
Code-based cryptography
&

brute-forcing McEliece keys

Lorenz Panny

Technische Universität München

11th Conference of the Fachgruppe Computeralgebra
Leipzig, 3 June 2025

Plan for this talk

▶ Code-based post-quantum cryptography.

▶ Code-based post-quantum cryptography.

▶ Code-based post-quantum cryptography.

▶ McEliece’s public-key encryption scheme.

▶ Sendrier’s support-splitting algorithm (SSA).

▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

1 / 41

Public-key cryptography

...refers to cryptography in which different levels of knowledge
enable users to perform different operations. (See examples next slides.)

Almost always based on well-behaved algebraic structures.
Groups, rings, group actions, lattices, codes, ...

It is unknown whether public-key cryptography exists.
(If it does, then P ̸= NP.)

Reality:

search
attack

found
one?

oops!
broken!

did we
try very
hard?

seems
secure

yes

no

no

yes

2 / 41

Example: Public-key encryption

▶ Anyone can use Bob’s public key to encrypt a message.

▶ Bob can decrypt it using his private key.

▶ Noone but Bob can learn anything about the message.
(except the length)

Analogy: An open padlock for which Bob has the key.

3 / 41

Example: Digital signatures

▶ Alice uses her private key to sign a message.

▶ Anyone can verify the signature using Alice’s public key.

▶ Noone but Alice can forge a valid signature for a new message.

This mimics the intended properties of a “real” (analog) signature.

4 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.

▶ Code-based post-quantum cryptography.

▶ McEliece’s public-key encryption scheme.

▶ Sendrier’s support-splitting algorithm (SSA).

▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

5 / 41

The quantum threat

...is a major issue for public-key cryptography in particular.

Today’s most popular public-key schemes are based on:
▶ The presumed hardness of factoring large integers.
▶ The presumed hardness of computing discrete logarithms.

(The discrete-logarithm problem in a group ⟨g⟩ is to invert the map x 7→ gx.)

Shor (1994): Polynomial-time quantum algorithms for both!

However, not all hope is lost:
∃ plenty of apparently quantum-hard problems.

⇝ Post-quantum cryptography (PQC)

Based on different sources of hard problems:
Isogenies between abelian varieties , (structured) lattices, codes,
multivariate systems, symmetric cryptography, ...

6 / 41

Digression: Isogeny-based cryptography

...is what I’ve been doing most of the time.

Ask me about it later. :)

E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199
E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

7 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.

▶ McEliece’s public-key encryption scheme.

▶ Sendrier’s support-splitting algorithm (SSA).

▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

8 / 41

(Linear) codes

Wall of definitions:
▶ An [n, k] code C over Fq is a k-dimensional subspace of Fn

q .
A generator matrix of C is any G ∈ Fk×n

q such that Fk
qG = C.

▶ We equip Fn
q with the Hamming weight: The number of

nonzero coefficients. It induces the Hamming distance.

▶ Codes can equivalently be described using a parity-check
matrix: That is, a H ∈ F(n−k)×n

q satisfying GHT = 0.

▶ Isomorphisms of codes are (Hamming) isometries.
They are C 7→ CP with P ∈ GLn(Fq) a monomial matrix.

(Monomial matrix = permutation matrix · full-rank diagonal matrix.)
(For q= 2, these are just permutation matrices.)

9 / 41

Cryptography from linear codes

Traditional purpose of linear codes: Error correction.
▶ Encoding: Represent a message m∈Fk

q as the code word mG∈Fn
q .

▶ Decoding: Compute m from mG+ e where e∈Fn
q is low-weight error.

10 / 41

Decoding

Note: This picture is somewhat inaccurate. In reality, codes are high-dimensional and discrete.

10 / 41

mG+e

mG

Decoding

Note: This picture is somewhat inaccurate. In reality, codes are high-dimensional and discrete.

10 / 41

Cryptography from linear codes

Traditional purpose of linear codes: Error correction.
▶ Encoding: Represent a message m∈Fk

q as the codeword mG∈Fn
q .

▶ Decoding: Compute m from mG+ e where e∈Fn
q is low-weight error.

Decoding is generally hard for random codes.

