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Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly e/ resonabie speecy

» Small keys: 64 bytes at conjectured AES-128 security level
» Competitive speed: ~ 85ms for a full key exchange

» Flexible: compatible with 0-RTT protocols such as QUIC;
recent preprint uses CSIDH for ‘SeaSign” signatures
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Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.
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Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.
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Cycles!
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing

’ CSIDH: Nodes are now elliptic curves and edges are isogenies. ‘
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Graphs of elliptic curves
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Graphs of elliptic curves

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
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Graphs of elliptic curves
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Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
Edges: 3-, 5-, and 7-isogenies (certain kinds of maps).
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Graphs of elliptic curves

A 3-isogeny
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Diffie-Hellman on ‘nice” graphs
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A walkable graph

Important properties for such a walk:

IP1» The graph is a composition of compatible cycles.
IP2» We can compute neighbours in given directions.
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IP1: A composition of cycles

» The graph used in CSIDH is constructed as a composition
of graphs Gy of “/-isogenies’.

» In our example, these are

Eysg Eo Epg
Eqo ,”_, Eg

G3UGsUG7:
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IP1:

A composition of cycles

» The graph used in CSIDH is constructed as a composition
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IP1:

A composition of cycles

» The graph used in CSIDH is constructed as a composition

of graphs Gy of ‘/-isogenies’.

» Generally, the G, look something like

ANV
SOCFR W2

» We want to make sure Gy is just a cycle.
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IP2: Compute neighbours in given directions

The edges of G, are (-isogenies.

a (picture not to scale)
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IP2: Compute neighbours in given directions

The edges of G, are (-isogenies.

Esi: P =X +51 +x —> Eo: P =x>+ 9% +x

97x° —183x% +x 13343 +154x% —5x+97
(x,y) ( 21830197 7Y T T3 em2+108x—133

» The orientation of G, is mathematically well-defined
(canonical way to compute the ‘left” or ‘right” isogeny).

» The cost grows with / ~» want small /.

» Generally needs big extension fields...
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Point counting

Both ‘IP’s are connected to the number of points on the curves.
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Point counting

Both ‘IP’s are connected to the number of points on the curves.

It seems difficult to find a curve with a given number of points
(and such that the graph is big). [De Feo-Kieffer-Smith]
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Salt Water (CSIDH, get it?) iS a Solution (do bad chemistry jokes belong in crypto talks?)
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Salt Water (CSIDH, get it?) iS a Solution (do bad chemistry jokes belong in crypto talks?)

1. » Choose some small odd primes 1, . . ., £y.

» Makesurep =4 /{1 ---{;, — 1is prime.
» Fix the curve Eg: y* = x° + x over F,,.

2. / magie math happens!

3.

Ep has p + 1 points.
Let the nodes of Gy, be those E4 with p + 1 points.
Then every Gy, is a disjoint union of cycles.

All Gy, are compatible.

vV V. v vY

Computations need only [F,-arithmetic.
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Representing nodes of the graph

Side effect of magic:

» Every node of G/, can be written as

Ea: y* =2+ Ax® +x.
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Representing nodes of the graph

Side effect of magic:

» Every node of G/, can be written as

Ea: y* =2+ Ax® +x.

= Can compress every node to a single value A € ;.

= Tiny keys!
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Does any A work?

'This algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = oco.!

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
17/21



Security

Classical:
» Meet-in-the-middle variants: Time O(y/p).
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Security

Classical:
» Meet-in-the-middle variants: Time O(y/p).

Quantum:
» Hidden-shift algorithms: Subexponential complexity.
» Literature contains mostly asymptotics.
Time-space trade-off: Fastest variants need huge memory.
Concrete estimates are to be done.
(Recent preprint [BS] ignores much of the cost!)

vYyy
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[Your paper here!]
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Where’s the group?

Esi: _1/2 =x*+51x +x —> Eo: y2 =22 +9x% +x
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» E9 = Es1/a where ais the ideal (3,7 — 1) of Endp, (Es1).



Where’s the group?

E51:y2:x3+51x2+x — Eg:yZ:x3+9x2+x

97x3 —183x2 +x 13323 +154x% —5x+97
(X, y) ( x2—183x+97 —x3465x24128x—133

» E9 = Es1/a where ais the ideal (3,7 — 1) of Endp, (Es1).

» For our choices of A, Endy, (Ea) = Z[/~p].

» The group action is

(Z[\/=p]) x {Ea} — {Ea}
([a],E) — E/a

(modulo details).



