

CSIDH:
An Efficient Post-Quantum
Commutative Group Action

Wouter Castryck1 Tanja Lange2 Chloe Martindale2

Lorenz Panny2 Joost Renes3

1KU Leuven 2TU Eindhoven 3Radboud Universiteit

Brisbane, 6 December 2018

["si:­saId]

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.

I Non-interactive key exchange (full public-key validation);
previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.
I Non-interactive key exchange (full public-key validation);

previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.
I Non-interactive key exchange (full public-key validation);

previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level

I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.
I Non-interactive key exchange (full public-key validation);

previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.
I Non-interactive key exchange (full public-key validation);

previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH.
I Non-interactive key exchange (full public-key validation);

previously only slow solutions post-quantumly.

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 35 ms per operation. (Skylake i5 w/ TurboBoost)

I Clean mathematical structure: a true group action.
(No noise, no auxiliary points, no compromises.)

I By the way: not ‘better’ or ‘worse’ than SIDH. It’s simply
different and likely to be useful for different applications.

https://csidh.isogeny.org 1/15

https://csidh.isogeny.org

Ordinary isogeny graphs

Nodes: Ordinary elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

Components look something like this:

https://csidh.isogeny.org 2/15

https://csidh.isogeny.org

Ordinary isogeny graphs (cycles)

Nodes: Ordinary elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

???

Easy: Compute a random path, output the final node.
Hard problem: Find a path between two given nodes.

https://csidh.isogeny.org 2/15

https://csidh.isogeny.org

Ordinary isogeny graphs (cycles)

Nodes: Ordinary elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

???

Easy: Compute a random path, output the final node.
Hard problem: Find a path between two given nodes.

https://csidh.isogeny.org 2/15

https://csidh.isogeny.org

Alice vs. Eve

g0
g1

g3

g11

·g1

·g2

·g8

Intuition: Combining edges from different cycles allows
taking shortcuts to remote parts of the graph!

cf. Square-&-Multiply: Alice gets an advantage over Eve.

https://csidh.isogeny.org 3/15

https://csidh.isogeny.org

Alice vs. Eve
g0

g1

g3

g11

·g1

·g2

·g8

Intuition: Combining edges from different cycles allows
taking shortcuts to remote parts of the graph!

cf. Square-&-Multiply: Alice gets an advantage over Eve.

https://csidh.isogeny.org 3/15

https://csidh.isogeny.org

Point counting

De Feo–Kieffer–Smith want
an ordinary curve E/Fq with many small primes ` | E(Fq).

This seems difficult.

https://csidh.isogeny.org 4/15

https://csidh.isogeny.org

Pictures: https://github.com/CardsAgainstCryptography

I’ve been experimenting with supersingular curves in this context, because they have
all the properties Kieffer was looking for.
Are there any security issues with using supersingular curves?
Hope I did not overlook anything stupid here! — an anonymous CSIDH coauthor

Wouter, you are a genius! — me

https://csidh.isogeny.org 5/15

https://github.com/CardsAgainstCryptography
https://csidh.isogeny.org

Pictures: https://github.com/CardsAgainstCryptography

I’ve been experimenting with supersingular curves in this context, because they have
all the properties Kieffer was looking for.
Are there any security issues with using supersingular curves?
Hope I did not overlook anything stupid here! — an anonymous CSIDH coauthor

Wouter, you are a genius! — me

https://csidh.isogeny.org 5/15

https://github.com/CardsAgainstCryptography
https://csidh.isogeny.org

Pictures: https://github.com/CardsAgainstCryptography

I’ve been experimenting with supersingular curves in this context, because they have
all the properties Kieffer was looking for.
Are there any security issues with using supersingular curves?
Hope I did not overlook anything stupid here! — an anonymous CSIDH coauthor

Wouter, you are a genius! — me

https://csidh.isogeny.org 5/15

https://github.com/CardsAgainstCryptography
https://csidh.isogeny.org

Pictures: https://github.com/CardsAgainstCryptography

I’ve been experimenting with supersingular curves in this context, because they have
all the properties Kieffer was looking for.
Are there any security issues with using supersingular curves?
Hope I did not overlook anything stupid here! — an anonymous CSIDH coauthor

Wouter, you are a genius! — me

https://csidh.isogeny.org 5/15

https://github.com/CardsAgainstCryptography
https://csidh.isogeny.org

Supersingular isogeny graphs

Nodes: Supersingular elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

k = F4192 (same as F419) k = F419

https://csidh.isogeny.org 6/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Nodes: Supersingular elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

k = F4192 (same as F419)

k = F419

https://csidh.isogeny.org 6/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Nodes: Supersingular elliptic curves defined over k up to ∼=k.
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k.

k = F4192 (same as F419) k = F419

https://csidh.isogeny.org 6/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org

Supersingular isogeny graphs

Theorem. The Fp-rational endomorphism ring of an elliptic
curve defined over Fp is an imaginary quadratic order.