⇝ Blueprint for public-key cryptography:
▶ Alice generates an easily decodable code from some suitable family.
▶ Alice “scrambles” the code into a random-looking code and publishes it.

=⇒ Anyone can encode, only Alice can decode.

“Scrambling”: Apply a random isometry & sample a random
generator matrix. That is, let Ĝ := SGP with S∈GLn and P an isometry.

Assumption: The map G 7→ Ĝ is one-way. ⇝ Cryptography!

10 / 41

Attack strategies

There are two main assumptions an attacker could try to break:

▶ Try to decode directly on the public, random-looking code.
This is the “decoding attack”. ⇝ Next slide.

▶ Try to recover the hidden secret code from the public code.
This is the “key-recovery attack”. ⇝ Rest of the talk.

11 / 41

Information-set decoding (ISD)
...is the dominant family of generic decoding algorithms.

Main idea: Guess that certain parts of the codeword are
error-free, solve using linear algebra.

For H ∈ F(n−k)×n
q a parity-check matrix and c = mG + e ∈ Fn

q :
▶ Pick a random permutation matrix P ∈ Fn×n

q .
▶ Bring HP to echelon form H′ = UHP. (Assume H′ = (1 | Q) with Q ∈ F(n−k)×k

q .)

▶ Pray that P−1e is of the form (s′ ∥ 0) with s′ ∈ Fn−k
q .

▶ If it is, then H′P−1c = UHc = UHe = H′P−1e = H′(s′ ∥ 0) = s′.
(This case can usually be detected by checking wt(s′): It should be small.)

=⇒ We can find e as P(H′P−1c ∥ 0) = P(s′ ∥ 0), then solve mG = c − e for m.

⇝ Pr[success] =
(n−k

t

)
/
(n

t

)
where t = wt(e).

▶ The above is a very basic variant of ISD [Prange 1962].
▶ ∃ plenty of improvements with better complexity.
▶ For well-chosen codes and wt(e), still exponential-time.

12 / 41

Key-recovery attacks

...are much more expensive for well-chosen families of codes.
Example: For “Classic McEliece”, decoding is 2hundreds while key recovery is 2thousands.

Contrary to decoding, the details depend on the specific family
of codes under consideration.

Historically, key recovery has (arguably) been much less
well-understood than decoding.

Nowadays, this is changing.
▶ New algebraic distinguishers for Goppa codes.
▶ New concrete cost estimates for McEliece key recovery.

That is: How expensive is “smart brute force”, really?

13 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.

▶ Sendrier’s support-splitting algorithm (SSA).

▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

14 / 41

McEliece’s encryption scheme

...is a straightforward instantiation of the code-based blueprint
to make a public-key encryption scheme.

(Recall: This means anyone can encrypt, but only the intended recipient can decrypt.)

▶ Proposed in 1978 (!) by Robert J. McEliece.
▶ Original suggestion: Use (binary) Goppa codes.
▶ Current state of the art: Use (binary) Goppa codes.
▶ Initially unpopular for its large key sizes (≥ hundreds of kB).
▶ Nowadays, much more popular for its (conjectured)

post-quantum security and stable security history.

15 / 41

Goppa codes

▶ Parameters: Prime power q= pm and t, n ∈ Z≥1 with tm≤ n≤ q.

▶ Data: – Monic irreducible polynomial g ∈ Fq[x] of degree t.
– Sequence L=(α1, ..., αn) of distinct elements of Fq.

(Assume g(αi) ̸= 0 for all i.)

⇝ Code Γ(g,L) := { c ∈ Fn
p :

∑n
i=1 c/(x − αi) ≡ 0 (mod g) }.

(Dimension ≥ n− tm, distance ≥ 2t+ 1. (Assume equality throughout.))

⇝ Parity-check matrix (identifying Fq = Fm
p as Fp-vector spaces):

H =


α1

0/g(α1) ··· αn
0/g(αn)

α1
1/g(α1) ··· αn

1/g(αn)

...
. . .

...

α1
t−1/g(α1) ··· αn

t−1/g(αn)

 ∈ Ftm×n
p

=⇒ To sample a Goppa code, pick g and L.

