis
I More applications

I [Your paper here!]

20 / 21

Thank you!

21 / 21

References

Mentioned in this talk:

I Castryck, Lange, Martindale, Panny, Renes:
CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383 (to appear at ASIACRYPT 2018)

I De Feo, Kieffer, Smith:
Towards practical key exchange from ordinary isogeny graphs
https://ia.cr/2018/485 (to appear at ASIACRYPT 2018)

I De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

I [BS] Bonnetain, Schrottenloher:
Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
https://ia.cr/2018/537

Other related work:
I Delfs, Galbraith:

Computing isogenies between supersingular elliptic curves over Fp
https://arxiv.org/abs/1310.7789

I Childs, Jao, Soukharev:
Constructing elliptic curve isogenies in quantum subexponential time
https://arxiv.org/abs/1012.4019

I Meyer, Reith:
A faster way to the CSIDH
https://ia.cr/2018/782
(to appear at Indocrypt 2018)

I Jao, LeGrow, Leonardi, Ruiz-Lopez:
A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)

I Biasse, Iezzi, Jacobson:
A note on the security of CSIDH
https://arxiv.org/abs/1806.03656
(to appear at Indocrypt 2018)

https://ia.cr/2018/383
https://ia.cr/2018/485
https://ia.cr/2018/824
https://ia.cr/2018/537
https://arxiv.org/abs/1310.7789
https://arxiv.org/abs/1012.4019
https://ia.cr/2018/782
https://arxiv.org/abs/1806.03656

Where’s the group?

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I E9 = E51/a where a is the ideal (3, π − 1) of EndFp(E51).

I For our choices of A, EndFp(EA) ∼= Z[√−p].
I The group action is

cl(Z[
√
−p])× {EA} −→ {EA}

([a],E) 7−→ E/a

(modulo details).

Where’s the group?

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I E9 = E51/a where a is the ideal (3, π − 1) of EndFp(E51).

I For our choices of A, EndFp(EA) ∼= Z[√−p].
I The group action is

cl(Z[
√
−p])× {EA} −→ {EA}

([a],E) 7−→ E/a

(modulo details).