...even in the supersingular case!

Theorem/fact/definition. Let p > 3. An elliptic curve E over Fp
is supersingular if and only if #E(Fp) = p + 1.

=⇒ We can simply craft a curve with a good number of points.

https://csidh.isogeny.org 7/15

https://csidh.isogeny.org

Reminder

The class group action is defined as follows:

I Inputs:
An elliptic curve E with Fq-endomorphism ring O,
an ideal a ⊆ O of prime norm `.

I Output:
The elliptic curve [a]E.

1. Compute the subgroup E[a] =
⋂
α∈a kerα killed by a.

2. Compute an `-isogeny E −→ E′ with kernel E[a].
3. Output E′.

Typically E[a] is only defined over Fqm for m ≈ `.
=⇒ Complexity of computing with E[a] is exponentia`...

:(

https://csidh.isogeny.org 8/15

https://csidh.isogeny.org

Reminder

The class group action is defined as follows:

I Inputs:
An elliptic curve E with Fq-endomorphism ring O,
an ideal a ⊆ O of prime norm `.

I Output:
The elliptic curve [a]E.

1. Compute the subgroup E[a] =
⋂
α∈a kerα killed by a.

2. Compute an `-isogeny E −→ E′ with kernel E[a].
3. Output E′.

Typically E[a] is only defined over Fqm for m ≈ `.
=⇒ Complexity of computing with E[a] is exponentia`...

:(

https://csidh.isogeny.org 8/15

https://csidh.isogeny.org

CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!

https://csidh.isogeny.org 9/15

https://csidh.isogeny.org

CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!

https://csidh.isogeny.org 9/15

https://csidh.isogeny.org

CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!

https://csidh.isogeny.org 9/15

https://csidh.isogeny.org

CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!

https://csidh.isogeny.org 9/15

https://csidh.isogeny.org

CSIDH in one cslide (terrible pun totally intended)

1. I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {supersingular y2 = x3+Ax2+x defined over Fp}.

2. I All curves in X have Fp-endomorphism ring O = Z[√p].
Define the ideals li = (`i, π − 1) of O.

I Let K = {[le1
1 · · · l

e1
n] | (e1, ..., en) is ‘short’} ⊆ cl(O).

3. magic math happens!∗
∗ see next slides

4. I cl(O) acts on X and the action of K is very efficient!

https://csidh.isogeny.org 9/15

https://csidh.isogeny.org

Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.
For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.

https://csidh.isogeny.org 10/15

https://csidh.isogeny.org

Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.
For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.

https://csidh.isogeny.org 10/15

https://csidh.isogeny.org

Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.

For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.

https://csidh.isogeny.org 10/15

https://csidh.isogeny.org

Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.
For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.

https://csidh.isogeny.org 10/15

https://csidh.isogeny.org

Magic (base field arithmetic)

I All the ideals `iO split as li · li where li = (`i, π − 1).
=⇒ We can use all `i we started with (generally: about 1/2).

I The subgroup corresponding to li is E[li] = E(Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

I The subgroup corresponding to li is

E[li] = {P ∈ E[`i] | π(P) = −P}.
For Montgomery curves,

E[li] = {(x, y) ∈ E[`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

=⇒ With x-only arithmetic everything can be done over Fp.

https://csidh.isogeny.org 10/15

https://csidh.isogeny.org

Magic (public keys)

Theorem. For p > 3 and p ≡ 3 (mod 8),
a supersingular elliptic curve over Fp can be written in the form

EA : y2 = x3 + Ax2 + x

if and only if the Fp-rational endomorphism ring of E is Z[√p].
Moreover, in that case, A ∈ Fp is unique.

I Public keys are represented by a single coefficient A ∈ Fp.
 Tiny keys.

I Public-key validation:
Check that EA is supersingular, i.e., has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p+1]P =∞.
This algorithm has a negligible chance 8/

√p + o(1) of false positives.
We actually use a variant that proves that EA has p + 1 points.

I About
√p of all A ∈ Fp are valid keys.

https://csidh.isogeny.org 11/15

https://csidh.isogeny.org

Magic (public keys)

Theorem. For p > 3 and p ≡ 3 (mod 8),
a supersingular elliptic curve over Fp can be written in the form

EA : y2 = x3 + Ax2 + x

if and only if the Fp-rational endomorphism ring of E is Z[√p].
Moreover, in that case, A ∈ Fp is unique.