16 / 41

“Scrambling” Goppa codes

In practice:
The “scrambled” version of a Goppa code is simply given by
the echelon form of H. (Good for simplicity & efficiency!)

Earlier:
“Scrambling” is G 7→ Ĝ = SGP with S ∈ GLn and P a monomial matrix.

Q: Where did S and P go?

A: For Ĝ = SGP we get Ĥ = HP−T.

▶ For p= 2 the choice of P disappears in the choice of the αi.
(Over F2, monomial matrices are just permutation matrices.)

▶ The echelon form is a worst-case basis of the row span.
Reasoning: For any other choice of basis, the attacker can always just compute
the echelon form on their own and thus reduce to this case in polynomial time.

17 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.✓
▶ Sendrier’s support-splitting algorithm (SSA).

▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

18 / 41

Reducing the search space

Observation: For n not much smaller than q, most of the size of
the private-key space {(g, L)} comes from the permutation of L.

Can we guess set(L) instead of L?
(For v⃗ = (v1, ..., vn) ∈ Sn, we write set(⃗v) := {v1, ..., vn}.)

What’s needed is a solver for permutation equivalence.
Two codes C,C′ ⊆ Fk×n

q are called permutation-equivalent if there exists a
permutation matrix P ∈ Fn×n

q such that C′ = CP. Note that P is an isometry.

Generally: ?

Practically: Usually efficient!

:) Sendrier (2000): The support-splitting algorithm (SSA) can
decide if P exists and, if so, find it.

(Not much has been proven about this algorithm. In practice, it is very fast.)

19 / 41

Splitting the support

Assumption: Have permutation invariant V on codes that is..:
... efficiently computable.

... discriminant, i.e., likely to take distinct values on inequivalent codes.

Now suppose C,C′ are permutation-equivalent, i.e., C′ = CP.

Guess that P maps i to j, then puncture C at i and C′ at j
and check if they can still be equivalent by evaluating V .

(Puncturing at i means projecting to Fi−1
q × {0} × Fn−i−1

q .)

⇝ Yes: P might map i to j. Continue guessing more positions.
⇝ No: P cannot map i to j. Backtrack and continue with a different guess.

The support-splitting algorithm is a streamlined variant of this.
▶ Instead of guessing blindly, puncture out entire sets J of

positions for which V has previously behaved identically.
▶ Then, hopefully, the hulls of singly-punctured codes CJ∪{j}

for varying j will refine the partition some more. (Same for C′.)

20 / 41

Hull enumerators

Q: How to construct a suitable permutation invariant V?

A (version 0): Use the enumerator of a code. This is the vector
W(C) := (w0,w1, ...,wn) ∈ Zn

≥0 where wi = {c ∈ C : wt(c) = i}.

:(Best algorithm seems to be to enumerate all codewords.
(Honorable mention: Gray code.)

A (version 1): Use the enumerator of the hull of a code.
The hull is C ∩ C⊥ where C⊥ = {c′ ∈ Fn

q : ∀c ∈ C. ⟨c, c′⟩ = 0}.

:) It is compatible with permutations and low-dimensional!
(Proportion of n-dimensional codes over Fq with hull dimension ℓ is ≈ C/qℓ(ℓ+1)/2 where 0.419 < C < 1.)

Empirically, the hull enumerator makes SSA work very well!

21 / 41

Splitting the support, quickly

Main algorithmic ingredients for computing hull enumerators:
▶ Largest effort: Gauß-esque echelon-form computation.
▶ Cool trick (Sendrier 2000) for computing all singly-punctured

hulls from a single row-reduced basis matrix.
▶ Enumeration of hull vectors, tallying Hamming weights.

+ Lots of general algorithmic bookkeeping: Tracking partitions
of {1, ...,n}, codes punctured at various locations, etc.

:(All of this is a bit annoying to implement fast:

:(Variable-sized data structures!

:(Dynamic memory allocations!

:(Unpredictable execution flow!

:(Unpredictable memory-access patterns!

However, stay tuned. :)

22 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.✓
▶ Sendrier’s support-splitting algorithm (SSA).✓
▶ Non-uniqueness of private keys in McEliece.

