


CSIDH:
An Efficient Post-Quantum
Commutative Group Action

Wouter Castryck1 Tanja Lange2 Chloe Martindale2

Lorenz Panny2 Joost Renes3

1KU Leuven 2TU Eindhoven 3Radboud Universiteit

Brisbane, 6 December 2018



["si:­saId]



Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.
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Ordinary isogeny graphs

Nodes: Ordinary elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

Components look something like this:
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Ordinary isogeny graphs (cycles)

Nodes: Ordinary elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

???

Easy: Compute a random path, output the final node.
Hard problem: Find a path between two given nodes.
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Alice vs. Eve

g0
g1

g3

g11

·g1

·g2

·g8

Intuition: Combining edges from different cycles allows
taking shortcuts to remote parts of the graph!

cf. Square-&-Multiply: Alice gets an advantage over Eve.
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Point counting

De Feo–Kieffer–Smith want
an ordinary curve E/Fq with many small primes ` | E(Fq).

This seems difficult.
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Pictures: https://github.com/CardsAgainstCryptography

I’ve been experimenting with supersingular curves in this context, because they have
all the properties Kieffer was looking for.
Are there any security issues with using supersingular curves?
Hope I did not overlook anything stupid here! — an anonymous CSIDH coauthor

Wouter, you are a genius! — me
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Supersingular isogeny graphs

Nodes: Supersingular elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

k = F4192 (same as F419) k = F419
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Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org


Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org


Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org


Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org


Reminder

The class group action is defined as follows:

I Inputs:
An elliptic curve E with Fq-endomorphism ring O,
an ideal a ⊆ O of prime norm `.

I Output:
The elliptic curve [a]E.

1. Compute the subgroup E[a] =
⋂
α∈a kerα killed by a.

2. Compute an `-isogeny E −→ E′ with kernel E[a].
3. Output E′.

Typically E[a] is only defined over Fqm for m ≈ `.
=⇒ Complexity of computing with E[a] is exponentia`...

:(
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CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n ] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!
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Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.
For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.
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Magic (public keys)

Theorem. For p > 3 and p ≡ 3 (mod 8),
a supersingular elliptic curve over Fp can be written in the form

EA : y2 = x3 + Ax2 + x

if and only if the Fp-rational endomorphism ring of E is Z[√p].
Moreover, in that case, A ∈ Fp is unique.

I Public keys are represented by a single coefficient A ∈ Fp.
 Tiny keys.

I Public-key validation:
Check that EA is supersingular, i.e., has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p+1]P =∞.
This algorithm has a negligible chance 8/

√p + o(1) of false positives.
We actually use a variant that proves that EA has p + 1 points.

I About
√p of all A ∈ Fp are valid keys.
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Security

Classical:
I Meet-in-the-middle variants: Time O( 4

√p). [Delfs–Galbraith]

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I [BS] ignores much of the cost. No need to panic!
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CSIDH-512

Sizes:
I Private keys: 32 bytes.
I Public keys: 64 bytes.

Performance:
I Wall-clock time: 35 ms per operation.
I Clock cycles (Skylake): about 108 per operation.
I Memory usage (x86_64): about 4 kilobytes.

Security:
I Classical: at least 128 bits.
I Quantum: complicated. AFAWK it reaches NIST level 1.

[BS] says 232.5 queries; [BLMP] estimates≈ 281 quantum gates using millions of qubits.
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Work in progress & future work

I Fast and constant-time implementation
(Quick ’n’ slightly dirty version based on [BLMP] is ≈ 6 times slower.)

I More security analysis

I More applications

I [Your paper here!]
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Questions?

[CSIDH] https://ia.cr/2018/383
[BS] https://ia.cr/2018/537
[BLMP] https://ia.cr/2018/1059

https://ia.cr/2018/383
https://ia.cr/2018/537
https://ia.cr/2018/1059


SIDH vs. CSIDH

CSIDH = SIDH?

+ C

Sizes and times are for (conjectured) NIST level 1.
SIDH parameters are more conservative.

SIDH CSIDH

Time per key exchange ≈ 10 ms ≈ 70 ms
Public keys 378 b 64 b
Public key compression 222 b (≈ 15 ms) n/a

Constant-time slowdown ≈ 1 ≈ 6 (quick ’n’ dirty)

In the NIST not-a-competition yes no
Maturity 7 years 7 months

Classical security p1/4 p1/4

Quantum security p1/6 Lp[1/2]
 Key size scaling linear quadratic
Chosen-ciphertext security (KEM) generic transform built-in
Non-interactive key exchange slow built-in

Signatures (now) seconds snail speed
Signatures (future?) still seconds? seconds

(slide mostly stolen from Chloe Martindale, who mostly stole it from Luca De Feo)
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