I Public keys are represented by a single coefficient A ∈ Fp.
 Tiny keys.

I Public-key validation:
Check that EA is supersingular, i.e., has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p+1]P =∞.
This algorithm has a negligible chance 8/

√p + o(1) of false positives.
We actually use a variant that proves that EA has p + 1 points.

I About
√p of all A ∈ Fp are valid keys.

https://csidh.isogeny.org 11/15

https://csidh.isogeny.org

Magic (public keys)

Theorem. For p > 3 and p ≡ 3 (mod 8),
a supersingular elliptic curve over Fp can be written in the form

EA : y2 = x3 + Ax2 + x

if and only if the Fp-rational endomorphism ring of E is Z[√p].
Moreover, in that case, A ∈ Fp is unique.

I Public keys are represented by a single coefficient A ∈ Fp.
 Tiny keys.

I Public-key validation:
Check that EA is supersingular, i.e., has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p+1]P =∞.
This algorithm has a negligible chance 8/

√p + o(1) of false positives.
We actually use a variant that proves that EA has p + 1 points.

I About
√p of all A ∈ Fp are valid keys.

https://csidh.isogeny.org 11/15

https://csidh.isogeny.org

Magic (public keys)

Theorem. For p > 3 and p ≡ 3 (mod 8),
a supersingular elliptic curve over Fp can be written in the form

EA : y2 = x3 + Ax2 + x

if and only if the Fp-rational endomorphism ring of E is Z[√p].
Moreover, in that case, A ∈ Fp is unique.

I Public keys are represented by a single coefficient A ∈ Fp.
 Tiny keys.

I Public-key validation:
Check that EA is supersingular, i.e., has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p+1]P =∞.
This algorithm has a negligible chance 8/

√p + o(1) of false positives.
We actually use a variant that proves that EA has p + 1 points.

I About
√p of all A ∈ Fp are valid keys.

https://csidh.isogeny.org 11/15

https://csidh.isogeny.org

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p). [Delfs–Galbraith]

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I [BS] ignores much of the cost. No need to panic!

https://csidh.isogeny.org 12/15

https://csidh.isogeny.org

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p). [Delfs–Galbraith]

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I [BS] ignores much of the cost. No need to panic!

https://csidh.isogeny.org 12/15

https://csidh.isogeny.org

Security

Classical:
I Meet-in-the-middle variants: Time O(4

√p). [Delfs–Galbraith]

Quantum:
I Hidden-shift algorithms: Subexponential complexity.

I Literature contains mostly asymptotics.
I Time-space trade-off: Fastest variants need huge memory.
I [BS] ignores much of the cost. No need to panic!

https://csidh.isogeny.org 12/15

https://csidh.isogeny.org

CSIDH-512

Sizes:
I Private keys: 32 bytes.
I Public keys: 64 bytes.

Performance:
I Wall-clock time: 35 ms per operation.
I Clock cycles (Skylake): about 108 per operation.
I Memory usage (x86_64): about 4 kilobytes.

Security:
I Classical: at least 128 bits.
I Quantum: complicated. AFAWK it reaches NIST level 1.

[BS] says 232.5 queries; [BLMP] estimates≈ 281 quantum gates using millions of qubits.

https://csidh.isogeny.org 13/15

https://csidh.isogeny.org

CSIDH-512

Sizes:
I Private keys: 32 bytes.
I Public keys: 64 bytes.

Performance:
I Wall-clock time: 35 ms per operation.
I Clock cycles (Skylake): about 108 per operation.
I Memory usage (x86_64): about 4 kilobytes.

Security:
I Classical: at least 128 bits.
I Quantum: complicated. AFAWK it reaches NIST level 1.

[BS] says 232.5 queries; [BLMP] estimates≈ 281 quantum gates using millions of qubits.

https://csidh.isogeny.org 13/15

https://csidh.isogeny.org

CSIDH-512

Sizes:
I Private keys: 32 bytes.
I Public keys: 64 bytes.

Performance:
I Wall-clock time: 35 ms per operation.
I Clock cycles (Skylake): about 108 per operation.
I Memory usage (x86_64): about 4 kilobytes.

Security:
I Classical: at least 128 bits.

I Quantum: complicated. AFAWK it reaches NIST level 1.
[BS] says 232.5 queries; [BLMP] estimates≈ 281 quantum gates using millions of qubits.

https://csidh.isogeny.org 13/15

https://csidh.isogeny.org

CSIDH-512

Sizes:
I Private keys: 32 bytes.
I Public keys: 64 bytes.