▶ Fast implementation techniques for key search.

▶ Results & summary.

23 / 41

How many Goppa codes are there? (1)

Naïve count:
▶ There are ≈ qt/t monic irreducible g ∈ Fq[x] of degree t.
▶ There are q!/(q−n)! choices for L.

⇝ Total count ≈ qt·q!
t·(q− n)! .

Count modulo permutation equivalence:
▶ There are ≈ qt/t monic irreducible g ∈ Fq[x] of degree t.
▶ There are

(q
n

)
choices for set(L) = {α1, ..., αn}.

⇝ Total count ≈ qt·(q
n)

t .

!! This formula still overestimates the number of Goppa codes.

24 / 41

How many Goppa codes are there? (2)

Definition: The affine semilinear group of Fq is the subgroup

AΓL(q) :=
{
(x 7→ Axφ + B) : A ∈ F×

q , B ∈ Fq, φ ∈ Aut(Fq)
}

of Sym(Fq). (Equivalently: F×
q × Fq ×Aut(Fq) with a funny composition law.)

Consider group actions ∗ of AΓL(q):
▶ On Fn

q by coordinate-wise application.

▶ On monic polynomials over Fq by applying x 7→ AxΦ+B to
all roots of the polynomial, where Φ ∈ Aut(Fq) is a lift of φ.
(Well-definedness: (1) The result is defined over Fq; (2) Choices of Φ differ only by
Gal(Fq/Fq), hence merely permute the roots, leaving the polynomial invariant.)

Theorem: For any τ ∈AΓL(q) and any pair g, L defining a
Goppa code, we have

Γ(τ ∗ g, τ ∗ L) = Γ(g, L) .

[Probably folklore/known to experts. Previous literature: Moreno 1979 (p=2, |L|=q), Gibson 1991 (cryptanalytic application), etc.]

25 / 41

How many Goppa codes are there? (3)

⇝ The private key (g, L) is non-unique in McEliece!

=⇒ Searching for the pair (g, L) using brute force succeeds
faster than a naïve estimate suggests.

Previous estimate: About qt(q
n

)
/t guesses.

Equivalences from AΓL(q): About |AΓL(q)| = q(q− 1)m
private keys per public key.

Updated estimate: About qt(q
n

)
/
(
tq(q− 1)m

)
guesses.

:(This formula can still over- and undercount Goppa codes.
▶ Some AΓL equivalences might already be explained by permutation

equivalence: When τ ∗ g = g and set(τ ∗ L) = set(L) for all τ ∈ AΓL(q).
▶ There may be permutation equivalences that aren’t explained by AΓL.

:) Luckily, both effects are rare for “non-small” parameters.
=⇒ The estimate above is practically good enough.

26 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.✓
▶ Sendrier’s support-splitting algorithm (SSA).✓
▶ Non-uniqueness of private keys in McEliece.✓
▶ Fast implementation techniques for key search.

▶ Results & summary.

27 / 41

Splitting the support, many times

Observation #1: In the context of McEliece key search, one of
the codes given to the SSA remains fixed throughout.

⇝ can precompute lots of data about the target public key.

Observation #2: In the context of McEliece key search, it
suffices to recognize inequivalent codes quickly.
(Few possibly equivalent codes can be checked again using a second, perfectly correct test.)

⇝ can trade correctness for speed.

28 / 41

Fast filtering

Find “characteristic” singly-punctured hull enumerators:

▶ Enumerators that appear for the target public-key code,
but are unlikely to appear for a random code.

▶ Enumerators that do not appear for the target public-key
code, but are likely to appear for a random code.

⇝ A “fast filter” F for a target public-key code C is a list of
such enumerators such that Pr[pass] = ε for a random code.

:) Sometimes, almost all inequivalent codes can be quickly
discarded by checking for the presence of a single punctured
hull enumerator.

29 / 41

Everything is a binary circuit

Turn the entire “fast filter” into a binary circuit.

:) No more complicated data structures, predictable execution flow &
memory-access patterns, flexible choice between (simpler & faster &
more energy-efficient) hardware platforms, ...

:(Things like memory access and integer arithmetic can be emulated
using bit operations, but this is much more expensive than using the
CPU’s silicon implementations of the same operations.