Performance:
I Wall-clock time: 35 ms per operation.
I Clock cycles (Skylake): about 108 per operation.
I Memory usage (x86_64): about 4 kilobytes.

Security:
I Classical: at least 128 bits.
I Quantum: complicated. AFAWK it reaches NIST level 1.

[BS] says 232.5 queries; [BLMP] estimates≈ 281 quantum gates using millions of qubits.

https://csidh.isogeny.org 13/15

https://csidh.isogeny.org

Work in progress & future work

I Fast and constant-time implementation
(Quick ’n’ slightly dirty version based on [BLMP] is ≈ 6 times slower.)

I More security analysis

I More applications

I [Your paper here!]

https://csidh.isogeny.org 14/15

https://csidh.isogeny.org

Work in progress & future work

I Fast and constant-time implementation
(Quick ’n’ slightly dirty version based on [BLMP] is ≈ 6 times slower.)

I More security analysis

I More applications

I [Your paper here!]

https://csidh.isogeny.org 14/15

https://csidh.isogeny.org

Work in progress & future work

I Fast and constant-time implementation
(Quick ’n’ slightly dirty version based on [BLMP] is ≈ 6 times slower.)

I More security analysis

I More applications

I [Your paper here!]

https://csidh.isogeny.org 14/15

https://csidh.isogeny.org

Work in progress & future work

I Fast and constant-time implementation
(Quick ’n’ slightly dirty version based on [BLMP] is ≈ 6 times slower.)

I More security analysis

I More applications

I [Your paper here!]

https://csidh.isogeny.org 14/15

https://csidh.isogeny.org

Questions?

[CSIDH] https://ia.cr/2018/383
[BS] https://ia.cr/2018/537
[BLMP] https://ia.cr/2018/1059

https://ia.cr/2018/383
https://ia.cr/2018/537
https://ia.cr/2018/1059

SIDH vs. CSIDH

CSIDH = SIDH?

+ C

Sizes and times are for (conjectured) NIST level 1.
SIDH parameters are more conservative.

SIDH CSIDH

Time per key exchange ≈ 10 ms ≈ 70 ms
Public keys 378 b 64 b
Public key compression 222 b (≈ 15 ms) n/a

Constant-time slowdown ≈ 1 ≈ 6 (quick ’n’ dirty)

In the NIST not-a-competition yes no
Maturity 7 years 7 months

Classical security p1/4 p1/4

Quantum security p1/6 Lp[1/2]
 Key size scaling linear quadratic
Chosen-ciphertext security (KEM) generic transform built-in
Non-interactive key exchange slow built-in

Signatures (now) seconds snail speed
Signatures (future?) still seconds? seconds

(slide mostly stolen from Chloe Martindale, who mostly stole it from Luca De Feo)

SIDH vs. CSIDH

CSIDH = SIDH + C

Sizes and times are for (conjectured) NIST level 1.
SIDH parameters are more conservative.

SIDH CSIDH

Time per key exchange ≈ 10 ms ≈ 70 ms
Public keys 378 b 64 b
Public key compression 222 b (≈ 15 ms) n/a

Constant-time slowdown ≈ 1 ≈ 6 (quick ’n’ dirty)

In the NIST not-a-competition yes no
Maturity 7 years 7 months

Classical security p1/4 p1/4

Quantum security p1/6 Lp[1/2]
 Key size scaling linear quadratic
Chosen-ciphertext security (KEM) generic transform built-in
Non-interactive key exchange slow built-in

Signatures (now) seconds snail speed
Signatures (future?) still seconds? seconds

(slide mostly stolen from Chloe Martindale, who mostly stole it from Luca De Feo)

SIDH vs. CSIDH
Sizes and times are for (conjectured) NIST level 1.

SIDH parameters are more conservative.

SIDH CSIDH

Time per key exchange ≈ 10 ms ≈ 70 ms
Public keys 378 b 64 b
Public key compression 222 b (≈ 15 ms) n/a

Constant-time slowdown ≈ 1 ≈ 6 (quick ’n’ dirty)

In the NIST not-a-competition yes no
Maturity 7 years 7 months

Classical security p1/4 p1/4

Quantum security p1/6 Lp[1/2]
 Key size scaling linear quadratic
Chosen-ciphertext security (KEM) generic transform built-in
Non-interactive key exchange slow built-in

Signatures (now) seconds snail speed
Signatures (future?) still seconds? seconds

(slide mostly stolen from Chloe Martindale, who mostly stole it from Luca De Feo)