30 / 41

Computing hulls, quickly
Variant of reduced echelon form: “diagonal standard form”.

[Sendrier 2000]
1 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



:) This can be computed using an algorithm that is:
▶ branch-free: Fixed sequence of logical operations.

⇝ easily circuit-able!

▶ restartable: Can reuse previous work after column update.
⇝ To search for L = (α1, ..., αn), we can replace elements αi one at a time!

⇝ Track partially reduced matrices for prefixes of L in a stack data structure.

[“Diagonal standard form” goes back to Sendrier (2000). The circuit abstraction & reusing linear-algebra work are new in this context.]

31 / 41

Gauß-esque elimination as a circuit

¬
∧

¬
∧

¬
∧

¬
∧

¬
∧

¬
∧

ℓ₀₀ ℓ₀₁ ℓ₀₂ ℓ₁₀ ℓ₁₁ ℓ₁₂ ℓ₂₀ ℓ₂₁ ℓ₂₂ 𝓇₀₀

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

∧ ∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕ ⊕

∧ ∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕ ⊕

∧ ∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕

∧
⊕ ⊕

∨

∨

∨

𝓇₀₂ 𝓇₁₂ 𝓇₂₂𝓇₀₁ 𝓇₁₁ 𝓇₂₁𝓇₁₀ 𝓇₂₀

𝒶₀₀ 𝒶₀₁ 𝒶₀₂ 𝒶₁₀ 𝒶₁₁ 𝒶₁₂ 𝒶₂₀ 𝒶₂₁ 𝒶₂₂ 𝒷₀₀ 𝒷₀₁ 𝒷₀₂ 𝒷₁₀ 𝒷₁₁ 𝒷₁₂ 𝒷₂₀ 𝒷₂₁ 𝒷₂₂

Illustration: Binary circuit to compute the diagonal standard form and a
transformation matrix for a given matrix, in the (very small) case n = 3.

32 / 41

Splitting many supports, simultaneously
Goal: Execute a “fast filtering” circuit many times (in parallel)
on a large set of different inputs.

Packing a collection of matrices over F2 into CPU registers:

11110100011

00011101100

11101111110

01011011101

00111011111

01111110001

00100100100

00010011010

01110001000

10110101011

00001011001

00011100110

00000101101

11011001000

00110100001

10010110111

01011011001

11101001111

01011010011

11100110001

01010000001

10100111001

00100000110

10110010111

00100110110

10011011010

10001001011

01100010101

11110100011

00011101100

11101111110

01011011101

00111011111

01111110001

00100100100

00010011010

01110001000

10110101011

00001011001

00011100110

00000101101

11011001000

00110100001

10010110111

01011011001

11101001111

01011010011

11100110001

01010000001

10100111001

00100000110

10110010111

00100110110

10011011010

10001001011

01100010101

11110100011

00011101100

11101111110

01011011101

00111011111

01111110001

00100100100

00010011010

01110001000

10110101011

00001011001

00011100110

00000101101

11011001000

00110100001

10010110111

01011011001

11101001111

01011010011

11100110001

01010000001

10100111001

00100000110

10110010111

00100110110

10011011010

10001001011

01100010101

row-major column-major bitsliced

Good idea: Use the bitsliced representation.
▶ Every w-bit register holds a single bit from w separate instances.

⇝ Predictable execution flow and memory-access pattern.

(It should also be a good idea to use wider vector registers rather than general-purpose CPU
registers, but some quick and dirty experiments indicated this to be slower on Zen 4c.)

33 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.✓
▶ Sendrier’s support-splitting algorithm (SSA).✓
▶ Non-uniqueness of private keys in McEliece.✓
▶ Fast implementation techniques for key search.✓
▶ Results & summary.

34 / 41

TII’s McEliece challenge instances

▶ 2023–2024: McEliece Challenges run by the TII Institute.
▶ Multiple categories (decoding/key recovery; theory/practice).
▶ Wide range of estimated security levels.
▶ Cash prizes for best solutions in each category.

I won :) (in the “practical key recovery” category).

Technique: This talk, lovingly cast into 1770 lines of C++.

35 / 41

Current record: “83 bits”

▶ Challenge instance: p= 2, m= 8, t= 5, n= 253.

Parity-check matrix of public-key code:

▶ Naïve attack cost estimate: (28)5/5 ·
(28

253

)
· 2533 ≈ 283.025.

(Here n3 appears to be a rough estimate for the cost of the support-splitting algorithm.)

▶ Actual time spent: Only 1,735 CPU days. (Total ≈ 258. clock cycles.)

(Tested ≈ 239 key guesses at a rate of ≈ 7,500 per core and second.)
(Newer version of software: Estimated 1,400 CPU days, testing ≈ 9,400 guesses per core and second.)

36 / 41

Estimates

instance m t n ≈ # guesses #F ≈Pr[F7→true] guesses/(core · s) ≈ core time

69 6 4 57 236.65 9 2−15.23 218.71 217.94 s ≈ 2.9 d
70 8 5 255 226.68 23 2 −9.25 211.79 214.89 s ≈ 8.4 h
71 6 6 60 238.13 8 2−16.20 218.64 219.49 s ≈ 8.5 d
72 7 5 125 234.26 1 2−17.19 216.23 218.04 s ≈ 3.1 d
73 7 6 126 235.61 1 2−23.79 216.07 219.54 s ≈ 8.8 d
74 7 8 128 236.20 20 2 −6.94 210.74 225.47 s ≈ 1.47 yr
76 6 7 60 243.91 3 2−18.99 218.97 224.93 s ≈ 1.02 yr
77 7 5 124 239.23 4 2−16.64 215.80 223.43 s ≈ 4.3 mo
78 6 8 61 245.78 3 2−14.98 218.43 227.35 s ≈ 5.42 yr
79 7 6 125 241.00 4 2−16.74 215.67 225.33 s ≈ 1.34 yr
80 7 7 126 242.39 2 2−21.01 216.02 226.37 s ≈ 2.74 yr
81 7 8 127 243.20 4 2−16.08 215.35 227.86 s ≈ 7.71 yr
82 6 8 60 249.72 3 2−16.01 218.55 231.16 s ≈ 76.18 yr
83 8 5 253 240.08 1 2−19.95 213.21 226.87 s ≈ 3.90 yr
84 8 6 254 241.42 20 2−10.62 212.60 228.82 s ≈ 14.99 yr
85 8 8 256 242.01 20 2−10.26 2 9.90 232.10 s ≈ 146.1 yr
86 7 5 122 248.22 1 2−16.72 216.42 231.79 s ≈ 118.0 yr
87 7 8 126 249.19 4 2−15.69 215.74 233.45 s ≈ 371.9 yr
88 7 9 127 250.03 23 2 −6.78 212.17 237.86 s ≈ 7,900 yr
89 8 5 252 246.06 1 2−17.96 213.23 232.83 s ≈ 242.5 yr

37 / 41

Future work

▶ Conditions for the qt(q
n

)
/
(
tq(q− 1)m

)
count to be accurate?

▶ More bit operations per unit of time: GPU, FPGA, ASIC?
▶ Exploit matrix symmetry in punctured-hull computation?
▶ Different approach to support splitting altogether?

38 / 41

Summary

▶ The McEliece key-recovery problem is a little bit easier
than one might think.

▶ The impact on real parameters is effectively nonexistent.
This is because decoding attacks have always been much cheaper,
hence they are what primarily constrains the parameter choices.
Example: “Classic McEliece” parameter set 348864 estimates ≥ 2140.8 operations for
decoding, but a brute-force key-recovery attack requires ≥ 23210.4 operations.

39 / 41

Plan for this talk

▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ Code-based post-quantum cryptography.✓
▶ McEliece’s public-key encryption scheme.✓
▶ Sendrier’s support-splitting algorithm (SSA).✓
▶ Non-uniqueness of private keys in McEliece.✓
▶ Fast implementation techniques for key search.✓
▶ Results & summary.✓

40 / 41

Questions?

Check out my preprint: https://ia.cr/2025/632

(Also feel free to email me: lorenz@yx7.cc)

41 / 41

https://ia.cr/2025/632

